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Abstract: We study numerically the counterpropagating vector solitons in 
SBN:60 photorefractive crystals. A simple theory is provided for explaining 
the symmetry-breaking transverse instability of these solitons. Phase 
diagram is produced that depicts the transition from stable counter-
propagating solitons to bidirectional waveguides to unstable optical 
structures. Numerical simulations are performed that predict novel 
dynamical beam structures, such as the standing-wave and rotating 
multipole vector solitonic clusters. For larger coupling strengths and/or 
thicker crystals the beams form unstable self-trapped optical structures that 
have no counterparts in the copropagating geometry. 
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1. Introduction 
  
Whenever a new class of solitary waves [1] is discovered, the question of their stability is 
raised. It pertains to structural stability of a homogeneous wave with regard to symmetry-
breaking transverse and modulational instabilities [2] during its evolution. Loosely speaking, 
transverse means instabilities induced in the plane transverse to the propagation direction, and 
modulational denote spatial changes to the wave as it evolves. Recently introduced counter-
propagating (CP) vector solitons in photorefractive (PR) media [3,4] present no exception. 

The formation and interactions of spatial screening solitons [5] have been studied mostly 
in the copropagation geometry, with few exceptions [3,4,6,7]. Steady-state CP solitons were 
considered theoretically in one transverse dimension (1D), in Kerr and local PR media. In 
addition, Ref. [4] introduces a time-dependent model for the generation of CP solitons, and 
Ref. [7] contains an experimental observation of stable CP solitons in an SBN:60 crystal, in 
the form of narrow stripes.  

Here we present theoretical and numerical study of 2D CP vector solitons in a similar 
crystal, display symmetry-breaking instabilities of such solitons when the propagation 
distance and/or the coupling strength are varied, and demonstrate the rich dynamics of 
different self-trapped beam structures that can form in the crystal. We formulate a simple 
theory that explains the split-up transverse instability of CP solitons as a first-order phase 
transition and display the corresponding threshold curve in the parameter plane. We present 
evidence of a second phase transition when, due to modulational instabilities, the steady-state 
asymmetric waveguides loose stability to time-dependent periodic and aperiodic optical 
structures. We perform numerical simulations of CP beams in PR media with time-dependent 
nonlinearity, and predict novel stable dynamical beam structures that possess no counterparts 
in the copropagating geometry. 

The study of CP beams is performed in a geometry that resembles an actual experimental 
setup. A Nd:YAG laser beam at 532 nm is split and focused onto the opposite faces of an 
SBN:60 crystal. The beam components are assumed to be colinear and partially coherent in 
the medium, which in experiments can be achieved by reflecting one component off the 
vibrating mirror or by propagating it through a diffuser. The c axis of the crystal is placed 
perpendicular to the propagation direction. To exploit the dominant electro-optic component 
r33 ≈ 200 pm/V of a typical SBN sample, the incident laser beams are linearly polarized, 
parallel to the c axis. A DC electric field of the order of 1 kV/cm is applied across the crystal, 
along the c axis, and the crystal is illuminated by a uniform white light, to create artificial dark 
conductivity. Such a geometry is appropriate for the formation of screening spatial solitons. 

The slowly varying beam components F and B counter-propagate in the crystal in the z 
direction, perpendicular to the c axis, which is also the x axis of the coordinate system. The 
space charge field generated in the crystal couples to the electro-optic tensor, giving rise to a 
change in the index of refraction, of the form ∆n=−n0

3reff E/2, where n0 is the unperturbed 
index, reff is the effective component of the electro-optic tensor, and E is the x component of 
the space charge field. The optical field is given as the sum of the amplitudes  
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[Fexp (ikz)+Bexp (-ikz)+cc]/2, k being the wave vector in the medium, so that the total light 
intensity (uniform plus beams) is modulated in the z direction  

 

                                ( )[ ]φε ∆+++=+ kzmII 2cos1)1(1 0 ,                                   (1) 
 

where I0=|F|2+|B|2 is the sum of individual beam intensities, ε is the degree of coherence of 
the beams, m=2FB*/(1+I0) is the modulation depth, and φ∆  is the phase difference between 
forward and backward beams. The intensity is measured in units of the background light 
intensity. It modulates the space charge field as well, which acquires the form  

                                                    [ ]ccikz ++= )2exp(
2
1

10 EEE ,                                         (2) 

 

where E0 is the homogeneous part of the space charge field, not to be confused with the 
external electric field, and E1 is the first Fourier component, proportional to ε. It is E0 that 
screens the external field, and E1 is responsible for the formation of gratings (with the wave-
number 2k) in the index of refraction along the z direction. 

The propagation of beams in the crystal is governed by the paraxial wave equations  
 

[ ]2/10 BEFEFFi z +Γ+∆−=∂ ,    [ ]2/*
10 FEBEBBi z +Γ+∆−=∂− ,         (3) 

 

where ∆ is the transverse Laplacian, Γ = (kn0x0)
2reff Ee is the coupling strength, Ee being the 

external electric field, and E0 and E1 are the dimensionless x components of the space charge 
field. The equations are put in the dimensionless form using the rescaling (x,y) → (x/x0, y/x0),  
z → z/LD, (F,B) → (F,B) exp (-iΓz). Here x0 is the typical beam waist and LD = 2kx0

2 is the 
diffraction length. Propagation equations can be put in a universal dimensionless form that 
contains no parameters or coupling constants. All the parameters are then hidden in the 
scaling quantities and the initial and boundary conditions. We prefer the form given here, with 
one explicit intensive control parameter Γ. The corresponding extensive control parameter is 
the crystal length L. 

In a local, isotropic approximation to the space charge field one assumes the following 
relaxation-type dynamics of its components [4,8]: 
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where τ = τ0 /(1+I0) is the relaxation time of the crystal, which also depends on the total 
intensity. The nonlocal, anisotropic theory of CP solitons [9] suggests that for the geometries 
of interest here the coherent aniso-description offers similar results to the incoherent iso-
description. The gratings induced in the z direction affect the propagation of beams little, in 
contrast to the standard two-wave mixing in PR media, when the gratings wavevector is 
aligned with the c axis. Therefore, we will consider only incoherent beams, ε = 0, so that E1 is 
absent. The propagation equations are then coupled only through the dependence of E0 on I0. 

2. Theory of beam displacement 
 

To explain the behavior of beams observed in numerical simulations, we adopt the particle 
point of view on solitons, whereby they are considered as bundles of focused rays boring an 
optical path through the crystal [10]. The trajectory of a soliton is represented by the 
expectation value of its transverse coordinates: 
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where A is the soliton envelope and It is the total transverse intensity, It = ∫ ∫ |A|2 dxdy, which 
plays the role of an effective mass. The motion of the soliton particle is governed by the 
Hamilton equations for the center of mass 
 

xp
dz

xd
= ,                     

x

V

dz

dpx

∂
∂−= ,                             (6) 

 

and a similar pair of equations for ‹y› and  py, where the conjugate momenta px and py are 
represented by the optical direction cosines, and the potential V = ΓE0 is the (negative) change 
in the refractive index. This amounts to viewing an optical soliton as a particle of mass 
proportional to the intensity, moving in a potential created by the change in the refractive 
index, which is caused by the soliton itself. Such a point of view is akin to the usual 
mechanics, except that the role of time is played by z, and the ''dynamics'' is in 2D. 

Particle picture is obtained from the ray optics. Quantization of the ray optics leads to the 
paraxial wave optics. In fact, the construction of rays from the wave optics is equivalent to the 
construction of classical mechanics from the quantum mechanics. The paraxial wave equation 
then corresponds to the time-dependent Schrödinger equation, 
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where p = -i∇ is the transverse gradient and ρ = (x,y) is the transverse position vector. The 
expectation values are determined using A for the wave function. Hence, one can view an 
optical soliton as a ''quantum mechanical'' object in the transverse plane, whose wave function 
is given by the slowly varying envelope of the beam, the potential by the induced change in 
the refractive index, and the momentum by the transverse gradient. The transition from the 
wave picture to the particle picture, i.e. the geometrical optics approach to spatial solitons, is 
well defined, as the size of beams is much larger than the wavelength, diffraction is absent, 
and incoherent beams are considered. 

The transverse displacement of the trajectory along z axis obeys the Ehrenfest theorem 
[11], 
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The idea is then to express a transverse displacement of the center of mass d = (dx,dy) in terms 
of the expectation values of the gradient of the space charge field. The expectation values are 
evaluated for the shifted and unshifted states Ad = A (ρ + d, z) and A0 = A (ρ, z), and then 
subtracted: 
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In evaluating the expectation values one utilizes the relation between the shifted and unshifted 
states Ad = exp (d · ∇ )A0 = exp (id · p)A0. Assuming that d is small one obtains 
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and ê is the unit vector in the transverse plane. The equation for d(z) is a harmonic oscillator 
equation, with the solution d(z) = a sin (K1/2 z)+b cos (K1/2 z), where the constants a and b are 
fixed by the boundary conditions. In the case of head-on collision of CP beams, the lowest 
order steady state mode for the F beam has d(0) = 0 at the entrance face of the crystal and 
d(L)≠0 at the exit face. This is similar to a vibrating elastic string whose one end is fixed and 
the other free. The lowest order mode for the B beam is the mirror image. For such a state 
there exists an obvious threshold condition 
 

( )
2
π=cKL ,                                                                  (12) 

 

To see the form of this threshold condition in the (L, Γ) plane one must include Γ. K seems to 
be linear in Γ. However, the integral in Eq. (11) carries another Γ. It comes from the scaling 
used to write dimensionless propagation equations. Had we used the scaling where no Γ 
appears, the threshold condition would appear the same, (L' K' 1/2 )c = π / 2, but the quantities 
in the primed coordinates would be connected to the unprimed through L' = ΓL, and K=Γ2 K'. 
Since K' does not contain Γ, it can be transferred to the other side of the threshold equation, 
and the threshold line in the (L, Γ) plane acquires the form (Γ L)c = const. Thus, the theory 
predicts a simple "pV = const." equation of state, with unshifted solitons existing below the 
threshold curve, and shifted solitons, or bidirectional waveguides, existing above the curve. 

A note of caution is required here. The theory developed thus far applies to steady-state 
situations. No mention is made of the ''true'' dynamics. Time enters into the picture through 
the explicit dependence of K on t. A variety of dynamical behaviors becomes allowed. 
Analytical analysis becoming prohibitive [12], we resort to numerical analysis, in both 1D and 
2D. 

3. Numerical simulations 
 

The spatial propagation equations and the temporal equations for the space charge field are 
solved concurrently. The numerical procedure consists in solving Eqs. (4) for the components 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Phase diagram in the parameter plane for the symmetry-breaking instabilities of 
bidirectional solitons in 1D. Below the lower curve CP solitons exist, above the curve stable 
bidirectional waveguides appear. The insets depict typical beam intensity distributions in the 
(x, z) plane at the points indicated. At and above the upper critical curve the waveguides 
loose stability. The points are numerically determined, the curves represent inverse power 
polynomial fits. L is measured in units of LD, while Γ is dimensionless.  
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of the space charge field in time, with the light fields obtained at every step as guided modes 
of the induced common waveguide. This is achieved by an internal spatial relaxation loop, i.e. 
nested within the temporal loop, that utilizes a beam-propagation method for the right- and 
left-propagating components. The spatial loop is iterated until convergence, and the temporal 
loop is advanced for a time step. The convergence in the temporal loop signifies that steady 
states are found, however it need not be reached. In that case time-dependent, dynamical 
states are observed. The procedure is described in Refs. [12, 13]. 

To capture the transition from a CP soliton to a waveguide clearly, we consider head-on 
collision of two identical Gaussian beams. In the absence of the other, each beam focuses into 
a soliton. We are interested in what happens when they are both present, and when the 
coupling constant Γ and the crystal length L are both varied. We note no qualitative difference 
between the 1D and 2D behavior, and present the 1D case. The situation is depicted in Fig. 1. 
It is seen that in the plane (L, Γ) of control parameters there exists a critical curve below 
which stable CP solitons exist. At the critical curve a new type of solutions appears, in which 
the two components do not overlap anymore, but split and cross each other. A few examples 
are depicted in the insets to Fig. 1. As the beams split, a portion of each beam remains guided 
by the other, therefore we term these solutions bidirectional waveguides. Both the solitons and 
the waveguides are steady-state solutions. According to the theory, one can easily define 
higher order steady-state modes. However, they are not easily detectable, since the system 
may become dynamically unstable before reaching them. As one moves away from the critical 
curve, into the region of higher couplings and longer crystals, a new critical curve is 
approached, where the steady-state waveguides loose stability. The second critical curve is 
also drawn in Fig. 1, and is similar in shape to the first one. The shape of these curves 
suggests an inverse power law dependence, in accordance with the theory presented here. In 
fact, the analytical expression for the fitting curves drawn in Fig. 1 contains a constant term 
close to Γ th = 2, and the terms linear and quadratic in 1/L. This suggests van der Waals-type 
corrections to the ''equation of state'' Γ L = const., and implies that the simple linear theory 
presented here is insufficient to account for all the varied behavior of the full nonlinear 
system. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Movies of Gaussian forward beam undergoing transverse displacement at Γ=9.2 and 
L=1.8. Beam size 15 µm FWHM. (a) The (x,y) plane (727 KB). (b) The (y,z) plane (971 KB).  

 
At and beyond the second critical curve dynamical solutions emerge. The time 

dependence varies from periodic to aperiodic. A richer dynamical behavior is observed in 2D, 
as compared to 1D, since there one has a larger phase space at disposal, and can launch beams 
carrying angular momentum and/or topological defects in their structure. Some 2D examples 
are presented below. 

Common to all simulations are the following data: diffraction length 5.55 mm, transverse 
scaling length 10 µm, laser wavelength 532 nm, electro-optic coefficient 180 pm/V, bulk 
refractive index n0=2.35. The value of the external electric field (of the order of 1 kV/cm) is 
used to fine-tune the coupling strength. The propagation lengths are given in units of LD, and 
the time in units of τ0. All initial fields are head-on. All the simulations are movie files 
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(MOV), depicting temporal evolution of the optical field in either the transverse (x,y), or the 
longitudinal (y,z) plane.  

In 2D, below the first critical curve, stable CP solitons are observed. In Fig. 2 we present 
a stable displaced bidirectional waveguide just above the threshold curve, for Γ=9.2, L=1.8, 
obtained by colliding two Gaussian beams of 15 µm FWHM. As seen, the Gaussians settle 
fast into a quasi-stable CP soliton, remaining steady until t ≈ 160τ, at which time they split 
within a few cycles to new transverse positions. A part of each beam remains at the old 
position, being guided by the other beam. This is in accordance with theory, which predicts 
that the center of mass of each beam will become transversally displaced at the exit face of the 
crystal as soon as the threshold is reached. For this rotationally symmetric geometry the 
direction in which the beams split is random. For rotationally non-simmetric beam 
configurations there exists a preferential direction, and this is the direction in which K grows 
the fastest. According to the threshold condition, the value of the critical crystal length is then 
the shortest, and, as the threshold is reached, the instability will preferentially grow in that 
direction. 

The enhanced stability of dipole beams, as compared to other beam structures in PR 
crystals, has been noted [14]. This applies to CP dipoles as well. In an earlier publication [15] 
we reported symmetry-breaking displacement of CP dipole-mode vector soliton (dipole beam 
plus the fundamental), similar to the displacement of simple CP solitons. Here we display the  
robust nature of two CP dipole beams, placed either parallel-parallel or parallel-perpendicular 
to the external field (Fig. 3). The initial fields are two incoherent dipole pairs, made of anti-
phased Gaussian beams. Within a couple of cycles in each geometry the dipole beams reach 
steady state, in the form of two bean-like deformed dipoles. They remain very stable, in 
comparing with other beam compositions considered here.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Movies of stable interacting dipoles. (a)-(b) Parallel-parallel geometry. (c)-(d) Parallel-
perpendicular geometry. (a) (1.263 MB) and (c) (1.307 MB) Output forward beams. (b) (1.263 MB) 
and (d) (1.298 MB) Output backward beams. Parameters: Γ=9.2, L=1.8, initial distance between 
dipole partners 24 µm, initial beam widths 10 µm FWHM. 

 
Interest in optical beams carrying angular momentum and topological defects in the 

structure has risen recently, owing to their useful features for pattern formation. In contrast to 
dipole-mode vector solitons, beam compositions containing optical vortices as components 
are noted for instability [16,17]. In the copropagating geometry a vector beam made of a 
fundamental Gaussian and a vortex beam disintegrates into a deformed two-peak central beam 
and a dipole beam. The fragmentation of the vortex component can proceed in more than two 
filaments, depending on the charge and the size of the vortex. An interesting theoretical 
difference is noted in the copropagation geometry: in the anisotropic modeling of PR 
nonlinearity, which is closer to the experimental situation, the breakup proceeds much faster 
than in the isotropic modeling. While the anisotropic vortex breaks within one LD, the 
isotropic vortex can propagate for tens of LD 's before disintegrating. 

As mentioned, in the CP case there is not much difference between the incoherent 
isotropic modeling and the coherent anisotropic modeling. Hence we observe that vortices 
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generally disintegrate within one LD. In addition, owing to time-dependent nature of the 
isotropic model employed, we observe interesting dynamical effects. In the next few figures 
we report different cases of two colliding vortices: a standing-wave structure when the 
vortices carry the same charge, a stable rotating structure when the charges are the opposite, 
and various unstable outcomes of vortex-vortex collisions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. Movies of standing multipole waves, as a result of collision of two identical vortices at Γ=19.1, 
for different values of L. Forward output beam is depicted, backward wave is mirror-image. Initial 
beam widths 24.5 µm FWHM. (a) L=0.8 (1.391MB), (b) L=1.1 (1.359 MB), (c) L=1.5 (1.307 MB). 

 
Figure 4 depicts standing-wave beams that are the result of the breakup of two identical 

CP vortices of topological charge +1. From (a) to (c) only one parameter is changed, the 
crystal thickness is increased from 0.8 to 1.1 to 1.5. After some time the vortices break in each 
case, and it is seen that the stable output changes from a tripole to a quadrupole. In Fig. 4(b) 
the beam first breaks into a meta-stable quadrupole, which eventually reverts to the stable 
tripole configuration. Such multipole clusters – dipoles, tripoles, quadrupoles, etc. – constitute  
the basic stable breakup modes of colliding vortices. 

Figure 5 presents a stable rotating beam structure resulting from the collision of two CP 
vortices with opposite charges. For the chosen set of parameters the beams continue to rotate 
indefinitely. They can be considered true rotating propeller solitons [18], as they rotate in time 
and can have more than two blades. Input vortices are the same as in Fig. 4(a), only the sign of 
the charge of vortex B is reversed. The beams co-rotate, and such a state in time represents a 
limit-cycle. It can not be accessed by the usual steady-state theory of vector solitons [14, 18]. 

 
                                                                        

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Movies of stable rotating forward beam at the output face, resulting from the collision of 
two oppositely charged vortices. The backward beam executes a mirror-image rotation. (a) The 
(x,y) plane (1.322 MB). (b) The (y,z) plane (1.841 MB). Parameters as in Fig. 4 (a). 

 
The initial beam structure of Fig. 5 is used to present spatio-temporally unstable states in 

Fig. 6(a), only the crystal thickness is increased to 1.5. By increasing L, or Γ, unstable 
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situations arise. After a long quasi-periodic regime the system jumps to a disordered state. In 
our limited time of observation no repetition of the mode structure is observed. Instabilities 
can also be reached by changing the initial composition of beams. Initial conditions in Fig. 
6(b) are the same as in Fig. 6(a), only the initial vortices are made wider. The system reverts 
to a periodic motion, however not a simple rotation of a stable structure. Finally, another 
unstable state is displayed in Fig. 6(c), it is still with wide initial vortices, but with a smaller 
coupling strength and crystal thickness. When these beams are made narrower, as in Fig. 5(a), 
the system similarly rotates (not shown). In the wider case the beams perform a motion similar 
to Fig. 6(a). However, it should be noted that the beams in that figure have acquired a higher-
order transverse mode structure before disintegrating, namely a ring plus a central peak. In 
Fig. 6(c) they attain only a simple ring structure. Nonetheless, the dynamics on the ring looks 
similar, and the final state is a disordered spatiotemporal mode structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Movies of unstable outputs of vortex-vortex collisions, forward output beam. (a) The same 
beam as in Fig. 5, only L is larger, L=1.5 (2.050 MB). (b) The same beam as in (a), only wider, the 
initial beam width 30 µm FWHM (1.444 MB). (c) Unstable vortex beam for the parameter values: 
Γ=16.1, L=1.3, initial beam width 30 µm FWHM (1.286 MB). 

 
In summary, we have considered various counterpropagating self-trapped beam structures 

in an SNB:60 photorefractive crystal. A time-dependent model for the beam propagation and 
interaction is treated numerically, and various self-focused solutions presented, including pure 
CP vector solitons. A symmetry-breaking transverse instability of these solitons is noted, and 
a simple theory provided for explaining such a transition. A corresponding phase diagram is 
produced that depicts the transition from stable CP solitons to bidirectional waveguides and 
unstable beam structures. Simulations are performed displaying novel dynamical beam 
structures, such as the standing-wave and rotating vector solitonic clusters. For larger coupling 
strengths and thicker crystals the beams form unstable optical structures that have no 
analogues in the copropagating geometry. 
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