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1. Introduction

The formation of self-trapped beams in nonlinear opticadimecommonly referred to as spatial
optical solitons, has gained much interest in recent ydar3][mainly because of the soliton’s
waveguiding capabilities [4]. Due to the reversibility betprocess of light-induced refractive
index modulations spatial optical solitons offer potelnipplication in future reconfigurable
optical links, exploiting the light-guiding-light conce-or such devices, the interaction of spa-
tial optical solitons is of crucial importance. It turns dbat the interaction scenarios strongly
depend on the particularities of the nonlinear responsectofai material. In the case of, for
instance, photorefractive solitons the interactions oatude attraction or repulsion as well as
energy exchange and fusion or even a creation of new solftbr®. Prior studies were mainly
concerned with the interaction ob-propagatingsolitons [5]. With such one-sided boundary
conditions, a temporally constant input generally leada &iationary state after intial tran-
sient dynamics. In contrast, the boundary conditionsainter-propagating6—13] solitons
are partially fixed at opposite crystal faces. Generallyicapcounterpropagation in nonlinear
optical media is known to lead to various spatial and tempostabilities and related penom-
ena such as pattern formation [14-17]. Recently, numesicalilations [9-12] revealed two
instability regimes depending on the strength of the neairinteraction parametéL, where

I is the photorefractive coupling constant dnthe medium length. The first one is marked by
the break-up of the stationary soliton-induced common gaieke observed for low coupling
strengths into a so-called bidirectional waveguide stmgcin the form of spatially interlaced
(interweaved) channels [9, 10, 18]. This new waveguidérsfiresents a steady state structure
and is similar to the one observed earlier in Kerr media [E8}. even stronger nonlinear cou-
pling the bidirectional waveguide loses stability via rieguimit-cycle oscillations until the
temporal dynamics becomes irregular [12] as was also detnaded experimentally [8].

For practical applications, e.g as self-aligning optidaks$, such oscillations are obvi-
ously undesired. Therefore, ways to control and stabili@enterpropagating solitons have
to be found. In this work we present a novel approach to swgpitee instability of counter-
propagating solitons by using an optically-induced phtdaitice inside the photorefractive
crystal. The periodic modulation of the refractive indextod material imposed by the lattice
affects fundamental properties of light propagation iadide medium. The modulation acts
as a periodic potential, reducing the spatial mobility oficgd beams and enabling the for-
mation of lattice solitons in the total internal reflectioapg Subsequently, this is expected to
suppress the instability of the counterpropagating swditand therefore allowing for stabil-
ity of the resulting composite waveguide. Here we study micablly the temporal stability of
the counterpropagating solitons as a function of strengthperiod of the optical lattice and
demonstrate experimentally the effect of instability ardgy one- (1D) and two-dimensional
(2D) optical lattices.

A periodic modulation of the material refractive index ingps a qualitatively new behaviour
of light propagation reflecting the discrete nature of thedim@ [19]. Narrow light beams
propagating in the linear regime experience the well knovgerdte diffraction as first pre-
dicted theoretically in 1965 [20] and experimentally olveerin a Gallium Arsenide waveg-
uide array in 1973 [21]. In a medium with nonlinear opticapense, discrete and gap solitons
can exist. In case of self-focusing nonlinearity the digci®olitons can be excited from the
top of the first band of the lattice bandgap spectrum and @xite total internal reflection
gap [19, 22, 23]. These solitons have been investigatedriexpetally in AlGaAs waveguide
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arrays [24] and optically-induced photonic lattices [2B}-2n contrast, gap solitons in focus-
ing nonlinear medium require excitation from the top of teeand band and exist in the finite
Bragg reflection gap [28, 29].

Among the various periodic structures used to demonsti@ténear localization and soli-
ton formation the optically-induced lattices [23] haveratted special attention. In this case
the periodic modulation of the refractive index is optigatiduced inside a DC-biased pho-
torefractive crystal by the interference of two or more loroadinarily polarized beams. Due
to the electro-optic anisotropy of the crystal the latticéting beams are not affected by the
applied voltage, while any extraordinarily polarized pedieam will experience periodic index
modulation and strong self-action due to the photorefvaaifect. In our studies we employed
the optically-induced lattice technique to study the thpeshelence of counterpropagating soli-
ton dynamics on the lattice depth and period. Furthermbeslattice geometry can be changed
from 1D to 2D by adding more interference beams, thus engistindy of the instability sup-
pression in two transverse directions. The dynamic tuitglwf the optical lattice is a great
advantage over fabricated permanent structures [30].

In the first part of this paper, we investigate numericallyitifluence of the lattice period and
amplitude on interaction dynamics of counterpropagatingtprefractive solitons. Thereafter,
we provide experimental demonstration of the theoreticatedicted suppression of soliton
instability.

2. Isotropic one-dimensional model

We investigate the interaction of two counterpropagatingually incoherent screening soli-
tons [31] by using a one-dimensional model of a saturabléimeerity. Spatial evolution of the
slowly varying field envelopes andB (|0% e | < |2ikod, e |, dre ~ 0, 7e ~ 0 wheres stands for
F andB, respectively) of the forward and backward propagatingrises modeled in paraxial
approximation:

i0,F + 02F = ES°F
—id,B+02B=TEB (1)

where ES¢ is the space charge field created by the beams inside therpfratdive crystal
andl™ = k?ngwiresEe denotes the photorefractive coupling constant, wigtbeing the bulk
refractive indexfes the effective coefficient of the electro-optic tensor dhdthe externally
applied electric field necessary for the screening effeottur. The transversecoordinate is
scaled to the beam waiat whereas the propagatiarcoordinate is scaled with the diffraction
lengthLp = 2kwg, with k = 2rmp/A andA denoting the laser wavelength [10].

For the temporal evolution of the space charge field we asgetagation type dynam-
ics [32]: |

o 2

wherel = |F|? + |B|? is the total intensity scaled to the so-called dark intgnigitand ESC is
scaled toEe. The relaxation tima depends on the total intensity ad ) = 1o/(1+1) with 19
representing the dark relaxation time constant.

In the above model of the photorefractive effect [Eq.(2)] meglect diffusion of excited
charge carriers inside the crystal. In consequence, wetdacnount for beam self-bending [33—
35]. Additionally, spatial nonlocality causing repulsiofsolitary waves propagating at specific
relative distances [36] is neglected. While the resultingleierves as an approximation of
the real system it nevertheless leads to results which argaod agreement with experimental
observations.

T(I)atESC+ ESC:
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Fig. 1. Steady state modulation of the refractive index (bottom) resultomg fattices with
different peak intensities (top) in the applied isotropic model.

The presence of the index grating created by the interferehtwo plane waves is modeled
by including the additional terniye(x) = Acog(7x/p) in the expression for the total light
intensityl = |F|?+ [B|2 + lpo, WhereA and p determine the peak intensity and periodicity of
the lattice. As the lattice-forming waves are ordinary paked, they do not interact directly with
solitons [23] and the lattice intensity distribution remmastationary throughout the crystal. This
lattice intensity pattern and the resulting steady stdtactve index modulation are depicted
in Fig. 1.

The numerical analysis of the ensuing nonlinear model [Eef)] involves two operations
conducted in one discrete time step. At a given time steprbygggation of the beams through
the medium with a stationary distribution of the space ciadigld ESC is simulated by using
a second order split-step Fourier beam propagation me@igB8]. Thereafter, the temporal
evolution of the space charge field as a result of the newsitedistribution is calculated from
Eq.(2). The separation of wave propagation from the tempwualution of the space charge
field is reflected in dropping the time derivatives of the fieletlopes in the wave equation
[Eq.(1)] and is justified due to the large difference in thegargation time (10'°s) and response
time of the photorefractive effect (on the order of $0- 1s).

In our investigations we assumed the incident waves to lieséay in a form of two identi-
cal Gaussian beams with beam waists 1 and peak intdnsity each. We simulate their head
on collision by launching both beams at the same lateratipogperpendicularly to the crystal
face. The propagation along a crystal of length- 5 and transverse extension of 20 was cal-
culated on a grid consisting of 500512 grid points.The coupling constant was chosen to be
negative [ = —13.2) to ensure the self-focussing regime necessary for timedton of bright
solitons. For this set of parameter values the soliton swiatin bulk media already exhibited
very irregular temporal oscillations [12]. The numericiamhglations started with only the lat-
tice beams present. After evolving the corresponding sphaege field over time period 1§
(with the time step of 0.1y) we launched both soliton forming beams and simulated tbe ev
lution of the whole system over time of 50@g. The calculations have been carried out on the
Morfeus-GRID at the Westlische Wilhelms-Universit Minster, with the use of Condor [39].

In order to study the influence of the induced photonic lattin the soliton dynamics we vary
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Fig. 2.lodN for counterpropagating solitons launched on-site as a function of lattiae inte
sity A for different lattice period®. (a) period smaller than the beam diameter; (b) lattice
period larger than the beam diameter. Non-monotonous decredsg™ofor p = 1d and
A=0.4-0.8, is due to long lasting transient dynamics.

the peak intensity and periodicity of the lattice wave angtdeine the degree of instability in
terms of thdevel of dynamic§l2] defined as:

_ k |F(X7Lat)7F(X7Lat71)|2 ‘B(X,O,t)fB(X70,t71)|2
od" =53 R B 0P ®

This parameter represents the time and space integratealusasf the differences in the field
envelopes at either exit face between two successive dieautane-steps. It follows directly
from Eq.(3) that decrease in the intensity variation ofteal, (i.e. weaker instability) leads to
lower value oflodN (lodN =0 zero for stationary solutions).

As can be clearly seen from Fig. 2 the rate of decrease of thedral dynamics of counter-
propagating solitons launched on-site strongly dependattioe strength and its period. Here
and in the following, on-site denotes the case when the maxirsoliton intensity coincides
with the maximum of the lattice. The influence on the solitgmainics is strongest for pe-
riod p = 1d, whered = 2 is the beam diameter of the incident Gaussian beams. Thibea
explained as follows: for small lattice periodicity, thefs¢eapped beam covers many lattice
sites. As a result, the effect of the lattice is weaker, anthénlimit p — O the medium can be
regarded as homogeneous with higher refractive indexelp#riodicity is comparable with the
beam diameter, the soliton experiences maximal guidindpéyattice-induced refractive index
modulation. For larger periodicity, the region in which tieéractive index change is negligible
increases, so that in the limit— o one ends up again with a homogeneous medium. Conse-
qguently the influence of the lattice decreases again. Fumitve, our simulations show that the
decrease of the dynamics is not as rapid for smaller peitydis it is for larger one.

Figure 3 depicts the temporal evolution of the intensityriistion for p = 1d for three dif-
ferent values of the lattice intensify For weaker lattice the output oscillates irregularly. 3ée
oscillations are similar to those occurring in a bulk contins medium. The presence of the
lattice leads to solitons residing more frequently at thtck sites what is reflected in the ap-
pearance of faint horizontal lines in Fig. 3(a). For strarigtice we still observe some transient
dynamics with oscillation periods which are quite shorg[R(b)]. During these oscillations,
the output couples to the neighboring lattice sites. Howefter the initial oscillations the out-
put becomes stationary and resides at the lattice sitestloséhe input waveguide. For even
larger lattice intensity the range of time transient dyr@nshortens. Notice that in the stable
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Fig. 3. Temporal evolution of the intensity distribution at one crystal faitk increasing
lattice peak intensity at the plane of incidencéd-ofThe constant line (red) marks the input
of F while the intensity distribution oB oscillates (green) since it is the output plane of
beamB. Depicted is the evolution along the curve for periodicity equal to beam déme
Qualitatively similar results are obtained at the plane of incidend&fof the transmitted
beamF.

state a small fraction of the soliton is trapped at the inptiide channel while the majority of
soliton power is confined in the neighboring site.

The intensity distribution of the stable soliton statesdaghe crystal depends on the period-
icity and the strength of the lattice. Figure 4 illustrates spatial intensity distributions in case
of the lattice with the same strength but three differeniquks. The final intensity distribution
results from the trade-off between the natural effect ofneérying to avoid each other and
beam trapping by the lattice sites.

We saw in Fig. 2 the unexpected increaséonfN for small period and large lattice strength.
This particular case is depicted in Fig. 5(a). The incredded) is caused by regular spatio-
temporal oscillations of soliton beams. During these ta&@iins the solitons focus onto each
other in the middle of the medium, then start to deflected ®side and break up. After that
the sequence [as depicted in Fig. 5(b)-(d)] repeats witlsplatial deflection going to the other
side.

For off-site launching (i.e. the maximum soliton intengitincides with the minimum of the
lattice), the instability dynamics also decreases. Howslie exact progression of the curves
is somewhat different from the on-site case as depictedgn@=iln general, counterpropagat-
ing solitons within this excitation scheme are more dynawitiich is a result of the intrinsic
dynamics due to their initial attraction of the solitons e twaveguides nearest to their point
of excitation. Occasionally, an increase of the dynamiasbiserved for specific periodicities
and low peak intensities of the lattice. As shown in Fig. Ts thcrease ofodN is due to the
onset of fast oscillations. This interpretation can be a&ix@d as follows: On the one hand,
the beams experience a reduction of the transverse sepaadtthe lattice which decreases
the transverse instability and leads to an increased fogusi the beams [Fig. 7 (b)]. On the
other hand, the transverse separation increases thedtieraegion of the beams which sup-
ports the instability. In the case of beams launched off-ait lattices with low peak intensities
and suitable periodicities, the complex interplay betwiase two effects combined with the
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Fig. 4. lllustration of the intensity distribution for the stabilized states showthisame
lattice peak intensity oA = 2.4 and periodicity ofp = 0.5d in (a), p= 1.0d in (b) and
p=1.5d in (c). The blurred nature in (a) results from the mutual interaction ofdhas.

intrinsic attraction to adjacent waveguides leads to tlwtdime scale oscillations observed
in Fig. 7. Apart from this, the intensity distribution of tis¢abilized state inside the crystal is
characterized by the combination of attraction to adjaeemteguides and avoidance of the
counterpropagating beam.

3. Experimental stabilization of soliton dynamics

In the following section we describe results of experimestadies of the impact of an
optically-induced photonic lattice on the dynamics of thiten interaction. Following results
of our numerical simulations, we investigate here the cadaitice with periodicity compara-
ble to the beam diameter, for which the soliton stabilizat®expected to be strongest. Figure 8
shows the schematic of the experimental setup. The setumilaisto the one utilized for inves-
tigation of counterpropagating solitons [8]. A beam fronregliency-doubled Nd:YAG laser
(A =532nm) is split up into two parts with a power oft®V each. These beams are focussed
onto the two opposite faces of the Cerium-doped StrontiunuBaNiobate crystal (SBN:60)
and are polarized parallel to the crystataxis exploiting the large electro-optic tensor element
ras. They propagate through the medium slightly tilted agatimstcrystal’'sa-axis L = 23mm)
in order to compensate for beam self-bending. Both beamsade mutually incoherent by re-
flecting one of them from a piezo-mounted mirror oscillativith a period significantly shorter
than the response time of the photorefractive nonlineafiye SBN crystal is biased by an
external DC electric fiel@. = 1.9kV/cm applied along the crystaltsaxis [31]. Additionally,
the crystal is illuminated by an incoherent white-light szmiin order to control the saturation
of the nonlinearity. For synchronous observation, thegmgitted and reflected beams at either
crystal faces are imaged onto the same CCD camera.

In order to induce a one-dimensional photonic lattice, waéh two plane waves of equal
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Fig. 5. lllustration of the dynamic states fpe= 0.25d andA = 2.2. The temporal evolution
is depicted in (a) where as (b-d) show snapshots of the oscillation caedmisequences
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Fig. 6. Decrease in the dynamics of counterpropagating solitons ladiofhsite as a func-
tion of peak intensity and periodicity. (a) period smaller than the beam dianiiet@eriod
larger than the beam diameter.
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Fig. 8. Experimental setup for the observation of counterpropagatiliiprss on a one-
dimensional lattice. MO: microscope objective, PH: pinhole, L: lens, HiéR wave plate,
M: mirror, PBS: polarizing beam splitter, PM: piezo-mounted mirror, B&am splitter
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Fig. 9. Comparison between the modulation of the interference pattemg(abpthe in-
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of a guided plane wave. Shown are the results for lattice wave powerSmo#@ (dashed
line), L5mW (dotted line) and BmW (dash-dot line).

power that interfere inside the photorefractive crystaleo their ordinary polarization, the
lattice waves do not experience the refractive index mdaulanduced by themselves and the
solitons. Thus they effectively propagate in a linear reggamd write a stationary (in propaga-
tion variablez) refractive index modulation. The lattice peak intens#yadjusted by varying
the power of the two interfering waves. Figure 9 comparestitemsity of the interfering beams
with the modulation of a guided plane wave used as a tool faradterization of the refractive
index modulation.

Our experimental results are shown in Fig. 10 which depensporal evolution of one of
the beam at the exit face of the crystal. It is evident that@odynamics, i.e. spatio-temporal
oscillations are suppressed with the increasing strerfgtiemptical lattice. These results agree
qualitatively well with our numerical simulations. Figui®(a) shows irregular oscillations
appearing at low lattice strength. These oscillations amparable to those emerging in a
bulk medium under the same set of parameters. For higherrpmivtlee lattice forming beams
[Fig. 10(b,c)] the oscillations amplitude starts to desgeand sequences of regular oscillations
appear. For even higher power of the lattice waves we see l&stimg transient dynamics
tending to a stationary state [Fig. 10(d)]. Finally, a statiry state over the observation period
of two hours is seen for lattice beam power of 2.5mW [see Fi¢e)l.

This evolution is accompanied by an increased trappinggbt in neighboring lattice sites.
The asymmetry of trapping in the lattice channels is due ¢obsam-bending effect. Due to
the change in the refractive index, the self-bent solitois gartially reflected when it passes
a lattice site and the reflected light travels along the waidesgwritten by the lattice wave.
Moreover, the weaker oscillations in y-direction are sesped with increasing lattice peak
intensities.

It is worth noting, that the experimental stabilization ofiaterpropagating solitons has been
achieved with lattice strengths much lower than that foundumerical simulations. For in-
stance the experimental case of lattice poweh ef 2.5mW corresponds té = 0.05 which is
significantly lower than ®0 necessary to stabilize the solitons in numerical sinarat
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Fig. 10. Temporal evolution of the intensity distribution projected ontocthgis (parallel
to thec-axis) for different lattice powers of (a) 25QV, (b) LOmW, (c) 15mW, (d) 20mW,
and 25mW. The faint horizontal lines at= Oum mark the reflected beam at this crystal

face which acts as a reference. Again the results for the other crgstlshow similar
behaviour.

4. Soliton stabilization in two-dimensional photonic latices

So far we have considered the dynamics of counterpropagsdilitons in a 1D lattice, empha-
sizing the arrest of instability in a single transverse cimn only. For application of the coun-
terpropagating solitons as a self-adjusting bi-dire@lamaveguide, it is necessary, however, to
ensure stabilization in both transverse directions. Taistie achieved in two-dimensional opti-
cal lattices. To this end, in our experiments we used a 2Dredatice, oriented under 45vith
respect to the crystalline axis [Fig. 11(a)] similar to R¢8,41]. Such orientation of the lattice
is preferable in order to reduce the effect of the intringisatropy of the photorefractive non-
linearity [42]. We then vary the lattice period and power amzhitor the positions of the beams
at both faces of the crystal. The inputs of the forward andotekward propagating beams in
our experiments have the size of @ and 18um, respectively [Fig. 11(b)]. In our 10 mm
long crystal this corresponds to approximately 5 diffractiengths of linear propagation.

First we studied dependence of beam dynamics on the latid@do Our experimental results
qualitatively matched those obtained for 1D optical l&tti€or a small lattice period (8n) the
potential induced by the lattice was too weak to arrest thability of the counterpropagating
beams. With the increased lattice period (to 6, 9, ot the instability was practically re-
moved for a certain range of lattice strength. The largektieriods, however, strongly reduce
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Fig. 11. Stabilization of the instability in two transverse directions: (a) 2D reqladtice
of 6 um period. (b) Input intensity distribution for the forwaré)(and backwardsg)
propagating beams, respectively. (c,d) Digitally combined beam mdiehe left and
right face of the crystal when each soliton propagates independenf)yS¢abilization on
the lattice for both faces of the crystal, respectively. (g) Position of tigubbbeams center
without the lattice (solid line) and with the lattice (dotted line) as a function of time.

the mobility of the beams as each beam can be fully trappedcingde lattice site. Such trap-
ping imposes a constrain on the formation of bi-directiamaleguide which becomes sensitive
on the initial alignment of the beams. Thus, beams propagatidifferent directions inside the
crystal will not attract, as their intensity overlap will lbeduced by the trapping on different
lattice sites. Therefore, in the following experiments waaentrated on the intermediate case
of a lattice of period ¢«m (p = 0.3d).

Without the lattice, both beams overlap weakly and theiividdial propagation is strongly
affected by the beam self-focusing and self-bending. As leilectric field of 2kV/cm and at
powers of 1uW each beam forms a spatial soliton, where the soliton siegusl to the input
beam size. In Fig. 11(c,d) we show the digitally combineduirgnd output of each beam as
if they would propagate without interaction inside the tayswWhen both beams co-propagate
they start to interact. After the initial attraction, theabbes exhibit oscillatory dynamics. The
oscillations are depicted in Fig. 11(g, solid line) showihg(x,y) position of the output beam
center of mass as a function of time. In this experiment wedstablished the soliton formation
of the backward bear and then we launched the forward propagating bEamhe observed
oscillatory dynamics is similar to the 1D case, but appeatsoth transverse directions. The
amplitude of the oscillations is dependent on the initigrahent of the beams.

The introduction of the lattice suppresses the oscillaitosiability observed in homogenous
crystal due to the induced periodic potential and thereferkiced mobility of solitons. In
our experiments, we first established an unstable bi-dineait soliton state and afterwards we
launched the lattice beams. The lattice power was 2.8 m\Witieg in approximately 5 times
lower intensity than that of the soliton. In the presencehef fattice both beams align well
with each other [Fig. 11(e,f)] and the oscillatory motiorsigopressed as shown in Fig. 11(g,
dotted line). Furthermore, we monitored the long terml(hour) dynamics of the beams on
the lattice and observed that small variations of the beasitipo can still be seen, however,
these variations were rather weak as compared to the casethd&attice is absent.

In the next step, we investigated the dependence of the bgaamtcs on the lattice strength.
As expected, for stronger lattices the instability dynamo€the counterpropagating beams is
reduced and the solitons join steadily at both sides of thistak At lattice power higher than
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3.2mW, however, the forward and backward propagating besansto significantly increase
their output size as a result of the increased effective drackd illumination and reduced self-
focusing. Therefore, an optimal lattice power can be okif2.8 mW in our experiments) at
which the beams are well localised and the dynamic instglislistrongly suppressed.

5. Conclusion

In conclusion, we studied the impact of an optically-indliphotonic lattice on the dynamics
of counterpropagating solitons in a biased photorefraatiystal. Our numerical simulations
demonstrate that an optically-induced lattice of propeigoeand strength can suppress and
even completely arrest the instability. We found that cegpopagating solitons launched on-
site as well as off-site can be stabilized. In the case oflgmealodicity and high peak intensity
of the lattice, we observed unexpected spatio-temporallatgans with characteristics dis-
similar from those exhibited by counterpropagating saktin bulk media. We demonstrated
experimentally the decrease of dynamics for a one-dimaeaslattice with periodicity compa-
rable to the beam diameter. The temporal evolution of trensity distribution was found to be
in good qualitative agreement with our numerical resuliddifionally, the stabilization of the
counterpropagating soliton dynamics was demonstratetiwfordimensional square lattices,
allowing for stability of the induced bi-directional wavgde in two transverse directions.

Based on our observations, novel schemes to control thendgaaof counterpropagating
solitons are possible. These schemes may also be applicabtber field of physics since
our numerical simulations show a decrease of instabilityagiyics for a quite general model
including a saturable Kerr-like nonlinearity.
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