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We report on the experimental observation of stable double-charge discrete vortex solitons generated in
hexagonal photonic lattices created optically in self-focusing nonlinear media and show that single-charge
vortex solitons are unstable in analogous conditions. Subsequently, we study, both theoretically and experi-
mentally, the existence and stability of spatial vortex solitons in two-dimensional hexagonal photonic lattices.
We demonstrate that the stability of the double-charge vortices is a consequence of the intersite power ex-
change in the vortex soliton, and we provide a simple stability criterion on the basis of the analysis of the
corresponding discrete nonlinear model. We extend our analysis to the case of defocusing nonlinearity and
show the inversion of the vortex stability properties resulting in the fact that single-charge vortices become
stable while their double-charge counterparts are unstable.
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I. INTRODUCTION

Experiments with optical vortices have proven to be some
of the most spectacular in the study of nonlinear light propa-
gation in periodic photonic structures due to often unex-
pected properties of the vortex flows [1]. Previous works
studied the vortices in square photonic lattices, and they re-
vealed that when a self-trapped vortex beam is placed on a
discrete structure of the lattice, it retains a phase singularity
with a particular winding number (or charge) [2—4]. These
early experiments on the generation of single-charge discrete
vortices were quickly followed by the demonstration of the
complex dynamics of single-charge vortex states such as
transmutations between different spatial profiles [5] and even
the inversion of the vortex charge [6,7]. More recently, the
lattices of nonsquare symmetry have been considered, such
as hexagonal and honeycomb lattices [8—11], with striking
new vortex forms found, including the multivortex localized
states [12,13]. However, perhaps the most counterintuitive
result to emerge from the consideration of hexagonal lattices
is that in the simplest six-site configuration double-charge
vortices may become stable, while single-charge vortices are
always unstable [14], in agreement with the stability proper-
ties of vortex solitons in modulated Bessel lattices [15]. This
is particularly surprising as higher-charge discrete vortices
are typically unstable in homogeneous nonlinear systems [1].

The main objective of this work is to demonstrate experi-
mentally, numerically, and theoretically the stability of a
double-charge vortex in contrast to the corresponding single-
charge vortex state which is unstable under the same condi-
tions. We extend the earlier theoretical work for isotropic
systems and study the full anisotropic model of nonlinear
media with the numerical results supporting our experimen-
tal observations. To provide an additional theoretical insight
on this stabilization effect, we employ a simpler discrete
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model to examine the effect of the lattice stretching on the
vortex stability, and also showcase the inversion of the vor-
tex stability picture (between single- and double-charge vor-
tices) in the case of the defocusing nonlinear response.

The outline of the paper is the following. In Sec. II we
introduce our experimental setup and present the results of
the experimental observation of stable double-charge vorti-
ces in a hexagonal photonic lattice created in a crystal with
photorefractive nonlinearity in the self-focusing regime. We
also show that in this regime single-charge vortices are un-
stable. In Sec. III we extend the theoretical results of Ref.
[14] and analyze numerically the full anisotropic model of
photorefractive nonlinearity demonstrating a good agreement
between the numerical and experimental results. In Sec. IV
we use a discrete model to examine theoretically the effect of
the lattice stretching on the stability of the double-charge
vortex and determine a critical stretching parameter for the
vortex stabilization. Section V describes the experimental
observation of stable single-charge vortices and unstable
double-charge vortices in the defocusing nonlinear regime,
confirming the inversion of the vortex stability established
theoretically on the basis of a discrete model. Finally, Sec.
VI concludes the paper.

II. EXPERIMENTAL RESULTS

First, we demonstrate experimentally the stable genera-
tion of a double-charge vortex in a photorefractive crystal in
the presence of a hexagonal photonic lattice in the self-
focusing regime, as predicted theoretically for an isotropic
model [14]. The experimental setup is shown schematically
in Fig. 1, and it is similar to that used earlier in Ref. [16]. A
beam from a frequency-doubled Nd:YAG laser at a wave-
length of 532 nm is split into two beams with a beam splitter,
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FIG. 1. (Color online) Schematic of the experimental setup. BS:
beam splitter; CCD: camera; FF: Fourier filter; L: lens; M: mirror;
MO: microscope objective; PH: pinhole; SLM: spatial light
modulator.

and the separate beams are used to illuminate two program-
mable spatial light modulators.

The first spatial light modulator (SLM1, see Fig. 1) con-
verts the incoming beam into three interfering plane waves
which are imaged onto the front face of a 20 mm long pho-
torefractive Sty ¢oBag 4oNb,Og (SBN:Ce) crystal which is ex-
ternally biased with a dc electric field directed along its op-
tical ¢ axis. The resulting interference pattern is that of a
two-dimensional hexagonal photonic lattice (Fig. 2) with a
lattice power of I},;=75 uW. A half-wave plate ensures the
polarization of the lattice beam to be ordinary, so during the
beam propagation through the crystal the nonlinear effects
are negligible [17]. The lattice is oriented such that the light
intensity maxima of the hexagonal pattern are aligned along
the lines parallel to the optical axis of the crystal in the
so-called “horizontal configuration.” The periodic light in-
tensity distribution induces a corresponding refractive index
pattern via the photorefractive effect [17] forming the optical
lattice. Due to the anisotropic nature of the nonlinear re-
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FIG. 2. (Color online) Sketch of the Fourier image and numeri-
cally calculated lattice intensity and refractive index profiles for the
symmetric hexagonal lattice (top panels) and the stretched lattice
(bottom panels). The lattice beams in Fourier space are indicated by
dots forming an equilateral triangle for the unstretched lattice and
an isosceles triangle for the stretched lattice. The refractive index
profiles are shown for focusing (left) and defocusing (right)
nonlinearities.
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sponse of the crystal this optically induced refractive index
does not preserve the symmetry of the lattice beam. In par-
ticular, the modulation of the refractive index is stronger
along the optical axis than along the diagonals, making the
resulting optical coupling between refractive index maxima
very asymmetric (see Fig. 2, top row). To counteract the
effect of the anisotropy, the lattice forming beams are tilted
to induce a stretching of the lattice along the vertical direc-
tion such that the optical coupling between lattice maxima is
closer to that of the original hexagonal symmetry of the lat-
tice [13], yielding lattice constants of d,=62 um and d,
=27 um for the vertical and horizontal directions, respec-
tively. This g1ves a ratio of dy/d,~2.2 as opposed to the
ratiod,/d =\ Bofa symmetric lattlce The importance of the
lattice stretchlng for the vortex stability is examined theoreti-
cally below in Sec. IV.

The second spatial light modulator (SLM2, see Fig. 1)
combined with proper Fourier filtering [18,19] is employed
to achieve the desired amplitude and phase structure of an
incident Gaussian probe beam. The polarization of the probe
beam is extraordinary so it propagates through the crystal in
the nonlinear regime. The strength of nonlinearity is con-
trolled by varying an applied external dc electric field. In all
our experiments the value of the bias potential was set to be
approximately 2.2 kV/cm. In order to visualize the phase
structure of the probe beam, a third beam is derived from the
laser. It is passed through a half-wave plate to ensure its
extraordinary polarization and subsequently sent directly to
the charge-coupled device (CCD) camera to record a phase
interferogram with the probe beam.

We use the phase modulator to impose either a 27 or 47
phase winding on an input modulated (six-site) beam for the
generation of single- and double-charge vortices, respec-
tively. The characteristics of the beams are otherwise identi-
cal, and thus any differences in the dynamics are due solely
to the different input phases. We selectively vary the input
beam intensity to effectively move from the linear regime
(low power, I =50 nW) to the nonlinear regime (high
power, Iy =~550 nW).

The single-charge vortex input is shown in Fig. 3(a). Its
intensity distribution has a form of a necklace with six inten-
sity peaks whose positions correspond to the lattice sites (in-
dex maxima). At low input power the beam undergoes dis-
crete diffraction and a complete loss of the initial six-site
input state [Fig. 3(b)]. At high power the initial six-site in-
tensity profile changes significantly after propagation [Fig.
3(c)], showing strong intensity modulations and even filling
in the central lattice site. Furthermore, in the phase profile
multiple vortices are seen to appear, further indicating a
breakdown of the single-charge state [circles in bottom panel
of Fig. 3(c)]. We were unable to find an example of stable
propagation of the single-charge vortex in the high-power
(nonlinear) regime, a result consistent with the isotropic case
predictions of Ref [14]. (see also the analysis below for the
anisotropic case).

In the case of the double-charge vortex input [see Fig.
4(a)] we again observe a discrete diffraction with low input
power [see Fig. 4(b)]; however the result changes dramati-
cally when the power is increased [see Fig. 4(c)]. We observe
that now the six-site input structure is preserved in the non-
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FIG. 3. (Color online) (a) An input single-charge vortex beam;
(b) the beam profile and phase at the output crystal face for low
input intensity; (c) output for high input intensity. In both cases we
see the breakup of the single-charge vortex. Here and below in
experimental figures: left panels show intensity; right panels reveal
phase structure; circles indicate positions of vortices with charge
m=+1 (red) and m=-1 (blue).

linear propagation. Interestingly, while the overall phase
winding is still 477, it is seen that the initial double-charge
singularity has split into two single-charge vortices [circles
in the lower panel of Fig. 4(c)]. This splitting of the higher-
order singularity can be attributed to an inherent topological
instability in the higher phase winding [20]. This topological
breakdown in the linear (low power) part of the field further
indicates that the stability of the 47 phase winding across the
six sites is due to the interplay of the nonlinearity and local
phase of the high-power sites suppressing the development
of a dynamical instability [14]. However, we find that this
stability is critically dependent on the symmetry of the lat-
tice, with a decrease in the lattice stretching (and thus a
corresponding decrease in the symmetry of the underlying
modulated refractive index), leading to a dynamical instabil-
ity in the double-charge state as well. The phase interfero-
gram in Fig. 4(c) also indicates an additional pair of single-
charge vortices of the opposite charge inside the vortex
structure (not marked by circles). However, this additional
pair does not affect the stability of the 47 phase winding,
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FIG. 4. (Color online) The same as in Fig. 3, but for the case
when the input beam (a) has a double-charge vortex phase. (b)
Output at the crystal face demonstrates discrete diffraction for low
power and (c) discrete double-charge vortex generation at high
power.

and it can be fully attributed to inevitable experimental noise
in this region of low intensity of light.

III. NUMERICAL SIMULATIONS

In the earlier work examining double-charge vortex sta-
bility the isotropic nonlinear model was used [14], which
does not take into account anisotropy of the photorefractive
nonlinearity and the stretching of the lattice. Therefore, to
corroborate our experimental results, here we use the full
anisotropic model. The propagation of a scalar probe field A
through a photorefractive crystal is given by

JA
2ii+ VA — yEo(I)A =0, (1)

where V2 =%/ x>+ P/ 3y%; Lig=|A > +|A[%, Ay is the peri-
odic lattice wave, and 'yn]:k%w(z)ngreff is the photorefractive
nonlinearity coefficient proportional to the effective element
1o Of the linear electro-optic tensor. Spatially localized and
stationary solutions of Eq. (1) can be found in the form
A(x,y,z)=alx,y)exp(iBz), where B is the soliton propaga-
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FIG. 5. Numerical simulation of a single-charge vortex (E.
=2.5 kV/em, I=|A>=1, B=3). (a) Initial vortex beam pro-
file; (b) beam profile at z=20 mm for low input power; (c) beam
profile at z=20 mm for high input power; (d) high-power output at
z=280 mm. Top panels: intensity; bottom panels: phase.

tion constant. The electric screening field E,. is generated by
the separation of optically excited charges which drift in the
external electric field. This directional drift is responsible for
an anisotropy of the total electric field in the crystal and
consequently an anisotropic refractive index change. A quan-
titative model describing the stationary dynamics has been
proposed in terms of the scalar potential ¢ from which the
screening field may be found through E,.=—d,¢. The equa-
tion describing the evolution of this potential is given by [21]

Vigp+V, In(1+1,)V, ¢p=Ed, In(1+1,), (2)

where E,,, is the dc bias voltage applied along the optical
axis of the crystal which is taken to be the x axis. The trans-
verse coordinates (x,y) and propagation coordinate z are
measured in units of the characteristic lengths w, and z,
respectively, where zo=kzw(2) and k,=ngky with ky=27/\. In
particular, we use a transverse scale of wyp=10 um and A
and ng as for the experiment. The total intensity /;,; is nor-
malized in units of the background illumination and we take
E.=2.5 kV/cm. For the lattice wave we use the expression

Ay = exp(2ik,x/3) + exp(— ik,x/3 + ik,y)
+exp(— ikx/3 = ikyy), (3)

leading to a diffraction-free hexagonal pattern with the hori-
zontal orientational symmetry shown in Fig. 2. We consider a
stretched lattice with k./k,=2.5 and spatial separations of
lattice maxima of d,=2m/k,=2 in x and d,=27/k,=5 in y
directions (lattice spacings of 20 and 50 mm, respectively).

First we consider the case of a six-site initial state with a
single-charge vortex phase of the form shown in Fig. 5(a)
with either low or high power propagating a distance of z
=20 mm in the lattice. For the low input power case [Fig.
5(b)] we see that, as in the experiment, the vortex beam
undergoes strong diffraction and break-up. If instead a high
input power is considered [Fig. 5(c)] the vortex maintains
much of its form. Some intensity fluctuations are evident,
and more importantly, the vortex phase has deteriorated
showing breakdown of the initial single-charge vortex circu-
lation. It must be noted that the breakup is clearly less than
that observed in the experiment and this discrepancy is at-
tributed to the higher anisotropy of the experimental lattice

FIG. 6. Numerical simulation of a double-charge vortex (Egy
=2.5 kV/em, I=|Ad?=1, B=3). (a) Initial vortex beam pro-
file; (b) beam profile at z=20 mm for low input power; (c) beam
profile at z=20 mm for high input power; (d) high-power output at
z=280 mm. Top panels: intensity; bottom panels: phase.

leading to a larger instability growth rate. In our numerical
simulations, the strong instability becomes evident for longer
propagation distances as shown in Fig. 5(d) for z=280 mm.

In Fig. 6 we consider the same input beam intensities but
change the phase to that of a double-charge vortex, as shown
in Fig. 6(a). The low power output in Fig. 6(b) appears simi-
lar to the single-charge case, exhibiting diffraction and
breakup of the vortex. In contrast, the high-power output in
Figs. 6(c) and 6(d) appears unchanged in the intensity profile
with a well-pronounced double-charge vortex phase. Similar
to the experimental results, the separation of the double-
charge phase singularity into two single-charge singularities
is observed, including in the initial condition in Fig. 6(a).
However the phase circulation around a contour tracing the
six high intensity sites is well defined and equals 4.

IV. EFFECT OF LATTICE STRETCHING

A key feature of the full model considered here, as com-
pared to the isotropic case studied earlier [14], is the pres-
ence of anisotropy. In the experiment and in numerical simu-
lations, we have sought to reduce the effects of the
anisotropy by stretching the lattice. In this section we use a
discrete model to obtain some further insight, based on semi-
analytical considerations, on how the lattice stretching (or
more generally the symmetries of the intersite coupling) af-
fects the discrete vortex stability.

Within the framework of the discrete approximation the
hexagonal lattice corresponds to a coupled waveguide array
with complex amplitudes u,,,, of the electric field governed
by the following system:

du
! anq’n =-¢€ E Cm’,n’um’,n’ + (4 + 2C)“’\I’lm,n - b|um,n|2um,m

(4)

where the constant & denotes the strength of linear coupling
between waveguides, b=1 is for self-focusing, and b=—-1 is
for self-defocusing media. The set {m’',n'} indexes the six
nearest neighboring sites to the site (m,n), a pair in each of
the three principal directions. The parameters C,, ,» account
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FIG. 7. (Color online) The hexagonal cell is approximated by a
contour shown in (a). The images below this show the relative
phases for the (c) double- and (e) single-charge vortices distinguish-
ing stable (with y;<<0 for all j) and unstable (with y;>0) solutions.
For C=1 the phases of adjacent excited nodes are equidistant and
all are a distance of 277/3 or 7/3 from one another. These are the
isotropic double- and single-charge vortices. For smaller C, the
relative phase of #, and 6; (shown in black) becomes smaller for
the double-charge (c) solution [and larger for the single charge (e)]
and when |6,— 65| <(>)/2, for C< C,=0.708, one corresponding
eigendirection becomes unstable (stable). This can be observed in
(d) and (f), in which the six eigenvalues of the linearization matrix
M are presented as a function of C. When they are all negative the
solution is stable close to the anticontinuum limit. Notice for the
S§=2 solution (d) the smallest magnitude one becomes positive for
C<Cy,, leading to instability. (b) The bifurcation of the relevant
eigenvalue of the S=2 vortex through the origin is represented by
the maximum real part of the linearization spectrum, max[Re (\)]
as a function of both the anisotropy parameter, C, as well as the
coupling . Notice the critical point (in C) shifts only very slightly
from the first-order prediction for 0 <e <0.1.

for the coupling anisotropy and are equal to C for the neigh-
bors lying along the (1,0) direction and 1 otherwise.

In the anticontinuum limit € — 0, i.e., for very weak inter-
action between neighboring waveguides, the solutions of
Eq. (4) can easily be found in the general form u,,,
=B exp{-iBz+i#,,,} for arbitrary 6,,,e[0,2m) [22]. Let-
ting B=1 without loss of generality and using j to index the
sites along the six-site one-dimensional contour shown in
Fig. 7(a), the condition for existence of solutions with &
>0 reduces to the vanishing of the total power flow at each
site,

PHYSICAL REVIEW A 79, 043821 (2009)

Cj,j—l Sln(b’] - 0]'_1) + Cj,j+l Sln(ﬁj - 0j+l) = O, (5)
subject to periodic boundary conditions 6;,,=0, for j
.,6[22]. Similar to C,,,, above the constants Cj ac-

count for the coupling anisotropy,

{c, (k) € {(2.3).(3.2).(5.6).(6.5)}
Cj k=

1, otherwise.

(6)

We consider first the focusing medium with b=1. In the
case C=1, the single- and double-charge vortex solitons exist
close to the anticontinuum limit as defined by the phase vec-
tors §;=Sjm/3, where S=1,2, respectively. An analytical ap-
pr0x1mat10n for the stability of the discrete solitons can be
made for small & based on an appropriate modification of the
theory originally developed in Ref. [22] for the isotropic
square lattice. The stability can be determined from the ei-
genvalues 7; of the 6X 6 Jacobian of Eq. (5),

(M)
blc; 1 cos(0j1 = 6) +c; g cos(0; = 6)], j=k
=\-blcjxcos(6;- 6], j=k=1
0, |k—jl=2.
(7)

For each eigenvalue v;, the full linearization around a sta-
tionary solution will have eigenvalue pairs \; given, to lead-
ing order, by \;=* \2)/]8 Therefore, the 51gn of the eigen-
values of M determlnes whether the eigenvalues of the
bifurcating solution will be real or imaginary. In particular,
positive eigenvalues of M will indicate real eigenvalues of
the full linearization problem, and, hence, instability for this
Hamiltonian system.

The results for the existence and stability of single- and
double-charge vortex configurations are presented in Figs.
7(c)-1(f) for C €[0.1,1]. The results for 1 <C <10 are not
shown since no new instabilities arise in that regime. These
results can be summarized as follows:

(i) The S=2 vortex is stable for C>C.=0.708, as it is in
the isotropic case [14].

(ii) As two of the relative phase pairs decrease below /2
due to the stretching, the S=2 vortex becomes destabilized
for C<C,=0.708 due to an effective modulational instabil-
ity [14] (see also Ref. [23] for a general analysis of the
instability) along the one-dimensional six-site contour.

(iii) Below a stretching of C=0.5, the S=2 configuration
becomes real with 6,=6,=0 and the others equal to 7, (or
vice versa).

(iv) On the other hand, the vortex with S=1 is unstable
throughout the considered interval of stretching parameter,
but also degenerates into a real solution with 65 4 5=0 and the
others equal to 7.

A continuation of solutions for the double-charge family
was performed in the coupling parameter €, and the critical
value C,, represented by the front of real eigenvalues, was
found to deviate very weakly from the first order prediction,
when & was varied in the interval [0,0.1]. The stability results
are detailed in Figs. 7(b) and 7(d).
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We can use full anisotropic models (1) and (2) to estimate
the relative coupling values typically used in experiments. In
the unstretched case we calculate the anisotropy parameter to
be C=~0.22, while with the lattice stretching this becomes
C=0.82. These values have been calculated for the particu-
lar case of the high input beam intensity although they de-
pend strongly on both the lattice depth and the beam inten-
sity. It is evident however that the unstretched value places
the lattice in a regime where no stable vortex formation is
expected from the discrete model analysis, in agreement with
experiment. Furthermore, in the stretched case we can see
that again in accordance with the analysis of the discrete
model a stretching parameter of C=0.82 is within the stable
region of double-charge vortex formation, as was also con-
firmed experimentally. We thus illustrate a very good agree-
ment between the predictions of the discrete model, the pa-
rameters calculated from the full anisotropic model, and the
actual experimental results.

One of the advantages of the discrete model is that the
relevant theoretical analysis can be straightforwardly ex-
tended to the case of the defocusing nonlinearity. In particu-
lar, it is well known that a so-called staggering transforma-
tion along the contour of such a solution for a given b, i.e.,

lj ,-=(—1)j U, yields a solution to the problem with b=—b: this
illustrates that a mere staggering transformation suffices to
extend the focusing results above to the defocusing case.
More specifically, the staggering transformation of the S=1
focusing solution leads to the S=-2 (or equivalently S=2)
solution for the defocusing case, while that of the S=2 fo-
cusing vortex leads to the S=—1 (or equivalently S=1) defo-
cusing vortex. Importantly also, the stability results for
single- and double-charge solutions for the focusing case im-
mediately translate to their defocusing counterparts, namely,
the double- and single-charge solutions (respectively). Since
the stability predictions are exactly reversed in the defocus-
ing case (between the single- and double-charged vortex),
numerical and experimental studies have also been per-
formed in this setting to test the theoretical prediction.

V. DEFOCUSING NONLINEARITY

As discussed above, the stability properties of single- and
double-charge vortices with focusing nonlinearity are ex-
pected to be inverted when the nonlinearity is changed from
focusing to defocusing. For completeness of our analysis, we
examine this situation numerically as well as experimentally
and confirm this general theoretical prediction.

Similar to the focusing case, we perform numerical simu-
lations using full anisotropic models (1) and (2) but reverse
the sign of the nonlinearity by using E,,,=-2.5 kV/cm.

Figure 8 summarizes the results for the single-charge vor-
tex and it clearly demonstrates the inverted stability proper-
ties caused by the defocusing nonlinearity. In contrast to the
focusing case (Fig. 5), intensity and phase profiles of the
input structure are preserved and a stable single-charge dis-
crete vortex soliton is formed. It should be noted, however,
that in the low intensity regime (Fig. 8) the diffraction is
much less pronounced than in the presence of a focusing
nonlinearity and hardly visible for propagation distances of

PHYSICAL REVIEW A 79, 043821 (2009)

S L

FIG. 8. Numerical simulation of a single-charge vortex for de-
focusing nonlinearity (E.,=-2.5 kV/em, I,=|A*=4, B=2).
(a) Initial vortex beam profile; (b) beam profile at z=20 mm for
low input power; (c) beam profile at z=20 mm for high input
power; (d) high-power output at z=280 mm. Top panels: intensity;
bottom panels: phase.

20 mm (Fig. 8). The same result is obtained for the low-
intensity double-charge vortex shown in Fig. 9(b). Moreover,
compared to the focusing case, the instability is weaker and
more evident in the phase than in the intensity [Figs. 9(c) and
9(d)]. Overall, however, the numerical simulations well con-
firm the theoretical prediction of inverted stability properties
in the defocusing case, resulting in a stable single-charge
vortex soliton and an unstable double-charge vortex.
Experimentally, the nonlinearity can also be made defo-
cusing by simply inverting the external bias voltage. We con-
sider a bias field of ~1.6 kV/cm antiparallel to the optical
axis. Our photonic lattice beam is 50 uW; we produce a
stretched lattice with the same lattice constants as in the self-
focusing case. Notice that now the lattice acquires a honey-
comb structure, i.e., light intensity maxima of the lattice
forming beams lead to minima of the corresponding refrac-
tive index pattern (see bottom panels in Fig. 2). It is impor-
tant to note here that as the theoretical stability results of the
discrete model are obtained from the consideration of the
one-dimensional six-site contour with periodic boundary
conditions, these results are unaffected by the honeycomb
structure of the defocusing photorefractive crystal lattice. For
each vortex input we consider two different input beam pow-

—

FIG. 9. Numerical simulation of a double-charge vortex for de-
focusing nonlinearity (Eo=-2.5 kV/cm, I =|An*=4, B=2).
(a) Initial vortex beam profile; (b) beam profile at z=20 mm for
low input power; (c) beam profile at z=20 mm for high input
power; (d) high-power output at z=280 mm. Top panels: intensity;
bottom panels: phase.
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FIG. 10. (Color online) (a) An input single-charge vortex beam
in the defocusing regime; (b) the beam profile and phase at the
output crystal face for low input intensity; (c) output for high input
intensity showing generation of a stable single-charge vortex.

ers, low power (/,op.~30 nW) and high power (/e
=~ 160 nW). Output intensity and phase are then recorded on
the beam exit of the crystal.

First, we consider the single-charge vortex input shown in
Fig. 10(a). In a good agreement with our numerical simula-
tions, we see only very weak diffraction in the low-power
(linear) regime [see Fig. 10(b)]. More importantly, the
single-charge vortex phase breaks up, and we observe the
emergence of other vortices, indicating that the input beam
profile is not stable at low powers. In contrast, at high pow-
ers we find that both the intensity and phase profile are well
preserved [see Fig. 10(c)], in strong contrast to the observa-
tions in the self-focusing nonlinearity case.

In the case of a double-charge vortex input [see Fig.
11(a)], we observe a diffraction pattern similar to that in the
single-charge case at low input powers [Fig. 11(b)]. At high
input powers, the output shows some diffraction but, more
importantly, the vortex phase is again no longer preserved as
we are able to identify only a single vortex singularity. This
is again in strong contrast to the self-focusing case.

We would like to stress again here that while the stability
of the single- and double-charge vortices has been swapped
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FIG. 11. (Color online) (a) An input double-charge vortex beam
in the defocusing regime; (b) the beam profile and phase at the
output crystal face for low input intensity; (c) output for high input
intensity showing instability of the double-charge vortex.

in the defocusing case, with the former now stable, the ap-
pearance of the instability is somewhat different between the
self-focusing and self-defocusing cases. In the former case,
we observed strong intensity modulations which made it
clear that the single-charge vortex is unstable. In the defo-
cusing case, the instability development appears to be
weaker and to be more evident in the phase than in the in-
tensity. However, we can conclude that the stability proper-
ties of the vortices in the defocusing case are inverse to those
in the focusing case, as illustrated theoretically above (see
also Ref [14].).

VI. CONCLUSIONS

We have demonstrated experimentally the generation of
stable double-charge vortex solitons in a hexagonal photonic
lattice created optically in a self-focusing photorefractive
crystal. We have observed that single-charge vortices are un-
stable in the same regime and that this main stability prop-
erty is reversed in the case of defocusing nonlinearity (lead-
ing to honeycomb lattices), with the single-charge vortex
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appearing to be stable while the double-charge vortex exhib-
iting a weak instability. It has been shown that these results
may be captured numerically in the framework of the full
anisotropic model of nonlinear light propagation in photore-
fractive optical lattices. Furthermore, we have examined the
importance of balancing the nonlinearity anisotropy by
stretching the lattice and demonstrated analytically, through a
discrete model, that beyond a critical imbalance no stable
double-charge vortices exist.
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