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Overloaded phase-code multiplexing for volume
holographic storage
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Overloaded phase codes for volume holographic data storage are introduced. In contrast to any previous
phase-code design, overloaded phase codes enable multiplexing of a number of data pages that exceeds the
number of utilized reference beams. In this way the achievable data capacity can be augmented. Overloaded
codes are generated by extending multilevel phase codes based on the discrete Fourier transform. We dem-
onstrate multiplexing of 70 analog pages by means of 64 reference beams. The analysis of reconstructed
digital data pages suggests that a capacity gain of up to 15% is reasonable. © 2008 Optical Society of
America
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Volume holographic data storage has a great poten-
tial to become the basis of next generation optical
storage devices, since it provides high storage densi-
ties and high data transfer rates [1,2]. In this
context, the employed multiplexing technique plays a
key role. Phase-code multiplexing is an advanced
variant of angular multiplexing [3]. It does not
require moving components for superposition of holo-
grams and provides a signal-to-noise ratio (SNR)
2 orders of magnitude higher than pure angular
multiplexing [4–6]. So far several implementation
concepts of phase-code multiplexing have been dis-
cussed. Owing to its straightforward implementation
a popular method has been random phase encoding,
which utilizes random phase distributions in the
reference wave (e.g., [7]). It can be realized by means
of a collimated laser beam that illuminates a (1-D)
random phase plate in the reference arm. The phase-
modulated transmitted light is made to intersect the
signal wave inside the storage medium. Between sub-
sequent recordings the phase plate is shifted to pro-
vide different unique phase codes. The achievable
SNR of this method is strongly dominated by
Bragg-matched cross talk. It can be estimated as
SNRrandom�N /M [6], where N is the number of indi-
vidually phase-modulated segments of the reference
wave and M denotes the number of data pages that
can be multiplexed �M ,N�N�. A reasonable SNR can
only be achieved if the number of phase elements
very much exceeds the number of data pages
�M�N�. In 1991 deterministic orthogonal phase-
code multiplexing based on binary Hadamard matri-
ces �HN� was proposed [3]. In this method the number
of phase-shifting elements N equals the number of
data pages M that are multiplexed �M=N�. Noise is
theoretically only composed by light diffracted at
non-Bragg-matched gratings. SNRs exceed that of
random phase-code multiplexing by several orders of
magnitude. The order of the phase codes is restricted
to values of 4m �m�N� at best. Recently, determinis-
tic multilevel phase codes have been presented that
are based on the discrete Fourier transform (DFT)

[8]. Phase-code sets of any order can be generated
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that allow multiplexing at error rates similar to that
of Hadamard related codes [9]. According to these
phase-code multiplexing techniques it is a generally
accepted limit that a reference wave segmented into
N parts allows, at a maximum, the recording of M
=N data pages at a reasonable error rate. Here we
show that this constraint can be overcome by deter-
ministic overloaded phase-code multiplexing. Based
on the codes proposed in [8] we present the construc-
tion and application of overloaded, nonorthogonal
phase codes that enable multiplexing of a number
of data pages M by means of an N-fold segmented
reference wave with M�N.

Overloaded phase-code sets are constructed by
means of rectangular Vandermonde-type matrices
whose elements are computed by

vkl = exp��− 1�p2�i
�k − 1��l − 1�

M � , �1�

where k� �1,2, . . . ,M�, l� �1,2, . . . ,N�, and M�N. M
and N denote the number of multiplexed data pages
and the number of employed reference beams, respec-
tively. p is usually set to 1 according to DFT theory.
Phase-code matrices �M�N are generated by assign-
ing each vkl to a phase delay

�kl =
2�

M ��− i
M

2�
ln�vkl��mod M	 �2�

of the lth reference beam of the kth phase code. If
M�N, �M�N is a nonorthogonal matrix that provides
M phase codes for recording M data pages by means
of N reference beams. When employing an overloaded
set of phase codes the incorporated phase modulator
needs to be capable of displaying at least M equidis-
tant phase delays in the interval �0,2�– �1/M��. That
is, the number of required phase steps is determined
by the number of multiplexed data pages. In some
situations the actual required number of phase steps
can be reduced by combining valid code matrices by
means of the Kronecker product. For instance, to

multiplex 36 pages by the use of 32 reference beams
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corresponding phase codes can be generated by
means of H2 � H2 � V9�8, which requires 18 instead of
36 different phase steps.

The utilization of nonorthogonal matrices gives
rise to considerable cross talk. To study the theoreti-
cal noise characteristics the SNR has to be derived.
This can be done by using the noise-to-signal ratio
(NSR) derived in [9], extending the expression to the
present case and determining its inverse. If t is the
hologram thickness in the z direction, � is the wave-
length, x2 denotes the x coordinate of a diffracted
wave in the output plane, and F is the focal length of
the lenses used to focus the signal and reference
wave into the storage material and of the lens used to
image the reconstructed wave to the output plane,
then the NSR when employing rectangular matrices
can be written as

NSRn� =
1

N2

m �
k



l

l�k if m=n�

vn�k� �vml� �* sinc ��2
,

with

� = ��k − l� +
�x2

2Ft
�l2 − k2� +

�3

8t3 �l2 − k2�2	 . �3�

The indices k and l are elements of
�−N /2 ,−N /2+1,−N /2+2, . . . ,N /2−1�, and the indi-
ces n� and m are elements of
�−M /2 ,−M /2+1,−M /2+2, . . . ,M /2−1� with N�M
and M ,N�N. M is the number of data pages, and N
denotes the number of reference beams. If M or N are
odd, the corresponding indices are not integer values.
vab� =v�a+M/2+1��b+N/2+1� takes the modified range of the
indices into account. Index n� is related to an index n
that denotes the row of a phase-code matrix, bearing
the phase shifts for recording or reconstructing data
page n, by n=n�+M /2+1, i.e., n� �1, . . . ,M�. The the-
oretical NSR computed by Eq. (3) takes all code re-
lated cross-talk noise into account, which arises from
terms that do not contribute to the desired, ad-
dressed data page during readout. When utilizing

Fig. 1. SNR versus M and versus the capacity gain in
percentages, when multiplexing M pages �M� �65, . . . ,83��

using N=64 reference beams.
overloaded phase codes, cross-talk noise due partly to
reconstruction of nonaddressed pages (Bragg-
matched cross talk) is naturally much stronger than
noise arising from diffraction at non-Bragg-matched
gratings. Therefore, it seems to be appropriate to
neglect the latter effect. That is, l can be set equal to
k and the sinc function in Eq. (3) disappears. After
substituting the ��� quantities, the desired SNR
related to phase-code n can be derived as

SNRn �� 1

N2 

m=1
m�n

M �

k=1

N

exp�2�ik
m − n

M ��2	−1

=
N

M − N
. �4�

The resultant SNR is independent of n and is equal
to the reciprocal relative capacity gain. That is, the
theoretical SNR is constant when recording rM data
pages by means of rN beams for any r. This argumen-
tation is valid only when neglecting experimental
limitations.

Numerical comparison of the SNR according to
Eqs. (3) and (4) indicates that only a small error is
accepted by the above assumption that neglects dif-
fraction at non-Bragg-matched gratings. The distri-
bution that takes the sinc function into account ex-
hibits the same behavior as discussed in [9] for phase
codes related to unitary matrices. However, the dif-
ference of the highest and lowest SNR values is mar-
ginal. For instance, for a V70�64 the maximal and
minimal SNRs are 10.6571 and 10.6668. Equation (4)
computes an SNR of 10.6667. Hence, setting k= l is
reasonable. A systematic investigation reveals that
the tolerated error remains below 1% for reference
beam numbers up to N=90, independent of the
capacity gain or M.

Based on Eq. (4) the overall SNR characteristics
are examined when increasing the number of over-
loaded phase codes. Figure 1 shows the SNR versus
the total number of multiplexed pages M by use of 64
reference beams (upper horizontal axis) and versus
the plain page related capacity gain in percentages
(lower horizontal axis). Capacity overloads of 10% or
20% cause a deterioration of the achievable SNR
down to �10 and �5, respectively. Admittedly, these
values are small in comparison to the maximal theo-
retical SNR for an orthogonal phase-code set. How-
ever, the idea of overloaded phase-code multiplexing
is to exploit the fact that noise always arises in real
systems. Hence, the practical value of overloaded
phase-code multiplexing has to be experimentally es-
timated. An increase of the overall SNR might be ac-
complished by taking the cross-talk characteristics
into account. Owing to the construction rule, i.e.,
evaluating the geometric sequence (1), the cross talk
has to follow a sinc2 function. That is, pages that are
recorded by phase codes adjacent to the addressing
code always produce the strongest cross talk. By
adapting the data layout in the signal arm, cross talk

might be reduced.
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The experimental applicability of overloaded
phase-code multiplexing is investigated in a 90° con-
figuration using a cw laser at �=488 nm and employ-
ing LiNbO3:Fe (0.01 mol. % Fe) as storage material.
In the reference arm a diffractive optical element
splits the laser beam into 128 beams whose phases
can be individually adjusted by a phase-only modula-
tor (128 pixels, 2 mm long, and 97 	m wide). An ap-
erture allows one to reduce the number of employed
reference beams. By grouping reference beams into
multiple pixels that are evenly distributed across the
aperture, the effective intensity noise is kept below
4%. The phase is adjusted with an accuracy of �1%.
The diameter of the reference beams incident on the
media is about 1.5 mm. In the signal arm a liquid
crystal array with a resolution of 800�600 pixels is
used for amplitude modulation. A data page dis-
played by the spatial light modulator is imaged
through the media onto a camera using a telescope
arrangement (focus lengths: 80, −50, and 80 mm).
Multiplexing is performed using an incremental
recording schedule [10].

At first, the storage performance when employing
overloaded phase-code multiplexing is to be qualita-
tively examined. For that purpose 70 analog pages
are multiplexed using 64 reference beams, which cor-
responds to a page-related capacity gain of 9.4%.
Each of the 70 pages displays an analog number that
corresponds to the number of the phase code used to
record the particular page. Hence, the number of ON
pixels in the incorporated data pages is much less
than for typical digital data pages. The experiment
demonstrates that all of the 70 reconstructed pages,
of which three are illustrated in Fig. 2, show a clear
image. It turns out that pages recorded with higher
phase-code numbers, on average, show gradually less
noise. This is supposed to be caused by a very low
number of recording cycles conducted by the incre-
mental recording schedule in the experiment.

To investigate the storage of digital data, M=22
and 23 data pages are recorded by means of N=21
reference beams, corresponding to capacity gains of
4.76% and 9.52%. The employed pages are modulated
by a 9:12 modulation code arranged in 3�4 channels
per block (50% ON pixels). The bit error rates (BERs)
are computed to 1.8�10−6 �V22�21� and 1.0�10−4

�V23�21�. For the latter case, Fig. 3 shows the ascer-
tained channel histograms. Recording 21 pages by
means of 21 beams yields under the same conditions
a BER of 4.2�10−10. The experimental SNRs de-
graded from 9.2 �V21�21� down to 6.3 �V22�21� and 4.8
�V22�21�. These experiments verify the capability of
overloaded phase-code multiplexing, but they also re-
veal that the actual SNR values are lower than the

Fig. 2. Reconstructed analog data pages of a set of 70
pages that are recorded by means of 64 reference beams.
theoretical values given by Eq. (4). This is caused by
experimental limitations such as unwanted intensity
variations in the signal arm and unwanted ampli-
tude and phase variations in the reference arm. Typi-
cally, it is the aim to maximize the capacity as far as
possible by adapting experimental parameters until
a BER of 10−3 is reached, which can effectively be im-
proved down to 10−12 by suitable error-correcting
codes (ECC) (e.g., Reed–Solomon codes). In all per-
formed experiments, employing reference beam num-
bers of N=16, 20, 32, 64, this target BER has been
exceeded for an overload of more than �15% at the
latest.

In conclusion, we introduced overloaded phase
codes for multiplexing in volume holographic storage
systems. Experiments prove that these codes are
suitable to augment the storage capacity. The imple-
mentation of the technique is straightforward in any
phase-encoded system that employs a phase modula-
tor capable of displaying the required number of
phase steps. Overloaded phase-code multiplexing re-
fers only to the coding technique realized in the ref-
erence arm. It is independent of the actual data for-
mat and can always be applied additionally. The
present experimental analysis suggest that the utili-
zation of nonorthogonal phase codes is worthwhile for
accomplishing capacity gains of up to �15%.
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Fig. 3. Channel histograms of data pages multiplexed by
overloaded phase codes V23�21(Inorm
normalized intensity
after block decoding).


