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Abstract

Due to modulation instability partially incoherent optical beams break up into stripe filaments in noninstantaneous
media at a first threshold. We numerically and experimentally report on the formation of two-dimensional filaments at
a secondary threshold, if increasing the nonlinearity further, which is due to material anisotropy. Particularly, we inves-
tigate the dependence of this secondary modulation instability on the coherence properties of the beam, using a photo-
refractive nonlinearity. From the measurement of modulation contrast in two dimensions and additionally using a
Fourier method we quantitatively derive experimental thresholds for first and secondary onset of modulation instability
and study how both onsets relate to the coherence properties of the beam.
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1. Introduction

Modulation instability (MI) is a very general
phenomenon in nonlinear science [1]. In presence
of a nonlinearity a noisy uniform solution becomes
unstable against perturbations of a specific length
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or time scale. These specific perturbations become
self-amplified and finally a self-organized solution
with a scaling typical for the system evolves.
Examples for such behaviour may be found in
many fields and also play an important role in op-
tics. In the context of optical systems at first re-
garded as a nuisance, later on the potential
importance of these processes for the develop-
ment of concepts in optical information processing
have been recognized and consequently intensive
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research activity was triggered. Especially the for-
mation of temporally and spatially localized struc-
tures such as solitons has attracted considerable
attention for this reason [2,3]. A two-dimensional
transversal modulation instability of the optical
beam is to be considered as a crucial pre-condition
for the existence of such spatial optical solitons,
because a fundamental requirement for a spatial
optical soliton, namely the balance between dif-
fraction-induced beam broadening and a self-
focussing nonlinearity, is found at the same
parameter regions as MI. If MI is present, a broad
optical beam will break up into small transversal
filaments while propagating within a self-focussing
nonlinear medium [4-8]. Assuming a spatially
isotropic nonlinear response of the material, the
filamentation transversal to the propagation direc-
tion, would also be expected to occur isotropically.
However, in case of anisotropic media, such as
photorefractive crystals, an anisotropic nonlinear
response must be expected. And indeed, in photo-
refractive materials it is found that dependent on
both the strength of the nonlinearity and the prop-
agation distance the uniform beam first breaks up
into (1 + 1) dimensional (D) stripes and only later
on at either higher propagation distances or stron-
ger nonlinearities (2 + 1)D beam filaments develop
[5]-

In principle one expects MI to occur only with
coherent beams. If the nonlinear material however
exhibits a noninstantaneous response, the observa-
tion of MI with incoherent beams is possible as
long as the phase fluctuations of the beam are fas-
ter than the response time of the material [8-14].
MI of such partially incoherent beams has gained
attraction, because a change in interaction charac-
teristic of incoherent solitons has been observed
and therefore the prospect for more closely packed
arrays of non-interacting solitons is opened
[15,16]. Up to now MI of incoherent beams has
been mainly studied with an approach regarding
(1 + 1)D solutions, which may be extended to
(2 + 1)D structures if assuming a spatially isotro-
pic material response [11]. As a first approach this
approximation is sufficient to explain the major ef-
fects. The delayed onset of (2 + 1)D filamentation
via (1 + 1)D stripe solution as it has been observed
in the coherent case [5] cannot be covered if the

material anisotropy is excluded. Although the
behaviour of the in experiment most commonly
used photorefractive nonlinearity is determined
by anisotropy, up to now the threshold behaviour
of MI in noninstantaneous media and partially
incoherent beams has not yet been studied includ-
ing anisotropy-induced phenomena. In our contri-
bution we especially address the aspect of
anisotropy induced phenomena of MI when using
incoherent light and a photorefractive nonlinear-
ity. Particularly, we are interested in the onset of
the secondary (2 + 1)D MI in dependence on the
beam’s coherence properties, which cannot be
covered in an isotropic approach. At first we will
discuss MI of incoherent beams, using a numerical
approach. Later on we present experimental
results, which we analyse with different methods
in respect to the onset of the secondary fully
two-dimensional modulation instability.

2. Numerical model for incoherent modulation
instability in anisotropic media

In order to numerically study modulation insta-
bility of incoherent beams we model the propaga-
tion of incoherent light in a photorefractive
medium. The model explicitly includes the full
characteristics of the photorefractive nonlinearity
and particularly the anisotropic material response
is covered.

A light beam propagating through a photore-
fractive medium in z-direction can be described
in paraxial approximation by the equation
2ik0ne%A + V24 = —kgnlrs Z—i’A, (1)
where V| = a_f + 2, ko is the vacuum wavenum-
ber of the light beam, 7, is the refractive index of
the (unperturbed) medium and rs; is the effective
element of the electro-optical tensor. ¢ is the elec-
tric space charge potential inside the medium. For
our simulations we used, in agreement with the
experimental configuration, ko = 2n/532 nm, n, =
2.3 and r33 = 180 pm/V. A4 is the envelope of the
electric field of the light beam. In order to cover
for the incoherence of the light beam, the coherent
density model is used, which states that incoherent
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light can be described as a superposition of many
coherent, yet mutually incoherent components,
propagating in slightly different directions. We
thus express the light beam at the input face of
the medium as:

le
A(x,y,0 ZP (x,y) exp(i(kex + k) -

x ¢exp<—<k§ + 1)1 /2) expliz 4, (1)),

(2)
where |P(x,y)]* is the intensity profile of the beam
at the input face, k, and k, stand for the slight tilt-
ing of the different components, /. is the coherence
length of the light and y; , (¢) are random phase
factors that are uncorrelated to each other, thus
making the single components mutually incoher-
ent. The factor exp(— (k2 +kﬁ)lf/2) stands for a
Gaussian distribution of the mutually incoherent
k-vector components. We chose the maximum
intensity of our incoherent beam to be around
unity (measured in units or the dark intensity /).
To excite the instability, we add around 1% of
noise to the initial input beam.

Since plane waves with truly infinite spatial ex-
tent cannot be realized in numerical simulations,
we chose to use a large grid and periodic boundary
conditions to minimize the effects of the edges on
the instability.

Photorefractive crystals are known to be well-
described by the Kukhtarev equations, which
yield, using a few well justified approximations,
the following differential equation for the space
charge potential [17]:

0
V2p+V, In(1+1)V, p= Eyg-In(1+1),  (3)

where Ej is the external field applied parallel to the
crystal’s ¢-axis (in the following we will choose
Ey=2.5kV/cm) and [ is the intensity of the light
beam, scaled to the dark intensity /4, describing
the excitation of charge carriers into the conduc-
tion band by thermal excitation or background
illumination of the crystal. Remember that we
are dealing with incoherent light. Hence, the inten-
sity I is given by the sum of the intensities of the
single components introduced in Eq. (2) and prop-
agated using Eq. (1).

Fig. 1 shows the results of the numerical prop-
agation of light with different degrees of coher-
ence. Each column shows light with a different
value of /.. The leftmost column shows the fully
coherent case, i.e., /. = oo, while for the other col-
umns /. = 16, 13 and 11 pm from left to right. The
light beam is shown at the input face, after z = 6, 8,
10 and 12 mm of propagation. The pictures are
oriented such that the ¢-axis of the photorefractive
crystal is horizontal. The pictures show that for all
degrees of coherence, MI first breaks the plane
wave into stripes oriented perpendicular to the ¢-
axis. In the coherent case, these stripes then break
into filaments, as is known for quite a while [5]. If
the degree of coherence of the light is decreased,
however, the breaking of the stripes can be sup-
pressed. For [, = 16 um one can see that extent of
the filaments in the vertical direction is much longer
than in the case of the fully coherent light.
Decreasing of the degree of coherence further then
leads to a complete stabilization of the stripes.
Reducing the degree of coherence even further

L. =00

16pm

13pum

12mm 10mm

z

Fig. 1. Modulation instability in numerical simulations: rows
depict equal propagation distance. Columns depict equal
coherence properties.
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would lead to a complete suppression of MI. The
plane wave then would propagate through the
medium without changing its shape.

3. Experimental observation of incoherent
modulation instability in photorefractive crystals

The light source for our experiment is a
Nd:YAG cw-laser at 4 = 532 nm. To create a par-
tially incoherent beam, a rotating diffuser is placed
between two lenses in a 4f arrangement. The de-
gree of spatial coherence is controlled with the dif-
fuser position on the z-axis. According to the beam
diameter at the diffuser the speckle size and thus
the degree of spatial coherence length is modified.
The collimated beam then propagates through a
Cerium doped Strontium Barium Niobate crystal
SBN:61 (5 mm x 5 mm X 23 mm, in width, height
and length) to which an external electric field is
applied along the crystal’s ¢-axis. The beam is
extraordinarily polarized and thus experiences a
nonlinear change of refractive index depending
on the external field and on the total light inten-
sity. The dark current density of the crystal is con-
trolled with a white light background illumination.
The intensity distribution at the crystal’s back-
plane is recorded with a CCD-camera, while the
input intensity is monitored with a photodiode.
As an equivalent to the spatial coherence length
I, the average full half width of the speckles at
the crystal’s frontplane is taken, when the diffuser
was stopped. It is made sure that the diffuser ro-
tates much faster than the material’s response time
7, which is in the order of a second for the crystal
in use [18].

The intensity output was monitored at a fixed
coherence length /., while the nonlinearity of the
SBN crystal was increased by raising the externally
applied voltage U,y in increments of 100 V. For
analysis, the images of the beam profile were re-
corded at every voltage step after approximately
2 min, permitting for transients to disappear. The
applied external electric field was restricted to
maximum values of 3 kV/cm to avoid damage of
the crystal. Experiments were performed in the
same manner for different coherence lengths vary-
ing between /., =280 and 9 um. During all mea-

surements input intensity (/=480 pW/cm?) as
well as background illumination (yhite 1ight = 700
uW/em?) were kept constant. Only approximate
levels for the intensity of the background illumina-
tion at the crystal position can only be given due to
the divergence and the spectral width of the white
light. In Fig. 2, images of developing MI are
shown. Rows depict system states at equal nonlin-
earity, while columns show pictures at equal coher-
ence properties. At a fixed coherence length /. (e.g.,
the /. =280 um column) starting from a nearly
uniform state the system develops first a stripe pat-
tern, perpendicularly to the ¢-axis, followed by the
formation of spot like filaments at higher voltages.
Small modulations found in the uniform state
(0 V) most likely result from striations of the crys-
tal and probably act as a trigger for the formation
of stripes [14]. From the images it becomes also

le = 284pm  23um 19um 9um

1 —
100pm

3kV/em 2.2 kV/em 1.6 kV/em 1.2 kV/em 0.8 kV/em 0 kV/cm

Fig. 2. Experimental images of modulation instability. Images
in a row: the nonlinearity is equal. Images in a column: the
degree of coherence is constant. With decreased coherence
modulation instability sets in later.



B. Giitlich et al. | Optics Communications 255 (2005) 57-64 61

obvious that as well formation of (1 + 1)D stripes
as the decay of stripes in (2 + 1)D filaments occurs
later, if the coherence length is decreased. Other
groups observed tilting of the stripes up to an an-
gle of 45° [11,12], in our experiment however only
a very small tilt of approximately 1-5° compared
to the initial striations in the crystal has been ob-
served. The resulting (1 + 1)D MI stripes are in
good approximation oriented perpendicularly to
the crystal’s ¢-axis. At very small coherence lengths
(e.g., 9um) (2 + 1)D MI is strongly suppressed
and we observe zig-zag-kind of patterns instead
of pronounced stripes. With decreasing coherence
also the contrast of the pattern decreases.

4. Experimental thresholds for secondary
modulation instability

To gain a quantitative measure for the experi-
mental thresholds of MI the mean contrast C(x;)
of image profiles has been determined along the
images’ horizontal x- and the vertical y-axis,
respectively, with the following equation:

C(xi) = <(Imax _Imin)/(lmax +Imin)>a

where x; denotes either the x- or y-direction. We
determined the mean contrast by first calculating
the average contrast of a single image profile line.
The total mean contrast C(x;) plotted over the exter-
nal bias in Fig. 3 was derived from 600 lines. The
curves in the graph are guides for the eye, which con-
nect the measurement points at fixed coherence
lengths /.. The legend in the insertion of Fig. 3 de-
notes the coherence lengths at which measurements
were performed. Fig. 3(a) shows the averaged con-
trast C(x) (parallel to the crystal’s ¢-axis). Typically
(e.g., at [, = 284 um (<>)) at first a rise in contrast is
observed, which is generated by the formation of
the (1 + 1)D stripe pattern. The rise is used to deter-
mine an experimental threshold for (1 + 1)D MI, as
which we define the rise above the level of (1 —
1/e) = 63% times the maximum of contrast (plotted
as +1in Fig. 7). As in our experiment the observed tilt
angle between x-axis and stripe pattern is very small,
this method to us seems justified. However for com-
parison later on also thresholds are derived from the
angular modes in Fourier space are derived [13,14].

B._ o
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L 1 =9 um
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uv
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0.15f
5
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Fig. 3. (a) The averaged contrast of the images along the x
direction C(x) parallel to the ¢-axis and (b) along the y-direction
C(y) over the applied voltage yield the dependence of the onset
of MI on coherence length. From C(x) and C(y) experimental
thresholds are derived. The legend applies to (a) and (b).

If only the first (1 + 1)D MI was involved one
would expect the contrast C(x) to remain at a con-
stant saturation level, but typically the contrast de-
creases from its maximum value onwards (e.g., at
1 kV/em at [, = 284 pm). Note, that the decline in
contrast is less pronounced for measurements at
smaller coherence lengths /. and also sets in later.
In the case of coherence lengths of /. =19 and
9 um even no significant decrease of the contrast
is observed below 3 kV/cm. We conclude that the
drop in contrast is caused by the onset of the sec-
ondary (2 + 1)D MI. Due to the break up of the
stripe solution, now also the y-profiles become
modulated, which reaffects C(x). To check this
assumption also the mean contrasts of the y-profiles
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C(y) are plotted in Fig. 3(b). Along the y-profiles
the rise of contrast occurs at higher nonlinearities
(e.g., at [, =280 um the maximum of C(y) is
reached at 1.4 kV/cm, instead of at 0.8 kV/cm for
C(x).) We define an experimental threshold for
(2 + 1)D MI as before as the rise above the level
of (1 — 1/e) times the maximum of C(y) (* in Fig.
7). However, at the coherence lengths /. =9 and
19 um C(y) does not yet reach a well pronounced
maximum below 3 kV/cm, therefore the (2 + 1)D
thresholds for these coherence length are to be ne-
glected. Comparison with images of MI at
I. =9 um (Fig. 2) indicates that at these low coher-
ence length potentially the formation of (1 + 1) D
MI is suppressed in favour of a kind of zig-zag pat-
tern, shown in Fig. 2, which seems to smears out
the contrast measurement.

Similar results can be obtained from the numer-
ical simulations. The plots of the average contrasts
C(x) and C(y) can be found in Fig. 4. Qualitatively
good agreement in the progression of experimen-
tal- and numerical contrast functions is observed.
Quantitatively however comparison to the experi-
mental results is difficult because the propagation
length was used as parameter in numerics, while
in the experiments the nonlinearity of the material
is varied. Note, that typically the threshold for the
onset of nonlinear behaviour is derived theoreti-
cally using a more rigid stability analysis. Here,
we therefore refrain from the determination of
numerical thresholds and restrict ourselves to a
qualitative comparison.

To validate our previous results we also derived
experimental thresholds from a Fourier analysis of
the light field, as also used by Chen et al. [13,14].
From the Fourier transform we calculate the angu-
lar distribution of spatial frequencies:

Og+A0  fhimax
o= [ [T dkaosiko), @
0—-40 Jo
where 4 (k,0) = # 7 (I(x,y)) is the Fourier trans-
form of the intensity distribution, and with A0 =
1° and 6y varying from 0° to 360° in increments
of 2°. In presence of the stripe (1 + 1)D MI perpen-
dicularly to the stripe orientation pronounced
peaks appear in the angular distribution f{6), while
as well without MI present as at fully devel-
oped (2+ 1)D MI, f(0) shows no peaking (see

0.8 r

04 r

0.2

0.8

= 06|

0.4

0.2 r

Fig. 4. Contrast functions C(x) and C(y) calculated from
numerical simulations. (dash-dotted: coherent, dotted: /.=
16 pm, dashed: /. = 13 um, solid line: /. = 11 pm).

Fig. 5(a)). Thus, now we determined the aver-
aged contrast C(f(0)) = (max{f(0)} — max{f(0)})/
(max{f(0)} + max{f(0)}) of the angular distribu-
tion profiles, which is plotted in Fig. 5(b). From
the contrasts we define experimental thresholds as
follows: As the threshold of (1 + 1)D MI we take
the rise above 1/e*max(f(0)) (O in Fig. 7) and for
the 2+ 1)D MI we define the descend below
(1 — l/e)*max(f(0)) as threshold (O in Fig. 7). As
before similar results are obtained for the contrast
function C(f(0)) derived with the Fourier method
from numerical simulation as comparison with
the plot in Fig. 6 shows.

In Fig. 7 experimental thresholds for (1 + 1)D
(+, ) and (2 + 1)D MI (*, O), defined above are
plotted. Comparison of the thresholds derived from
C(x) and C(y) with the ones derived from C(f{(0))
shows that for (1 + 1)D MI the C(f{0)) thresholds
(O) remain below the C(x) thresholds (+), while
the C(f(0)) (2 + 1)D MI thresholds (O) stay above
the C(y) thresholds (*). This differences are due to
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Fig. 5. (a) Fourier transform of the near field at /. = 280 pm (A,
0.8 kV/cm; B, 0 V) and their corresponding angular distribution
f(0) of spatial frequencies. (b) Contrast C(f(0)) of the angular
distributions. The lines in (b) are guides for the eye.

the choice of values for the definition of thresholds.
Fine tuning of these values probably would gain
better coincidence, but the difference can also be
used as an estimation for the error bars of the mea-
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Fig. 6. Numerical results on the contrast C(f(0)) of the angular
distributions.
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Fig. 7. Plot of first (1 + 1)D experimental threshold, derived
from C(x) (+) and from C(f(0)) (O), as well as secondary
(2 + 1)D MI experimental threshold derived from C(y) (*) and
from C(f(0)) (O) in dependence of the beam’s coherence
properties. The lines are guides to the eye.

surement. The difference for the (2+ 1)D MI
thresholds however becomes especially pronounced
for very small coherence lengths. Here, the differ-
ence can be regarded as an indicator for the forma-
tion of the zig-zag like pattern. The onset of full
filamentation is in this parameter region covered
better by the Fourier method C(f(0)). Regarding
the general progression of (1 + 1)D experimental
thresholds in relation to (2 + 1)D MI thresholds
at first these values do not change with decreased
coherence length. In this parameter region also
both threshold approximatively have a fixed ratio
to each other, which can be viewed as indication
for the anisotropy of the SBN crystal’s nonlinear re-
sponse. Only at a coherence length of approxi-
mately /. =45 um both experimental thresholds
start to alter and a steep increase of both is ob-
served. Considering only the behaviour of the
experimental thresholds of MI, the coherence
length /. = 45 pm can be interpreted as the nonlin-
ear coherence length of MI. Up to this point the
nonlinear response to the partially coherent beam
is equivalent to the coherent behaviour, from then
on the influences of incoherent fluctuations push
the experimental thresholds for MI upwards and
also the fixed relation between thresholds ceases
to exist.
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5. Conclusion

We have presented experimental and numerical
results on two-dimensional modulation instability
of incoherent beams in anisotropic media. The on-
set of (1 +1)D and (2 + 1)D MI was investigated
experimentally and numerically in dependence of
the spatial coherence length. At moderate incoher-
ence the experimental thresholds of MI are not
affected by alteration of coherence properties. If
the beam becomes more strongly incoherent the
experimental thresholds of MI increase steeply.
At very low coherence lengths numerics and exper-
iment indicates to the development of zig-zag kind
of patterns in favour of (1 + 1)D filamentation,
which was analysed by help of two different meth-
ods in determining experimental threshold of MI.
A good qualitative agreement of numerical and
experimental results can be stated.
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