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Anisotropy-controlled topological stability
of discrete vortex solitons in optically

induced photonic lattices
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We realize an experimental control over the topological stability of three-lobe discrete vortex solitons by
modifying the symmetry of a hexagonal photonic lattice optically induced in a photorefractive crystal. By
continuously deforming the lattice wave in one transverse direction, we manipulate the coupling between
lattice sites and induce or inhibit the reversal of soliton vorticity. © 2010 Optical Society of America
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Optically induced photonic lattices provide an access
to the rich physical phenomena of linear and self-
trapped waves in periodic potentials [1]. Among di-
verse types of nonlinear lattice excitations [2,3] the
discrete vortex solitons [4,5] attract particular atten-
tion owing to their feature of localized persistent cur-
rents around phase singularities [6]. Stable four-lobe
vortices were experimentally generated in square lat-
tices [7,8], whereas six-lobe vortices [9] as well as
multivortex structures [10] have been studied in hex-
agonal lattices. The reversal of the vortex current,
suggested for asymmetric vortices [11], and complex
topological transformations involving several disloca-
tions [12–14] are possible because of the broken rota-
tional symmetry of the periodic medium. Similarly,
the topological stability of lattice vortex solitons, i.e.,
the stability of phase and power flow, crucially de-
pends on the lattice symmetry, and it is strongly af-
fected by the orientation anisotropy of the photore-
fractive nonlinearity [9,10,15].

The simplest lowest-order discrete vortex soliton
with only three intensity lobes and a unit topological
charge in hexagonal lattices is a very robust entity in
isotropic saturable media [16]. At the same time, the
symmetry of the refractive index pattern optically in-
duced in a photorefractive crystal significantly de-
pends on the level of saturation as well as the trans-
verse orientation of the periodic lattice wave [17].
Therefore, the spatial phase structure of a three-lobe
vortex needs to be deformed, similar to asymmetric
discrete vortex solitons in isotropic media [11]. It fol-
lows that the interplay between the asymmetry of a
vortex and the orientation anisotropy of the lattice
provides an additional degree of freedom in building
stable vortex solitons.

In this Letter, we employ the anisotropy of opti-
cally induced hexagonal lattices to control the topo-
logical stability of single-charge three-lobe discrete
vortex solitons. We demonstrate that the continuous

transverse deformation of the lattice wave, preserv-
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ing its nondiffracting propagation, allows tailoring
the coupling between lattice sites. As a result, the
switching between topologically unstable and stable
solitons is demonstrated experimentally.

We begin by constructing the nondiffracting hex-
agonal lattice wave U�r ,z� as an interference of three
plane waves, U=U0�j=1

3 exp�ikjr+ ikzz�, with equal
amplitudes U0 and the transverse wavevectors kj
laying on a circle, �kj�=k so that k2+kz

2=k0
2. Here, k0

=2�n0 /� is the wavevector, n0 is the medium refrac-
tive index, and � is the wavelength. The lattice period
in the y-direction is dy=�dx with a variable �. For the
horizontal orientation of hexagons we choose k1

= �−k ,0� so that k2,3= ��k2−ky
2 , ±ky�, with the param-

eter ky=2� /�dx. The intensity of the lattice wave
with the amplitude I0=max I is given by

I =
I0
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2

3
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The hexagonal lattice wave is symmetric for �=�3,
“squeezed” in the y-direction for ���3, and
“stretched” for ���3.

In numerical simulations, we use the anisotropic
model of photorefractive nonlinearity [9,10,15], with
parameters close to experimental conditions. Since
we consider discrete vortex solitons in the semi-
infinite gap, we assume that the lobes of a vortex are
centered on the lattice sites and only weakly coupled.
Thus, we adopt the model of [11], with the vortex
soliton field, E=�j=1

3 ��rj�exp�i�j+ i�z�, given by the
superposition of fundamental discrete solitons with
real envelopes ��r� and soliton constant �. In this ap-
proach, the vortex lobes are positioned at the neigh-
boring lattice sites, r1= �0,0�, r2= �dx ,0�, and r3
= �dx /2 ,�dx /2�, and each lobe has a distinct phase �j.

The initial phase difference between two lobes is
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��i−�j�=2� /3 ∀ i , j ; i� j. To create a stable vortex
soliton, the balance of the power flow between the
lobes is required, �j=1

3 cjn sin��j−�n�=0 (for each lobe
n=1,2,3), where the integral coupling coefficients
cjn=cnj depend on the nonlinearity, the soliton ��r�,
and the lattice I�r� [11].

In contrast to the isotropic model [16], the refrac-
tive index pattern optically induced by the symmetric
hexagonal wave ��=�3� displays clear anisotropic
features [see Fig. 1(a)]. In particular, while in the
horizontal x-direction the lattice sites are separated
by (dark) repulsive potentials, in the “diagonal” direc-
tions the modulation contrast between neighboring
sites is much lower. As a result, the coupling between
sites in the x-direction is diminished in comparison
with the diagonal coupling, c12	c23 (and c13�c23
from symmetry considerations). The discrete diffrac-
tion pattern in Fig. 1(b) reflects this anisotropy, and
it is influenced by the vorticity of the input state with
a positive unit topological charge and a counter-
clockwise power flow.

In the nonlinear regime the diffraction is sup-
pressed, and a localized self-trapped discrete vortex
is observed at the output in Fig. 1(c). However, be-
cause of the asymmetric coupling between lattice
sites the power flows between the individual vortex
lobes are no longer balanced and lead to continuous
phase changes. The actual dynamics involves topo-
logical reactions between several phase dislocations
[14], and it results in the inversion of the vortex cur-
rent [see the clockwise arrow in Fig. 1(d)]. While in
isotropic square lattices the flipping of the topological
charge of asymmetric vortices is triggered by an ex-
ternal perturbation [11,18], here it arises due to the
intrinsic anisotropy of the photorefractive response.

The key to stabilize vortices is to restore the cou-
pling symmetry by the deformation of the lattice
wave equation (1). Keeping the period dx as a con-
straint largely preserves the coupling c12 in the
x-direction. Therefore, the lattice has to be stretched,
���3, to reduce coefficients c23 and c13. The actual
necessary amount of stretching depends on particu-
lar parameters of the lattice (I0 and dx) as well as the

Fig. 1. (Color online) Comparison between symmetric
[(a)–(d), �=�3] and stretched [(e)–(h), �=2.5] lattices: (a),
(e) refractive index; (b), (f) output intensity in the linear re-
gime of discrete diffraction; (c), (g) output intensity and
(d), (h) phase profiles of discrete vortex solitons (propaga-
tion distance of z=33 mm). The arrows in (d) and (h) show

the direction of current.
soliton envelope �. For our choice of parameters the
optimal value is found to be �=2.5. The correspond-
ing refractive index pattern is shown in Fig. 1(e).

The reduction in coupling coefficients by stretching
suppresses tunneling between sites and the discrete
diffraction is significantly reduced [cf. Figs. 1(b) and
1(f)]. At the same time, the power flow between vor-
tex lobes is symmetric and, in the nonlinear regime,
the discrete vortex soliton preserves its topological
charge [see the counterclockwise arrow in Fig. 1(h)].

To test our theoretical predictions in experiment,
we employ a setup similar to the one described in [9]
using two programmable spatial light modulators to
generate the lattice wave and the probe beam input.
All experiments are performed in a 20 mm long
photorefractive Ce-doped strontium barium niobate
crystal, which is externally biased with a direct cur-
rent electric field of approximately 2 kV/cm directed
along its optical c-axis.

First, we consider the propagation of a three-lobe
vortex soliton with a unit topological charge in a hex-
agonal lattice induced by the symmetric lattice wave

Fig. 2. (Color online) Experimental results for symmetric
hexagonal lattice wave. Intensity (left panels) and inter-
ferograms (right panels) are shown for (a) the input vortex
beam of unit charge (fork up, red circle), (b) discrete diffrac-
tion output with zero charge (two opposite dislocations, yel-
low oval), and (c) the nonlinear output with flipped charge

(fork down, blue circle).
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with a horizontal lattice constant of dx
30 
m. Fig-
ure 2(a) shows the corresponding intensity and phase
profiles of the input beam. The latter is revealed by
the interferogram with the fork-type vortex disloca-
tion. At low input power �
20 nW�, the output shows
discrete diffraction and the phase profile gets dis-
torted. More careful examination reveals that the
number of vertical interference fringes coming in and
out of the yellow oval in Fig. 2(b) is the same. There-
fore, inside the triangle between three major inten-
sity peaks (initially excited sites), there are two dis-
locations of the opposite charge so that the total
topological charge is zero. Furthermore, with the in-
crease in power to 
150 nW, we observe in Fig. 2(c)
three well-defined intensity spots closely resembling
the input structure, but the phase profile now shows
the opposite topological charge. Thus, in full agree-
ment with our simulations in Figs. 1(c) and 1(d),
alongside with nonlinear localization of intensity, we
observe the reversal of the vortex current.

The experimental results for the stretched lattice
with dy /dx=2.5 are depicted in Fig. 3 [cf. Figs.
1(e)–1(h)]. The diffraction in the low power regime is
much less pronounced than in the symmetric case
and it is hardly visible in Fig. 3(b). However, the most

Fig. 3. (Color online) Experimental results for stretched
hexagonal lattice wave; notations are similar to Fig. 2.
Note the same topological charge (fork up, red circle) in all

interferograms.
important result here is that the phase profile is pre-
served even in the nonlinear output in Fig. 3(c). Since
all the other parameters have been chosen to be the
same as in the unstretched lattice in Fig. 2, the clear
differences in phase profiles can be fully attributed to
the stretching of the lattice and the resulting sym-
metric coupling. Thus, our experiments clearly prove
the possibility to control the charge flip in anisotropic
hexagonal photonic lattices by stretching the lattice
along its vertical direction.

In conclusion, we introduce an anisotropic manipu-
lation of the symmetry of an optically induced photo-
nic lattice as an additional tool to tune its waveguid-
ing properties. We demonstrate that, using elemen-
tary three-lobe discrete vortices in hexagonal lattices,
simple one-dimensional deformation of the lattice
wave allows one to adjust the coupling between lat-
tice sites and to control the power flow between ex-
cited waveguides.
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