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We report on the first observation of topologically stable spatially localized multivortex solitons
generated in optically induced hexagonal photonic lattices. We demonstrate that topological stabilization
of such nonlinear localized states can be achieved through self-trapping of truncated two-dimensional
Bloch waves and confirm our experimental results by numerical simulations of the beam propagation in
weakly deformed lattice potentials in anisotropic photorefractive media.
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Some of the most spectacular experiments in the field of
nonlinear dynamics of coherent light and matter waves in
periodic potentials relate to the properties of vortices and
vortex flows in optical lattices [1–4]. Dramatic changes of
light diffraction or tunneling of matter waves in media with
periodically modulated parameters offer novel directions
for manipulating waves with a complex phase structure. In
optics, self-trapped phase singularities [5] in the form of
isolated discrete vortices have been predicted theoretically
[6–9] and generated experimentally in square photonic
lattices [1,2,10]. In the physics of Bose-Einstein conden-
sates, the matter-wave vortices are generated in the form of
periodic vortex lattices [11–13].

Multivortex coherent states appear naturally in systems
with repulsive interparticle interactions, where they can be
confined by external potentials. For attractive interaction,
multivortex structures are known to be unstable, and they
have been observed only as infinite periodic waves [14]. As
a result, spatially localized multivortex states remain un-
observed and largely unexplored.

Recently, it was predicted theoretically [15] that pho-
tonic lattices with a threefold symmetry can support stable
multivortex spatially localized states, in sharp contrast to
earlier studied square lattices [16]. Such localized modes
originate from a specific type of nonlinear periodic modes,
and they became localized in the form of truncated non-
linear Bloch states [17]. Surprisingly, as was shown in
extensive numerical simulations, such localized states
with high vorticity are stable, whereas their counterparts
with lower topological charge experience strong topologi-
cal instabilities [18]. In this Letter, we report on the ex-
perimental observation of topologically stable spatially
localized multivortex solitons generated in optically in-
duced hexagonal photonic lattices. We believe that this
observation provides the first evidence (in any field of
physics) of stable multivortex clusters in systems with
attractive nonlinear interaction.

Our experiments are carried out in a 15-mm-long pho-
torefractive crystal of strontium barium niobate (SBN) in
which a two-dimensional lattice of a threefold symmetry
[see Fig. 1(b)] is induced optically [19] by an interference
of three ordinarily polarized plane waves [20]. Because of
an intrinsic anisotropy of the photorefractive nonlinear
crystal, the induced potential is also strongly anisotropic
[18]. To compensate for the asymmetry of the lattice and
balance corresponding energy flows between the individ-
ual sites, the lattice is deformed from its exact hexagonal

FIG. 1 (color online). Schematic of the experimental setup
indicating (a) three extraordinarily polarized beams forming an
input probe beam carrying a vortex cluster. (b) Intensity distri-
bution and (c) Fourier image of the lattice field and (d) Fourier
image of the probe beam. Note that the hexagonal lattice (b) is
stretched with its Fourier components (c) lying at the vertices of
the isosceles instead of an equilateral triangle.
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symmetry. More specifically, compared to a truly hexago-
nal pattern with a lattice constant ratio of dy=dx �

���
3
p

, for
the horizontal and vertical direction, respectively, the in-
duced lattice is slightly stretched along the vertical direc-
tion having dx � 27 �m and dy � 60 �m. Hence, the
ratio of the lattice constants becomes dy=dx � 2:2. To
ensure that the lattice remains stationary along the crystal,
all three lattice-forming waves have the same longitudinal
z component of their wave vectors. This means that, in the
Fourier space (kx, ky), they are represented by the points
located on a ring centered at the origin kx � ky � 0.

Figure 1(c) shows the Fourier image of the lattice with
the three bright spots marking the edges of the first
Brillouin zone. To generate a multivortex probe beam,
we focus three other extraordinarily polarized beams
onto the front face of the crystal [see Fig. 1(a)]. To ensure
that the probe beam has the same symmetry as that of the
induced lattice, the constituent input beams are adjusted to
map the positions of the lattice-forming waves in the
Fourier space, as shown in Fig. 1(d). We mention that, in
order to achieve localization of the probe beam, its spatial
frequency spectrum is kept much broader than that of the
lattice waves [see Fig. 1(c)]. In the real space depicted in
Fig. 2(a), this arrangement results in an input probe beam
having the form of seven distinctive spots forming a hex-
agonal pattern with the same periods as the lattice and
containing six vortices. The vortex positions, indicated by
red and blue circles in Fig. 2(b), are visualized experimen-
tally by interfering the probe beam with an inclined broad
reference beam.

At low input powers � 20 nW, the diffraction of the
probe beam leads to a broad output distribution shown in
Figs. 3(a) and 3(b). However, at high powers� 1 �W, the
structure becomes localized, and the output intensity dis-
tribution features seven well-pronounced spots closely re-
sembling the input.

To show the topological stability of the input structure
with a complex phase pattern and to verify experimentally
the structure of multivortex solitons, we record the phase

interferograms of the reference beam and the probe beam
at low and high intensities, respectively [see Fig. 4]. It is
clearly visible that at low power (in the linear regime) the
initial phase profile becomes strongly distorted. While the
six initial vortices can still be found in the output field,
their positions are changed. In contrast, for high input
power of the probe beam (in the nonlinear regime), not
only does the beam intensity become self-trapped but also
the phase profile retains exactly the same hexagonal vortex
pattern of the input beam.

We emphasize that the observation of stable multivortex
solitons requires stretching of the photonic lattice. When
the lattice is exactly of a hexagonal shape, we still observe
self-trapping in the form of seven intensity spots; however,
the phase distribution becomes random, and it does not
contain a regular cluster of vortices similar to that shown in
Fig. 4. Moreover, we find that in this case the output profile
experiences strong deformations even for slight perturba-
tions of the input beam. In sharp contrast, the multivortex
solitons in the stretched lattice (Figs. 3 and 4) are remark-
ably robust and are basically insensitive to small deforma-
tions of the input beam.

To corroborate our experimental results by numerical
simulations, we model the beam propagation through a
self-focusing photorefractive crystal using the scalar equa-
tion for the slowly varying envelope A�x; y; z� of the probe
beam

 2i
@A
@z
�r2

?A� �Escr�Itot�A � 0; (1)

where r2
? � @2

xx � @2
yy and Itot � jAlattj

2 � jAj2 is a sum
of the intensities of the lattice-forming and probe beams.

FIG. 2 (color online). (a) Intensity distribution and (b) phase
interferogram of the probe input beam. Positions of the vortices
are indicated by circles, blue for the topological charge m � �1
and red for the topological charge m � �1.

FIG. 3 (color online). Output intensity distributions and corre-
sponding three-dimensional surface plots of the probe beam for
(a),(b) low input intensities and (c),(d) high input intensities.
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The coefficient � � k2w2
0n

2
0reff is proportional to the ef-

fective element of the linear electro-optic tensor reff ,
and Eq. (1) has been made dimensionless by introducing
the transverse w0 and longitudinal z0 � kw2

0 length scales,
with k and n0 denoting the wave vector and refractive index
of the unperturbed medium, respectively. Throughout this
Letter, we use the values reff � 280 pm=V, n0 � 2:35, and
w0 � 10 �m, which yields z0 � 2:8 mm. Spatially local-
ized and stationary solutions of Eq. (1) can be found in the
form A�x; y; z� � a�x; y� exp�i�z�, where � is the soliton
propagation constant.

The photorefractive nonlinearity is described by the
electric screening field Escr � �@�=@x with the scalar
potential �. Assuming a temporally steady state and ne-
glecting photovoltaic effects, the following expression may
be derived for � [21]:

 ���r ln�1� Itot�r� � Eext@x ln�1� Itot�; (2)

in which the externally applied homogeneous electric field
Eext is directed along the x axis which coincides with the
axis of spontaneous polarization of the crystal (c axis). The
total intensity Itot is measured in the units of the back-
ground illumination, and diffusion effects are neglected.
We consider the lattice field in a general form of the
superposition of the three interfering plane waves [20]

 Alatt � exp�2ikxx=3� � exp��ikxx=3� ikyy�

� exp��ikxx=3� ikyy�: (3)

We start with the intensity profile of an exact hexagonal
symmetry when the spatial frequencies kx and ky obey a
simple relation kx �

���
3
p
ky. However, the actual symmetry

of the induced refractive index lattice is reduced due to the
anisotropy of the photorefractive process [22].

In the following, we consider the soliton clusters in the
semi-infinite gap [23]; i.e., we assume that all lobes are
centered on the lattice sites and only weakly coupled. Then
the intensity transfer between the lobes i and j is propor-
tional to Jij � cij sin��j ��i�, wherein �i;j denotes the
respective phases and cij are the coupling coefficients. In

order to create a stable vortex cluster, the intensity flows
between all lobes should be balanced, i.e.,

PN
i�1 Jij � 0

(see details in Ref. [16]). For the structure with N � 7
lobes and a hexagonal symmetry, this implies that the
transverse power flow between each outer lobe and the
center lobe has to be twice as high as those between the
outer lobes themselves. Under this constraint, the flow
condition can be fulfilled only if for all adjacent lobes
the coefficients cij become equal. However, this condition
cannot be fulfilled in the case of hexagonal lattices with
kx �

���
3
p
ky due to the photorefractive anisotropy. As a

result, at low powers of the input beam, the anisotropic
discrete diffraction dominates the dynamics [see Fig. 5(a)].
In the soliton regime shown in Fig. 5(b), the intensity of the
probe beam attains a well-defined seven-lobe structure but
with an additional modulation resembling that of the dif-
fracted beam. This modulation indicates complex defor-
mations of the power flow [16]. Indeed, the phase map
depicted in Fig. 5(c) reveals that only two vortices remain
within the localized beam. Hence, in a hexagonal lattice,
the vortices are unstable and undergo topological trans-
formations during propagation. Figure 5(d) contains more
details of vortex dynamics for the propagation distance
much longer than the actual crystal length.

However, the photorefractive anisotropy of the lattice
can be compensated for, and, consequently, the energy flow
can be balanced by adjusting the ratio kx=ky appropriately.
Indeed, a stable phase profile can be achieved for the
seven-lobe cluster in this case. This particular profile cor-
responds to a truncated nonlinear Bloch wave originating
from the M point of the lattice spectrum [15].

To determine the necessary deformation (stretching) of
the lattice, one needs to evaluate the cij coefficients for the
seven-lobe cluster. To this end, we assign a phase profile
with 2�=3 jumps between adjacent lobes and calculate the
total energy flow between them. Then the balanced flow
relations are solved numerically. To find the intensity
profiles for both the fundamental solitons and clusters,
we use a suitably modified version of the algorithm sug-
gested in Ref. [24] which is able to handle the nonlocal and
anisotropic nonlinearity described by Eq. (2).

The results of our numerical simulations with the
stretched lattice are summarized in Figs. 5(e)–5(h). The
output intensity and phase for the soliton solution are both
regular with all six vortices preserved intact. The surface
plot in Fig. 5(h) shows weak oscillations of the vortex
positions which we ascribe to internal oscillatory modes
of the soliton. An important conclusion drawn from these
simulations is that, even for propagation distances much
longer than the crystal length, these modes do not grow.
This indicates stability of the multivortex soliton against
small perturbations.

In conclusion, we have generated experimentally topo-
logically stable multivortex solitons in optically induced
photonic lattices. We have shown that a weak stretching of
the photonic lattice along its vertical direction allows for

FIG. 4 (color online). Phase interferogram of the probe beam
output at (a) low intensity and (b) multivortex soliton at high
intensity. Vortex positions are indicated by blue circles for the
charge m � �1 and by red circles for the charge m � �1.
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compensating anisotropy of the photorefractive nonlinear-
ity to balance the energy flow and achieve the soliton
stability. Our experimental results have been confirmed
by extensive numerical simulations of an anisotropic non-
linear model with photorefractive nonlocal response. We
believe our demonstrations in nonlinear optics will be
useful for the observation of multivortex localized states
in other systems, e.g., in Bose-Einstein condensates with
attractive interaction in the form of vortex lattices of a
finite extent stabilized by two- or three-dimensional peri-
odic potentials.
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FIG. 5 (color online). Numerical simulations of the propaga-
tion of the probe beam in hexagonal lattice (a)–(d) and in the
stretched lattice (e)–(h). Diffraction of the probe beam at low
intensity is shown in (a) and (e), the self-localization at high
intensity in (b) and (f), and phase profiles for the high intensity
outputs in (c) and (g). We also show in (d) and (h) the 3D vortex
trajectories during propagation; here red curves correspond to
vortex charge m � �1 and blue curves to charge m � �1.
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