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Abstract: Dynamical behavior of counterpropagating (CP) mutualy
incoherent vector solitons in a5 x 5 x 23 mm SBN:60Ce photorefractive
crystal is investigated. Experimental study is carried out, displaying rich
dynamics of three-dimensional CP solitons and higher-order multipole
structures, and a theory formulated that is capable of capturing such
dynamics. We find that our numerical simulations agree well with the
experimental findings for various CP beam structures. Linear stability
analysis is also performed, predicting a threshold for the modulational
instability of CP beams, and an appropriate control parameter is identified.
We attempt at utilizing these results to CP solitons, but find only qualitative
agreement with the numerical simulations and experimental findings.
However, when broader hyper-Gaussian CP beams are used in simulations,
an improved agreement with the theory is obtained.
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1. Introduction

Spatial solitons - self-trapped beams of light propagating without change in a diffractive
nonlinear medium - have become much investigated topics of research in nonlinear optics [1],
owing to their novel physics and potential applications. Envisioned for applications in all-
optical information processing, they come in a variety of forms - as bullets, screening,
quadratic, photovoltaic, and lattice solitons, or as bright, dark, and grey [2]. They are
generated in different media, by different nonlinear mechanisms, but the self-focusing effect,
produced by light-induced changes in the medium’'s index of refraction, appears as the
common thread in al mechanisms. Self-focusing in photorefractive (PR) crystals is achieved
through the generation of space charge field, which is caused by the photo-induced
redistribution of charges that modifies the index of refraction. Application of an external DC
electric field across the crystal and an additional uniform illumination are found necessary for
amore effective soliton formation process.

Thus far the formation and interactions of spatial screening solitons have been studied
mostly in the copropagation geometry, with a few exceptions [3-7]. In these references the
counterpropagating (CP) solitons were considered theoretically in one transverse dimension
(1D), in Kerr and local PR media, and in the steady state. No dynamical effects were
presented. In Refs. [8-10] we studied numerically the two-dimensional (2D) CP vector
solitons and displayed some novel dynamical beam structuresin PR crystals. In Ref. [11, 12]
we reported the first experimental evidence of CP spatial solitons, and discovered dynamic
instabilities in their behavior. We aso improved on the commonly used local isotropic theory
of incoherent CP beam mixing in PR crystals, by formulating a general anisotropic theory of
coherent mixing [13].

Here we present further experimental evidence for the existence and interactions of 2D CP
vector solitons and higher-order multipole self-trapped optical structures in a PR crystal, and
investigate theoretically and numerically the splitup transitions and dynamical instabilities of
such structures. We restrict our attention to the single CP vector solitons, dipole-mode and
dipole-dipole beam arrangements. All three arrangements are found to display transverse
splitup instabilities, however the dipole-mode [14] and the dipole-dipole cases provide for the
dynamically more stable beam structures than the single CP solitons, under similar conditions.
We apply linear stability analysis (LSA) to the CP beam configurations at hand, in an attempt
to explain the splitup instability of CP solitons as a symmetry-breaking first-order phase
transition, and undertake to identify appropriate control parameters. Experimental
observations are found to be in good agreement with the numerical simulations of CP beams,
with a time-dependent nonlinearity, however the results of LSA, as applied to CP solitons,
turned up in need of further improvement. To verify our results of LSA, and to validate our
numerical algorithm, we utilize broader hyper-Gaussian beams in numerical simulations, in
order to display and compare with ordinary modulational instabilities (MI) and pattern
formation of CP beams[15]. In this case an improved agreement with LSA is obtained.

In Sec. 2 of the paper we describe the experiment. Section 3 introduces the model. In
Sec. 4 we provide for a comparison between experimental and numerical results. Linear
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stability analysis is performed in Sec. 5 and the threshold results are compared to the
numerical in Sec. 6. Section 7 contains a brief look into the modulationa instabilities of
broader hyper-Gaussian beams. Section 8 brings conclusions.

2. Experiment

The study of CP beams is conducted in the experimental setup of Fig. 1. Laser beam, derived
from a frequency-doubled Nd:YAG laser emitting at 532 nm, is split and focused onto the
opposite faces of a photorefractive SBN60:Ce crystal (5 x 5 x 23 mnt), aong one axis. The
total beam power is about 2 4W. The beam components are made incoherent in the medium by
reflecting one component off the mirror mounted on a vibrating piezo-crystal. The ¢ axis of
the PR crystal is along one of the 5 mm edges, so that by rotation both the 23 mm axis and the
other 5 mm axis can be used as propagation directions of the beams. To exploit the large
electro-optic component rs; = 200 pm/V of our SBN sample, the incident laser beams are
linearly polarized paralel to the ¢ axis, perpendicular to the propagation direction. A DC
electric field of the order of 1 kV/cm is applied across the crystal, along the ¢ axis, and the
crystal is illuminated by a uniform white light, to create artificial dark conductivity. The
strength of the applied field is used to fine-tune the coupling constant between beams.

PM
BS
Nd:YAG
532nm
F 5 F
4/ \\ BS
M B
ccbh
BS BS
I\
V
M F

M

Fig. 1. Experimental setup for the investigation of CP solitons. BS: beam splitters, PM:
vibrating piezo-mirror, SBN: Strontium-Barium-Niobate crystal.

Stable CP solitons are readily observed over the 5 mm propagation distance, with an
applied field of 1.3 kV/cm and the initial beam peak intensity about twice the background
intensity. Incoherent Gaussian beams of 20 um FWHM are launched head-on, and both the
forward and the backward propagating beams self-focus within a few seconds into a CP
soliton of ~ 20 um FWHM, tightly overlapping. When the propagation distance is increased
from 5 mm to 23 mm, for identical other conditions, a completely different dynamical
behavior is observed. The beams till self-focus approximately into solitons, but they do not
overlap anymore. At the exit face most of the beam intensity is expelled to a transversely
shifted position (about 1 beam width), while a fraction of the beam remains guided by the
other beam. We call this the splitup transition. The beams remain steady at the new positions,
or oscillate about. At higher beam couplings (higher applied voltage) the exit beam spots start
to rotate and execute more complex dynamics about the input beam positions. We did not vary
the input beam intensities, other than to keep it in the region of soliton existence. At high, or
at very low beam intensities above background, the solitons cease to exist. Owing to the
saturable nature of nonlinearity, there exists a window in intensities, in which the CP solitons
can be observed.

3. Themodd

To understand the behavior of CP vector solitons we formulated a time-dependent model for
the formation of self-trapped CP optical beams [8], based on the theory of PR effect. The
model consists of wave equations in the paraxial approximation for the propagation of CP
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beams and a relaxation equation for the generation of space charge field in the PR crystal, in
the isotropic approximation. The model equations in the computational space are of the form:

i0 ,F =—-AF +TEF , )

—i0,B=-AB+TEB , 2
|

WE+E=———, 3

‘ 1+]1 ©

where F and B are the forward and the backward propagating beam envelopes, 4 is the
transverse Laplacian, /" is the dimensionless coupling constant, and E the homogenous part of
the space charge field. The relaxation time of the crystal = also depends on the total intensity,
1=19/(1+1). The quantity |1=|F|*+|B| is the laser light intensity, measured in units of the
background intensity. A scaling x/Xo — X, Y/Xo — VY, ZILp — z, is utilized in writing the
propagétion equations, where xq is the typical FWHM beam waist and Ly, is the diffraction
length. The assumption, appropriate to the experimental conditions a hand, is that the
counterpropagating components interact only through the intensity-dependent space charge
field. To make matters simple, we did not account for the temperature (diffusion) effects,
although they are found to influence the interaction of CP beams [7]. In experiment these
effects were compensated by focusing the input B beam at the place of the exit and in the
direction of the output F beam.

The propagation equations are solved numerically, concurrently with the temporal
equations, in the manner described in Ref. [10] and references cited therein. The dynamics is
such that the space charge field builds up towards the steady state, which depends on the light
distribution, which in turn is slaved to the change in the space charge field. Asit is seen, this
simple type of dynamics does not preclude a more complicated dynamical behavior. Some of
our numerical results are presented concurrently with the experimental resultsin Figs. 2 —5. It
is seen that the numerics agrees, at least qualitatively, with the experiment.

A more tricky problem is to provide for an explanation of the nature and the cause of the
transverse splitup instability. In Refs. [9, 10] we presented a simple theory of beam
displacement - derived in two independent ways - that can account for such transverse shifts.
We attempt here at utilizing the standard theory of modulational instabilities (MI), to obtain a
threshold curve for the CP beams splitup that at least qualitatively agrees with the
experimental and numerical results. In doing so, we are aware of the fact that, although both
are symmetry breaking phenomena, the pattern forming M| represents a spontaneous breaking
of the trandlational symmetry of a homogeneous state, whereas the splitup transition is the
breaking of the rotational symmetry of an isolated CP soliton. Thus, Ml involves the
appearance of transverse waves at a critica value of k,, whereas the splitup instability
involves a jump of the peaked structure in the transverse inverse space at some value of k..
These two values of k. might, but need not be connected.

4. Comparison between experiment and numerics

The am of our numerical simulations is to qualitatively capture the most prominent
experimental findings, using a simple theoretical model and a tractable numerical method. To
this end we employ an isotropic model without temperature (diffusion) effects. Although the
experiment is performed on an anisotropic crystal at a finite temperature, an effort is exerted
to minimize the effects of anisotropy and diffusion. Thus, the geometry of beam coupling and
the use of incoherent beams helped reducing the differences between the isotropic and
anisotropic interactions in the crystal [13]. Also, an attempt is made in experiment to
compensate for the diffusion effects, by focusing the backward input beam at the place of exit
and in the direction of the output forward beam. The end result is that our numerical
simulations closely resemble experimental results concerning the stable CP solitons and single
splitup transitions of CP beams, including the size and the direction of transverse
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displacements. Nonetheless, the experiment still shows the influence of the preferentia (c)
direction and of the beam bending, which was found to affect the interaction of CP beams[7].

w~ I §

Fig. 2. Isosurface plots of a CP soliton after a splitup transition. Forward propagating
component is displayed in the steady state, (a) View along the entrance face of the crystal, (b)
View along the exit face of the crystal. Simulation parameters. |Fo|?=|B.|*=0.6, 7'=7.17,
L=5.75Lp=23 mm, and initial beam widths (FWHM) are 20 ym.

Both the forward and the backward components are found to deflect to the same side.
Unstable regions are reached upon increasing the thickness of the crystal and the coupling
congtant, in both experiment and simulations. In addition, in numerics we also varied the
intensity of input laser light. Dynamical behavior in numerical simulations qualitatively
follows that of the experimental runs. Typically output beam spots rotate about the input beam
positions, or rapidly pass through them, until stable displaced equilibrium positions are found.
Then they oscillate about these positions. In the case no equilibrium is found, the output
beams continue to dance about the input beams indefinitely.

Concerning the single splitup transition, in numerics we observe the behavior close to the
one in experiment. Hence, in Fig. 2 we present a numerical example only. It is seen that the
beams bend, elongate, and split into two. Most of the beam intensity is focused to a new
transverse position. The direction of the transverse displacement is approximately in the
direction of the external field or the ¢ axis, which is horizontal here.

When the coupling congtant is increased, the transient dynamics lasts even longer, to the
point that steady state is not reached over the duration of experiment (up to 3 hours). The
dynamics is such that the exiting beam rotates around or passes through the input beam, or
dances irregularly about it. All these dynamical phases could qualitatively be reproduced by
numerical simulation (Fig. 3). As it can be seen in the movies 3(b), (c), a localized peaked
structure in the direct space forms a localized peaked structure in the inverse space, and their
dynamicsis correlated. In fact, one initially observes afaint ring in the inverse space and then
most of the beam intensity focusesto a point.

/2

b

—7/2
—T/2 0 /2

Fig. 3. Movies of the Gaussian-Gaussian beam interaction: (a) Exit face of the crystal,
experimental (2.031 MB). (b) The corresponding humerical simulation of the backward beam
(at the exit face of the crystal), in the direct space (878 KB), () in the inverse space (858 KB).
Parameters are asin Fig. 2, except for |Fo|*=|B.|*=7.5.

In addition to head-on colliding CP solitons, we also investigate, experimentally and
numerically, the dipole-mode [14] and the dipole-dipole vector CP solitons. In the case of
dipole-mode CP solitons (Fig. 4), a fundamental Gaussian beam is counter-propagated to a
dipole beam, located midway between the two out-of-phase dipole components, which are
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aligned perpendicular to the externa field. A transverse splitup occurred over the 23 mm
propagation distance. Again, the experimental observation of dynamical behavior is in
qualitative agreement with the numerical simulations. Notice that the direction of the x axis is
reversed in the experimental movie for the fundamental mode component intensity, because in
the experiment one is looking at the face of the crystal from the opposite direction.

b
O
»

Fig. 4. Movies of the dipole-mode beam interaction. (a) Experiment: The upper frame presents
the exit face of the crystal for the dipole component, the lower frame presents the exit face for
the fundamental mode component (2.818MB). (b) Movie of the dipole (592 KB), and (c) movie
of the fundamental mode component (502 KB), from the corresponding numerical simulation.
They are presented at their own exit faces, looking in the forward propagation direction.
Parameters are as in Fig. 2, except for [Fo|>= |B.|?=4. Initial distance between dipole partnersis
40 um.

The next configuration investigated was the dipole-dipole vector CP soliton (Fig. 5). In
the case of dipole-dipole CP solitons, two identical dipoles with the components out of phase
are counterpropagated head-on. The dipoles are aligned perpendicular to the external field,
which always points in the horizontal direction. A transverse splitup occurs again. The
direction of the splitup is preferentially along the direction of the external field, and it also
depends on the added noise (Fig. 5(b)). Only in the case when some noise is added to one of
the beams are we able to observe skewed splitups, and achieve better agreement with the
experiment, but the dipole oscillates al the time. For the case with no noise (Fig. 5(c)), in the
beginning we notice oscillations along the y axis, and after a short time these oscillations are
damped. Compared to the single CP soliton cases, the cases involving dipoles are more stable
and the transient dynamics last shorter.

Fig. 5. Movies of the dipole-dipole interaction. (a) Experiment: the forward beam (upper) and backward
beam (lower), at the exit face of the crystal (2.818 MB). The corresponding numerical simulations of

the backward beam: (b) with an extra noise of 5% added to the input beam intensity (902 KB), (c)
without noise (426 KB). Parameters are asin Fig. 4, except for |Fo|>=|B.|*=1.3.
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5. Linear gtability analysis

In the standard M1 theory one follows the dynamics of weak perturbation to a wave and looks
for instances of exponential growth of the perturbation. Such a growth promotes the
amplification of sidebands and leads to the appearance of localized transverse structures. This
approach is used much in the theory of transverse optical patterns [15]. Here however, the
whole object - a CP soliton - undergoes a sudden transverse shift to a new position. We
suppose that at the threshold the critical wave vector of the unstable ring in the transverse k
space will focus to a spot, to which most of the energy (intensity) of the initial beam will be
transferred. As mentioned, the assumption is that a localized peaked structure in the direct
space will form alocalized peaked structure in the inverse space, and that their dynamics will
be correlated. This expectation is borne in numerical smulations.
In the steady state we have a plane wave solution:

Fo(2) = F,(0) exp(-iTE,2) , 4

By(2) = By(L) exp(TE,(z-L)). (5)

where Eg = - 1o/(1+10). In this case | is a conserved quantity (it does not depend on 2), so Eg
also does not depend on z.

The primary threshold is determined by the linear instability of the steady-state plane-
wave field amplitudes Fo and By, and the homogenous part of the space charge field E,. In
order to carry out linear stability analysis we make a change of variables to a basis most
convenient to display the structure and symmetries of the problem. The time and space
evolution of the perturbationsf, b and e, is introduced by an ansatz:

F=F@0+f), (6)
B=B,(1+b), @)
E=E,(1+e), (8)
along with the boundary conditions:
f(0)=b(L)=0. 9)

Neglecting higher harmonics and terms quadratic in f, b, and e, and following the
procedure described in Ref. [16], we obtain the final form of the threshold condition:

1+ cos(k’L) cos(vVK*L? — 4ATK?L?) +

2L - (10)
(KL=2ATL) _ghcL)sin(/KLZ —4ATKZLZ) = 0
VK*L? - 4ATK?L?
The threshold eguation has the same form as the threshold condition in Ref. [17]:
2+ 2c0s(‘,) cos(P,) + (¥, /¥, + P, /P, )sin(¥,) sin(‘P,) = 0, (11)

wherew, = k2L, ¥, =+k‘[2-4ATK’L>, and we choose |Fo=|B’, so that
A=‘|:0‘2/(1+ 2“:0‘2)2. The problem treated in Ref. [17] is the counterpropagation in Kerr
media, so that the form of ¥'s is different. The same form of the threshold condition should
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not be surprising, because it originates from the CP geometry used in both papers. The
symmetry of the problem here is more important than the particular form of the nonlinearity.

2.0
AT'LL

15}

1.0 |

0'50 | 1 | 2 | 3 kIZL 4

Fig. 6. Threshold curves obtained from Eq. (11). Inset provides an extended view. Two clusters of
open-circled points, obtained numerically, represent jumps in kL of the peaked soliton-like structures
in the inverse space. Dashed lines are the average values of kL for the two sets of points. Filled circles
represent points where the broader hyper-Gaussian CP beams undergo M.

Owing to the transcendental nature of Eq. (11) there exist an infinite number of neutral
stability curves[17]. Since Eqg. (11) can be factorized

H,H, =0, (12)
these curves split into two groups. The function H; is defined by:

Y, . .
H,(¥,,¥,)= lP—lSI n(\P,/2)sin(‘¥, /2)+ cos(*¥, / 2)cos(¥, / 2) (13)
2
and H,(¥,,¥,)=H,(¥,,¥,). Onegroup of threshold curves is defined by H;=0, and the
other group by H,=0. They cross when H;=H,=0. The crossing points are found when both
¥, and ¥, are the integer multiples of 7, say mr and nz, where one of the m, n must be even
and the other odd. The location of crossing pointsis given by:

L B (m2 _ n2)ﬂ_2

: 14
4k2L (14

K’L=mr . (15)

AI'L isthe smallest for m=n+1, and larger differences (m=n+3...) give higher-order modes.
Hence, there are three control parameters in the problem: 7, L and the input beam intensity,
conveniently combined into one control parameter of the form AI'L . For small values of /" and
L stable soliton propagation is observed, whereas for higher 7" and L unstable behavior is seen
[8,9]; the dependence on |, which figuresin A, is more complicated.

It is difficult to compare experimental and numerical results with the general threshold
curves, presented in Fig. 6. For comparison, three clusters of points, obtained numerically, are
also plotted in Fig. 6. The two clusters to the left (open circles) depict how much the peaked
structures in the inverse space jump transversaly after a splitup transition. Each point
represents a CP structure, with a specific value of AL, after ajump in the k space, and in the
steady state. It is seen that the points group themselves about two values of kL (~0.27 and
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~0.73, the vertical dashed lines) which are way below the expected value of k2L (~3.14) for
the critical ring of M1 modes. This is not difficult to understand, in view of the fact that the
displaced soliton is a large-scale primary structure, whereas MI represents a side-band
secondary wave pattern. Also, the values of the order parameter AI'L range between 0.63 and
1.6, whereas the critical M| value equals 77/ 4. There is but a qualitative agreement between
LSA and numerical results. However, the agreement improves significantly if, instead of
solitons, one considers broader hyper-Gaussian beams [18]. The third set of pointsin Fig. 6
(filled circles) represent the threshold points of M1 instabilities of a few such hyper-structures
(of the order 4). It is found that the threshold points of narrower beams fall closer to the
splitup points of CP solitons, whereas the points of broader beams (FWHM=150 ym in the
figure) fall closer to the threshold curve.

6. Threshold curvesand numerics

Because there are two values of |Fg|? for each value of A, we consider the threshold intensity
as afunction of the square of the transverse wave vector (Figs. 7(a), 8(a), and 9(a)). Then for
each pair of /" and L we have different threshold curves. An analysis of Eq. (11), for given I
and L, gives an extra condition:

k2<L, (16)
2

which meansthat k? is not arbitrary large, as it might seem from Fig. 6.

Figures 7 — 9 display our results concerning the threshold behavior of CP beams during
the development of MI. Also provided in Figs. 7(a), 8(a) and 9(a) are the arrows which depict
how much the CP solitons jump transversely in the k space in numerical simulations, after a
splitup transition. There may be more than one splitup transition, one following the other.
After two splitups one usually observes a disordered motion of the beam spots. The left end of
an arrow points to the value of k? of the peak intensity in the steady-state, the right end points
to the maximum value of the total transient change in k% The end points are calculated by
independent numerical runs of the full simulations. In fact, the left-end points of many runs
are collected and displayed in Fig. 6. In the case no steady-state is found, only the maximum
value of the total transient change in k?is displayed, represented by a dot (Figs. 8 and 9).

2
’ 0.5
IRl a
== al b
] max.
i . _
7 Y 0.3 |
3 7 I |
7 A N i M
o d / il .
j 0.1 | j
171 / P !
| r :
0 0.4 0.8 1.2 16 k2 20 0 50 100 150 () 200

Fig. 7. (a) Threshold intensity |Fo|? versus the square of the transverse wave vector K2, for I'=4
and L=5Lp. Blue color represents the intensity region with stable solitons, yellow represents the
intensity region with splitup(s). (b) The sguare of the transverse wave vector (kliax )

corresponding to the maximum value of the far-fidd intensity versus time, for |Fo|>=2.5.
Steady state is reached.

For the control parameters /=4 and L=5L, (Fig. 7), besides stable solutions only one and
two splitup transitions are observed. It is seen that the arrows provide a qualitative agreement
with the form and the position of the lowest branch of the threshold curve. It is difficult to
observe higher order transitions, because of the intervening dynamical effects. The double-
valued form of the functionsin Fig. 7(a) is the signature of afirst-order phase transition: the
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bottom parts of the curves are unobservable, and for a transition to occur a small but finite
value of theinitial intensity is necessary. Also, above the highest hump of the threshold curves
no transitions are observed. In fact, a such high intensities, experimentally no CP solitons are
seen. They can exist only in a certain window of beam intensities. From Fig. 7(b) we see that
the single splitup at t=160 = corresponds to a short damped oscillation in the inverse space,

before the steady state is reached.
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Fig. 8. (a) Threshold intensity |Fo|? versus the square of the transverse wave vector k?, for I'=6
and L=5Lp. Colours have the same meaning as in Fig. 7(a), red represents the intensity region
of unstable behavior, where the steady state is never reached. (b) The square of the transverse
wave vector corresponding to the maximum value of the far-field intensity ( krzmx ) versus time,

for |Fo|*=4. After atransient, alimit cycleisreached.

For a dlightly higher coupling strength 7'=6 (Fig. 8), there are two intensity regions
where the threshold curves cross each other. The mogt stable are the beams with intensities
lying outside those two regions. In Figs. 7(a) and 8(a), the maximum transverse jump in the k
space evidently complies with the condition in Eq. (16). Fig. 8(b) depicts situation in the
unstable cross-over region, where a more complicated behavior is expected. A transient
splitup transition is noted that lasts from t=30 7 to t=60 7, and after t=130 ¢ the system starts
displaying regular oscillation in the first quadrant of the transverse plane. A limit cycle is
reached. This behavior, however, is unrelated to Fig. 8(a), in which a steady-state situation is
presented.
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Fig. 9. (a) Threshold intensity |Fo|® versus the square of the transverse wave vector k%, for
1'=7.17 and L=5.75Lp. Colours have the same meaning as in Fig. 8(a). (b) The square of the
transverse wave vector (k2_ ) corresponding to the maximum value of the far-field intensity

versustime, |Fo|?>=7.5. Irregular behavior is observed.

When 7=7.17 and L=5.75L5 (Fig. 9), as in one of the experiments, a complicated
dynamical behavior is observed, especialy in the region of intensities where the threshold
curves cross each other and where the influence of the saturable nonlinearity is the largest.

#9382 - $15.00 USD Received 2 November 2005; revised 9 December 2005; accepted 14 December 2005
(C) 2005 OSA 26 December 2005/ Voal. 13, No. 26/ OPTICS EXPRESS 10726



This is the region of the most unstable behavior, with the highest displacement in k% Below
and above this region the dynamicsis simpler. In the case where steady-state is never reached,
there is only the maximum value of the total transient change in k. The case presented in Fig.
9(b) corresponds to the movie 3(c), as al control parameters (including the intensity) are the
same. An irregular dynamics of the beam spots is observed, both experimentaly and
numerically. For the experimental conditions, we can see splitup transitions only for relatively
small values of the intensities, and the arrows are then in a qualitative agreement with the
threshold curve branch with the minimal value of k’. Nevertheless, the threshold analysis fails
to adequately describe numerical and experimental findings; Figs. 9(a) and 9(b) are essentially
unrelated to each other. Still, Figs. 7(b), 8(b) and 9(b) conveniently depict how the temporal
signal k* acquires a more complex behavior, changing from the fixed point, to the limit cycle,
and finally to the quasiperiodic motion, as the driving parameter T'L increases.

For the case presented in Fig. 9(a), when the input intensity is |Fo|>=12, the transverse
jump in the k space in numerical simulations is greater than the greatest possible, according to
Eqg. (16) (the corresponding dot is not shown on the graph). This means that the linear stability
analysis is definitely unable to appropriately describe the behavior at high values of 7" and L.
However, as mentioned, when broad hyper-Gaussian beams are used, instead of narrow
Gaussian beams, regular modulational instabilities appear, and their onset is in good
agreement with the threshold curves. A few examples of such behavior are presented in Figs.
10 and 11.

7. Broad hyper-Gaussian beams

The consideration of broader hyper-Gaussian beams offers rich opportunities for observing
complex pattern-forming dynamical behavior. We should again stress the fact that our splitup
transitions do not appear to be of this common type of MI. The solitons themselves could be
considered as related to the filaments of MI, and, as such, should be stable against the same
kind of MI. Nonetheless, it is till of interest to explore the cross-over region by increasing the
size of solitonic beams, until they display M1, and to compare it to the splitup transition.

Figure 10 represents the modulationa instability of CP hyper-Gaussian beams of
FWHM=150 xm, obtained numerically. After a few integration cycles, the rings in the beam
structure appear, in the direct as well as in the inverse space. The radius of thisinitial ring is
plotted in Fig. 6, as one of the filled circles to the right. The structure never reaches steady
state, for the duration of the integration. What might be of interest here is that the structure
undergoes a series of symmetry breaking changes, starting from an O(2) symmetry at t=0,
going through a C,4, point symmetry at t=80 z, and ending with an asymmetric C; state. This
last transition apparently is the analogue of the splitup transition of CP solitons.

Fig. 10. Movies of modulational instabilities of a broad hyper-Gaussian beam, for the backward
component. (a) (1999 KB) Direct space (7293 KB version), (b) (1763 KB) Inverse space. The
order of the hyper-Gaussian is 4, FWHM=150 um, other parameters. I'=27.6, L=0.5Lp, |Fo|*=
|B.|%=3.

Patterns forming in M| of broader beams can also acquire a more ordered appearance.
Two such cases are presented in Fig. 11, one depicting a steady-rotating hexagonal CP beam
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structure, and the other an almost stationary transverse pattern of octagonal symmetry. The
only difference between the two cases is the width of the incident beams; in the first case it
equals 100 um, in the second 150 zm. All other parameters are the same. The rotating hexagon
isinteresting in the sense that a quasi-stable symmetric two-ring hexagonal structure breaks its
central symmetry at about t=50 7, and then starts to rotate. This behavior is characteristic of
patterns going through a Hopf bifurcation [15]. Also, the beams acquire net angular
momentum, which they did not possess to start with. Systems undergoing point symmetry
breaking transitions need not conserve angular momentum. An interesting feature in the
octagonal pattern is that it also contains octagonal and square patterns of higher order. The
mixing and competition of patterns, as well as the appearance of defects and domain-walls,
are common features of pattern formation in PR media[15].

Fig. 11. Movies of the modulational instabilities of hyper-Gaussians, resulting in a rotating hexagon, (a)
(805 KB) direct space, (b) (1719 KB) inverse space intensity distributions (2637 KB), and in a steady-
state octagonal pattern, (c) (1640 KB) direct space, (d) (1008 KB) inverse space intensity distributions.
The parameters for both cases are the same, I'=16.14, L=3Lp, |Fo|?= |B.|>=5, the only difference is the
beam widths: 100 zmin thefirst, and 150 #min the second case.

8. Conclusions

In summary, we reported on the experimental observation of the three-dimensional counter-
propagating spatial vector solitons in a photorefractive crystal, including the more complex
dipole-mode and dipole-dipole interaction geometries. A peculiar dynamic behavior of CP
solitons is observed, in that the counterpropagating components suddenly change their
transverse positions, and from an attracting interaction switch to repelling. Previously stable
equilibrium becomes alimit cycle, the behavior suggesting of a Hopf bifurcation happening in
the system. Using a simple model, we explain this behavior as a spontaneous symmetry
breaking first order phase transition, and identify the appropriate control parameter(s). We
also observe rich dynamics of the three-dimensional counterpropagating solitons and
formulate a theory capable of capturing such dynamics. We obtain good agreement, even
when considering dynamics in detail, between the numerical simulations and the experimental
results. We perform linear stability analysis, to try to confirm experimental and numerical
findings concerning the threshold behavior. In this case only qualitative agreement between
numerical and LSA results is obtained for CP solitons, which however can be improved by
considering broader CP hyper-Gaussian beams. A few examples of the standard modulational
instabilitiy of broad CP beams are also presented.
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