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1. Introduction

The formation of self-trapped beams in nonlinear optical media, commonly referred to as spatial
optical solitons, has gained much interest in recent years [1–3] mainly because of the soliton’s
waveguiding capabilities [4]. Due to the reversibility of the process of light-induced refractive
index modulations spatial optical solitons offer potential application in future reconfigurable
optical links, exploiting the light-guiding-light concept. For such devices, the interaction of spa-
tial optical solitons is of crucial importance. It turns outthat the interaction scenarios strongly
depend on the particularities of the nonlinear response of actual material. In the case of, for
instance, photorefractive solitons the interactions can include attraction or repulsion as well as
energy exchange and fusion or even a creation of new solitons[1,2]. Prior studies were mainly
concerned with the interaction ofco-propagatingsolitons [5]. With such one-sided boundary
conditions, a temporally constant input generally leads toa stationary state after intial tran-
sient dynamics. In contrast, the boundary conditions ofcounter-propagating[6–13] solitons
are partially fixed at opposite crystal faces. Generally, optical counterpropagation in nonlinear
optical media is known to lead to various spatial and temporal instabilities and related penom-
ena such as pattern formation [14–17]. Recently, numericalsimulations [9–12] revealed two
instability regimes depending on the strength of the nonlinear interaction parameterΓL, where
Γ is the photorefractive coupling constant andL the medium length. The first one is marked by
the break-up of the stationary soliton-induced common waveguide observed for low coupling
strengths into a so-called bidirectional waveguide structure in the form of spatially interlaced
(interweaved) channels [9, 10, 18]. This new waveguide still represents a steady state structure
and is similar to the one observed earlier in Kerr media [13].For even stronger nonlinear cou-
pling the bidirectional waveguide loses stability via regular limit-cycle oscillations until the
temporal dynamics becomes irregular [12] as was also demonstrated experimentally [8].

For practical applications, e.g as self-aligning optical links, such oscillations are obvi-
ously undesired. Therefore, ways to control and stabilize counterpropagating solitons have
to be found. In this work we present a novel approach to suppress the instability of counter-
propagating solitons by using an optically-induced photonic lattice inside the photorefractive
crystal. The periodic modulation of the refractive index ofthe material imposed by the lattice
affects fundamental properties of light propagation inside the medium. The modulation acts
as a periodic potential, reducing the spatial mobility of optical beams and enabling the for-
mation of lattice solitons in the total internal reflection gap. Subsequently, this is expected to
suppress the instability of the counterpropagating solitons and therefore allowing for stabil-
ity of the resulting composite waveguide. Here we study numerically the temporal stability of
the counterpropagating solitons as a function of strength and period of the optical lattice and
demonstrate experimentally the effect of instability arrest by one- (1D) and two-dimensional
(2D) optical lattices.

A periodic modulation of the material refractive index imposes a qualitatively new behaviour
of light propagation reflecting the discrete nature of the medium [19]. Narrow light beams
propagating in the linear regime experience the well known discrete diffraction as first pre-
dicted theoretically in 1965 [20] and experimentally observed in a Gallium Arsenide waveg-
uide array in 1973 [21]. In a medium with nonlinear optical response, discrete and gap solitons
can exist. In case of self-focusing nonlinearity the discrete solitons can be excited from the
top of the first band of the lattice bandgap spectrum and existin the total internal reflection
gap [19, 22, 23]. These solitons have been investigated experimentally in AlGaAs waveguide
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arrays [24] and optically-induced photonic lattices [25–27]. In contrast, gap solitons in focus-
ing nonlinear medium require excitation from the top of the second band and exist in the finite
Bragg reflection gap [28,29].

Among the various periodic structures used to demonstrate nonlinear localization and soli-
ton formation the optically-induced lattices [23] have attracted special attention. In this case
the periodic modulation of the refractive index is optically-induced inside a DC-biased pho-
torefractive crystal by the interference of two or more broad ordinarily polarized beams. Due
to the electro-optic anisotropy of the crystal the lattice writing beams are not affected by the
applied voltage, while any extraordinarily polarized probe beam will experience periodic index
modulation and strong self-action due to the photorefractive effect. In our studies we employed
the optically-induced lattice technique to study the the dependence of counterpropagating soli-
ton dynamics on the lattice depth and period. Furthermore, the lattice geometry can be changed
from 1D to 2D by adding more interference beams, thus enabling study of the instability sup-
pression in two transverse directions. The dynamic tunability of the optical lattice is a great
advantage over fabricated permanent structures [30].

In the first part of this paper, we investigate numerically the influence of the lattice period and
amplitude on interaction dynamics of counterpropagating photorefractive solitons. Thereafter,
we provide experimental demonstration of the theoretically predicted suppression of soliton
instability.

2. Isotropic one-dimensional model

We investigate the interaction of two counterpropagating mutually incoherent screening soli-
tons [31] by using a one-dimensional model of a saturable nonlinearity. Spatial evolution of the
slowly varying field envelopesF andB (|∂ 2

z •|≪ |2ik0∂z•|, ∂t•≃ 0,∂ 2
t •≃ 0 where• stands for

F andB, respectively) of the forward and backward propagating beams is modeled in paraxial
approximation:

i∂zF +∂ 2
x F = ΓEscF

−i∂zB+∂ 2
x B = ΓEscB (1)

whereEsc is the space charge field created by the beams inside the photorefractive crystal
and Γ = k2n2

0w2
0reffEe denotes the photorefractive coupling constant, withn0 being the bulk

refractive index,reff the effective coefficient of the electro-optic tensor andEe the externally
applied electric field necessary for the screening effect tooccur. The transversex-coordinate is
scaled to the beam waistw0 whereas the propagationz-coordinate is scaled with the diffraction
lengthLD = 2kw2

0, with k = 2πn0/λ andλ denoting the laser wavelength [10].
For the temporal evolution of the space charge field we assumerelaxation type dynam-

ics [32]:

τ(I)∂tE
sc+Esc = −

I
1+ I

, (2)

whereI = |F |2 + |B|2 is the total intensity scaled to the so-called dark intensity Id andEsc is
scaled toEe. The relaxation timeτ depends on the total intensity asτ(I) = τ0/(1+ I) with τ0

representing the dark relaxation time constant.
In the above model of the photorefractive effect [Eq.(2)] weneglect diffusion of excited

charge carriers inside the crystal. In consequence, we do not account for beam self-bending [33–
35]. Additionally, spatial nonlocality causing repulsionof solitary waves propagating at specific
relative distances [36] is neglected. While the resulting model serves as an approximation of
the real system it nevertheless leads to results which are ina good agreement with experimental
observations.
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Fig. 1. Steady state modulation of the refractive index (bottom) resulting from lattices with
different peak intensities (top) in the applied isotropic model.

The presence of the index grating created by the interference of two plane waves is modeled
by including the additional termIpot(x) = Acos2(πx/p) in the expression for the total light
intensityI = |F |2 + |B|2 + Ipot, whereA and p determine the peak intensity and periodicity of
the lattice. As the lattice-forming waves are ordinary polarized, they do not interact directly with
solitons [23] and the lattice intensity distribution remains stationary throughout the crystal. This
lattice intensity pattern and the resulting steady state refractive index modulation are depicted
in Fig. 1.

The numerical analysis of the ensuing nonlinear model [Eqs.(1-2)] involves two operations
conducted in one discrete time step. At a given time step the propagation of the beams through
the medium with a stationary distribution of the space charge field Esc is simulated by using
a second order split-step Fourier beam propagation method [37, 38]. Thereafter, the temporal
evolution of the space charge field as a result of the new intensity distribution is calculated from
Eq.(2). The separation of wave propagation from the temporal evolution of the space charge
field is reflected in dropping the time derivatives of the fieldevelopes in the wave equation
[Eq.(1)] and is justified due to the large difference in the propagation time (10−10s) and response
time of the photorefractive effect (on the order of 10−3−1s).

In our investigations we assumed the incident waves to be stationary in a form of two identi-
cal Gaussian beams with beam waists 1 and peak intensityI = 1 each. We simulate their head
on collision by launching both beams at the same lateral position perpendicularly to the crystal
face. The propagation along a crystal of lengthL = 5 and transverse extension of 20 was cal-
culated on a grid consisting of 500×512 grid points.The coupling constant was chosen to be
negative (Γ = −13.2) to ensure the self-focussing regime necessary for the formation of bright
solitons. For this set of parameter values the soliton solutions in bulk media already exhibited
very irregular temporal oscillations [12]. The numerical simulations started with only the lat-
tice beams present. After evolving the corresponding spacecharge field over time period 10τ0

(with the time step of 0.1τ0) we launched both soliton forming beams and simulated the evo-
lution of the whole system over time of 5000τ0. The calculations have been carried out on the
Morfeus-GRID at the Westfälische Wilhelms-Universität Münster, with the use of Condor [39].

In order to study the influence of the induced photonic lattice on the soliton dynamics we vary
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Fig. 2. lodN for counterpropagating solitons launched on-site as a function of lattice inten-
sity A for different lattice periodsp. (a) period smaller than the beam diameter; (b) lattice
period larger than the beam diameter. Non-monotonous decrease oflodN for p = 1d and
A = 0.4−0.8, is due to long lasting transient dynamics.

the peak intensity and periodicity of the lattice wave and determine the degree of instability in
terms of thelevel of dynamics[12] defined as:

lodN =
N

∑
t=1

∑
x

[

|F(x,L, t)−F(x,L, t −1)|2

|F(x,L, t)|2
+

|B(x,0, t)−B(x,0, t −1)|2

|B(x,0, t)|2

]

(3)

This parameter represents the time and space integrated modulus of the differences in the field
envelopes at either exit face between two successive simulated time-steps. It follows directly
from Eq.(3) that decrease in the intensity variation of solitons, (i.e. weaker instability) leads to
lower value oflodN (lodN =0 zero for stationary solutions).

As can be clearly seen from Fig. 2 the rate of decrease of the temporal dynamics of counter-
propagating solitons launched on-site strongly depends onlattice strength and its period. Here
and in the following, on-site denotes the case when the maximum soliton intensity coincides
with the maximum of the lattice. The influence on the soliton dynamics is strongest for pe-
riod p = 1d, whered = 2 is the beam diameter of the incident Gaussian beams. This can be
explained as follows: for small lattice periodicity, the self-trapped beam covers many lattice
sites. As a result, the effect of the lattice is weaker, and inthe limit p→ 0 the medium can be
regarded as homogeneous with higher refractive index. If the periodicity is comparable with the
beam diameter, the soliton experiences maximal guiding by the lattice-induced refractive index
modulation. For larger periodicity, the region in which therefractive index change is negligible
increases, so that in the limitp→ ∞ one ends up again with a homogeneous medium. Conse-
quently the influence of the lattice decreases again. Furthermore, our simulations show that the
decrease of the dynamics is not as rapid for smaller periodicity as it is for larger one.

Figure 3 depicts the temporal evolution of the intensity distribution for p = 1d for three dif-
ferent values of the lattice intensityA. For weaker lattice the output oscillates irregularly. These
oscillations are similar to those occurring in a bulk continuous medium. The presence of the
lattice leads to solitons residing more frequently at the lattice sites what is reflected in the ap-
pearance of faint horizontal lines in Fig. 3(a). For stronger lattice we still observe some transient
dynamics with oscillation periods which are quite short [Fig. 3(b)]. During these oscillations,
the output couples to the neighboring lattice sites. However, after the initial oscillations the out-
put becomes stationary and resides at the lattice site closest to the input waveguide. For even
larger lattice intensity the range of time transient dynamics shortens. Notice that in the stable
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Fig. 3. Temporal evolution of the intensity distribution at one crystal face with increasing
lattice peak intensity at the plane of incidence ofF . The constant line (red) marks the input
of F while the intensity distribution ofB oscillates (green) since it is the output plane of
beamB. Depicted is the evolution along the curve for periodicity equal to beam diameter.
Qualitatively similar results are obtained at the plane of incidence ofB for the transmitted
beamF .

state a small fraction of the soliton is trapped at the input lattice channel while the majority of
soliton power is confined in the neighboring site.

The intensity distribution of the stable soliton states inside the crystal depends on the period-
icity and the strength of the lattice. Figure 4 illustrates the spatial intensity distributions in case
of the lattice with the same strength but three different periods. The final intensity distribution
results from the trade-off between the natural effect of beams trying to avoid each other and
beam trapping by the lattice sites.

We saw in Fig. 2 the unexpected increase oflodN for small period and large lattice strength.
This particular case is depicted in Fig. 5(a). The increase of lodN is caused by regular spatio-
temporal oscillations of soliton beams. During these oscillations the solitons focus onto each
other in the middle of the medium, then start to deflected to one side and break up. After that
the sequence [as depicted in Fig. 5(b)-(d)] repeats with thespatial deflection going to the other
side.

For off-site launching (i.e. the maximum soliton intensitycoincides with the minimum of the
lattice), the instability dynamics also decreases. However, the exact progression of the curves
is somewhat different from the on-site case as depicted in Fig. 6. In general, counterpropagat-
ing solitons within this excitation scheme are more dynamicwhich is a result of the intrinsic
dynamics due to their initial attraction of the solitons to the waveguides nearest to their point
of excitation. Occasionally, an increase of the dynamics isobserved for specific periodicities
and low peak intensities of the lattice. As shown in Fig. 7, this increase oflodN is due to the
onset of fast oscillations. This interpretation can be explained as follows: On the one hand,
the beams experience a reduction of the transverse separation of the lattice which decreases
the transverse instability and leads to an increased focusing of the beams [Fig. 7 (b)]. On the
other hand, the transverse separation increases the interaction region of the beams which sup-
ports the instability. In the case of beams launched off-site on lattices with low peak intensities
and suitable periodicities, the complex interplay betweenthese two effects combined with the
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Fig. 4. Illustration of the intensity distribution for the stabilized states shown forthe same
lattice peak intensity ofA = 2.4 and periodicity ofp = 0.5d in (a), p = 1.0d in (b) and
p= 1.5d in (c). The blurred nature in (a) results from the mutual interaction of the solitons.

intrinsic attraction to adjacent waveguides leads to the short time scale oscillations observed
in Fig. 7. Apart from this, the intensity distribution of thestabilized state inside the crystal is
characterized by the combination of attraction to adjacentwaveguides and avoidance of the
counterpropagating beam.

3. Experimental stabilization of soliton dynamics

In the following section we describe results of experimental studies of the impact of an
optically-induced photonic lattice on the dynamics of the soliton interaction. Following results
of our numerical simulations, we investigate here the case of a lattice with periodicity compara-
ble to the beam diameter, for which the soliton stabilization is expected to be strongest. Figure 8
shows the schematic of the experimental setup. The setup is similar to the one utilized for inves-
tigation of counterpropagating solitons [8]. A beam from a frequency-doubled Nd:YAG laser
(λ = 532nm) is split up into two parts with a power of 1µW each. These beams are focussed
onto the two opposite faces of the Cerium-doped Strontium Barium Niobate crystal (SBN:60)
and are polarized parallel to the crystal’sc-axis exploiting the large electro-optic tensor element
r33. They propagate through the medium slightly tilted againstthe crystal’sa-axis (L = 23mm)
in order to compensate for beam self-bending. Both beams aremade mutually incoherent by re-
flecting one of them from a piezo-mounted mirror oscillatingwith a period significantly shorter
than the response time of the photorefractive nonlinearity. The SBN crystal is biased by an
external DC electric fieldEe = 1.9kV/cm applied along the crystal’sc-axis [31]. Additionally,
the crystal is illuminated by an incoherent white-light source in order to control the saturation
of the nonlinearity. For synchronous observation, the transmitted and reflected beams at either
crystal faces are imaged onto the same CCD camera.

In order to induce a one-dimensional photonic lattice, we launch two plane waves of equal
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Fig. 5. Illustration of the dynamic states forp= 0.25d andA= 2.2. The temporal evolution
is depicted in (a) where as (b-d) show snapshots of the oscillation comprised of sequences
of focussing and deflection.
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Fig. 9. Comparison between the modulation of the interference pattern (top) and the in-
duced refractive index modulation (bottom) measured in terms of the intensity modulation
of a guided plane wave. Shown are the results for lattice wave powers of 0.5mW (dashed
line), 1.5mW (dotted line) and 2.5mW (dash-dot line).

power that interfere inside the photorefractive crystal. Due to their ordinary polarization, the
lattice waves do not experience the refractive index modulation induced by themselves and the
solitons. Thus they effectively propagate in a linear regime and write a stationary (in propaga-
tion variablez) refractive index modulation. The lattice peak intensity is adjusted by varying
the power of the two interfering waves. Figure 9 compares theintensity of the interfering beams
with the modulation of a guided plane wave used as a tool for characterization of the refractive
index modulation.

Our experimental results are shown in Fig. 10 which depicts temporal evolution of one of
the beam at the exit face of the crystal. It is evident that soliton dynamics, i.e. spatio-temporal
oscillations are suppressed with the increasing strength of the optical lattice. These results agree
qualitatively well with our numerical simulations. Figure10(a) shows irregular oscillations
appearing at low lattice strength. These oscillations are comparable to those emerging in a
bulk medium under the same set of parameters. For higher power of the lattice forming beams
[Fig. 10(b,c)] the oscillations amplitude starts to decrease and sequences of regular oscillations
appear. For even higher power of the lattice waves we see longlasting transient dynamics
tending to a stationary state [Fig. 10(d)]. Finally, a stationary state over the observation period
of two hours is seen for lattice beam power of 2.5mW [see Fig. 10(e)].

This evolution is accompanied by an increased trapping of light in neighboring lattice sites.
The asymmetry of trapping in the lattice channels is due to the beam-bending effect. Due to
the change in the refractive index, the self-bent soliton gets partially reflected when it passes
a lattice site and the reflected light travels along the waveguide written by the lattice wave.
Moreover, the weaker oscillations in y-direction are suppressed with increasing lattice peak
intensities.

It is worth noting, that the experimental stabilization of counterpropagating solitons has been
achieved with lattice strengths much lower than that found in numerical simulations. For in-
stance the experimental case of lattice power ofA = 2.5mW corresponds toA = 0.05 which is
significantly lower than 0.60 necessary to stabilize the solitons in numerical simulations.
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Fig. 10. Temporal evolution of the intensity distribution projected onto thex-axis (parallel
to thec-axis) for different lattice powers of (a) 250µW, (b) 1.0mW, (c) 1.5mW, (d) 2.0mW,
and 2.5mW. The faint horizontal lines atx = 0µm mark the reflected beam at this crystal
face which acts as a reference. Again the results for the other crystal face show similar
behaviour.

4. Soliton stabilization in two-dimensional photonic lattices

So far we have considered the dynamics of counterpropagating solitons in a 1D lattice, empha-
sizing the arrest of instability in a single transverse direction only. For application of the coun-
terpropagating solitons as a self-adjusting bi-directional waveguide, it is necessary, however, to
ensure stabilization in both transverse directions. This can be achieved in two-dimensional opti-
cal lattices. To this end, in our experiments we used a 2D square lattice, oriented under 45◦ with
respect to the crystalline axis [Fig. 11(a)] similar to Refs. [40,41]. Such orientation of the lattice
is preferable in order to reduce the effect of the intrinsic anisotropy of the photorefractive non-
linearity [42]. We then vary the lattice period and power andmonitor the positions of the beams
at both faces of the crystal. The inputs of the forward and thebackward propagating beams in
our experiments have the size of 19µm and 18µm, respectively [Fig. 11(b)]. In our 10 mm
long crystal this corresponds to approximately 5 diffraction lengths of linear propagation.

First we studied dependence of beam dynamics on the lattice period. Our experimental results
qualitatively matched those obtained for 1D optical lattice. For a small lattice period (3µm) the
potential induced by the lattice was too weak to arrest the instability of the counterpropagating
beams. With the increased lattice period (to 6, 9, or, 12µm) the instability was practically re-
moved for a certain range of lattice strength. The large lattice periods, however, strongly reduce
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Fig. 11. Stabilization of the instability in two transverse directions: (a) 2D square lattice
of 6 µm period. (b) Input intensity distribution for the forward (F) and backwards (B)
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right face of the crystal when each soliton propagates independently. (e,f) Stabilization on
the lattice for both faces of the crystal, respectively. (g) Position of the output beams center
without the lattice (solid line) and with the lattice (dotted line) as a function of time.

the mobility of the beams as each beam can be fully trapped in asingle lattice site. Such trap-
ping imposes a constrain on the formation of bi-directionalwaveguide which becomes sensitive
on the initial alignment of the beams. Thus, beams propagating in different directions inside the
crystal will not attract, as their intensity overlap will bereduced by the trapping on different
lattice sites. Therefore, in the following experiments we concentrated on the intermediate case
of a lattice of period 6µm (p = 0.3d).

Without the lattice, both beams overlap weakly and their individual propagation is strongly
affected by the beam self-focusing and self-bending. At bias electric field of 2 kV/cm and at
powers of 1µW each beam forms a spatial soliton, where the soliton size isequal to the input
beam size. In Fig. 11(c,d) we show the digitally combined input and output of each beam as
if they would propagate without interaction inside the crystal. When both beams co-propagate
they start to interact. After the initial attraction, the beams exhibit oscillatory dynamics. The
oscillations are depicted in Fig. 11(g, solid line) showingthe(x,y) position of the output beam
center of mass as a function of time. In this experiment we first established the soliton formation
of the backward beamB and then we launched the forward propagating beamF . The observed
oscillatory dynamics is similar to the 1D case, but appears in both transverse directions. The
amplitude of the oscillations is dependent on the initial alignment of the beams.

The introduction of the lattice suppresses the oscillatoryinstability observed in homogenous
crystal due to the induced periodic potential and thereforereduced mobility of solitons. In
our experiments, we first established an unstable bi-directional soliton state and afterwards we
launched the lattice beams. The lattice power was 2.8 mW, resulting in approximately 5 times
lower intensity than that of the soliton. In the presence of the lattice both beams align well
with each other [Fig. 11(e,f)] and the oscillatory motion issuppressed as shown in Fig. 11(g,
dotted line). Furthermore, we monitored the long term (∼ 1 hour) dynamics of the beams on
the lattice and observed that small variations of the beam position can still be seen, however,
these variations were rather weak as compared to the case when the lattice is absent.

In the next step, we investigated the dependence of the beam dynamics on the lattice strength.
As expected, for stronger lattices the instability dynamics of the counterpropagating beams is
reduced and the solitons join steadily at both sides of the crystal. At lattice power higher than
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3.2 mW, however, the forward and backward propagating beamsstart to significantly increase
their output size as a result of the increased effective background illumination and reduced self-
focusing. Therefore, an optimal lattice power can be obtained (2.8 mW in our experiments) at
which the beams are well localised and the dynamic instability is strongly suppressed.

5. Conclusion

In conclusion, we studied the impact of an optically-induced photonic lattice on the dynamics
of counterpropagating solitons in a biased photorefractive crystal. Our numerical simulations
demonstrate that an optically-induced lattice of proper period and strength can suppress and
even completely arrest the instability. We found that counterpropagating solitons launched on-
site as well as off-site can be stabilized. In the case of small periodicity and high peak intensity
of the lattice, we observed unexpected spatio-temporal oscillations with characteristics dis-
similar from those exhibited by counterpropagating solitons in bulk media. We demonstrated
experimentally the decrease of dynamics for a one-dimensional lattice with periodicity compa-
rable to the beam diameter. The temporal evolution of the intensity distribution was found to be
in good qualitative agreement with our numerical results. Additionally, the stabilization of the
counterpropagating soliton dynamics was demonstrated fortwo-dimensional square lattices,
allowing for stability of the induced bi-directional waveguide in two transverse directions.

Based on our observations, novel schemes to control the dynamics of counterpropagating
solitons are possible. These schemes may also be applicableto other field of physics since
our numerical simulations show a decrease of instability dynamics for a quite general model
including a saturable Kerr-like nonlinearity.
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