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We report on the experimental implementation of an external control for optical feedback solitons
using incoherent spatial intensity distributions in a liquid crystal light valve �LCLV� optical single
feedback system. The external control provides excellent experimental possibilities for static and
dynamic control of the lateral positions of the optical feedback solitons which will be demonstrated.
Particularly, the influence of different gradients onto the drift motion of spatial solitons is experi-
mentally investigated in detail. In agreement with theoretical predictions, the drift velocity of the
soliton increases according to the steepness of the gradient. Additionally, a completely incoherent
addressing scheme including creation and erasure of feedback solitons is demonstrated for the
LCLV setup. © 2007 American Institute of Physics. �DOI: 10.1063/1.2767405�

Spontaneous interactions and spatial inhomogeneities are
challenges for potential applications of dissipative spatial
optical solitons in the context of all optical information
processing. The attractiveness of dissipative solitons for
applications is justified by the robustness of their spatial
structure against perturbations and their binary features,
which motivate their interpretation as the natural bit of
nonlinear optics. To address the challenges mentioned
above, the implementation of control schemes for dissipa-
tive optical solitons is necessary. In this contribution we
will discuss the successful experimental realization of a
static and dynamic position control for spatial optical
feedback solitons by means of an external amplitude con-
trol scheme. The method also enables a previously inac-
cessible complete addressing scheme allowing for inco-
herent erasure of individual feedback solitons.

I. SPATIAL OPTICAL FEEDBACK SOLITONS

Spatial optical solitons are nonlinear objects which pre-
serve their shape during propagation. For the existence of
these self-preserving spatial structures in an optical system,
diffraction, which causes a broadening of optical beams,
needs to be balanced by a self-focusing nonlinearity. These
spatial optical solitons exist in different configurations. In the
most basic configuration a spatial soliton forms while a con-
fined light beam propagates through a saturable optical non-
linear bulk medium.1–4 Other prominent configurations,
which allow for the formation of spatial optical solitons, be-
sides the balance between optical nonlinearity and diffrac-
tion, require a balance between gain and loss far from ther-
modynamical equilibrium as well as an inherent feedback
mechanism. These so-called dissipative solitons5–17 share
many features with propagating solitons, are for example
found in optical resonators, and thus are often denoted as
“cavity solitons.”5–12 Even a semicavity with a single feed-

back mirror is sufficient to support spatial dissipative soli-
tons, because the single mirror already provides the feedback
mechanism required.

Emerging from investigations on the spontaneous forma-
tion of spatial optical pattern,18–22 single feedback systems,
e.g., with atomic vapors and liquid crystal light valves as
optical nonlinearities, are well-known to support spatial op-
tical solitons.22–26 In these systems the nonlinear optical me-
dium can be considered to be optically thin, thus allowing for
a separated treatment of the effects induced by the nonlinear-
ity and the linear diffraction, which in turn simplifies experi-
mental and theoretical treatment. In the following we will
refer to spatial solitons existing in such a single feedback
configuration as “feedback solitons.”5

The features of cavity and feedback solitons are aston-
ishingly similar. Both can be written, stored, readout, and
erased, and thus can be interpreted as natural bits of nonlin-
ear optical systems and may open ways for new kinds of
parallel all-optical information processing schemes.27 As po-
tential applications for feedback and cavity solitons, the
implementation of flexible all-optical memories, shift regis-
ters as well as all-optical switching and routing of optical
data have been suggested.27–29 Due to the strong similarities
between feedback and cavity solitons, observations made
with feedback solitons can excellently be transferred to cav-
ity solitons and vice versa. For investigations of the funda-
mental experimental behavior of this class of solitons, single
feedback systems have become a commonly used model sys-
tem. Among the advantages of feedback systems investigated
in experiment are high sensitivities of the nonlinearity, com-
paratively small spatial inhomogeneities, and response times,
which make the experimental monitoring of the spatial and
temporal dynamics of the solitons much more accessible in
experiment. Fast response times as well as other technologi-
cal aspects however make semiconductor devices the more
likely solution for future application.5

The name single feedback derives from the fact, that the
optical wave front travels around the system once only. A
single feedback system works in the following way: a plane
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pump wave is spatially �phase-� modulated by passing a non-
linear medium. The modulated wave propagates in free space
over a certain distance while it experiences diffraction. The
resulting wave is then fed back to the nonlinear material.
During propagation, diffraction causes the transformation of
small intrinsic modulations in the transverse phase profile
into spatial amplitude modulations due to the well-known
Talbot effect.19 The corresponding intensity profile then in-
teracts with the plane pump wave via the nonlinear material.

A crucial prerequisite for potential applications of feed-
back solitons is a complete and robust addressing scheme for
the solitons, including writing, erasure, and reliable storage
of individual solitons. Yet, addressing and reliable storage of
feedback- and cavity solitons is obstructed by influences of
spatial inhomogeneities and spontaneous interaction behav-
ior of the solitons, which for examples result in spontaneous
motions and spontaneous pinning. This spontaneous behav-
ior primarily is caused by phase gradients present in the op-
tical feedback wave.8,24,30,31 Therefore modifications of these
phase gradients, as we will experimentally show in the fol-
lowing, are the main key for controlling spatial feedback
solitons.

In theoretical investigations it has been observed that
feedback solitons drift along these phase gradients and they
finally accumulate at the local extrema of the gradient.32,33

The drifting velocity is predicted to relate linearly with the
steepness of the gradient.34,35 Two main sources of these
phase gradients can be identified. One source are global
phase gradients, which can either be induced by global influ-
ences such as spatial inhomogeneities of the system, for ex-
ample, caused by nonuniform spatial response of the optical
nonlinearity. Local extrema in such global phase gradients
can result in the pinning of feedback solitons to spontaneous
favorite trapping positions.29 The second source for phase
gradients are the feedback solitons themselves. Feedback
solitons are accompanied by oscillating tails, which can be
interpreted as self-diffraction rings with a phase profile.30,31

As a consequence, the oscillating tails of feedback solitons
induce interactions of neighboring feedback solitons. Due to
the resulting mutual interaction, locking of feedback solitons
at characteristic interaction distances has been reported.23,29

The resulting phase gradient present in the system therefore
can be interpreted as a potential, which determines the spon-
taneous motion of feedback solitons as well as their final
equilibrium state. Therefore, suitable control schemes allow-
ing for static and dynamic lateral positioning are required to
control the spontaneous motions of feedback solitons.

In this contribution we will report on the experimental
implementation of an external amplitude control, which pro-
vides a position control needed for reliable and robust ad-
dressing of feedback solitons. As a model system for our
investigations we choose a single feedback experiment,
which uses a liquid crystal light valve �LCLV� as nonlinear-
ity. Apart from the reasons mentioned above, the LCLV
single feedback setup is particularly well suited as a model
system for our investigation, because it can be operated at
comparatively small intensities and provides very large as-
pect ratios allowing for the addressing of large arrays of
solitons. The results obtained in our model system can be

transferred to other systems due to the similarities between
feedback and cavity solitons. In Sec. II we will review the
LCLV single feedback mirror system and explain the appear-
ance of feedback solitons in this system. In Sec. III we will
then discuss the effect of external control onto these feed-
back solitons. We will show the �to our knowledge� first time
implementation of a static and dynamic position control of
feedback solitons by an external amplitude control. Further-
more, a complete robust and incoherent addressing scheme
including writing and incoherent erasure of feedback solitons
is demonstrated. This method improves a previously real-
ized, less robust addressing scheme which uses coherent ad-
dressing beams and which thus exhibits extreme sensitivity
against perturbations.24 Based on the pioneering experiments
on the control of feedback solitons with incoherent intensity
distributions we will go on to investigate the influence of a
gradient induced drift motion in a cone gradient with increas-
ing steepness. Thus, not only the final equilibrium positions
of the feedback solitons, but also the dynamic response of
feedback solitons to external amplitude control is investi-
gated. Furthermore, the control scheme is extended to more
complex control geometries in investigating the interaction
of feedback solitons with a hexagonal gradient using differ-
ent hexagon wavelengths.

II. FEEDBACK SOLITONS IN THE LCLV SINGLE
FEEDBACK SYSTEM

A. LCLV single feedback system: Experimental setup
and theoretical model

In the system under investigation, a liquid crystal light
valve �LCLV� which acts as an optically addressable spatial
light modulator, is used as optical nonlinearity. A schematic
setup of the LCLV single feedback system is shown in Fig. 1.

The LCLV can be treated as a composition of two func-
tional elements, a read and a write side.20 The read side
consists of a nematic liquid crystal layer �LC� in planar

FIG. 1. �Color online� Schematic setup of the LCLV single feedback system
including external amplitude control. Concept of the external amplitude con-
trol �forcing�. A digital projector DP images a incoherent intensity distribu-
tion, which is used as forcing, onto the LCLV. The polarizers PO2, PO3, and
PO4 adjust forcing intensity and polarization state.
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alignment, and a dielectric mirror. The write side consists of
a photo conductor. Both readout and write side are embedded
between transparent electrodes. For operation, an ac bias
voltage is externally applied via the transparent electrodes. A
light wave incident at the liquid crystal readout side is re-
flected at the internal mirror and experiences a phase shift
according to the spatial refractive index distribution of the
liquid crystal layer. At the same time also the polarization
state becomes modulated depending on the angle � between
the incident linearly polarized optical wave and the optical
axis of the liquid crystal. The light intensity incident at the
photoconductive write side increases the capacitive conduc-
tance of the photoconductor and thus locally increases the
voltage drop over the liquid crystal layer. As a consequence,
the liquid crystal layer changes its refractive index. This way
a spatial intensity distribution incident at the LCLV’s write
side is transformed into a modulation of the refractive index
of the readout layer.

Due to the optical properties of its liquid crystal layer,
the LCLV typically acts as a defocusing nonlinearity. A fo-
cusing nonlinearity however can also be created using a sys-
tem inherent symmetry of the optical feedback.19 This will
be discussed in detail after the feedback loop has been intro-
duced.

The phase shift induced by the LCLV nonlinearity can
be written as20

�
�

�t
� − l2��

2 � + � = �max�1 − tanh2�S�Iw,Uext��� ,

�1�

S�Iw,Uext� = S0
�1Iw + 1

�2Iw + 1

Uext − Uth

U0
.

In this equation, ��50 ms is the effective response time of
the LCLV and l=30 �m the effective diffusion length which
limits the transversal resolution of the LCLV. Iw is the inten-
sity incident at the photoconduction write side, Uext the ex-
ternally applied ac voltage, �max, S0, �1, �2, Uth, and U0 are
device specific parameters.

After modulation of its phase profile according to Eq. �1�
and internal reflection, the incident readout wave from a cw
laser ��=532 nm� is coupled into the feedback loop by a
beamsplitter. Within the feedback loop it propagates in free
space over the distance L, passes a polarizer �P01� and is
then imaged to the LCLV’s photoconductive write side by
different optical components like lenses �L�, mirrors �M�, a
penta prism �P�, and a dove prism �D�. The dove prism is
used in the experimental setup to balance rotational mis-
alignments which may be induced by the mirrors, while the
penta prism �P� ensures an even number of reflections in the
setup. The polarizer �P01� transmits at an angle of −� with
respect to the optical axis of the liquid crystal. At beamsplit-
ter BS2, a fraction of light is extracted to record the optical
near and far field �Fourier transform� with a CCD camera.
The resulting intensity distribution Iw at the photoconductive
write side can be written as

Iw = �e−i�L/2k���
2

��Be−i� + C���2Ip, �2�

where L is the propagation length, k is the wave vector of the

laser light, and e−i�L/2k���
2

is the propagation operator. The
amplitude factors B=cos2 � and C=sin2 � describe the in-
fluence of the polarization. For B=1 and C=0 and thus �
=0, a phase only modulation is introduced. Ip is the intensity
of the linearly polarized pump wave. To enable the formation
of robust optical feedback solitons, a self-focusing nonlinear-
ity is needed. In order to create a self-focusing
nonlinearity—the LCLV itself acts as mentioned above self-
defocusing—a symmetry in the model is used. In replacing a
positive propagation length L with a virtual propagation
length −L the characteristics of the nonlinearity switches
from defocusing to focusing.19 This configuration is realized
by imaging a virtual mirror plane in front of the LCLV’s
readout side to the photoconductive side. In the experiments
reported here a propagation length of L=−15 cm is used.

If the pump intensity which acts as the stress parameter
of the LCLV single feedback system is increased, the ho-
mogenous solution of the planar wave becomes modulation-
ally unstable against spatial perturbations above a threshold
intensity. The modulation instability20 results in the sponta-
neous formation of spatial optical structures such as hexa-
gons, stripes, inverted hexagons, and spatio-temporally com-
plex system states.20,36 In specific parameter regimes, the
formation of optical feedback solitons is observed in this
system.24,25,37

For the creation of bright feedback solitons in the LCLV
single feedback system, a bistability between a uniform dark
state and a bright patterned state is experimentally essential.
In a more general context, however, bistability between ho-
mogeneous or patterned system states and any combination
of these allow for the existence of optical feedback solitons.
If the system runs in polarization mode �i.e., ��0�, such a
bistability can be induced. The feedback solitons in this case
represent a solution of the system, which connects the sta-
tionary uniform dark solution with the patterned bright solu-
tion �cf. Fig. 2� The largest parameter range of bistability is
expected to be at �=45°. Therefore, the system is operated
near this value. For a more detailed discussion on the param-
eter ranges for bistability and the range of feedback solitons
existence please refer to Ref. 37.

FIG. 2. �Color online� Exemplary bistability curve of the phase � in relation
to the pump intensity Ip. In the ranges between ��� and ��� patterned
system states are observed. Feedback solitons spontaneously form in the
region where a uniform lower state coexists with a patterned upper state.
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B. Dynamics of feedback solitons

As discussed above, phase gradients present in the opti-
cal feedback beam influence the motion of optical feedback
solitons. In the LCLV single feedback system both the influ-
ence of global gradients as well as mutual interactions of
feedback solitons have been observed.24 After the writing of
feedback solitons and transient behavior, typically equilib-
rium states in which the feedback solitons come to rest at
spontaneous trapping positions are observed.29 The transient
interaction behavior induced by the local environment of the
feedback solitons and by the LCLV feedback solitons them-
selves before they settle into their final spontaneous equilib-
rium state however includes spontaneous motions, pinning to
favorite trapping positions, locking at characteristic interac-
tion distance as well as merging of neighboring feedback
solitons and spontaneous disappearance of feedback
solitons.29 In the following we will explore how external
amplitude control enables the suppression of these unwanted
spontaneous dynamics and we will study how the lateral
static and dynamic positions of feedback solitons and the
addressing behavior including writing and erasing can be
controlled in a reliable and robust manner.

III. EXTERNAL CONTROL OF FEEDBACK SOLITONS

Previously, control of feedback solitons has been imple-
mented mainly using Fourier control techniques.29,37–40

However, Fourier control does not allow for an absolute po-
sition control of individual feedback solitons required for
implementation of a robust addressing. The challenge there-
fore is to establish an all-optical real-space control which
does not destroy the existence of the feedback solitons while
conserving the essential spatial flexibility of the solitons in
the system and which counterbalances the spontaneous be-
havior of feedback solitons and system inhomogeneities. For
this purpose, the implementation of external phase or ampli-
tude control in real space has been suggested
alternatively.28,41–44 Here, we will experimentally use an ad-
ditional spatial intensity distribution for the external control
of the system. The external amplitude control imposes a
stimulus to the nonlinear optical feedback system, which we
will in the following name “forcing” in analogy to the forc-
ing of one-dimensional temporal oscillators.45,46 External
amplitude control must be considered as an invasive control
method since it changes the system state of the control sys-
tem in any case. Due the invasive character of forcing, the
response of the system to system solutions not inherently
present in the system can be investigated. Furthermore, the
adjustment of the control strength is of crucial importance.
The strength of the external control must be adjusted such
that it does not absolutely dominate the system behavior by
itself. In our particular example, the forcing strength must be
strong enough to influence the behavior of feedback solitons,
but at the same time must not destroy the ability of the sys-
tem to support feedback solitons. Previously, such an exter-
nal control scheme has successfully been implemented in the
LCLV single mirror feedback system for the forcing of a
spatial pattern.45,46

Experimentally forcing is realized by projecting an inco-
herent spatial intensity If to the LCLV’s photoconductive
write side �cf. Fig. 1�. The spatial distribution of the static or
dynamic forcing signal is designed at a computer. The forc-
ing intensity distribution is created by a LCD-data projector.
Lens �L7� projects the intensity distribution of the external
amplitude control into the feedback system. The forcing
strength can be controlled with the help of three polarizers.
The first polarizer PO2 selects the green fraction of the data-
projector’s RGB signal, polarizer PO4 determines the polar-
ization state of the forcing input, while polarizer PO3 is ro-
tated to adjust the external control strength.

To model the influence the forcing Iw in Eq. �2� simply
must be replaced by the total intensity

Itot�x,y,t� = Iw�x,y,t� + If�x,y,t� . �3�

The effect of the forcing onto the feedback system is two-
fold. First, the offset intensity acts locally similarly to the
external bias voltage �Uext in Eq. �1�� and, i.e., the operation
point of the nonlinearity is shifted locally.20 Second, the ad-
ditional intensity distribution If induces an offset in the non-
linearly induced phase distribution � of the feedback wave.
Thus, an additional phase modulation of the feedback wave
can be achieved.43

A. Static position control

In our first approach to statically control the transverse
positions of feedback solitons we used a chessboard pattern
with bright and dark quadratic fields as a forcing signal.40 In
these first experiments we showed that the forcing method
succeeds in controlling the absolute positions of feedback
solitons. However, the quadratic shape of the chessboard
fields leaves the feedback solitons a certain range of space.
Thus, a precise lateral positioning in some areas has not yet
been achieved. Here we report on a altered version of our
method, which allows for a more precise lateral positioning.
For this purpose, the forcing intensity distribution was al-
tered. Instead of quadratically shaped chessboard fields,
Gaussian shaped peaks with a full half maximum width ap-
proximately of the same size as the central peak of the soli-
tons now are placed into a square lattice arrangement. The
forcing intensity distribution is shown in Fig. 3�b�. In Fig.
3�a� examples of spontaneously forming feedback solitons,
which evolve without external control, are shown. Due to a
inhomogeneous spatial distribution of the LCLV’s nonlinear-
ity the spontaneous feedback solitons, which also experience
mutual interactions, form only in the lower left area of the
aperture in the example. The experimental result of the ex-
ternal control is shown in Fig. 3�c�. Now feedback solitons
form distributed over the entire aperture, while they arrange
perfectly according to the square lattice induced by forcing.
Dependent on the forcing strength—above or below the writ-
ing threshold for feedback solitons—the feedback solitons
possess bistability or they are ignited by the forcing. In
Fig. 3 the forcing strength is above the ignition threshold for
feedback solitons. However, we also obtain similar results
when the individual solitons possess bistable features.

If the controlled system is operated below the ignition
threshold for the creation of feedback solitons, an additional
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intensity distribution is required to ignite feedback solitons.
If we use an additional uniform intensity distribution for
switching on feedback solitons, the feedback solitons do not
accumulate at the random trapping positions of the uncon-
trolled system,29 but instead arrange according to the qua-
dratic lattice defined by the external control. Thus, forcing
enables us to control the lateral positions of optical feedback
solitons in creating artificial trapping positions for the feed-
back solitons.

B. Robust incoherent addressing

Apart from a spatial position control, a complete and
robust addressing scheme for feedback solitons is a necessity
for implementing all optical memories. In the following, we
will demonstrate such a robust addressing scheme using an
incoherent external amplitude control. Particularly, we will
show that erasure of individual feedback solitons is rendered
possible with incoherent signals. Previously, the erasure of
feedback solitons has only been demonstrated with a coher-
ent beam, which was � out of phase with the feedback wave
Iw in the LCLV single feedback system.24 In comparison to
coherent schemes, incoherent schemes, which already have
been implemented in other systems,47,48 allow for a robust
addressing, which is not influenced by interference or vibra-
tions of the setup. Moreover, the light pulse does not need to
originate from the same laser source as the optical pump of
the feedback system. For the purpose of implementing the
incoherent addressing scheme, we operate the single feed-
back system at a pump intensity Ip slightly below the exis-
tence of bistability. If a small forcing intensity distribution is
added, the forcing shifts the existence of bistability towards
the operating point originally outside the existence of bista-
bility and thus the local presence of IF enables the formation
of bistable feedback solitons. However an additional local
ignition light pulse is required for the creation of a feedback
soliton. The system can be interpreted as the realization of an
all-optical logical AND in this situation because both the
static bias of the forcing intensity and another switching light
pulse are needed for the creation of a feedback solitons. In-
stead of adding an independent ignition pulse from another
source, also locally increasing the forcing intensity If can be

used to ignite a feedback soliton. In experiment a duration of
	t=1 s has been chosen for the writing pulse. If the intensity
of the forcing is locally turned off completely �duration in
experiment again 	t=1 s�, the feedback soliton is erased.
This complete addressing scheme is more robust than a
method based on destructive interference and thus can ex-
perimentally be implemented more easily. The experimental
results of this complete addressing scheme are shown in
Figs. 4 and 5.

Figure 4 shows the spatial distribution of the addressing.
In the top row the spatial intensity distribution of the external
control is depicted; the bottom row shows the system re-
sponse in the feedback intensity Iw. At t=0 s the external
position control is activated, but feedback solitons have not
yet been addressed. At t=3 s four feedback solitons have
been addressed in a diagonal line. The ignition signal of the
upmost feedback soliton is visible in the intensity distribu-
tion of forcing. After writing feedback solitons along the
diagonal, the forcing intensity was sequentially set to zero at
the addressing positions in the addressing sequence. Thus,
feedback solitons are erased. Finally, at t=9 s the external
control is reset to the initial state. Apparently, the method of
erasure functions well except for one feedback soliton posi-
tioned in the lower left corner. At this position a spatial in-
homogeneity of the setup obstructs the erasure of the feed-
back soliton. These spatial inhomogeneities can be
compensated by an additional external forcing signal as we
have already demonstrated in Ref. 40. Note, that the addition
of a forcing intensity contra-intuitively first results in a de-
crease of the feedback intensity Iw. The decrease in intensity,
if small forcing intensity is added, results from a small nega-
tive slope of the dark uniform branch observed in an experi-
mental measurement of the bistability hysteresis. Likely rea-
sons for this decrease are either a small initial ellipticity of
the incident optical beam caused by imperfect polarizing el-
ements in front of the LCLV or a small asymmetry between
the incident linear polarization state optical axis of the LCLV
and the polarizer placed inside the feedback arm. Thus the
dark positions in Fig. 4 indicate positions illuminated with a

FIG. 3. Position control using an external incoherent amplitude control. �a� The uncontrolled system; the feedback solitons experience interaction and are
located only in a small part of the aperture due to inhomogeneities. �b� The spatial distribution of the external control consists of a quadratic lattice with
Gaussian shaped peaks at the lattice points. �c� The feedback solitons are positioned by the external control. The bottom right corner of the experimental
images shows the far field �Fourier transform�.
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small forcing strength. At higher forcing intensities, the dark
positions also become bright before a feedback soliton
switches to the “on” state.

In order to demonstrate the reliability of the writing and
erasure process, the temporal evolution of a repeated ad-
dressing scheme at a single addressing position is shown in
Fig. 5. The diagram shows the local intensity of the feedback
system Iw �line� as well as the temporal evolution of the local
forcing signal �dashed line�. The forcing intensity is in-
creased from addressing cycle to addressing cycle. As ex-
pected, the system returns to the intensity value of the feed-
back soliton solution independently from the strength of the
ignition pulse as soon as the addressing pulse exceeds the
ignition threshold. Due to the restricted temporal resolution
of the CCD camera �60 Hz�, the previously investigated ef-

fect of critical slowing down25 has not been observed in this
experiment. The measurement however explicitly shows evi-
dence that individual feedback solitons can be repeatedly
written and erased in a robust manner by the incoherent ad-
dressing method. Thus we have demonstrated a previously
inaccessible complete and robust addressing scheme for the
LCLV system.

C. Gradient-dependent drift velocity

In the experiments described above the response of feed-
back solitons to external amplitude control was investigated
by observing the final equilibrium state. However, to fully
understand the influence of external amplitude control on the
feedback solitons also soliton motions, which are induced by
static amplitude control must be considered. In the following
we will investigate and answer the question how feedback
solitons respond to external amplitude forcing, if they are
ignited laterally shifted with respect to a local extremum of
the amplitude forcing. As a forcing signal we choose a cone
shaped intensity distribution with maximum forcing intensity
at the top of the cone, because a cone shape combines a
cylinder symmetry with a linear gradient, which points to-
wards the cone maximum from every direction. A three-
dimensional image of such a cone-intensity distribution is
shown in Fig. 6. In agreement with theory,34 we expect the
feedback soliton to move towards the maximum of the cone
intensity, because amplitude forcing via the nonlinearity cre-
ates a corresponding extremum in the phase gradient of the
feedback wave. In Fig. 7 the trace of the induced soliton
motion is depicted in a magnified section of the aperture.
Within the figure, positions of the feedback soliton are de-
noted by circles ���. The feedback soliton is ignited at the

FIG. 4. �Color online� Images of a sequence with a complete addressing scheme. Top: signal of the external amplitude control. Bottom: write intensity Iw of
the LCLV feedback system. A detailed description can be found in the text.

FIG. 5. �Color online� Intensity vs time plot of a repeated complete address-
ing scheme. The intensity of the external amplitude control in arbitrary units
�line�. The intensity of a single addressing position �dashed line�. The maxi-
mum temporal resolution of the CCD camera is 60 Hz.
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right and moves towards the left. From its starting position to
the end position the soliton moves approximately a distance
of two and a half times the central soliton peak diameter. The
background depicts an inverted gray scale image of the sys-
tem response to the cone-shaped forcing without a feedback
soliton. The arrows show the gradient in the intensity distri-
bution Iw, which can be of used as a rough indicator for the
induced phase gradient. Note however that the intensity dis-
tribution Iw cannot be assumed to linearly map the phase
shift induced at the LCLV by the cone-shaped forcing inten-
sity distribution, as the phase modulated wave experiences
free space propagation and passes the polarizer �P01� on its
path. To gain an exact measure of the induced phase it was
required to use the expressions �1� and �2�, however this still
would not account for spatial inhomogeneities of the LCLV,
which are mainly responsible for the variations observed in
Iw. Thus even though Iw must be assumed to be an imperfect
indicator for the phase shift �F induced by the forcing IF, it
is the best experimental measure available. As the feedback
soliton cannot be assumed as point-like object, the average
over the central peak area of the feedback soliton has been
considered for the determination of the gradient in the inten-
sity distribution Iw. The soliton trajectory indeed shows, that
the feedback soliton moves towards the position of the maxi-

mal intensity of the cone-shaped forcing. Slight variations in
the track can be explained by local inhomogeneities of the
induced gradient.

In the following, the influence of the strength of the
gradient is investigated. For this purpose the inclination
angle of the cone distribution has been increased, while the
maximal intensity of the top of the cone remained fixed. To
investigate the soliton motion the averaged velocity of the
feedback solitons has been determined. In Fig. 8 the average
velocity of the solitons measured in microns per second
��m/s� has been plotted against the absolute value of the
increasing cone gradient measured in gray scales per pixel
�gs/px� of the forcing master. Each data point of the graph
contains the average of five independent measurements. The
error bars in the plot denote the standard deviation for the
averaged data points. Thus, as a reasonable estimate of the
error of each data point the maximum sized error bar can be
assumed. In the graph the average velocity of feedback soli-
tons rises with higher values of the cone gradient. The rela-
tion between cone gradient and averaged velocity roughly
appears to be linear, thus confirming the theoretical predic-
tion of a linear relation between drift velocity of a soliton
and local phase gradient.34,35 The dashed line in the graph
serves as a guide to the eye.

In Fig. 9 the instantaneous local velocity along the tra-
jectory �
� of an exemplary measurement is plotted against
time. The instantaneous velocity shows an interesting time
dependence. At the starting point of the sequence �t�2.5 s�
and again around t�4.5 s, two distinguished peaks are ob-
served in the evolution of the instantaneous velocity. At
times larger than approximately t�6 s the feedback soliton
has reached its final position. The fluctuations in the velocity
profile at this time can be taken as a good estimate for the
minimum error in the instantaneous velocity measurement.

In the same figure also the absolute value of the local
gradient is plotted � * � in arbitrary units. Similar to the graph
of the instantaneous velocity two peaks �t�2.5 s and t
�5 s� are observed in the absolute value of the local gradi-
ent. The positions of both peaks in instantaneous velocity
and local gradient coincide quite well, while the relative
height of the peaks differs. The principal variations in rela-

FIG. 6. �Color� Intensity profile of the cone used as external amplitude
control for the investigation of gradient dependent drift velocities.

FIG. 7. �Color online� Motion of a feedback soliton at a cone-shaped inten-
sity gradient. The background depicts the system response to the cone gra-
dient without a feedback soliton �inverted gray scale�. The trajectory of the
feedback soliton, which moves from right to left, is denoted by �. Addi-
tionally the local gradients are marked with arrows.

FIG. 8. �Color online� Averaged velocity of a feedback soliton vs variable
intensity gradient. For each data point an average over five measurements
has been taken. The error bars are the standard deviation of the data points.
The gradient is measured in gray scale �gs� per pixel �px� of the forcing
master. The dashed line is a guide to the eye.
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tive peak height are typical for our measurements of instan-
taneous velocity and local gradient, which have been per-
formed at different addressing positions and varying gradient
slope with several repetitions. Even though the relative peak
heights vary from measurement to measurement the peak
positions observed in the plots of instantaneous velocity and
local gradient coincide in our measurements.

Several reasons for these imperfect matches of the rela-
tive peak heights need to be considered. For times t�6 s the
feedback soliton already has reached its final equilibrium
position. A close up observation of the data plotted in Fig. 7
however reveals that a small deviation between the position
of the cone maximum and the final position of the feedback
soliton exists. This deviation is much smaller than the diam-
eter of the soliton peak. The differences between the relative
height of local gradient and instantaneous velocity for times
larger than t�6 s thus are explained. More important are the
relative peak height differences at t�2.5 s and t�5 s ob-
served in the exemplary selected plot of instantaneous veloc-
ity and local gradient �Fig. 9�. Apart from noise causing
these fluctuations in relative gradient and instantaneous ve-
locity heights we also need to consider that the response of
the feedback system monitored in the feedback intensity Iw

cannot be assumed to linearly map the phase distribution �F

induced by the forcing intensity IF. Free space propagation
occurring in front of the detection which causes self-
diffraction of the beam as well as the polarizing element �P�
placed inside the feedback loop obstruct this linear mapping
of feedback intensity Iw to the induced phase shift �F.

Note however that for the measurement of the averaged
velocities plotted in Fig. 8 the variation of the forcing master
and not the variation present in Iw has been accounted for.
Therefore in this case the values of the varying gradient are
not influenced by experimental imperfections.

Furthermore, the local variations of the velocity with
respect to the local gradient could also be explained by an
interaction between the cone gradient and the ring structure
of the feedback solitons, which is known to possess a large
influence onto the mutual soliton interactions.29,49 Qualita-
tively, from the coincidence of the peak positions observed in
different measurements of instantaneous velocity and local
gradient, we however assume the influence of the interaction

between the ring structure and the cone gradient to be small
in comparison to the influence of the local inhomogeneities
of the gradient. In some cases we have however observed,
that superposition of the ring structure with the cone peak
may lead to the ignition of a feedback soliton, which in the
following interacts with the previously existing feedback
soliton in the known manner.

A clear quantitative identification of the different effects
contributing to the differences in the relative peak height
between local gradient and instantaneous velocity however
yet remains open. Nonetheless, we have thus clearly found a
qualitative correlation between instantaneous velocity of
feedback solitons and local gradients, which appears in their
relative peak positions and more importantly a linear relation
between averaged velocities and gradient of the forcing mas-
ter was demonstrated quantitatively in this section.

D. Motion of feedback solitons in periodically
structured gradients

After studying the influence of a rather simple gradient
on the motion and position of feedback solitons, now the
influence of external intensity control with spatially more
complex intensity distributions will be investigated. As forc-
ing, hexagonal intensity distributions with altering hexagon
wavelengths have been used �see Fig. 10�. Also compare to
Ref. 44. Experiments were performed at hexagon wave num-
bers kh between kh=3.4 mm−1 �Fig. 10�a�� and kh

=7.9 mm−1 �Fig. 10�c��. As before feedback solitons were
written laterally shifted with respect to the maximum of the
hexagonal gradient. Every second maximum of the hexagon
control lattice has been chosen as an addressing position and
the feedback solitons were addressed laterally shifted by 1/3
of the hexagon wavelength at an angle of −30° with respect

FIG. 9. �Color online� Position-dependent velocity �
� of a single feedback
soliton moving at a cone gradient and absolute value of the local gradient
� *�.

FIG. 10. �Color online� Feedback soliton motion in an hexagonally shaped
gradient. Measurements at different wave numbers kh of the forcing hexa-
gon. �a� kh=3.4 mm−1. �b� kh=5.6 mm−1. �c� kh=7.9 mm−1. Top row: ad-
dressing of feedback solitons. Center row: final equilibrium state. Bottom:
inverted gray scale image of the pure hexagonal gradient with indication for
the addressing position ���, the final equilibrium position ���, and the local
extrema of the hexagonal grid �
�.
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to the y-axis �the addressing positions are denoted as ��� in
the bottom row of Fig. 10�. After t=1 s of addressing, only
the hexagonal gradient remains as forcing and the feedback
solitons are free to interact with the hexagonal forcing lat-
tice. Exemplary images of the interaction are shown in Fig.
10. The top row of the figure depicts the moment of writing
feedback solitons, while the row in the center shows the final
equilibrium state after interaction with the control lattice. In
the bottom row, on top of an enlarged image of the hexago-
nal forcing lattice in inverted gray scale, the addressing po-
sitions ���, the final equilibrium position ��� of the feedback
solitons as well as the local extrema of the hexagonal forcing
grid �
� are indicated. The error bars at the final equilibrium
position ��� denote the averaged diameter of the central soli-
ton peaks.

From the images of the addressing and of the final equi-
librium state it can be qualitatively deduced, that in the mea-
surements at kh=3.4 mm−1 and kh=5.6 mm−1 the feedback
solitons are on average trapped by the hexagonal forcing,
because the final equilibrium state resembles the original ad-
dressing geometry, even though some of the ignited feedback
solitons disappear. The measurement at kh=7.9 mm−1 �right
column� appears to become disordered. The disorder also is
observed in the dynamics preceding the final equilibrium. In
contrast to the sequences with smaller wave numbers, for
kh=7.9 mm−1 interactions between neighboring feedback
solitons and increased spontaneous motions are observed. In
order to gain a more quantitative measure of the quality of
trapping to the hexagonal grid we have analyzed the mea-
sured data in two approaches using a measurement of abso-
lute positions as well as a Fourier method.

In the first approach the measurement of the final equi-
librium positions of the feedback solitons and of the local
extrema of the hexagonal forcing are used. From these mea-
surements averaged minimal distance dmin between the final
equilibrium positions of the feedback solitons and the next
neighbor position of the local extremum was calculated. To
gain a measure of the quality of the hexagon trapping qR the
averaged minimal distance dmin has been scaled to the wave-
length of the hexagonal forcing �h to make qR independent
of the hexagon scaling. We define the measure for quality of
trapping derived from the analysis of real space as

qR =
�h

dmin
. �4�

Finally we normalize the maximum value of the quality fac-
tor of trapping qR to unity. The quality factor qR is plotted
��� in Fig. 11. As can be seen in the graph the quality of
trapping qR remains at a saturation level up to the measure-
ment of kh=5.6 mm−1. At higher wave numbers the quality
factor qR decreases indicating the loss of a trapping condi-
tion.

The second approach to derive a quality factor q of the
trapping uses the Fourier transform of the spatial optical
field. Exemplary images of the far field �Fourier transform of
Iw� are depicted in Fig. 12. The images from left to right
depict the optical Fourier transform of the system response
Iw to �a� the pure hexagonal gradient kh=5.6 mm−1 �b� at the
moment of addressing �tadd� of optical feedback solitons �c�

the final equilibrium state �teq�. For the derivation of the
quality factor qF the Fourier modes marked in �b� have been
selected. We calculate qF according to

qF =
Ig�tadd�
I��tadd�

I��teq�
Ig�teq�

, �5�

where I� is the total intensity of the Fourier modes marked
in Fig. 12 with a ���, and Ig= I�+ I�, where I� denotes the
total intensity excited in the Fourier modes marked with a
circle ���. The resulting quality factor qF is also plotted
against the wave number of the hexagonal gradient in Fig.
11. Comparison between both quality factors yields a quali-
tative agreement in curve progression. A maximum of trap-
ping is observed at kh=5.6 mm−1; further increase of kh re-
sults in a rapid decay of the quality factor qF of trapping to
the hexagonal grid. Different from the analysis of real space,
which remains at a saturation level before it decreases, the
quality factor qF experiences a slight rise at kh=5.6 mm−1.
The increase to this value likely results from the increasing
number of feedback solitons, which contribute to the inten-
sity distribution in Fourier space. It thus can be assumed to
be a statistical effect.

The loss of a trapping condition at higher wave numbers
observed in both methods of analysis can be explained by the
decreasing distance between feedback solitons which allows

FIG. 11. Plot of the quality of trapping qR ���, qF ��� induced by the
hexagonal forcing against the wave number kh=5.6 mm−1 of forcing. qR has
been determined from absolute distances in real space, while qF is derived
from a Fourier analysis. The line is a mere guide to the eye.

FIG. 12. �Color online� Optical Fourier transform of the center column of
Fig. 10 �wave number hexagon forcing: kh=5.6 mm−1�. �a� Hexagonal gra-
dient only; �b� addressing of optical feedback solitons. The markers indicate
the Fourier modes, which are selected for analyzing the system state. For
details of the analysis, please refer to the text. �c� Final equilibrium state.
The images depict an inverted gray scale.
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for mutual interaction of neighboring feedback solitons, thus
disturbing the trapping. The motion of cavity solitons in pe-
riodically structured phase gradients has also been investi-
gated theoretically.32,33 A reversion of their direction of mo-
tion from attraction to the maximum of the phase gradient to
attraction to the minimum is reported, if the modulation pe-
riod of the gradient undergoes a certain threshold value.
Even though we have not observed a representative locking
to off site positions in the measurement at kh=7.9 mm−1,
some feedback solitons are however observed which position
themselves in between two hexagon maxima. Note that this
effect has not at all been observed in measurements at other
wave numbers. Compare this value, which characterizes the
minimal achievable by the forcing induced position control
with the wave number corresponding to the peak soliton di-
ameter kS=17.3 mm−1 and with the wave number corre-
sponding to the diameter of the first order self-diffraction
ring kR=10 mm−1. At the hexagon wave number kh

=8–9 mm−1 one can therefore assume that the feedback soli-
ton including its oscillating tails already covers more than
just one maximum of the hexagon gradient and thus for the
motion of the soliton an average over the covered area needs
to be considered.

Besides the strength of the gradient, a periodicity of the
gradient also influences the motion of optical feedback soli-
tons. In our experiment we observe trapping to a hexagonally
shaped gradient below a hexagon wave number of kh

=7 mm−1. Optimal trapping occurs around kh=6 mm−1. If
we briefly reconsider the situation of the experiment with the
cone gradient �cf. Fig. 7�, we can conclude from the experi-
ment with the periodically structured hexagon gradient, that
also the wavelength of small inhomogeneities has to be taken
into account for the motion at the cone gradient. Particularly
inhomogeneities will also influence the deviations from the
optimal path dependent on their wavelength.

E. Dynamic positioning

In previous sections the static and dynamic response of
optical feedback solitons to static external control has been
investigated. It was demonstrated that gradients induced by
the forcing serve for the lateral positioning and trapping of
feedback solitons. The static forcing also succeeds in induc-
ing motions if the gradient induced by the static control is in
vicinity of the soliton positions. A movement over larger
distances however cannot be achieved in the way described,
because higher forcing intensities, which are required for the
inducing of long range motions, would lead to ignition of
additional feedback solitons. The alternative however is to
move the forcing gradient itself. In the following we will
thus extend the static external control method to a dynamic
forcing scheme. For this purpose, movies with dynamic in-
tensity distributions are applied instead of forcing signals
with static intensity distributions. In the following, a chess-
board pattern is used as forcing intensity distribution, which
slides from right to the left in the dynamic forcing sequence.
An exemplary sequence of the induced motion is shown in
Fig. 13.

The sequence shows only a section of the aperture. The
time interval between the images is 	t=6.7 s. Note that feed-

back solitons ignite near to the right margin of the aperture,
because the forcing intensity in this region is operated
slightly above the ignition threshold for feedback solitons.
After ignition the feedback solitons drift towards the left and
thus shift their position according to the motion of the forc-
ing movie. The sharp border of the chessboard compartments
which induces a steep local gradient is therefore responsible
for the soliton movement, as it pushes the feedback solitons
towards the left. Two lines of reference are added to the
sequence to illustrate the motion of the feedback solitons and
of the forcing.

Yet, the dynamic positioning has been demonstrated in a
comparatively small area of the beam aperture. In other sec-
tions we have observed erasure of feedback, brief sticking of
feedback solitons to spontaneous pinning positions, and
spontaneous interactions between feedback solitons. The ef-
fects however are not a principle obstacle and can be sup-
pressed if the intensity of forcing strength is locally more
carefully adjusted with respect to the pump intensity
as an intention of compensating for spatial system
inhomogeneities.40

Nonetheless, the experiments demonstrate the powerful
capability of forcing to move and reposition individual local-
ized structures in a yet unknown way. The dynamic motion,
which we have demonstrated here can for example be useful
for the implementation of a shift register for optical feedback
solitons.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have experimentally demonstrated,
that external amplitude control is a powerful tool for dy-
namic and static control of optical feedback solitons. An op-
tical single feedback experiment with a LCLV as nonlinear-
ity has been chosen as a model system for the demonstration
of different novel techniques implementing two-dimensional
dynamic amplitude and phase control. External amplitude
control allows for the static position control of optical feed-

FIG. 13. Sequence with dynamic positioning of optical feedback solitons. A
section of the aperture is shown. Left column: signal of the forcing movie.
Right column: the response of the feedback solitons. The feedback solitons
ignite at the right, while the forcing input, which consists of a chessboard
pattern, moves to the left. The feedback solitons follow the motion of the
forcing input. The reference lines illustrate the movement. The time interval
between the images is 	t=6.7 s.
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back solitons. Without control, the behavior of feedback soli-
tons is dominated by spontaneous motions and interactions.
External amplitude control succeeds in arranging the feed-
back solitons in accordance with predefined control lattices
of principle arbitrary geometry.

If the control strength is adjusted appropriately we have
demonstrated that external amplitude control allows for the
implementation of an incoherent, complete, and robust ad-
dressing scheme for optical feedback solitons, which previ-
ously required coherent and less robust schemes especially
for the erasure of feedback solitons in the LCLV experiment.
Furthermore, the experimental investigations on the response
of feedback solitons to induced gradients confirms the ro-
bustness of the control method against lateral perturbation of
the soliton position as well as it confirms theoretical predic-
tions on the motion of optical feedback solitons in a system
with a large aspect ratio.

In experiments using a cone-shaped gradient we have
extended the investigations to the experimental analysis of
the control induced motions of feedback solitons. The linear
gradient pointing from every direction to the center of the
cone is excellently suited to investigated the dependence of
the drift velocities of feedback solitons on the gradient steep-
ness experimentally. Both the experimental measurement of
averaged velocities against steeper gradients and the experi-
mental measurement of the instantaneous velocities in com-
parison to the local gradient at least qualitatively confirm the
theoretical prediction of a linear relation between the drift
velocities of feedback solitons and the slope of a parameter
gradient.34,35 In case of the measurement of average veloci-
ties with respect to the increasing gradient slope where the
cone slope of the forcing master was changed even confirms
this relation quantitatively. These experiments also demon-
strate the usefulness of the external amplitude control for the
creation of artificial trapping positions for feedback solitons,
which control their lateral positions. The experiment also
confirms the robustness of the position control against per-
turbations. If a feedback soliton laterally shifts spontane-
ously, the attractive force to the local forcing maximum dem-
onstrated in the cone experiment will re-establish the
positioning initially intended by a potential user.

Investigating the motion of feedback solitons in a hex-
agonal gradient we observe a dependence of the trapping
properties of the gradient on the wavelength of the hexagonal
control lattice. Trapping to the hexagon forcing is lost above
a hexagon wave number of kh�7 mm−1. Even though inho-
mogeneities and soliton interactions challenge the experi-
mental investigations, nevertheless, indications of potential
reversed soliton motion, where the solitons dependent on the
wavelength of a periodic phase gradient accumulate at the
minima of the gradient have been observed.32 Finally, the
realization of a dynamic control scheme allowing for the
dynamic repositioning of feedback solitons has successfully
been demonstrated. The dynamic forcing scheme can be uti-
lized to redistribute feedback solitons once they have been
switched on and the method can thus be utilized for the
implementation of an all optical shift register. Although the
methods presented in this article have exemplary been inves-
tigated at the LCLV single feedback system as a model sys-

tem, they have definitely more far-reaching implications. The
principles are of utmost relevance for many other optical
systems, which exhibit formation of optical dissipative soli-
tons. Particularly, our methods can be useful for an imple-
mentation of control in active or passively driven nonlinear
optical resonators.
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