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Dynamic counterpropagating vector solitons in saturable self-focusing media
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We display rich spatial and temporal dynamics of light fields counterpropagating in a saturable self-focusing
medium numerically, and analyze instabilities that counterpropagating solitons experience. An expression for
the maximum length that the medium must not exceed for the solitons to be stable is derived and connected to
the coupling strength of beam interaction. The instability can lead to periodic or irregular temporal dynamics
of the light beams. By considering mutually incoherent counterpropagating beams, we show that differences to
the copropagating case are due to the different boundary conditions.
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One of the most active fields in recent research on spa
solitons @1# is the investigation of vector solitons@2#, i.e.,
multicomponent light beams that jointly self-trap in nonli
ear media. Although some exceptions exist@3#, most of the
work published on this topic treated the case where all be
forming the soliton propagate in the same direction. Rec
papers@4–6# drew attention toward the possibility of crea
ing solitons out of counterpropagating~CP! light beams.
However, so far little attention has been paid to the tempo
dynamics of the system.

CP light fields are also used for investigating pattern f
mation in nonlinear optical systems@7#. In these experiments
the interference of CP fields and the resulting index grat
in the medium play a key role. In this paper, however,
consider only the case of mutually incoherent CP lig
beams, and thus ignore such index gratings. Our focus
be on the qualitative changes brought about by the diffe
boundary conditions compared to the copropagating c
Specifically, we show that CP fundamental beams can
form a soliton if the medium is too long or the couplin
strength too high, and that counterpropagation can lea
temporally dynamical states that can not be accessed by
usual steady-state treatments. A critical curve is identified
the plane (L,G) of control parameters, whereL is the me-
dium thickness andG the beam coupling strength, whic
separates steady-state soliton solutions from the spat
and/or temporally changing solutions.

We consider two mutually incoherent light fields in a no
linear medium. In paraxial approximation the propagation
the beams is expressed by the set of equations

i ]zF~r,z!52¹'
2 F~r,z!1GE0~r,z!F~r,z!, ~1a!

2 i ]zB~r,z!52¹'
2 B~r,z!1GE0~r,z!B~r,z!. ~1b!

HereF is the amplitude of the beam propagating in the po
tive z direction andB is the amplitude of the beam propaga
ing in the opposite direction. The spatial coordinates in
plane orthogonal to the direction of propagation are deno
by r and¹'

2 is the transverse Laplacian. For the CP bea
one has split boundary conditions, i.e., the beam amplitu
F(r,z50) andB(r,z5L) are specified at the opposite cry
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tal faces. This is in contrast to the copropagating case, wh
the amplitudes of both beams are specified atz50.

G measures the strength of the nonlinearity andE0 is the
nonlinear response of the medium. In the following we ad
a model that can be applied to metal vapors and that,
though ignoring the nonlocality and anisotropy of the cry
tals, can be used as a simplified model for photorefrac
media @8#. Then G5(kn0x0)2r e f fEe , wherek is the wave
number of the laser used,n0 is the refractive index of the
unperturbed medium,r e f f is the effective coefficient of the
electro-optic tensor, andEe is the externally applied voltage
needed for the screening effect to occur. Lengths in the tra
verse plane are scaled tox0, usually a typical beam width
and in thez direction they are scaled to the diffraction leng
LD52kx0

2. The temporal evolution of the nonlinearity i
modeled by

t] tE01E052
I

11I
, ~2!

t being the relaxation time of the crystal andI is the light
intensityuFu21uBu2 scaled toI d , which is the so-called dark
intensity. In the following we set x0510 mm, Ee
51.8 kV/m, r e f f5180 pm/V, n052.35, andk52pn0 /l0 ,
l0 being the laser wavelength~532 nm!. This gives usG
513.8.

We are using the so-called isotropic model to describe
nonlinearity of the photorefractive crystal for the sake
simplicity. The role of the anisotropy@9# needs to be as
sessed for future investigations.

First we investigate the counterpropagation of two bea
each being the fundamental mode of the jointly induc
waveguide, thus forming a soliton. As input we use two ide
tical numerically calculated solitary beam profiles, with
maximum intensity of about 3I d at the input faces of the
crystal. Up to the length of the medium of 0.65LD no sign of
instability is observed, and both beams propagate through
jointly induced waveguide as solitons. However, atL
50.68LD the solitary solution becomes unstable. The res
is shown in Fig. 1. Att525t the beams still propagate a
solitons through their jointly induced waveguide. But th
white noise included in the system excites an eigenmode
©2003 The American Physical Society11-1
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grows in time and att5100t the beams no longer propaga
as solitons, i.e., their intensity profiles change along
propagation direction. Both beams deviate inside the m
dium from the straight initial trajectories. As a consequen
the beams no longer coincide atz50 andz5L. Since the
initial problem is rotationally symmetric, the direction int
which the beams deviate is random. The intensity distri
tion at t5150t, presented in the bottom row of Fig. 1, show
a steady state of the system. Rotating this state by an a
trary angle around thez axis also yields a steady state. Ther
fore the noise present in the system can randomly turn
state in one or the other direction. Any such rotation, ho
ever, takes place on a much slower time scale than the
velopment of the instability.

Thus, the numerical results show that the length of
medium plays a significant role in the stability of CP so
tons. Another important factor is the power of the beam
Decreasing the power of the beams stabilizes the CP solit
However, if L is increased, the solitons become unsta
again and change in a way similar to Fig. 1. In addition, iL
is further increased, the beams do not reach steady state
keep changing with time.

These results seem to contradict results obtained for
solitons in copropagating geometry. Two mutually incoher
solitons always attract each other, therefore one would
pect that the two CP beams always form a stable soliton
find an explanation for this instability, we consider the C
beams as particles whose motion along thez axis is subject
to forces caused by the refractive index change in the
dium @10#. Thus, we will only be concerned with the motio
of the ‘‘center of mass’’ of the beams,c1(z,t) and c2(z,t).
The center of mass of each beam will be attracted by
waveguide induced in the medium by the beams. Beca
the medium is noninstantaneous, we assume that the mo
of ci is determined by the light distribution a timet ago.
Furthermore, it is assumed that the force acting onci is pro-
portional to the distance from the center of the wavegui
We thus arrive at a simple linear set of equations

FIG. 1. Counterpropagating fundamental beams for a medium
lengthL50.68LD . The left column shows the forward and the rig
column the backward beam~the arrows indicate the direction o
propagation!. The top row is a snapshot aftert525t. Both beams
propagate through the medium as solitons. Att5150t ~bottom row!
the beams no longer propagate as solitons, but instead devia
their way through the crystal.
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]zzc1~z,t !5K@c1~z,t2t!2c1~z,t !#

1K@c2~z,t2t!2c1~z,t !#, ~3a!

]zzc2~z,t !5K@c1~z,t2t!2c2~z,t !#

1K@c2~z,t2t!2c2~z,t !#, ~3b!

where the constantK is determined by the strength of th
nonlinearity and the power of the CP beams, and represe
measure for the mutual attraction of two beams. An appro
mate value ofK is calculated below. To further simplify the
problem, the separation of the centers of mass of two be
d(z,t)5c1(z,t)2c2(z,t) is introduced as one dynamica
variable, and the center of mass of the systemC(z,t)
5@c1(z,t)1c2(z,t)#/2 as the other. Furthermore,ci(z,t2t)
is replaced byci(z,t)2] tci(z,t)t. Then the temporal evolu
tion of the system can be described as

052]zzd~z,t !22Kd~z,t !, ~4a!

2Kt] tC~z,t !52]zzC~z,t !. ~4b!

~Note that there is no] td(z,t) term.!
We analyze the stability of the solutiond(z,t)[0 and

C(z,t)[0 using the tools of nonlinear dynamics. The fo
lowing unstable eigenmode is identified as

d~z,t !5exp~lt !sin@A2K~z2L/2!#er, ~5a!

C~z,t !5A exp~lt !cos@A2Ktl~z2L/2!#er, ~5b!

whereer is unit vector in the transverse plane. The const
A and the growth rate of the instabilityl can be determined
from the boundary conditionsc1(0,t)5c2(L,t)50 and
]zc1(0,t)5]zc2(L,t)50. Using Eqs.~5! this translates into

2A cos~A2KtlL/2!5sin~A2KL/2!, ~6a!

2AAtlsin~A2KtlL/2!52cos~A2KL/2!. ~6b!

Discarding the unphysical casetl.1 @in this caseci(z,t
2t) can no longer be replaced byci(z,t)2] tci(z,t)t as
done in the above calculations# it can be shown that the
solutions with positivel ~unstable eigenmodes! can only
exist if L.Lc , where

Lc5p/A2K. ~7!

As can be seen from Eqs.~5! unstable eigenmodes exis
for any orientation of the unit vectorer . These eigenmode
compete with each other, but only one can dominate
grow exponentially. In the real physical model described
Eqs. ~1! and ~2! higher-order effects become important f
growing deviations from the beams’ initial trajectory, thu
leading to the steady state shown in Fig. 1.

To ascertain whether this simple criterion can serve as
estimate for predicting the onset of instability of CP soliton
one needs an estimate forK. To this end, we consider th
case where the two beams that form the soliton are slig
shifted relative to each other, i.e.,F(r,z)5c(r1eer) and
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DYNAMIC COUNTERPROPAGATING VECTOR SOLITONS . . . PHYSICAL REVIEW E 68, 066611 ~2003!
B(r,z)5c(r2eer). Herec(r) is the solitary beam profile
ande measures the distance between the two beams. In
ing this into Eqs.~1!, and assuming a steady state, we fin

i ]zF5bF1eG~er•“'!E0F ~8!

and an analogous equation forB, where the real constantb is
the propagation constant of the soliton. The last term on
right-hand side of Eq.~8! bends the beam towards the C
beam and also deforms it. Since we are only interested in
motion of the center of mass, we ignore this deformati
Thus, the bending of the beam is averaged over the tr
verse plane. From the motion of the center of mass we ob
the equation

]zze5G
E ~er•“'!2E0uCu2dr

E uCu2dr

e. ~9!

We thus have

K52
G

2

E ~er•“'!2E0uCu2dr

E uCu2dr

. ~10!

Inserting the value ofK thus obtained into Eq.~7! we find
that Lc50.84LD for the soliton in Fig. 1, which is longe
than the numerically determined stability threshold of ab
0.68LD . Nonetheless, this is still reasonably close, consid
ing the crude approximations used. In addition, Eqs.~7! and
~10! can explain the fact that solitons with lower intens
can be stable in longer media because they have a lo
value of K. This is due to the fact that the refractive inde
change induced by weaker beams is smaller, and there
the waveguides are not as attracting.

Similarly, Eqs.~7! and ~10! can explain why increasing
the strength of the nonlinearity destabilizes CP solitons.
creasing the strength of the nonlinearity, for example,
increasing the externally applied voltageEe means increas
ing the value ofG. If we consider the length of the medium
L fixed and instead allowK to vary, Eq.~7! can be written as
Kc5p2/2L2, whereKc is the minimum value ofK needed to
obtain an unstable eigenmode in the system of model E
~3!. Using Eq.~10! this can be translated into an equation f
a critical value ofG where the instability sets in

Gc52
p2

L2

E uCu2dr

E ~er•“'!2E0uCu2dr

. ~11!

Note that the quotient of the integrals on the right-hand s
scales as 1/G for solitons with the same maximum intensit
hence in the (L,G) parameter plane the stable and unsta
configurations are, according to Eq.~7!, separated by the
critical line GL5const. For solitons with a maximum inten
sity of 0.9I d in each component we calculateGc516.9 for a
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medium of lengthL50.8LD . Numerically we found that the
solitons become unstable ifG is bigger than 13.1. Equation
~7! and ~10! thus can not be used as an exact criterion
predict the stability properties of CP solitons, but can se
as an estimate where to look for the critical length of t
medium where the solitons become unstable. Furtherm
they give an insight into the mechanisms which cause
instability.

In the next step we investigate the stability of solito
consisting of a fundamental and a dipole mode. Dipole-mo
vector solitons are well studied in copropagating geome
and are known to be very robust@11–13#. As in the case of
two CP fundamental modes, the simulations show that
beams no longer propagate as solitons through the med
if the medium length exceeds a certain value. In Fig. 2
present a case where the medium length is slightly above
critical value. As already seen in Fig. 1, the beams dev
from their initial trajectories as they propagate. It is intere
ing to notice that the deviation occurs in a direction perp
dicular to the plane of the dipole. This fact can be explain
by reconsidering the arguments that lead to the set of E
~3!. There we considered the case of two CP rotationa
symmetric solitons. Because of the rotational symmetry,
value of K is independent of the direction into which th
beams deviate. The problem of a CP fundamental and dip
beam, however, is not rotationally symmetric. Numerical c
culations show that the two beams attract each other m
strongly when they deviate perpendicular to the dipole pla
than when they deviate parallel to the plane. This leads
higher effective value ofK for deviations perpendicular to
the dipole plane, and therefore to a shorter critical lengthLc ,
according to the estimate, Eq.~7!. Therefore only two stable
steady states of the system exist: the one shown in the
tom part of Fig. 2 and the other one, where both bea
deviate by the same amount in the opposite direction.

The following step is to investigate the counterpropag
tion of a fundamental beam and a vortex. We found that
short values ofL, used so far, there is no deviation of th
beams during their propagation through the medium. But
could be expected from the analogy to the copropaga

FIG. 2. Counterpropagating fundamental and dipole beams f
medium length ofL50.82LD . As in Fig. 1, the beams initially
propagate as solitons~upper row!. When the instability sets in, the
light distribution is no longer symmetric to the dipole axis~bottom
row!.
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case, the vortex breaks up into a dipole beam during pro
gation, if the medium is long enough. Moreover, this syst
does not possess a steady state. An example of the tem
dynamics is shown in Fig. 3. HereL51.1LD . At t515t the
vortex has not yet broken up into a dipole. Att525t how-
ever, the vortex beam incident upon the crystal leaves
crystal as a dipole. This also leads to a deformation of
fundamental beam. Note that the dipole and the fundame
beam are not aligned in the figure, because the two beam
shown at two different positions in the crystal,z50 andz
5L, respectively. The dipole and the fundamental beam
rotate with time. In the simulations the rotation continu
indefinitely ~we stopped the simulations att5200t). This
rotation, therefore, represents a periodic dynamic state o
system.

In the final step we examined the case of two CP vortic
In this case the vortices breakup as well, surprisingly not i

FIG. 3. Temporal evolution of a fundamental beam and a
vortex forL51.1LD . After a certain time, the vortex breaks up in
a dipole that rotates with time. The fundamental beam splits
two beamlets that corotate with the dipole. The left column sho
the fundamental beam, the right column the vortex.
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two beamlets, as could be expected, but into three beam
as shown in Fig. 4. They thus strongly remind of rotati
soliton clusters investigated in Ref.@14#. As in the case of the
counterpropagation of a fundamental and a vortex beam,
beamlets start to rotate at the exit faces of the crystal.
vortices’ diameter must, however, be chosen carefully for
rotation to occur. In this case we observe rotation of
beamlets for times up tot580t. This time corresponds to
more than five round trips. After that the motion of the bea
lets becomes irregular.

In summary, we have shown that because of the differ
boundary conditions, solitons in photorefractive media b
have very differently in counterpropagating geometry than
copropagating geometry. If the medium exceeds a cer
length, or the coupling exceeds a certain strength, the
solitons consisting of two fundamental beams become
stable. It has been shown that this effect can be explaine
considering a very simple model describing the motion of
centers of mass of beams. Furthermore, the counterprop
tion of a fundamental and a vortex beam leads to a tem
rally periodic dynamical state of the system. The count
propagation of two vortices leads to rich dynamic behav
that can be periodic, as well as irregular.
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FIG. 4. Isosurface plot of two CP vortices. Breakup into thr
rotating beamlets is visible. Because of the topological charge,
beamlets start to spiral, which is only weakly visible due to t
short propagation distance. The beamlets rotate in the direction
dicated by the arrow on the right.
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