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ABSTRACT Under feedback extended nonlinear optical systems
spontaneously show a variety of periodic patterns and struc-
tures. Control gives new insight into these phenomena and it can
open the way for potential application of nonlinear optical struc-
tures. We briefly review methods to control localized states in
single feedback experiments. Application of a Fourier control
method allows to modify interaction behavior of the localized
states. As a further approach we study a forcing method, using
externally created light fields as additional input to the system.
Recent experiments show that the forcing method enables to
favor addressing positions for localized structures. We demon-
strate static addressing and favoring of addressing positions. We
extend the forcing method to a dynamic forcing scheme, which
allows to move and reposition localized states. Additionally
forcing is used to balance experimental imperfections.

PACS 05.45.Gg; 42.60.Jf; 42.65.Tg

1 Introduction

Control of nonlinear systems is essential, firstly
if one considers the use of these systems in the context of
application, and secondly to increase the knowledge about
the system behavior itself. Better models and better under-
standing of these systems can be derived from the know-
ledge obtained with control. Even though nonlinear systems
in general exhibit very complex behavior in space and time,
astonishingly simple methods can be successful in control-
ling the complexity of nonlinear systems. As the example of
the time delayed feedback method suggested by Pyragas [1],
which allows one to stabilize chaotic nonlinear oscillators to
a specific system-inherent solution, powerfully demonstrates.
Other control methods e.g., include Fourier-space methods,
methods of stochastic resonance, at which the system is sta-
bilized by adding noisy signals, forcing methods, in which
externally generated forcing signals act on the system, or
methods, which make use of synchronization effects [2—35].
Methodically one can distinguish between minimal-invasive
and invasive methods. Minimal invasive control can be used to
stabilize solutions already existent in the uncontrolled system.

Bd Fax: +49-251-8333513, E-mail: guetlich@uni-muenster.de

Application of minimal invasive control will results in vanish-
ing control signals, if the target state is reached. In contrast,
external target states are imposed onto the system in invasive
methods, and consequently the control signals cannot vanish.

This article covers control and forcing methods applied
to spatially extended optical systems. We restrict ourselves
to the class of so-called single feedback systems and to
therein spontaneously forming spatio-temporal optical struc-
tures [36—53]. As we deal with a spatially extended system,
Fourier methods and forcing methods applied in real space are
particularly well-suited to control the evolution of the trans-
verse structures. If the Fourier- or real space control methods
are made time-dependent, these spatial methods are also well-
suited to control the temporal evolution of the system. In
a first part we briefly review application of Fourier control
and forcing methods to periodic patterns. At the example
of a single feedback experiment using a liquid crystal light
valve (LCLV) as nonlinearity we will, in more detail, study
results on Fourier control and forcing of spatially localized
states. The Fourier control method allows one to arrange lo-
calized structures, in accordance with predefined symmetries
as hexagons and squares. Also the typical distances between
localized states can be altered. In a novel approach we experi-
mentally use static and dynamic forcing to demonstrate static
and dynamic positioning of localized structures. Pinning pos-
itions, at which localized structures favorably form sponta-
neously, can be balanced by forcing and even these favorite
addressing positions can be artificially selected by forcing. By
varying the strength of the forcing signal forcing can also be
used to address localized states. Ignition and erasure of local-
ized states are possible. Additionally the forcing signal is used
to balance experimental imperfections of the setup.

1.1 Single feedback systems

One reason why the class of so-called single feed-
back systems is often used to study the formation of spon-
taneous optical structures is the separability of the domin-
ant physical processes. If the nonlinear medium can be ap-
proximated as optically thin, diffraction and optical nonlin-
earity are spatially well-separated effects in single feedback
experiments, which simplifies theoretical and experimental
treatment.
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These setups are called single feedback, since each wave
front travels around the system once only. On the other hand
also optical resonators, which provide repeated interaction be-
tween the optical wave and the nonlinear medium, are often
used to study spontaneous pattern formation. A single feed-
back system functions in the following way: a plane pump
wave is spatially (phase-) modulated by passing a nonlinear
medium. The modulated wave is fed back to the nonlinear
material, thereby propagating in free space over a certain dis-
tance. During propagation diffraction causes the transform-
ation of small intrinsic modulations in the transverse phase
profile into corresponding intensity modulations. This inten-
sity profile then interacts with the plane pump wave via the
nonlinear material. Many different nonlinear optical materi-
als, such as liquid crystals [39,40], sodium vapor [43-46],
photorefractive crystals [47—49] and others have been used as
optical nonlinearity. Most commonly, the optical response of
the material is of the Kerr-type, i.e., the nonlinear materials al-
ter their refractive index with the intensity. Consequently, in
Kerr-type nonlinearities the intensity profile of the feedback
wave causes a correspondingly induced phase profile of the
next pump wave front, thus closing the feedback loop.

Commonly, a transverse modulation instability [54] arises
in single feedback configurations at certain thresholds of the
dominant system parameter, which results in the spontaneous
self-organized formation of transverse optical structures and
patterns. The wealth of observed patterns ranges from peri-
odic patterns such as hexagons, stripes, squares, and quasi
crystalline patterns [36,40,46-49], to spiral patterns, target
patterns [50], spatio-temporally complex states and localized
structures [51-53]. For these localized states also expressions
like solitary structure, dissipative soliton and cavity soliton
are commonly used. At first, research efforts were directed to
the principal understanding of these systems. For this purpose
theoretical models for the different single feedback systems
have been derived and were e.g., analyzed with the help of
linear stability analysis [36—38]. As straightforward analytic
solutions up to now do not exist for most systems, the detailed
system behavior is theoretically investigated with numerical
methods.

1.2 Fourier control methods

Pioneer work in controlling nonlinear spatially-
extended optical systems has been accomplished by making
use of Fourier control methods [2,6-16]. Comparison be-
tween numerical and experimental results points to the exis-
tence of unstable stationary solutions, which are not accessi-
ble without control. Therefore, following a suggestion from
R. Martin et al. [2], a Fourier control has been applied to
single feedback systems to stabilize otherwise unstable pat-
tern solutions in the system by making use of minimal inva-
sive techniques. The principle of the control is the following:
A small fraction of the feedback wave is coupled into a control
loop. Within the control loop the deviations of the feedback
wave from a defined target state are detected. Thus, an error
signal is created, which is coupled back negatively to the
undisturbed feedback wave. In case of the Fourier control the
wave coupled into the control loop is first spatially Fourier
transformed. The Fourier transformed wave is filtered with

an amplitude masks, which blocks the target state. The wave
passing the Fourier mask thus contains only deviations from
the target state. The final control signal is created by perform-
ing the inverse Fourier transformation. Control is achieved
by subtracting the control wave from the feedback wave. As
we deal with an optical system the subtraction can be easily
realized by superposing the coherent fields of feedback and
control wave with a phase shift of . If the target state is a sta-
ble or instable stationary solution of the system, the system
will move towards the target state, when the Fourier control is
active. If finally the target state is reached, the control signal
will vanish.

This control method has been applied in many experi-
ments using photorefractive media, sodium vapor, or liquid
crystal light valve as nonlinearity [6—16]. The experiments
succeded in stabilizing otherwise unstable pattern solutions.
Also the predicted vanishing of the control signal has been ob-
served experimentally [13]. The stabilization even works in
parameter regimes where the system states becomes spatio-
temporally complex [13, 14] and the control induced removal
of defects in the pattern has been studied [15].

The method of Fourier filtering has also been used to ver-
ify theoretical predictions such as the bifurcation diagram of
unstable pattern solutions and the curve of marginal instabil-
ity, which were otherwise not accessible to an experimental
evaluation [17-19]. For example, the Fourier control method
has been used to measure the pattern amplitude of the exper-
imentally unstable square and roll solutions [17]. Thus the
bifurcation diagram of pattern states, which are usually sup-
pressed in favor of the hexagon solution, can be determined
experimentally. The experimentally measured pattern ampli-
tudes agree very well with the numerical predictions [17].
Also the curve of marginal instability derived with a linear
stability analysis (LSA) is in general not accessible to an
experimental measurement, because the small amplitude ap-
proximation used for LSA ceases its validity above threshold
of the modulation instability. The curve of marginal insta-
bility can, however, be directly determined from experiment
with help of a Fourier control, which is directly applied in
the feedback arm. Such measurements have yet been per-
formed with sodium vapor and photorefractive crystals as
nonlinearity [18, 19].

1.3 Forcing

Another approach to control nonlinear systems
constitutes the exertion of forcing. In this method a forcing
signal is generated externally, which then acts at the nonlin-
ear system. Mainly forcing has been investigated in context
of convection pattern and in chemical reaction diffusion sys-
tems. One and two dimensional as well as static and dynamic
forcing schemes have been applied to these systems [20—32].
Even if the forcing is small in comparison to the feedback
signal, control of the nonlinear system can be gained. Method-
ically, thus, an input is offered to the system, while one studies
the system’s response to the input. An advantage of forcing
is that not only the response to system-inherent “natural” sys-
tem states can be studied, but also other external states can be
offered as forcing input. The system response will however
be different, if the forcing input is a solution of the unforced
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system or not. It can be expected, that the system follows the
forcing input, if it is a solution of the unforced system, while it
remains open how the system responds to other forcing inputs.
In any case forcing must be carefully adjusted to the system, as
the system looses its ability to react, if the forcing is so strong,
that it absolutely dominates the system behavior by itself.

In the single feedback experiment, external forcing inputs
have e.g., been realized by adding small incoherent intensity
distributions to the feedback [33, 34]. Static or dynamic forc-
ing signals have been used in these experiments, while the
forcing level remained small (in the order of few percent) in
comparison with the feedback signal. At first forcing signals
have been used which had the hexagonal symmetry of the
spontaneously forming patterns. Varying the wavelength of
the hexagonal forcing input, we have observed that the system
follows the forcing at certain resonant forcing wavelengths,
while the system is dominated by strong spatio-temporal dy-
namics at other wavelengths. This behavior can be interpreted
as a generalized form of synchronization of a spatially ex-
tended and continuous system to a static spatial forcing in-
put [33,34]. In these experiments also incomplete hexagonal
forcing inputs have been used. Even though the original hex-
agonal symmetry was hardly recognizable in the forcing in-
put, because many pattern spots have been removed at ran-
dom, the nonlinear system responds with a perfect hexagonal
pattern, which locks to the forcing input. Thus, this process
can be interpreted as associative completion of an incomplete
forcing input. Even if the hexagonal forcing input is rotated
around its center, the system perfectly follows the rotating
forcing, if the velocity of rotation is not too fast [16]. There-
fore also the extension of the method to dynamic forcing is
possible. Now also, two independent single feedback systems
were unidirectionally coupled. Both systems were in spatio-
temporal complex states and it has been investigated, if the
slave system follows the behavior of the master system. Syn-
chronization of the slave system has been observed. There-
fore, we have, to our knowledge, for the first time demon-
strated that the concept of synchronization, previously studied
at coupled networks of one dimensional oscillators, can also
be extended to spatio-temporal complex system states [35].

The above-described methods of control and forcing con-
stitute the toolbox that we now intend to use at localized states
in an experiment with a liquid crystal light valve (LCLV)
under optical feedback.

2 Application of control to localized states

2.1 Localized states

Among the wealth of transverse optical structures,
localized states are of particular interest, because they can
potentially be of use in context of all optical information pro-
cessing. Due to their robustness and their binary features they
can be interpreted as the natural binary units of nonlinear opti-
cal systems [52, 53, 55—-84]. The robustness of localized states
against perturbations results from their formation in a self-
organized process, in which the structure of the localized state
becomes a stable solution of the nonlinear system. If small
perturbations occur, the system tends to relax into the stable
solution, which is the localized state. Localized states, thus,
posses a certain self-healing ability.

The reason for the formation of localized states is a bal-
ance between diffraction and nonlinear self-focussing. The
resulting optical structure of the localized state, which com-
bines a self-induced lens and free-space propagation, can
potentially be used to guide information in context of all-
optical information processing. A bistability of the feedback
intensity between a stationary uniform state of the trans-
verse intensity distribution and a stationary structured state
is crucial for the formation of localized optical states in
systems with optical feedback [84]. Bright localized states
exist, if the uniform stationary solution is darker than the
structured solution. Such a scenario can be reached either
if the pattern grows from a subcritical bifurcation or if ad-
ditionally to the pattern state another global bistability ex-
ists in the system. Also, bright localized states with a darker
patterned state as background have been observed, if mul-
tistability exists in the system. Typically, resonators with
an intra-cavity Kerr-type nonlinear medium (or another dis-
persive nonlinearity) exhibit the needed bistable behavior,
since the resonance depends on the intra-cavity phase [71-
73]. Single feedback systems can also show bistability, if
e.g., the nonlinearity responds asymmetrically in respect to
the polarization state of the incident wave [77,79]. In pres-
ence of bistability, the system can realize localized states
due to the coexistence of uniform dark and modulation-
ally instable bright state. The localized state then represents
a solution, which connects uniform dark and the structured
upper state. Bright localized states then appear as bright
spot like structures, which are generally accompanied by
a self-diffraction ring structure, on top of a dark uniform
background.

2.2 Interaction

It has been shown, that phase gradients influence
the motion of localized states [61, 73, 74]. Consequently, the
individual spots can be imagined to move in a phase gradient
landscape, determining the final equilibrium state. This phase
gradient landscape contains contributions of the mutual inter-
action between the spots and on the other hand a global part,
which is independent of the individual spots [79].

The spot—spot interaction is related to the self-diffraction
rings that are observed around localized structures. The visi-
ble intensity rings correspond to a similar phase profile, lead-
ing to attraction and repulsion of adjacent spots. Depending
on their relative distance, a minimal spot distance exists, and
it can be expected that neighboring spots lock on the diffrac-
tion rings even at higher orders. The resulting accumulation of
localized states at corresponding locking distances has been
confirmed experimentally [77, 81].

Inhomogeneities in the feedback system, such as dust par-
ticles, imperfections in the planar pump wave or a smooth spa-
tial variation of the nonlinearity’s sensitivity will also result
in phase gradients. In consequence movements along these
phase gradients will be induced towards either the maximum
or minimum of the phase gradient [75]. The localized states
are e.g., expected to move either towards or away from the
beam center, if the beam profile is Gaussian. Also, for the pin-
ning of localized states to favored positions, e.g., observed in
the experiment using a liquid crystal light valve [81], small
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scale spatial inhomogeneities in the phase profile can be made
responsible.

If one considers the application of localized states, the
control of their positioning, their interaction behavior and
their movements is crucial. Thus, we investigate control
methods, which potentially allow one to fulfill this task. Be-
fore we discuss the methods used to control localized states,
we first introduce the experimental setup in use, a liquid crys-
tal light valve in single feedback configuration.

2.3 The liquid crystal light valve under optical feedback

In the system under investigation, we use a reflec-
tive liquid crystal light valve (LCLV) as hybrid optical non-
linearity. The LCLV shows the characteristic of saturable Kerr
nonlinearity. It is used because of the strong nonlinear coeffi-
cient, which allows one to achieve large aspect ratios even at
moderate laser powers.

The LCLV consists of a nematic liquid crystal layer (LC)
in planar alignment, a dielectric mirror and a photoconducting
layer sandwiched between ITO coated glass substrates. The
device, which is operated with a bias voltage applied over the
transparent ITO electrodes, can be divided in two functional
sides, aread and a write side. According to the intensity distri-
bution at the photoconductive write side the birefringence of
the LC read side is spatially modulated. A read wave passes
the LC layer, is reflected at the dielectric mirror, and leaves
the LCLV modulated in its phase and polarization state. The
phase shift ¢ of the extraordinary wave induced by the LCLV
can be written as [40,41]:

o — lZViw +o=
Omax {l — tanh? <S0K11W+ I Uext — Ulh) } '

1
kKoly+1 Uy M

In the equation t is the effective response time of the
LCLV and [ is an effective diffusion length, which takes ac-
count of the restricted transversal resolution of the LCLV.
For the LCLV in use the response time was in the order of
7 ~ 50 ms and the effective spatial resolution was / ~ 30 um.
The phase shift depends on the spatial distribution of the write
intensity I, (x, y). Uex is the ac voltage externally applied on
the LCLV. gmax, So, k1, k2, U and Uy are device specific fit
parameters.

The LCLV is operated in a typical single feedback con-
figuration (schematic setup see Fig. 1). As the light source
a Nd:YAG laser (A = 532 nm, P = 100 mW) is used. The in-
put in the feedback loop is a linearly polarized uniform pump
wave from the laser, expanded to a beam diameter of approxi-
mately 2 cm. In the central area of the expanded beam an
aperture of 8 mm in diameter is cut out (Al). The direction
of polarization of the pump wave includes an angle of ¥ in
respect to the optical axis of the LC layer. This wave passes
the read side of the LCLYV, where it is reflected and modu-
lated in its phase and polarization state according to (1). The
modulated light field propagates freely over distance L. After
propagation the light field is imaged by optical components
(mirrors (M), lenses(L), penta prism (PP), dove prism (D), and
beam splitters (BS)) to the write side of the LCLYV, thus closing
the feedback loop. A polarizer (P) in the feedback loop selects

L1 A2 L2 PP

detection

FIGURE 1 Scheme of the experimental setup: A liquid crystal light valve
(LCLV) in single feedback configuration. A detailed description can be found
in the text

a polarization state at —¥ in respect to the optical axis of the
LCLV. A dove prism (D) is inserted to the feedback loop to
correct rotational misalignment of the feedback wave.

In completion of the equation describing the response of
the material ((1)), the resulting intensity I, at the LCLV write
side (photoconducting layer) can be written as:

—ilL ‘
exp ( 2%, Vi) (Be w4 C)
In this equation L accounts for the propagation length, k;
is the wave vector of the light field and e~1L/@)V1) is the
propagation operator. The linearly polarized pump wave is
represented by the pump intensity /, = | E,|*. The pump field
is phase modulated by e ~'¢. The amplitude factors B = cos®> ¥
and C = sin? ¥ describe the influence of polarization. Phase-
only modulations can be induced, if the incident wave and the
polarizer in the feedback include the angle ¥ = 0 with the op-
tical axis. In this case B=1and C = 0.

The LCLYV itself provides a self-defocusing nonlinearity.
Due to a symmetry in the model equations, one can simulate
a self-focusing nonlinearity needed for the creation of robust
localized states by using a negative propagation length [38,
39]. In the experiment, a negative propagation length is real-
ized by imaging a virtual plane (A1) in front of the LCLV onto
its photoconducting side. Experimentally the far and near field
of the intensity distribution Iy, are recorded by imaging frac-
tions of the feedback wave (e.g., at beam splitter (BS2)) to
a CCD camera.

2

Iy = I. (2)

24 Spontaneously forming structures

in the LCLV experiment

The onset of spontaneous pattern formation is the-
oretically investigated with a linear stability analysis (LSA).
If the intensity of the pump wave exceeds a threshold, LSA
shows, that the uniform state becomes modulationally unsta-
ble against perturbations with a critical wave number k. [36].
In consequence, stationary spatial structures evolve sponta-
neously with scaling in accordance to the critical wavenumber
k.. The patterns are observed as modulation of the transverse
intensity distribution of the feedback wave. In the case of pure
phase modulation, these are regular patterns (hexagons). If
the pump intensity is increased also higher wavenumbers are
excited and the patterns become increasingly disordered and
also show complex spatio-temporal dynamics at even higher
pump intensities.
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In the case of polarization modulation, the structures can
be more complex already at the threshold pump intensity [40—
42,82]. An experimental realization of bistability is found in
polarization mode, and thus in polarization mode also the ex-
istence of localized states is enabled. We plot a typical plane
wave bistability curve on the left hand side of Fig. 2, where the
induced phase shift ¢ is plotted over the pump intensity /,. Ex-
perimentally the write intensity I, can be taken as a measure
for the phase shift ¢. Fractions of the curve with negative slope
are unstable solutions.

On the right hand side of the figure, the curve of marginal
stability, derived from a LSA, is shown, at which the sys-
tem becomes unstable against perturbations with wavenum-
ber k. At the turning points of the hysteresis curve, the system
would become unstable against perturbations with k = 0 (dot-
ted line). However, before reaching the plane-wave switching
threshold the uniform solution becomes modulationally un-
stable and spontaneously forms transverse structures (dash
dotted line). If one starts a numerical simulation with a uni-
form solution on the upper branch while decreasing the input
intensity, similar behavior is observed. Before reaching the
uniform threshold modulation instability sets in and trans-
verse structures are formed. Typically localized states exist in
the parameter range where the uniform dark branch coexists
with a structured bright branch [42, 81, 82].

The localized states now can be generated by illuminat-
ing the LCLV’s photoconducting side with a bright, random
light distribution. While illuminating the system first switches
to a bright state. After illumination localized states start to
form. During transient states the localized structures inter-
act. They spontaneously drift, very close structures merge,
while others lock at typical distances and some simply dis-
appear. Finally steady state configurations evolve, which can
be stationary to more than half an hour. How the formation
of localized structures evolves can be seen in Fig. 3. Analyz-
ing the positions where localized states evolve, it is found that
the localized states preferably form at favorite pinning pos-
itions [81]. Most likely inhomogeneities in the phase profile
of the feedback wave are responsible for these favorite pin-
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FIGURE 2 Results of a linear stability analysis (right hand side of the
image) and the corresponding plane wave solution (left hand side of the
image). The uniform solution becomes unstable against perturbations with
wave number k in the grey shaded area. The plot of the plane wave solution
shows the hysteresis behavior of the system (negative slopes are unstable so-
lutions), which results in a bistability of the system. Included in the plot are
thresholds, where the lower and higher branch of the plane wave solution (o)
become modulationally unstable and where the uniform solutions becomes
unstable against k =0

FIGURE 3 Creating localized structures by illumination with white light.
The system switches to a broadly excited solution (image (1)). Solitary spots
form while interacting with each other ((2)—(3)). After some seconds steady
states form (4). Beam aperture: d = 8 mm; propagation length L = —13 cm

ning positions. These inhomogeneities in the phase profile can
either result from imperfections in the imaging system such
as dust particles or small misalignments in the beam path or
result from spatially inhomogeneous response of the LCLV.

3 Fourier control of localized states

In the following, we are going to apply the Fourier
control scheme to control the localized states. We expect the
localized structures to rearrange themselves in accordance to
the symmetry and the distances determined by Fourier con-
trol. In this respect, low pass filtering directly in the feedback
arm has already been used to alter the locking distances be-
tween localized states [83]. This result makes the application
of a control scheme in Fourier space promising to now also
modify the symmetry of interaction.

31 Experimental setup: Fourier control

Experimentally the Fourier control is realized all
optically by adding a control arm (marked area in the scheme
of the control setup in Fig. 4) to the feedback. At the beam
splitter (BS2), a fraction of the light wave is coupled from the
feedback into the control arm. The feedback wave is imaged
to the LCLV’s write side, without alteration by reflection at
amirror and the beam splitter.

Within the control arm, a Fourier transformation and its
inverse operation are performed optically by lenses in a 4 f-
configuration. The Fourier filtering is realized at the focal
plane between the lenses, where a amplitude mask is placed.
The Fourier transformed wave passes the Fourier mask (F),
where the target state is blocked. Afterwards the control sig-
nal, which now consists of the deviations from the target state,

L1 A2 L2

FIGURE 4 Scheme of the experimental setup with Fourier control. The
light wave splits into a feedback arm and a control arm at a beam splitter
(BS2). The control signal is created with the help of Fourier masks (F), which
block the target state. At the beam splitter (BS2) control signal and feedback
signal interfere destructively, which is equivalent to a subtraction. (a more
detailed description can be found in the text)
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is inversely Fourier transformed, reflected at the mirror at the
end of the control arm and therefore passes the Fourier masks
twice.

The combination of feedback arm and control arm form
an interferometer of the Michelson type. The phase differ-
ence between control and feedback can be adjusted, such
that destructive interference over the complete aperture is
yielded. This condition is equal to the subtraction of the con-
trol wave from the feedback wave. The strength of the control
$2 = Lontrol / Ireedback Can be altered by changing the fraction
between intensity of the control signal, in respect to the feed-
back wave.

Note, that in the case of localized structures, a much
broader band of wave numbers in k-space can be excited than
in the case of patterns where only the critical wave number
k. or distinct higher orders are excited. To position local-
ized states closer than 1/k., which determines their structure
size, is not sensible, because it will result in the merging of
localized structures. Therefore we use control at wave num-
bers k < k.. The masks were designed such that they block
the wave number kp,,sx as fundamental mode. Fourier compo-
nents equivalent to modes of a square grid and a hexagonal
grid were chosen. To make certain that the zeroth order,
which contains the largest fraction of intensity, is completely
blocked and in order to simplify experimental adjustment the
central spot of the mask was designed slightly larger than the
other spots.

3.2 Results: Fourier control

From the start it was not obvious how localized
states would behave with control applied. Especially the dan-
ger to suppress localized structures by control could not be
excluded, because the control favors the Fourier modes of the
target state, while it suppresses all other modes.

If carefully adjusting control such that suppression of
modes essential for the existence of localized states was
avoided, Fourier control enables one to position localized
structures in accordance to target grids with hexagonal and
square geometry in experiment (Fig. 5). As before localized
structures have been addressed by an inhomogeneous illu-
mination of the LCLV’s write side, while now the Fourier
control was active. In the experiments a propagation length
of L =—10cm was used and the voltage applied on the
LCLV was Uc = 7.5 Vyp. The beam aperture was 8 mm
wide and the control strength set to s> &~ 3%. Two different
scales of the Fourier masks were used experimentally. The
masks selected either a square or hexagonal target symme-
try at two different wave numbers, namely kpag = 13 mm™!
and ke = 10 mm™', in Fourier space. An estimation of the
critical wave number k., which neglects diffusion [38,40],
yields k. = 27/+/2AL = 19 mm~" for the parameters used
in experiment. The typical minimal distances between lo-
calized states change to the distance selected with the con-
trolling scheme. Using kyax = 10 mm™' a minimal distance
between the localized states of d,, = 630 wm was observed,
while the minimal distance changed to dp, = 480 um, when
kmask = 13 mm~! was used. Also the localized structures ar-
range themselves in accordance with the symmetry selected
by Fourier control [81].

For comparison also numerical simulations have been per-
formed using the model described by (1) and (2). The numer-
ical findings are in agreement with the experiment. However
it was observed that starting from a small number of localized
states addressed as initial states a patterned domain consisting
of localized structures grows, when control is applied (Fig. 6).
As reason for the growth of the patterned domain we suggest
a process which involves the changed diffraction ring struc-
ture. Due to active control, the diffraction ring changes from
the typical circular structure to a square or hexagonal struc-
ture depending on the control symmetry. Simultaneously with
these modifications, the localized structures attract each other.
This causes the superposition of the modified ring structure.
The intensities are higher exactly at the intersection positions,
which agree with empty places of the hexagonal or square
grid. Thus the application seems to induce the ignition of new
localized states exactly at places between interacting local-
ized structures. As can also be seen in the evolution, noninter-
acting single localized states are not involved in this process.

In the experiment the numerically observed growth of pat-
terned domains could not clearly be confirmed, due to the
sensitivity of the Michelson interferometer, which is formed
by the feedback and control loop, to vibrations and distur-
bances. The disturbances of the interferometer result in a drift
of phase difference between feedback and control loop and

Fask = 10mm !

kmask = 13mm ™!

II{‘XH}__','UII square

FIGURE 5 Experimental images of controlled localized structures. Fourier
control orders localized structures in square and hexagonal symmetries with
different typical distances between the structures. Beam aperture: 8 mm;
propagation length L = —10cm

FIGURE 6 Numerical simulations with hexagonal (/. row) and square (2.
row) control. The control forces solitary spots to arrange in accordance to the
control grid. New spots get switched on at edges and on gap positions
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therefore lead to a change from destructive to constructive in-
terference. If constructive interference occurs, the control is
deactivated and the deviations from the target state are even
amplified in the system. Additionally, constructive interfer-
ence results in an increase of the write intensity and conse-
quently localized structures can be generated spontaneously.
Due to this instability of the interferometer it was not possible
to address localized structures individually. Instead a broad
random intensity distribution has been used to address local-
ized structures, while control was already active. Therefore,
the control induced evolution of individual localized struc-
tures has not yet been studied. In consequence it is difficult to
compare numerical and experimental findings in that respect.

4 External forcing

A principal disadvantage of Fourier methods, if
applied to localized states, is the global action on distinct spa-
tial modes. Consequently the positions of localized states can
only be controlled relative to each other. However, an exact
spatial positioning would be required in context of potential
application. To achieve such an absolute positioning control
must be applied in real space. In order to allow for the ne-
cessary flexibility and adaptability to the control needs, we
now investigate application of an external forcing method to
control localized states. The forcing input can be arbitrarily
designed and also the creation of dynamic forcing schemes
is possible. As forcing input we are going to generate spatial
intensity distributions, which we will incoherently add to the
feedback system. The response of the system and particularly
of the localized states is then studied. As we use purely opti-
cal input to the system, one can interpret the suggested scheme
as all-optical control of the nonlinear system. Also we do not
give up the system -inherent degrees of freedom, as we do not
introduce any pixelation into the feedback loop.

4.1 Experimental setup: forcing

To implement the forcing into the single-feedback
setup, a digital LC data projector (DP) has been used
(schematic setup in Fig. 7). Gray scale images, intended as
arbitrary forcing inputs, were created on a PC and have been
used as input for the display of the data projector. The result-
ing intensity distribution from the LC display is then projected
to the photoconducting side of the LCLV with the help of
a lens (L4). In front of the beam splitter, which couples the
forcing input to the ordinary feedback loop, two polarizers
and neutral density filters are placed. The first polarizer se-
lects the green fraction of the RGB-signal from the projector.
The strength of forcing can be adjusted in three ways. Firstly
the combination of neutral density filters can be changed.
Secondly the transmission of the second polarizer can be mod-
ulated by changing the rotation angle of the polarizer. Thirdly
the grey scale values of the forcing input can be modified.
For the forcing experiments, a LCLV from another producer,
which shows higher sensitivity than in the Fourier control ex-
periments, has been used. Thus, the LCLV was operated for
the following experiments at a bias voltage of Uexe = 6.5 V.
The pump intensity was set to I, = 39 mW /cm?.

The additional incoherent light distribution from the forc-
ing input results in a local offset of the induced phasemod-

L1 A2 L2 PP

)

DP

FIGURE 7  Scheme of the experimental setup with forcing. The forcing in-
put is created with a data projector (DP) as an incoherent white light intensity
distribution. The forcing input is added to the feedback signal by projecting
it to the photoconducting side of the LCLV with a lens (L4)

ulation ¢ ((1)). The consequences of this offset are twofold:
Firstly the “working point” of the LCLV is locally shifted and
thus the LCLV s sensitivity is locally modified. This effect can
be used to compensate for inhomogeneity and also to address
localized states. Secondly the local offset in phase ¢ can be
used to create a landscape of the phase gradient. As mentioned
above localized structures move towards maxima (or minima)
of a phase gradient. Thus, dynamic and static positioning of
localized states is enabled according to the modified phase
profiles.

4.2 Balancing experimental imperfections

As mentioned above experimental imperfections,
such as dust particles, imperfections in the planar pump wave,
or a smooth spatial variation of the nonlinearity’s sensitivity
influence the positions of the localized states through induced
phase gradients. In the LCLV experiment one of the major im-
perfections represents the non-homogeneous spatial sensitiv-
ity function of the LCLV. These smooth modulations in sensi-
tivity are mainly caused by inhomogeneities in layer thickness
due to imperfections in the fabrication of the LCLV’s layer
structure. Due to these variations the induced phase shift ¢
(1) varies smoothly in space. This variation is not included in
the numerical model described in (1). It can however be in-
cluded, if one makes either the maximal phase shift gy, or the
fit parameters Sy, k1, k2 space-dependent. In first approxima-
tion the central area of the LCLV’s aperture seems to be more
sensitive than the margins. The resulting inhomogeneities in
sensitivity hinder the existence of localized structures in some
areas, as localized states react more sensitive against these in-
homogeneities than it e.g., seems to be the case for periodic
patterns.

We now experimentally determine the spatial distribution
of the sensitivity function of the LCLV and intend to use the
inverted sensitivity function as forcing input to balance these
modulations in sensitivity. The inverted sensitivity function
has been determined by steadily increasing the intensity of
a uniform forcing input. For this purpose, we altered the grey
scale values of the input images. If the sensitivity of the LCLV
was homogeneous, localized structures would ignite over the
whole aperture at the same forcing intensity level. The in-
tensity levels at which localized states ignite, however, vary
from space to space. We now take the local intensity level
at which a localized structure ignites as a measure for the
LCLV’s sensitivity at this position. The inverse of this result-
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FIGURE 8 Compensation of inhomogeneous sensitivity: (leff) System
without compensation. (center) Inverse sensitivity function of the system.
(right) System with compensation. The region of existence with compensa-
tion is extended. Diameter of the aperture: 8 mm

ing sensitivity function (depicted in the center of Fig. 8) then
has been used as the forcing input, which was added incoher-
ently to the feedback signal in order to compensate for the
inhomogeneities. The areas outside the aperture (A1) have
been set to zero. By adding the inverted sensitivity function as
forcing input, the system thus experiences an additional phase
shift in regions where the induced phase shift without com-
pensation is smaller than in the more sensitive areas. Finally,
if the compensation is applied, the intensity level and contrast
of the forcing input are adjusted such that a homogeneous sys-
tem response is achieved, while the system remains below the
switching threshold for igniting localized structures. As the
experimental images in Fig. 8 show, the method allows one to
compensate for the inhomogeneities in sensitivity.

With forcing used as compensation almost the whole aper-
ture can be used to address bistable localized structures in-
stead of only a small area. Compare the area, where station-
ary bistable localized states exist, without compensation (left
hand side of Fig. 8) with the area of existence in the com-
pensated system (right hand side of Fig. 8). Therefore an
increased homogeneity of the experimental setup has been
achieved with this method.

4.3 Static addressing and positioning

Depending on the strength of the forcing input,
forcing also can be used to favor addressing positions or to
address localized structures. To demonstrate this possibility,
we multiply a chess board pattern, which varies from zero in
black areas to one in its bright fields, with the compensation
function, derived above in Sect. 4.2, and use the resulting in-
tensity distribution as forcing input (left hand side of Fig. 9).
If the strength of the forcing input is adjusted such that the in-
tensity level at the photoconducting side of the LCLV, which
consists of the feedback intensity and the forcing signal, re-
mains below the switching thresholds for localized states,
the forcing favors addressing positions. The system keeps its
local bistability and individual localized states can be ignited.
However, instead of forming at randomly distributed spon-
taneous pinning positions, favorably they now ignite at the
positions selected by the forcing signal, which are the bright
positions of the chess board pattern. In the right-hand-side
image of Fig. 9, this favoring of positions can be observed.
To create this image the forcing and the pump intensity have
been kept at a constant level, while the photoconducting write
side has been briefly uniformly illuminated to address lo-
calizes structures. As can be seen localized states form at

FIGURE 9 Using a chess board pattern (leff) as static forcing input to
position localized states (right). The individual localized states can remain
bistable depending on the forcing intensity. Diameter of the aperture: 8 mm

the positions, which coincide with the chess board geometry.
However small distortions from a perfect square grid are ob-
served in the positioning of localized structures. One reason
for these distortions are imperfect imaging properties of the
optical system used for the projection of the forcing input.
Only one lens was used for the projection of the forcing in-
put. The observed aberrations would be minimized, if a more
complex design for the projection was used. Another reason
for distortions in the square grid is a certain degree of freedom
in movement, which the localized states still possess within
one field of the chess board. In further steps, this can be ad-
justed more precisely by changing the size of the chess board
fields. At one grid position in the lower left-hand corner two
localized structures coexist at one chess board position. At
this position the forcing induced favoring did not work per-
fectly. This imperfection may be caused by a local imbalance
of the interplay between the strength of forcing, compensa-
tion and input intensity. We additionally observed indications
that localized states addressed at positions not selected by the
forcing input tend to move towards the positions favored by
forcing. However, we have not yet evaluated the exact motion.
If the intensity of the forcing input is higher than the switch-
ing threshold of localized states, the use of forcing results in
the addressing of localized states.

If the pump intensity level from the laser is chosen just
below the parameter region of bistability, localized states do
not form spontaneously. Addition of the square forcing sig-
nal can shift the system state into the bistable domain, while
still no localized states form spontaneously. If adding another
light signal, we observe ignition of localized states only at
positions where the forcing input and additional switching
light add. Localized states do not form at the dark areas of the
chess board and at positions not illuminated by the additional
switching light. Thus, this situation can be interpreted as the
realization of an all optical AND. Also, if we decrease the in-
tensity in the bright regions of the square forcing input, we
observe, that individual localized structures can be switched
off. In the LCLV setup yet erasing of localized structures has
only been demonstrated by superposing an addressing beam,
which was 7 out of phase with the feedback. Therefore, we
developed an erasure method, which does not require coherent
switching beams.

4.4 Dynamic positioning

In preliminary experiments also the possibility of
dynamic positioning enabled by the forcing method is demon-
strated. First indications of this possibility are the movements
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of localized states from off site chess board positions to on
site positions. In another experiment we extend the forcing
method to a dynamic method in order to reposition the local-
ized states. For this experiment a film with a moving chess
board pattern has been created. (The chess board pattern at the
left hand side of Fig. 9 was used.) In the film the chess board
slides continuously from right to left. The film was used as
forcing input. Results of this experiment are shown in Fig. 10.
In the image sequence only a fraction of the aperture is shown.
Localized states are addressed in a region near to the right bor-
der of the aperture, because here the intensity level of forcing
was slightly above the switching threshold for localized struc-
tures. While the chess board forcing moves to the left, also
the localized states move in this direction. As reference for the
movement two lines have been added to the image sequence.
The reference line on the right is fixed, while the reference line
on the left indicates the position of the moving chess board.
From the movement of localized states we conclude that the
steep phase gradient, induced by the border between the chess
board sections, if moved, pushes the localized states. Yet dy-
namic positioning only works in a comparatively small area
of the beam aperture. In other sections we yet observe erasure
of localized states, brief sticking of localized states to sponta-
neous pinning positions before they continue their movement
and spontaneous interactions between localized states. Sup-
pression of these effects can however be achieved, if the inten-
sity of forcing strength is more carefully adjusted in respect
to the pump intensity and to the strength of the compensation
signal. Also the homogeneity achieved with the compensation
can still be improved. However the experiments demonstrate
the ability of forcing to move and reposition individual local-
ized structures in a yet unknown way.

5 Conclusion

In conclusion we have demonstrated that Fourier
control and forcing are powerful tools, which allow one to
control localized structures in the LCLV system under opti-
cal feedback. Fourier control alters the interaction behavior

v v
t4 t7

FIGURE 10 Sequence with dynamic positioning of localized states. A sec-
tion of the aperture is shown. The localized states are addressed on the right,
while the forcing input, which is a chess board pattern, moves to the left. The
localized states follow the dynamic forcing input. Two reference lines illus-
trate the movement. The reference line on the right is fixed, while the line on
the left indicates the movement of the forcing input

t

of localized states. The localized states arrange themselves
in accordance to the target geometry and in accordance to
the target distances. Absolute positioning can be achieved by
forcing methods. Adding incoherent white light intensity dis-
tributions to the feedback systems allows one to compensate
for experimental imperfections. It can create artificial pin-
ning positions, where localized states favorably form and to
which they tend to move. If forcing intensity is adjusted ap-
propriately to the pump intensity, an all optical and can be
realized with the forcing. Also forcing can be used to address
localized structures. Additionally we also demonstrate that
dynamic forcing inputs can be used to dynamically position
localized structures. We hope that, in further experiments,
the control methods that we applied to the LCLV experi-
ment can be also used in other contexts. In particular the
application of these methods in systems, which use materi-
als with fast response times such as active and passive res-
onators with semiconductors as nonlinear material, would be
interesting.
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