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Secondary modulation instability in partially coherent beams
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Abstract

Due to modulation instability partially incoherent optical beams break up into stripe filaments in noninstantaneous

media at a first threshold. We numerically and experimentally report on the formation of two-dimensional filaments at

a secondary threshold, if increasing the nonlinearity further, which is due to material anisotropy. Particularly, we inves-

tigate the dependence of this secondary modulation instability on the coherence properties of the beam, using a photo-

refractive nonlinearity. From the measurement of modulation contrast in two dimensions and additionally using a

Fourier method we quantitatively derive experimental thresholds for first and secondary onset of modulation instability

and study how both onsets relate to the coherence properties of the beam.
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1. Introduction

Modulation instability (MI) is a very general

phenomenon in nonlinear science [1]. In presence

of a nonlinearity a noisy uniform solution becomes

unstable against perturbations of a specific length
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or time scale. These specific perturbations become

self-amplified and finally a self-organized solution
with a scaling typical for the system evolves.

Examples for such behaviour may be found in

many fields and also play an important role in op-

tics. In the context of optical systems at first re-

garded as a nuisance, later on the potential

importance of these processes for the develop-

ment of concepts in optical information processing

have been recognized and consequently intensive
ed.
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research activity was triggered. Especially the for-

mation of temporally and spatially localized struc-

tures such as solitons has attracted considerable

attention for this reason [2,3]. A two-dimensional

transversal modulation instability of the optical
beam is to be considered as a crucial pre-condition

for the existence of such spatial optical solitons,

because a fundamental requirement for a spatial

optical soliton, namely the balance between dif-

fraction-induced beam broadening and a self-

focussing nonlinearity, is found at the same

parameter regions as MI. If MI is present, a broad

optical beam will break up into small transversal
filaments while propagating within a self-focussing

nonlinear medium [4–8]. Assuming a spatially

isotropic nonlinear response of the material, the

filamentation transversal to the propagation direc-

tion, would also be expected to occur isotropically.

However, in case of anisotropic media, such as

photorefractive crystals, an anisotropic nonlinear

response must be expected. And indeed, in photo-
refractive materials it is found that dependent on

both the strength of the nonlinearity and the prop-

agation distance the uniform beam first breaks up

into (1 + 1) dimensional (D) stripes and only later

on at either higher propagation distances or stron-

ger nonlinearities (2 + 1)D beam filaments develop

[5].

In principle one expects MI to occur only with
coherent beams. If the nonlinear material however

exhibits a noninstantaneous response, the observa-

tion of MI with incoherent beams is possible as

long as the phase fluctuations of the beam are fas-

ter than the response time of the material [8–14].

MI of such partially incoherent beams has gained

attraction, because a change in interaction charac-

teristic of incoherent solitons has been observed
and therefore the prospect for more closely packed

arrays of non-interacting solitons is opened

[15,16]. Up to now MI of incoherent beams has

been mainly studied with an approach regarding

(1 + 1)D solutions, which may be extended to

(2 + 1)D structures if assuming a spatially isotro-

pic material response [11]. As a first approach this

approximation is sufficient to explain the major ef-
fects. The delayed onset of (2 + 1)D filamentation

via (1 + 1)D stripe solution as it has been observed

in the coherent case [5] cannot be covered if the
material anisotropy is excluded. Although the

behaviour of the in experiment most commonly

used photorefractive nonlinearity is determined

by anisotropy, up to now the threshold behaviour

of MI in noninstantaneous media and partially
incoherent beams has not yet been studied includ-

ing anisotropy-induced phenomena. In our contri-

bution we especially address the aspect of

anisotropy induced phenomena of MI when using

incoherent light and a photorefractive nonlinear-

ity. Particularly, we are interested in the onset of

the secondary (2 + 1)D MI in dependence on the

beam�s coherence properties, which cannot be
covered in an isotropic approach. At first we will

discuss MI of incoherent beams, using a numerical

approach. Later on we present experimental

results, which we analyse with different methods

in respect to the onset of the secondary fully

two-dimensional modulation instability.
2. Numerical model for incoherent modulation

instability in anisotropic media

In order to numerically study modulation insta-

bility of incoherent beams we model the propaga-

tion of incoherent light in a photorefractive

medium. The model explicitly includes the full

characteristics of the photorefractive nonlinearity
and particularly the anisotropic material response

is covered.

A light beam propagating through a photore-

fractive medium in z-direction can be described

in paraxial approximation by the equation

2ik0ne
o
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4
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A; ð1Þ

where r? ¼ o2x þ o2y , k0 is the vacuum wavenum-

ber of the light beam, ne is the refractive index of

the (unperturbed) medium and r33 is the effective

element of the electro-optical tensor. u is the elec-

tric space charge potential inside the medium. For
our simulations we used, in agreement with the

experimental configuration, k0 = 2p/532 nm, ne =

2.3 and r33 = 180 pm/V. A is the envelope of the

electric field of the light beam. In order to cover

for the incoherence of the light beam, the coherent

density model is used, which states that incoherent



Fig. 1. Modulation instability in numerical simulations: rows

depict equal propagation distance. Columns depict equal

coherence properties.
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light can be described as a superposition of many

coherent, yet mutually incoherent components,

propagating in slightly different directions. We

thus express the light beam at the input face of

the medium as:

Aðx; y;0Þ ¼
X
kx ;ky

Pðx; yÞ expðiðkxxþ kyyÞÞ
lcffiffiffi
p

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð�ðk2x þ k2yÞl2c=2Þ

q
expðickx ;ky ðtÞÞ;

ð2Þ
where |P(x,y)|2 is the intensity profile of the beam

at the input face, kx and ky stand for the slight tilt-
ing of the different components, lc is the coherence

length of the light and ckx;ky ðtÞ are random phase

factors that are uncorrelated to each other, thus

making the single components mutually incoher-

ent. The factor expð�ðk2x þ k2yÞl2c=2Þ stands for a

Gaussian distribution of the mutually incoherent

k-vector components. We chose the maximum

intensity of our incoherent beam to be around
unity (measured in units or the dark intensity Id).

To excite the instability, we add around 1% of

noise to the initial input beam.

Since plane waves with truly infinite spatial ex-

tent cannot be realized in numerical simulations,

we chose to use a large grid and periodic boundary

conditions to minimize the effects of the edges on

the instability.
Photorefractive crystals are known to be well-

described by the Kukhtarev equations, which

yield, using a few well justified approximations,

the following differential equation for the space

charge potential [17]:

r2
?uþr? lnð1þ IÞr?u ¼ E0

o

ox
lnð1þ IÞ; ð3Þ

where E0 is the external field applied parallel to the

crystal�s ĉ-axis (in the following we will choose

E0 = 2.5 kV/cm) and I is the intensity of the light

beam, scaled to the dark intensity Id, describing

the excitation of charge carriers into the conduc-
tion band by thermal excitation or background

illumination of the crystal. Remember that we

are dealing with incoherent light. Hence, the inten-

sity I is given by the sum of the intensities of the

single components introduced in Eq. (2) and prop-

agated using Eq. (1).
Fig. 1 shows the results of the numerical prop-

agation of light with different degrees of coher-

ence. Each column shows light with a different

value of lc. The leftmost column shows the fully

coherent case, i.e., lc = 1, while for the other col-
umns lc = 16, 13 and 11 lm from left to right. The

light beam is shown at the input face, after z = 6, 8,

10 and 12 mm of propagation. The pictures are

oriented such that the ĉ-axis of the photorefractive
crystal is horizontal. The pictures show that for all

degrees of coherence, MI first breaks the plane

wave into stripes oriented perpendicular to the ĉ-
axis. In the coherent case, these stripes then break
into filaments, as is known for quite a while [5]. If

the degree of coherence of the light is decreased,

however, the breaking of the stripes can be sup-

pressed. For lc = 16 lm one can see that extent of

the filaments in the vertical direction is much longer

than in the case of the fully coherent light.

Decreasing of the degree of coherence further then

leads to a complete stabilization of the stripes.
Reducing the degree of coherence even further
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would lead to a complete suppression of MI. The

plane wave then would propagate through the

medium without changing its shape.
Fig. 2. Experimental images of modulation instability. Images

in a row: the nonlinearity is equal. Images in a column: the

degree of coherence is constant. With decreased coherence

modulation instability sets in later.
3. Experimental observation of incoherent

modulation instability in photorefractive crystals

The light source for our experiment is a

Nd:YAG cw-laser at k = 532 nm. To create a par-

tially incoherent beam, a rotating diffuser is placed

between two lenses in a 4f arrangement. The de-

gree of spatial coherence is controlled with the dif-
fuser position on the z-axis. According to the beam

diameter at the diffuser the speckle size and thus

the degree of spatial coherence length is modified.

The collimated beam then propagates through a

Cerium doped Strontium Barium Niobate crystal

SBN:61 (5 mm · 5 mm · 23 mm, in width, height

and length) to which an external electric field is

applied along the crystal�s ĉ-axis. The beam is
extraordinarily polarized and thus experiences a

nonlinear change of refractive index depending

on the external field and on the total light inten-

sity. The dark current density of the crystal is con-

trolled with a white light background illumination.

The intensity distribution at the crystal�s back-

plane is recorded with a CCD-camera, while the

input intensity is monitored with a photodiode.
As an equivalent to the spatial coherence length

lc the average full half width of the speckles at

the crystal�s frontplane is taken, when the diffuser

was stopped. It is made sure that the diffuser ro-

tates much faster than the material�s response time

s, which is in the order of a second for the crystal

in use [18].

The intensity output was monitored at a fixed
coherence length lc, while the nonlinearity of the

SBN crystal was increased by raising the externally

applied voltage Uext in increments of 100 V. For

analysis, the images of the beam profile were re-

corded at every voltage step after approximately

2 min, permitting for transients to disappear. The

applied external electric field was restricted to

maximum values of 3 kV/cm to avoid damage of
the crystal. Experiments were performed in the

same manner for different coherence lengths vary-

ing between lc = 280 and 9 lm. During all mea-
surements input intensity (I = 480 lW/cm2) as

well as background illumination (Iwhite light � 700

lW/cm2) were kept constant. Only approximate

levels for the intensity of the background illumina-

tion at the crystal position can only be given due to
the divergence and the spectral width of the white

light. In Fig. 2, images of developing MI are

shown. Rows depict system states at equal nonlin-

earity, while columns show pictures at equal coher-

ence properties. At a fixed coherence length lc (e.g.,

the lc = 280 lm column) starting from a nearly

uniform state the system develops first a stripe pat-

tern, perpendicularly to the ĉ-axis, followed by the
formation of spot like filaments at higher voltages.

Small modulations found in the uniform state

(0 V) most likely result from striations of the crys-

tal and probably act as a trigger for the formation

of stripes [14]. From the images it becomes also
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obvious that as well formation of (1 + 1)D stripes

as the decay of stripes in (2 + 1)D filaments occurs

later, if the coherence length is decreased. Other

groups observed tilting of the stripes up to an an-

gle of 45� [11,12], in our experiment however only
a very small tilt of approximately 1–5� compared

to the initial striations in the crystal has been ob-

served. The resulting (1 + 1)D MI stripes are in

good approximation oriented perpendicularly to

the crystal�s ĉ-axis. At very small coherence lengths

(e.g., 9 lm) (2 + 1)D MI is strongly suppressed

and we observe zig-zag-kind of patterns instead

of pronounced stripes. With decreasing coherence
also the contrast of the pattern decreases.
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Fig. 3. (a) The averaged contrast of the images along the x

direction C(x) parallel to the ĉ-axis and (b) along the y-direction

C(y) over the applied voltage yield the dependence of the onset

of MI on coherence length. From C(x) and C(y) experimental

thresholds are derived. The legend applies to (a) and (b).
4. Experimental thresholds for secondary

modulation instability

To gain a quantitative measure for the experi-

mental thresholds of MI the mean contrast C(xi)
of image profiles has been determined along the

images� horizontal x- and the vertical y-axis,

respectively, with the following equation:

CðxiÞ ¼ hðImax � IminÞ=ðImax þ IminÞi;
where xi denotes either the x- or y-direction. We

determined the mean contrast by first calculating
the average contrast of a single image profile line.

The totalmean contrastC(xi) plotted over the exter-

nal bias in Fig. 3 was derived from 600 lines. The

curves in the graph are guides for the eye, which con-

nect the measurement points at fixed coherence

lengths lc. The legend in the insertion of Fig. 3 de-

notes the coherence lengths at which measurements

were performed. Fig. 3(a) shows the averaged con-
trast C(x) (parallel to the crystal�s ĉ-axis). Typically
(e.g., at lc = 284 lm (})) at first a rise in contrast is

observed, which is generated by the formation of

the (1 + 1)D stripe pattern. The rise is used to deter-

mine an experimental threshold for (1 + 1)DMI, as

which we define the rise above the level of (1 �
1/e) = 63% times the maximum of contrast (plotted

as + in Fig. 7). As in our experiment the observed tilt
angle betweenx-axis and stripe pattern is very small,

this method to us seems justified. However for com-

parison later on also thresholds are derived from the

angular modes in Fourier space are derived [13,14].
If only the first (1 + 1)D MI was involved one

would expect the contrast C(x) to remain at a con-

stant saturation level, but typically the contrast de-

creases from its maximum value onwards (e.g., at

1 kV/cm at lc = 284 lm). Note, that the decline in

contrast is less pronounced for measurements at

smaller coherence lengths lc and also sets in later.

In the case of coherence lengths of lc = 19 and
9 lm even no significant decrease of the contrast

is observed below 3 kV/cm. We conclude that the

drop in contrast is caused by the onset of the sec-

ondary (2 + 1)D MI. Due to the break up of the

stripe solution, now also the y-profiles become

modulated, which reaffects C(x). To check this

assumption also themean contrasts of the y-profiles
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Fig. 4. Contrast functions C(x) and C(y) calculated from

numerical simulations. (dash-dotted: coherent, dotted: lc =

16 lm, dashed: lc = 13 lm, solid line: lc = 11 lm).
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C(y) are plotted in Fig. 3(b). Along the y-profiles

the rise of contrast occurs at higher nonlinearities

(e.g., at lc = 280 lm the maximum of C(y) is

reached at 1.4 kV/cm, instead of at 0.8 kV/cm for

C(x).) We define an experimental threshold for
(2 + 1)D MI as before as the rise above the level

of (1 � 1/e) times the maximum of C(y) (* in Fig.

7). However, at the coherence lengths lc = 9 and

19 lm C(y) does not yet reach a well pronounced

maximum below 3 kV/cm, therefore the (2 + 1)D

thresholds for these coherence length are to be ne-

glected. Comparison with images of MI at

lc = 9 lm (Fig. 2) indicates that at these low coher-
ence length potentially the formation of (1 + 1) D

MI is suppressed in favour of a kind of zig-zag pat-

tern, shown in Fig. 2, which seems to smears out

the contrast measurement.

Similar results can be obtained from the numer-

ical simulations. The plots of the average contrasts

C(x) and C(y) can be found in Fig. 4. Qualitatively

good agreement in the progression of experimen-
tal- and numerical contrast functions is observed.

Quantitatively however comparison to the experi-

mental results is difficult because the propagation

length was used as parameter in numerics, while

in the experiments the nonlinearity of the material

is varied. Note, that typically the threshold for the

onset of nonlinear behaviour is derived theoreti-

cally using a more rigid stability analysis. Here,
we therefore refrain from the determination of

numerical thresholds and restrict ourselves to a

qualitative comparison.

To validate our previous results we also derived

experimental thresholds from a Fourier analysis of

the light field, as also used by Chen et al. [13,14].

From the Fourier transform we calculate the angu-

lar distribution of spatial frequencies:

f ðh0Þ ¼
Z h0þDh

h0�Dh

Z kmax

0

dk dhIðk; hÞ; ð4Þ

where Iðk; hÞ ¼ FTðIðx; yÞÞ is the Fourier trans-

form of the intensity distribution, and with Dh =

1� and h0 varying from 0� to 360� in increments

of 2�. In presence of the stripe (1 + 1)DMI perpen-

dicularly to the stripe orientation pronounced

peaks appear in the angular distribution f(h), while
as well without MI present as at fully devel-

oped (2 + 1)D MI, f(h) shows no peaking (see
Fig. 5(a)). Thus, now we determined the aver-
aged contrast C(f(h)) = (max{f(h)} � max{f(h)})/
(max{f(h)} + max{f(h)}) of the angular distribu-

tion profiles, which is plotted in Fig. 5(b). From

the contrasts we define experimental thresholds as

follows: As the threshold of (1 + 1)D MI we take

the rise above 1/e*max(f(h)) (h in Fig. 7) and for

the (2 + 1)D MI we define the descend below

(1 � 1/e)*max(f(h)) as threshold (s in Fig. 7). As
before similar results are obtained for the contrast

function C(f(h)) derived with the Fourier method

from numerical simulation as comparison with

the plot in Fig. 6 shows.

In Fig. 7 experimental thresholds for (1 + 1)D

(+, h) and (2 + 1)D MI (*, s), defined above are

plotted. Comparison of the thresholds derived from

C(x) and C(y) with the ones derived from C(f(h))
shows that for (1 + 1)D MI the C(f(h)) thresholds
(h) remain below the C(x) thresholds (+), while

the C(f(h)) (2 + 1)D MI thresholds (s) stay above

the C(y) thresholds (*). This differences are due to



Fig. 5. (a) Fourier transform of the near field at lc = 280 lm (A,

0.8 kV/cm; B, 0 V) and their corresponding angular distribution

f(h) of spatial frequencies. (b) Contrast C(f(h)) of the angular

distributions. The lines in (b) are guides for the eye.
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the choice of values for the definition of thresholds.

Fine tuning of these values probably would gain

better coincidence, but the difference can also be

used as an estimation for the error bars of the mea-
 
     

Fig. 6. Numerical results on the contrast C(f(h)) of the angular
distributions.
surement. The difference for the (2 + 1)D MI

thresholds however becomes especially pronounced

for very small coherence lengths. Here, the differ-

ence can be regarded as an indicator for the forma-

tion of the zig-zag like pattern. The onset of full

filamentation is in this parameter region covered

better by the Fourier method C(f(h)). Regarding

the general progression of (1 + 1)D experimental
thresholds in relation to (2 + 1)D MI thresholds

at first these values do not change with decreased

coherence length. In this parameter region also

both threshold approximatively have a fixed ratio

to each other, which can be viewed as indication

for the anisotropy of the SBN crystal�s nonlinear re-
sponse. Only at a coherence length of approxi-

mately lc = 45 lm both experimental thresholds
start to alter and a steep increase of both is ob-

served. Considering only the behaviour of the

experimental thresholds of MI, the coherence

length lc = 45 lm can be interpreted as the nonlin-

ear coherence length of MI. Up to this point the

nonlinear response to the partially coherent beam

is equivalent to the coherent behaviour, from then

on the influences of incoherent fluctuations push
the experimental thresholds for MI upwards and

also the fixed relation between thresholds ceases

to exist.
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5. Conclusion

We have presented experimental and numerical

results on two-dimensional modulation instability

of incoherent beams in anisotropic media. The on-
set of (1 + 1)D and (2 + 1)D MI was investigated

experimentally and numerically in dependence of

the spatial coherence length. At moderate incoher-

ence the experimental thresholds of MI are not

affected by alteration of coherence properties. If

the beam becomes more strongly incoherent the

experimental thresholds of MI increase steeply.

At very low coherence lengths numerics and exper-
iment indicates to the development of zig-zag kind

of patterns in favour of (1 + 1)D filamentation,

which was analysed by help of two different meth-

ods in determining experimental threshold of MI.

A good qualitative agreement of numerical and

experimental results can be stated.
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