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Pattern control and mode interaction in a
photorefractive single feedback system
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We experimentally investigate pump beam frequency detuning as a control technique in a photorefractive
single-mirror feedback system exhibiting spontaneous self-organized transverse pattern formation with a re-
gime of multistability. Deterministic switching between bistable patterns is demonstrated experimentally. An
experimental stability analysis uncovers the effect of frequency detuning on the thresholds of unstable modes.
The interaction of independent modes is found to be responsible for the different pattern symmetries observed
in this system. © 2007 Optical Society of America

OCIS codes: 190.4420, 190.3100, 190.5330.
w
i

h
i
d
t
m
I
a
t
s
f
p
m
s
m

2
A
(
�
w
e
O
a
o
t
i
i
F
t
t

p
w
l

. INTRODUCTION
n intriguing property of many extended nonlinear non-
quilibrium systems is the spontaneous formation of self-
rganized periodic spatial patterns,1 a topic for which
onlinear optics has become one of the prime research
elds2 in physics. Pattern formation has been demon-
trated and investigated in a variety of systems, using
uch diverse nonlinear media as atomic vapors,3,4 liquid
rystals,5,6 organic films,7 or photorefractives.8 Control of
attern formation has recently received increased atten-
ion, through endeavors to stabilize active modes, to ma-
ipulate pattern orientation and symmetries, to inhibit
rowth of instabilities, and to select specific solutions out
f several simultaneously available ones.9–12

In nonlinear optics various control methods are readily
vailable, such as seeding, or invasive and noninvasive
patial frequency filtering.13 Some control methods are
enerally applicable to a large number of systems while
any depend on the characteristics of a specific system

nder consideration.
Pattern forming systems that take advantage of photo-

efractive wave mixing demonstrate a rich variety of
atterns14 with several bistabilities and multistabilities
nd hence lend themselves to the investigation of control
echniques. Photorefractive wave mixing depends on the
nterference between coherent pump beams and is there-
ore sensitive to a small frequency detuning of the
umps.15–17 In this paper, we experimentally examine
ump beam frequency detuning as a method for control-
ing pattern formation in a single-mirror feedback sys-
em. Such detuning affects the photorefractive wave mix-
ng by inducing longitudinal motion of the refractive
ndex grating15 and was observed to lead to transitions
etween bistable patterns.16 Although a linear stability
nalysis demonstrated the effects of moving gratings due
o the frequency detuning, the resulting transitions be-
ween patterns of different symmetries are unexplained.
o analytical or numerical works exist at the time of this
0740-3224/07/030553-6/$15.00 © 2
riting that predict the pattern symmetries as observed
n experiment beyond the hexagonal patterns.

In the following, we will investigate experimentally
ow the fundamental unstable modes of the system are

nfluenced and the symmetry of the generated patterns is
etermined by the pump beam detuning, and investigate
he suitability of pump beam detuning as a control
ethod for the specific system and in a general context.

n Section 2 we will introduce the experimental system
nd demonstrate the existence of a bistability between
wo-dimensional transverse patterns. Section 3 presents
pontaneous transitions at the bistability and introduces
requency detuning as a control method to reliably induce
attern transitions. Finally, Section 4 will uncover the
echanism through which frequency detuning affects the

ymmetry of patterns, leading to its suitability as a
ethod for pattern control in this experimental system.

. SPONTANEOUS PATTERN FORMATION
t the heart of the photorefractive single feedback setup

Fig. 1) is an iron-doped potassium niobate crystal
Fe:KNbO3� of dimensions �a ,b ,c�=5, 5, and 6 mm, in
hich two focused laser beams (cw 532 nm, focus diam-
ter 320 �m) interfere and form a reflection grating.18

ne beam is directly obtained from the laser source with
beam power of 13 mW incident on the crystal. The sec-

nd beam consists of the first beam’s output fed back into
he photorefractive material by a mirror. Instead of plac-
ng a real mirror at the end of the crystal, a virtual mirror
s created by a 4f setup,14 which enables access to the
ourier plane and allows for negative virtual mirror posi-

ions. To avoid internal reflections at the crystal surfaces,
he crystal is tilted by a few degrees.

As a result of the diffusive charge carrier transport in
otassium niobate and the crystal’s c axis being aligned
ith the propagation direction, the refractive index modu-

ation is phase shifted by � /2 with respect to the intensity
007 Optical Society of America
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odulation leading to energy coupling of the beams, such
hat the incident beam is weakened and the reflected
eam is amplified.
Experimentally, the coupling strength �l can be set by

hanging the polarization of the incident beam, thus vary-
ng the effective electro-optic coefficient up to a maximum
alue of �lmax=5.5 determined using two beam coupling.

Above a threshold coupling strength that varies with
he mirror position d, transverse modulations are ob-
erved to grow in the output beams. The basic mechanism
t work is a selective amplification of beams propagating
t certain small angles (around 1°) to the pump beams.
he angular selectivity is due to diffraction during the
ound trip propagation to the external feedback mirror
nd to a lesser degree due to diffraction during propaga-
ion within the bulk nonlinear medium. In both cases dif-
raction allows any part of the initial pump beam to be
orrelated with a surrounding area of the reflected pump
eam by diffractive spreading. The competition of scales
mposed by these two feedback mechanisms is responsible
or the complex patterns characteristic to this system.
zimuthal selectivity, which is necessary for the genera-

ion of patterns with broken rotational symmetry, stems
rom further nonlinear interaction of the initial unstable
odes.
The growth of a periodic two-dimensional pattern gives

ise to spatial sidebands that form the characteristic far-
eld patterns (Fig. 2). The far-field is also accessible in
he Fourier plane of the 4f feedback assembly, which we
xploit to perform spatial frequency filtering in order to
etermine the active modes.

ig. 1. Experimental setup for investigation transverse pattern
ormation. L, lenses; (p)BS, (polarizing) beam splitter; M1, mir-
or; M2, piezomounted mirrorr; vm, virtual mirror plane; S, shut-
er; P, pinhole; F, Fourier plane of the feedback arm.

ig. 2. Far-field patterns observed without control. Central in
ach image is the output pump beam while the lateral spots cor-
espond to the modes constituting the transverse modulation of
he actual near-field beams. (a) Common hexagonal pattern, (b)
quare pattern, (c) squeezed hexagonal pattern.
Scale and symmetry of the patterns depend on the po-
ition d of the (virtual) mirror,14 given normalized to the
ength of the crystal l=6 mm

d = n0L/l, �1�

here L is the true distance from the crystal’s back face to
he virtual mirror plane and n0�2.33 is the refractive in-
ex of the medium.
The scale of patterns is recorded using the normalized

ransverse wavenumber

kdl =
k0�2

2n0
l �2�

f the modulation where k0 is the wavenumber of the light
nd � is the angle between the corresponding spatial side-
and and the pump beam. The mirror position influences
he transverse correlation across the beams due to diffrac-
ion and thereby determines the growth rates of different
patial modes.

While hexagonal patterns are observed over most of the
vailable parameter space, a range of mirror positions in-
ide the photorefractive crystal −0.8�d�−0.2 offers dif-
erent symmetries and has therefore been called the mul-
iple pattern region.14 Here, a bistability between
atterns of different symmetries (square and squeezed
exagonal) allows for an investigation of the effect of
ump beam detuning on transverse pattern formation.
This bistable region is determined by measuring the

requency with which each pattern class is spontaneously
bserved for a given position of the virtual feedback mir-
or. Equal frequency of occurrence is taken as an indica-
ion of equal relative stability. To this end, the symmetry
lass of 500 spontaneously formed patterns is recorded
ver the entire multiple pattern region. A subset of the
ata for squeezed hexagonal and square patterns is
hown in Fig. 3. At the virtual mirror position d=−0.75,
he pattern observed always has a squeezed hexagonal

ig. 3. Relative stability of two particular patterns, measured
y their frequency to be generated from noise, depending on the
ocation of the feedback mirror. Open triangles, squeezed hexago-
al pattern; filled triangles, square pattern. Exemplary error bar
ives the expected statistical error. Squeezed hexagon is practi-
ally always observed at mirror positions around d=−0.75. Both
atterns have about equal probability of being generated at �d
−0.67.
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ymmetry. As the mirror is moved towards the center of
he medium, the probability of observing a square pattern
ises until both have equal probabilities of being observed
t d=−0.68. Thus we assume that at this mirror position
oth patterns are approximately equally stable, and se-
ect d=−0.68 as a working point for investigating con-
rolled pattern transitions.

. PATTERN SWITCHING
he bistability between the two pattern symmetries is ad-
itionally indicated by the observation of spontaneous
ransitions, which are initiated by noise immanent to the

ig. 4. Pattern transition induced by negative frequency detun-
ng. Azimuth angle of the camera image (right) is projected onto
he Cartesian x axis while the temporal evolution is plotted on
he y axis. After activation of the control signal, the square pat-
ern changes into a squeezed hexagon via a transient state in
hich the old and new pattern share a single mode.

ig. 5. System state curves tracking the response to an oscillat-
ng control signal. Intensity of far-field spots characteristic of two
attern classes is filtered by masks (a), (b) in the transverse Fou-
ier space and detected. Intensities of two patterns, (c) squeezed
exagon, (d) square, during multiple transitions induced by a tri-
ngular control signal. Pattern selected by large control signals
emains as the control diminished, showing hysteretic behavior
nd indicating a symmetric bistability. Paths seemingly crossing
hrough the center of the hystereses stem from slightly sheared
quare patterns as well as occasional lack of one pair of the
quare pattern spots. As a result of some spots lying outside of
he discrimination window or having lower than normal inten-
ity, only half of the intensity is registered.
ystem. As demonstrated by Schwab et al.,16 pattern tran-
itions can be externally induced by detuning the fre-
uency of the pump beams. The mechanism through
hich pump beam detuning leads to pattern transitions
s well as the question of whether this control method is
imited to the photorefractive nonlinearity or may be gen-
ralized were left open.

Experimentally, we obtain pump detuning by slowly
oving the feedback mirror in a longitudinal direction

nd taking advantage of the Doppler shift.15 To achieve
ontinuous detuning while at the same time holding the
irror position constant within the limit of �d=0.01, the
irror is jumped back to its initial position with maxi-
um speed and in phase such that the reflection grating

s not disturbed by the jump after having traveled half a
avelength. This is facilitated by the slow response of the
hotorefractive medium owing to diffusion time constants
n the order of several tens of milliseconds. Transitions
rom square to squeezed hexagonal pattern are induced
y a negative frequency detuning while inverse transi-
ions are the result of a positive frequency detuning.

Figure 4 gives an exemplary transition from a pattern
ith square symmetry to a squeezed hexagon under
ump detuning. Initially, a square pattern is formed,
hich changes to a squeezed hexagon via a transient

tate consisting of both patterns. Observe that both pat-
erns share a component mode that is sustained during
he transition. This signifies that the transition is in fact

ig. 6. Hystereses for several feedback mirror positions: (a) d
−0.66, (b) d=−0.68, (c) d=−0.70, (d) d=−0.72. In contrast to Fig.
, the y axis now denotes the difference of squeezed hexagon and
quare pattern intensities, yielding a direct measure for the ac-
ual system state. As the squeezed hexagonal pattern grows in
tability, the hysteresis is moved to farther positive control signal
alues and finally no square pattern is observable without con-
rol signal. Paths seemingly crossing the hystereses’ centers
gain stem from variations in the square pattern (compare
ig. 5).
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n alternation between equally stable patterns and does
ot result from a disturbance erasing the reflection grat-

ng, which would affect all modes. The initial assumption
f bistability is justified by the observation that the ad-
ressed pattern remains after the control signal is re-
oved. Hence we expect that it should be possible to ob-

erve a hystersis in the system response to a periodic
ontrol signal, giving detailed information about the ac-
ual control signal strengths required for inducing transi-
ions.

Figure 5 illustrates the system response to a triangular
ontrol signal oscillating between ±3 rad/s. The system
tate is quantified in terms of the combined intensity of
ll pattern spots with wavenumbers specific to each of the
wo patterns. Their intensities are detected using Fourier
pace masks permitting only modes characteristic to a
pecific pattern. As the control signal is varied, the state
s tracked, resulting in an approximate phase space foot-
rint. We identify areas of stability of one specific pattern
nd a bistable region in between, as signified by the hys-
ereses. For control signals �� � �1 rad/s, no transitions
an be induced. Reliable switching between both patterns
s observed for �� � �1 rad/s while a larger control signal
uarantees the observation of the addressed pattern, in-
icating relative instability of the other pattern. Note
hat for large positive control signal strengths, pattern
ormation is generally suppressed as indicated by the di-
inishing square pattern signal. For negative control sig-

als, the squeezed hexagon remains strongly visible. This
ehavior is consistent with earlier observations and the
esult of a strongly asymmetric influence of pump beam
etuning on the growth rates of unstable modes.16

We noted above that the relative frequency of the pat-
erns’ occurrence depends on the position of the virtual
eedback mirror. Under the assumption that a change in
he frequency of observation is indicative of one pattern
aining relative stability over the other, we expect that if
e increase the relative stability of one pattern by chang-

ng the feedback mirror position, a stronger control signal
ill be required to switch to the weaker pattern. At the

ame time, the transition to the dominant pattern should
equire a smaller control signal.

ig. 7. Center of gravity of the hystereses as a function of the
eedback mirror position (normalized diffraction length), which
hanges the relative stability of the two patterns involved.
This dependence of the control signals required for
ransitions is investigated by repeating the experiment
or different mirror positions. Results are given in Figs. 6
nd 7 and confirm the expectation. As the mirror position
s moved towards the dominant squeezed hexagonal pat-
ern region, the hysteresis shifts towards larger control
ignals for induction of square patterns. In fact, for the
irror position d=−0.72, a squeezed hexagon is always

bserved without control signal and the generation of a
quare pattern requires a large positive pump detuning.

So far we confirmed that pump beam detuning is a vi-
ble means of switching between patterns at or near a vir-
ual mirror position where the system offers multiple pat-
erns with different symmetries. We have confirmed the
xistence of a bistability by the observation of hysteretic
ehavior and controlled the relative stability of patterns
y varying both the feedback mirror position and the
ump beam detuning.

. EXPERIMENTAL STABILITY ANALYSIS
o investigate the mechanism by which pump beam de-
uning affects the pattern formation process, we consider
he influence on unstable modes in a system with one-
imensional feedback. Employing an experimental stabil-
ty analysis,19,20 we systematically determine the thresh-
ld of modes associated with one-dimensional patterns,
ssentially recovering a function �lthresh=�lthresh�d ,kdl�.
e will call all such one-dimensional modes for which the

ystem is above threshold at a given point in parameter
pace fundamental. If we now consider two-dimensional
eedback, we expect the two-dimensional patterns to con-
ist of fundamental modes in the following way: assuming
n initial isotropy, an active fundamental mode should
nitially grow from noise with all azimuthal wave vectors
pproximately equally present. This is in fact observed
nd gives rise to so-called target patterns that only exist
or a brief transient in the system considered here. Be-
ond that isotropic transient, nonlinear interaction of the
odes leads to an azimuthal symmetry breaking again

rising from fluctuations.21 Experimentally, we find that
he two-dimensional pattern consists of fundamental
odes that are very close to the one-dimensional experi-
ents or of geometric additions of those.20 Why the avail-

ble fundamental modes are combined to create patterns
f the different symmetries we observe is still a largely
pen question. Knowledge of the influence of the control
ignal on the fundamental modes will provide insight into
he selection or suppression of a specific two-dimensional
attern.
The experimental method is extensively described in a

revious publication20 and is only briefly summarized
ere: a slit mask is inserted into the Fourier plane of the
eedback setup to reduce the system to a single transverse
imension. An additional mask allows only modes with
hree specific wavenumbers to propagate through the
eedback: the central Gaussian mode kdl=0 and a narrow,
electable wavenumber band centered around ±kdlsel. As
result, only a stripe pattern with a wavenumber within

he selected range is able to grow; all remaining modes
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re suppressed by the applied Fourier control. Subse-
uently, the coupling strength is slowly increased from
he minimum value until the onset of the selected mode is
bserved, or until the maximum available coupling
trength is reached. Iteration over different wavenumbers
ields the complete threshold curve for the given param-
ters (i.e., mirror position and pump beam detuning
alue). For comparison of threshold minima and patterns
bserved beyond threshold, we assume an anticorrelation
etween threshold levels and growth rates of the associ-
ted modes. This assumption was previously justified by
xperimental observation.20

As before, we consider the feedback mirror position
hat allows switching between stable square and
queezed hexagonal patterns. Figure 8 illustrates results
t a mirror position of d=0.66±0.01 for three different
ump beam detuning values (�=0, �= +2.46 rad/s, �=
2.46 rad/s). Without a control signal (open circles), three
istinct modes can be identified (kdl=3, kdl�7.5, and
dl=12.5) of which the central mode is dominant due to
he low threshold. The wavenumber of this mode directly
orresponds to the pattern component that square and
queezed hexagonal patterns share and that persists
hrough the pattern transitions. The mode at kdl=3 cor-
esponds to the smaller wavenumber of the squeezed hex-
gonal pattern. The mode at kdl=12.5 may be responsible
or the stabilization of square over normal hexagonal pat-
erns, as the normalized wavenumber is about twofold of
he dominant mode [recall that kdl	 �k��2� and thus
hould promote square (or near square) geometry over the
exagonal one. The mode necessary for the squeezed
exagon is too weak to stabilize this pattern, which ex-
lains the dominance of the square pattern at this mirror
osition (see Fig. 6).
A strong positive frequency detuning (triangles) com-

letely inhibits the satellite modes while also significantly
arrowing the dominant mode. Until the satellite modes
re suppressed, the square pattern persists. However,
his pattern vanishes as only the strong central mode re-
ains, strengthening the conclusion that the auxiliary
ode is a required support of the square pattern.
A strong negative control signal (filled circles) weakens

he central mode even more and also weakens the mode
t kdl=12.5 somewhat without completely inhibiting it.
he relevant observation is that the mode around kdl=3

s not at all inhibited. Therefore, a negative control signal
qualizes the thresholds, and hence the growth rates, of
he first two modes. As approximately equal thresholds
or these modes are responsible for generation of the
queezed hexagonal pattern,20 the observed tendency to-
ards this pattern is a consequence of the changed mode

tabilities.
The specific influence of pump beam detuning on the

ne-dimensional modes’ thresholds is direct evidence for
he mechanism by which the symmetry of the patterns is
nfluenced by this control method. Changes to the thresh-
lds and hence growth rates of the fundamental modes
hange the interaction scenarios forming two-dimensional
atterns and ultimately modify their stability leading to
he possibility to induce controlled transitions between
he patterns considered.

To summarize, the questions posed at the beginning of
his paper are now resolved: pump beam detuning as a
ontrol method for this experimental system depends
ompletely on the way the fundamental modes are influ-
nced. Thus, this mechanism may not be generalized to
ther experimental scenarios.

However, the observation that a control technique may
hange the threshold of specific modes need not be a
nique feature of the photorefractive nonlinearity. There-
ore, control of two-dimensional transverse pattern forma-
ion by shaping individual modes is a viable control
ethod that can be explored in all optical pattern forming

ystems, subject to the availability of a technique for
haping the modes.

ig. 8. Experimental threshold curves for zero, positive, and
egative control signals at the squeezed hexagon–square pattern
istability. A positive control signal inhibits most modes except
or the one at kdl=7.5. A negative control signal weakens the
road mode around kdl=7.5 but leaves the mode at kdl=3 un-
hanged, possibly slightly strengthened. Lines are drawn as a
uide to the eye. Quantitative coupling strength values are de-
ived from two-beam coupling experiments (maximum value)
nd the beam polarization angle (effective electro-optic
oefficient).
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. CONCLUSION
etuning of the pump beams influences the geometry of
atterns formed in a single feedback system with photo-
efractive nonlinearity. We demonstrated switching be-
ween two patterns through a transient state consisting
f both patterns competing. Transitions were reliably in-
uced by the control signal, exhibiting a bistability
arked by hysteretic system response. We determined

he effect of pump beam detuning on the threshold of
odes under one-dimensional feedback and thereby iden-

ified inhibition of modes corresponding to individual
avenumber as the mechanism through which pump
eam detuning affects the generation of two-dimensional
ransverse patterns. The initial existence and controlled
uppression of these modes was seen to cause the change
n pattern symmetry, thereby indicating two-dimensional
nteraction between these independent modes to be the
ource for the existence of nonhexgonal patterns in this
ystem.
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