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Abstract. Experimental and numerical evidence of symmetry-breaking bifurcations of a circular dissipative
soliton with additional boundary conditions in the feedback of a liquid crystal light valve are reported.
By tuning the strength of the nonlinearity or the size of the additional boundaries, the circular structure
breaks up into polygonal symmetries and the system exhibits multistability. The experimental results are
confirmed by numerical simulations with different configurations of the polarizers thus demonstrating the
universality of the phenomenon.

1 Introduction

The existence of dissipative localized structures in opti-
cal cavities, also known as cavity solitons, is well-known
for many nonlinear photonic devices driven far from an
equilibrium state [1]. Dissipative solitons are static or dy-
namical localized objects that experience gain and loss of
their energy during the propagation. They can form where
the overall gain, loss and diffraction are balanced [1,2].
In optical systems they have been observed in active and
passive optical cavities, but also in single mirror feedback
experiments with different optical nonlinearities [1,3–6].
Formation of dissipative localized structures is combined,
in general, with an organized nonlinear behavior such as
optical bistability. Due to bistability, dissipative solitons
have binary features and a robust spatial shape based on
the balance of diffraction and nonlinearity, allowing one to
control and guide them easily in intensity and phase gra-
dients [7–10]. This latter fact can be attractive for applica-
tions in the context of all optical information processing
where solitary structures are used as ‘optical bits’ [3,7].
Systems based on liquid crystal light valves (LCLV) dis-
play a rich set of different spatial structures such as regu-
lar patterns (hexagons, negative hexagons, rolls), spatio-
temporal chaos, and localized structures [11,12]. Spatially
localized structures in LCLV mainly exist in the range
of optical bistability [11] and can have circular or other
reduced symmetries. Different symmetries may coexist in
the same system, due to the breaking of the rotational
symmetry for certain ranges of control parameters. In
these cases, triangular symmetry of localized states has
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been observed [13] and accompanied by the appearance
of phase singularities [14]. Here we investigate, both ex-
perimentally and numerically, the breaking of the circular
symmetry of localized states with the aim of explaining bi-
furcations to symmetries that are more complex than the
triangular one when imposing boundary limitations and
choosing a suitable control parameter range. These novel
localized states with peculiar symmetries may be used as
multi-state pixels in nonlinear optical information process-
ing and allow a considerable increase in storage capacity of
‘optical bits’ with respect to the standard localized state
of circular symmetry.

2 Experimental set-up and theoretical model

Experimentally, the Kerr medium used is a reflective
LCLV used as a hybrid nonlinear element placed in a feed-
back loop. LCLV, in spite of the relatively slow response
time estimated in the range of 50 ms, are attractive as
nonlinear elements in this type of experiments due to the
high nonlinear sensitivity and the large aspect ratio. This
enables the observation of patterns of broad area and the
choice of one of several spatially periodic structures when
using Fourier filtering [15].

The LCLV device works as an optically addressable
spatial light modulator as a function of the writing inten-
sity and the external applied voltage. The LCLV is con-
structed of a set of thin layers, which are two transparent
indium tin dioxide-coated glass electrodes, a liquid crystal
layer (LC), a dielectric mirror, a sensitive absorber, and
a photoconducting layer. The LCLV can be divided into
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two functional sides: a read and a write side. The principle
function of LCLV is the conversion of a spatial light inten-
sity distribution incident on the photoconduction layer in
a modulation of the refractive index of the liquid crystal
layer. A read wave passes the (LC) layer, is reflected at
the dielectric mirror, and leaves the LCLV modulated in
its phase and polarization state. The phase shift Φ of the
extraordinary wave induced by the LCLV can be written
as [11,16]:

τ
∂
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1 − tanh2
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where Φmax = 2kΔn is the maximum phase shift, Δn
is the difference between the extraordinary and ordinary
refractive indices, τ denotes the effective response time
of the liquid crystals required for their reorientation, ∇2

⊥
is the Laplacian operator, and l is the effective diffusion
length accounting for the restricted spatial resolution of
the LCLV. Vth and Vlc are respectively the threshold volt-
age and the voltage drop of the liquid crystal layer, here
normalized to V0. Iw is the intensity distribution on the
write side of the LCLV while μ and Φ0 are related to the
sensitivity and bias of the LC voltages on Iw. Model (1)
contains the temporal and spatial resolutions and the ef-
fects of saturation, in short, it describes the response of the
material. After illuminating the LCLV with a certain po-
larized light, the illuminating field is modulated in phase
and its polarization is changed. A polarizer has been used
in our experiments to transfer the phase modulation into
an amplitude modulation. The resulting intensity distri-
bution Iw at the write side after free propagation over a
distance L can be written as:
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where kλ and k denote the wave numbers of the light field
and of the macroscopic spatial modulation over the in-
stability threshold respectively, Ip is the LCLV input in-
tensity, and the amplitude factors B and C are given by
B = cosψ1cosψ2 and C = sinψ1sinψ2; ψ1 and ψ2 are the
angle of the input polarization and the angle of the polar-
izer axis respectively, regarding to the optical axis of the
liquid crystal layer. If ψ1 = ψ2 = 0, which means B = 1
and C = 0, pure phase modulations are induced in the
system. The LCLV system of Figure 1 is well described
by the two equations (1), (2). The experiments presented
here have been performed with different arrangements of
polarizers, ψ1 �= ψ2 �= 0. In a polarization mode, a rich di-
versity of optical patterns has been reported [11,12,17,18].
The reason for this diversity is the additional amplitude
modulation induced by the modulation of the polarization
state.

A typical experimental setup is shown in Figure 1. The
LCLV is driven by a frequency doubled Nd:YAG laser
(λ = 532 nm, P = 100 mW). The input Ip is linearly

Fig. 1. (Color online) Experimental setup of the LCLV single
feedback experiment system. P2: polarizer determining ψ2, L:
lenses, M: mirrors, BS: beam splitter, D: dove prism.

polarized and expanded to a diameter of 3.5 cm. This uni-
form wave passes the read-out side of LCLV where it is
internally reflected at the dielectric mirror and modulated
in its phase and polarization state. The modulated wave
is then inserted into the feedback loop where the wave
passes the polarizer (P2) that transmits the polarization
direction ψ2 with respect to the optical axis of the LCLV.
After a chosen distance of free space propagation L, the
resulting intensity distribution Iw is reflected at mirrors
M, goes through the lenses L, to reach the write side of
the LCLV, thus closing the feedback loop. In the following
section, we present results of imposing transverse bound-
ary limitations to the feedback loop on selected solitary
structures.

3 Boundary-induced localized structures
in LCLV

The influence of boundaries on regular patterns has al-
ready been studied theoretically and experimentally in ac-
tive and passive nonlinear media [19–22]. In this work, we
consider experimentally and numerically how boundaries
affect solitary structures by applying circular apertures
in a range of parameters different from those investigated
previously [13].

Solitary structures are observed in polarization mod-
ulation with different polarizer configurations. The case
ψ1 = ψ2 was investigated in [13,18] while we work here
mainly with ψ1 = −ψ2. In our experiment we use angles
of ψ = 44◦, a free propagation length of L = −20 cm,
a LC voltage of 4.4 V, and a frequency of 250 Hz. With
these parameters, solitary structures begin to appear at
Iw ≈ 0.12 mW/cm2 above the instability threshold. When
increasing the input intensity, more solitary structures
arise and coexist in the transverse plane of the wave. At
higher intensity values, they form a collection of uncorre-
lated solitary structures. These collections are constituted
by moving spots and do not display spatial order.

To apply additional spatial boundaries, an aperture is
placed in front of the write side of the LCLV after the
solitary structures are formed. The total diameter of the
impinging feedback beam on the write side of the LCLV is
2.3 cm, whereas the diameter of the aperture varies from
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Fig. 2. Different symmetries of spatial solitary structures
observed at fixed input power and at the aperture sizes:
(a) 0.9 mm, (b) 0.98 mm, (c) 1.17 mm, (d) 1.19, (e) 1.2 mm.
The structures differ from each other in size, symmetry and in
the number of the radial oscillations.

Fig. 3. Hexagonal and heptagonal structures appearing when
further enlarging the aperture to (f) 1.34 mm, (g) 1.4 mm and
for higher nonlinearity than in Figure 2.

0.08 to 2 cm. Starting from the aperture diameter 0.9 mm
where only a single solitary structure is allowed to pass
the aperture, and increasing it slightly, the strong nonlin-
earity modifies the original circular symmetry in order to
fit the aperture area. The sequence of observed structures
with increasing apertures but at a fixed input intensity
are shown in Figure 2.

The typical circular localized structure breaks up and
loses its highest symmetry when enlarging the aperture
from 0.90 mm to 0.98 mm where a novel structure with
rectangular symmetry emerges. By further increasing the
aperture to 1.2 mm, the structure modifies again and three
tails arise. The three tails are arranged symmetrically
around the central spot forming a triangular structure
similar to the triangular solitons reported in [13]. After
the triangular structure, other polygonal symmetries arise
when further enlarging the aperture, namely quadratic
and pentagonal structures. The central spot has a sym-
metry corresponding to the number of emerging tails. By
further enlarging the aperture, the pentagonal symmetry
is destroyed and no clear symmetry is observed. Other
symmetries can be observed if the strength of the non-
linearity is large enough to force more structures to fit
into the aperture. Experimentally, hexagonal and heptag-
onal symmetries have been obtained when slightly tuning
the nonlinearity by changing the frequency of the applied
voltage to 290 Hz, see Figure 3. It is worth noting that
the number of tails in the boundary-induced structure is
controlled by the aperture size, the LC voltage, the input
intensity and the saturation threshold.

Fig. 4. (Color online) Experimental bistability curve corre-
sponding to the first three symmetries, the circular, rectangu-
lar, and triangular one, in the presence of an aperture of size
1.2 mm in the optical feedback path in the polarization mode
ψ1 = −ψ2 = 44◦ of the LCLV system.

This experiment demonstrated the transition from bulk
induced symmetries, where the aspect ratio is large and
the emerging structures are independent of the size of the
feedback beam, namely the circular and triangular soli-
tary structures, to boundary induced symmetries which
depend on the size of the aspect ratio and the nonlin-
earity. We have then investigated the effect of the input
intensity on the behavior of the system in the regime of
strong dependence from the boundary conditions. As in-
dicated above, the appearance of lower polygonal symme-
tries is ruled not only by the size of the imposed aperture,
but also by the input intensity. The experimental observa-
tions indicate that, if the aperture is kept fixed at 1.2 mm,
only the rectangular and triangular symmetries can be ob-
served even at high values of the input intensity. The state
diagram for this case is shown in Figure 4.

As one sees in Figure 4, the transitions between the
observed symmetries when increasing the input intensity
are associated with the appearance of boundary-induced
bistability regions. If the input intensity is increased, the
uniform dark background loses its stability at a certain
turning point and the solution switches to a second sta-
ble branch of higher output intensity. By further increas-
ing the input intensity, the system loses its stability again
and switches to a stable third branch of even higher out-
put intensity. On the other hand, if starting from the third
steady state and decreasing the input intensity, the sys-
tem remains stable until a new turning point before it
jumps back to the lower stable branch and so on. The
separation of the bistable branches depends also on the
polarization configuration. When ψ1 = −ψ2 = 45◦, a
maximum separation of the bistability branches represent-
ing the steady solutions of the system is obtained.

In comparison with the bistable behavior observed be-
tween the circular solitary structure and the triangular
one in [13], we observe that the presence of the aperture
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Fig. 5. (Color online) Experimental bistability curve corre-
sponding to the circular, triangular, square and pentagonal
symmetries in the presence of an aperture of size 1.4 mm in
the optical feedback path in the polarization mode ψ1 = −ψ2 =
44◦ of the LCLV system.

leads to the generation of an additional steady state cor-
responding to the intermediate rectangular structure.

Until now we have considered an aperture with diam-
eter of 1.2 mm. To get a complete picture of the ability of
the system to support symmetries different from the cir-
cular one, the aperture is increased to ≈1.4 mm, i.e. large
enough to allow a pentagonal structure to be observed.
The measurements show that at this size of the aperture,
the rectangular structure vanishes, and the state diagram
depicted in Figure 5 shows four small bistability regions
representing four steady states, with a small fifth hystere-
sis loop corresponding to an unstable hexagonal structure.
The hexagonal structure can be stabilized by tuning the
applied frequency, i.e. the nonlinearity. Similar multistable
behaviors have been described in the numerical simula-
tions of the LCLV system [11].

We note that we have observed a similar set of
boundary-induced solitary structures also in the config-
uration of polarizers ψ1 = ψ2, as shown in Figure 6. The
boundary-induced scenario of bifurcations to polygonal lo-
calized states is quite general and should be observable in
experiments with optical nonlinearities different from that
of the LCLV.

4 Numerical simulations

Numerical simulations of equations (1), (2) have been per-
formed with a split-step method on 256× 256 point grids.
The free space propagation of the feedback field is com-
puted by multiplying its Fourier transform by the ap-
propriate phase function and then performing the inverse
Fourier transform. To reproduce the experiments, an in-
finitely absorbing screen with a circular aperture is in-
serted into the feedback loop so that the diameter and po-
sition of the writing beam can be controlled. The position
of the aperture is always chosen to be at the grid center.

Fig. 6. Experimental spatial solitary structures observed in
the LCLV system for ψ1 = ψ2 = 53◦ and an aperture enlarging
from 0.8 to 2.5 mm.

For the case ψ1 = −ψ2, dissipative solitons have been
found at ψ1= 39◦, 40◦, 41◦ and L = −18 cm using the
model (1)–(2). As in the experiment, we progressively in-
crease the size of the aperture measured in units of the
size of the circular soliton observed without aperture. Fig-
ure 7 shows localized structures with rectangular, trian-
gular, quadratic, pentagonal, hexagonal, and heptagonal
symmetries observed for apertures of diameters of 1.15,
1.25, 1.82, 2.40, 2.77 and 2.92 times the original circular
soliton, respectively and ψ1 = 41◦.

We have also obtained localized structures with polyg-
onal symmetries when changing the size of the aperture
in the case ψ1 = ψ2. LCLV experiments in this con-
ditions have been performed in [13,18]. Figure 8 shows
the sequence of symmetries observed for increasing aper-
tures. Enlarging the aperture diameter to 1.11, the rota-
tional symmetry breaks up yielding a rectangular struc-
ture (Fig. 8b) that, in turn, becomes unstable and gives
rise to a triangular structure at 1.15 (Fig. 8c). After the
triangular ones, structures with quadratic, pentagonal and
hexagonal symmetries are observed for aperture diameters
of 1.56, 1.94 and 2.0, respectively (Figs. 8d–8f). These
observations clearly demonstrate the universal nature of
the phenomenon of aperture-induced polygonal symme-
tries described in the previous sections.

5 Conclusion

We have observed both experimentally and numerically
solitary structures with polygonal symmetries ranging
from rectangular to heptagonal in a LCLV system with
different polarizer configurations ψ1 = −ψ2 and ψ1 = ψ2.
Most of these symmetries are boundary induced and are
not observed for the same values of the control param-
eters in the same system without a confining aperture.
This shows that an aperture can induce boundary effects
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Fig. 7. Numerical simulations of solitary structures for the
case of ψ1 = −ψ2 = 41◦ when enlarging the aperture to diam-
eters: (a) 1.0, (b) 1.15, (c) 1.25, (d) 1.82, (e) 2.40, (f) 2.77, and
(g) 2.92 times the original circular soliton size.

Fig. 8. Numerical simulations of solitary structures for the
case of ψ1 = ψ2 = 55◦ and at μIp = 4 and Φ0 = 3π when
enlarging the aperture to diameters: (a) 1.0, (b) 1.11, (c) 1.15,
(d) 1.56, (e) 1.94, and (f) 2.00 times the original circular soliton
size.

strong enough to affect deeply the type and the stability
of the observed localized spatial structures. Bistability of
the polygonal structures while changing the input power
up and down show that the boundary-induced localized
structures maintain the nonlinear character of the original
circularly symmetric soliton. Our results together with the
simplicity of the experimental set-up indicate that aper-
tures can be a very effective way to control bifurcations
and instabilities in transverse nonlinear optics.
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