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Dynamic counterpropagating vector solitons in saturable self-focusing media
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We display rich spatial and temporal dynamics of light fields counterpropagating in a saturable self-focusing
medium numerically, and analyze instabilities that counterpropagating solitons experience. An expression for
the maximum length that the medium must not exceed for the solitons to be stable is derived and connected to
the coupling strength of beam interaction. The instability can lead to periodic or irregular temporal dynamics
of the light beams. By considering mutually incoherent counterpropagating beams, we show that differences to
the copropagating case are due to the different boundary conditions.
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One of the most active fields in recent research on spatidghl faces. This is in contrast to the copropagating case, where
solitons[1] is the investigation of vector solitor[®], i.e.,  the amplitudes of both beams are specified=a0.
multicomponent light beams that jointly self-trap in nonlin-  I" measures the strength of the nonlinearity &jpds the
ear media. Although some exceptions eXxBl, most of the  nonlinear response of the medium. In the following we adopt
work published on this topic treated the case where all beams model that can be applied to metal vapors and that, al-
forming the soliton propagate in the same direction. Recenthough ignoring the nonlocality and anisotropy of the crys-
papers[4—6] drew attention toward the possibility of creat- tals, can be used as a simplified model for photorefractive
ing solitons out of counterpropagatingP) light beams. media[8]. ThenT =(knyXo)?res{E., Wherek is the wave
However, so far little attention has been paid to the temporahumber of the laser used, is the refractive index of the
dynamics of the system. unperturbed mediun,ss is the effective coefficient of the

CP light fields are also used for investigating pattern for-electro-optic tensor, and, is the externally applied voltage
mation in nonlinear optical systerfig]. In these experiments needed for the screening effect to occur. Lengths in the trans-
the interference of CP fields and the resulting index gratingrerse plane are scaled %, usually a typical beam width,
in the medium play a key role. In this paper, however, weand in thez direction they are scaled to the diffraction length

consider only the case of mutually incoherent CP lightl ,=2kx2. The temporal evolution of the nonlinearity is
beams, and thus ignore such index gratings. Our focus willhodeled by

be on the qualitative changes brought about by the different
boundary conditions compared to the copropagating case.
Specifically, we show that CP fundamental beams cannot 7ot Bo=— 177 2
form a soliton if the medium is too long or the coupling
strength too high, and that counterpropagation can lead to being the relaxation time of the crystal ahds the light
temporally dynamical states that can not be accessed by thetensity|F|?+|B|? scaled td 4, which is the so-called dark
usual steady-state treatments. A critical curve is identified inntensity. In the following we setxy=10um, E.
the plane [,I') of control parameters, whele is the me-  =1.8 kV/m, r4¢=180 pm/V, no=2.35, andk=2mn,/\,,
dium thickness and” the beam coupling strength, which \, being the laser wavelengtt®32 nmj. This gives usl’
separates steady-state soliton solutions from the spatially13.8.
and/or temporally changing solutions. We are using the so-called isotropic model to describe the
We consider two mutually incoherent light fields in a non- nonlinearity of the photorefractive crystal for the sake of
linear medium. In paraxial approximation the propagation ofsimplicity. The role of the anisotrop§d] needs to be as-
the beams is expressed by the set of equations sessed for future investigations.
First we investigate the counterpropagation of two beams,
i0,F(p,2)=—V2F(p,2)+T'Eo(p,2)F(p,2), (18  each being the fundamental mode of the jointly induced
waveguide, thus forming a soliton. As input we use two iden-
—iazB(p,z)=—VfB(p,z)+FE0(p,z)B(p,z). (1b)  tical numerically calculated solitary beam profiles, with a
maximum intensity of about I3 at the input faces of the
HereF is the amplitude of the beam propagating in the posicrystal. Up to the length of the medium of OlGSno sign of
tive z direction andB is the amplitude of the beam propagat- instability is observed, and both beams propagate through the
ing in the opposite direction. The spatial coordinates in thgointly induced waveguide as solitons. However, kat
plane orthogonal to the direction of propagation are denoteek0.69_ the solitary solution becomes unstable. The result
by p and Vf is the transverse Laplacian. For the CP beamgs shown in Fig. 1. Att=257 the beams still propagate as
one has split boundary conditions, i.e., the beam amplitudesolitons through their jointly induced waveguide. But the
F(p,z=0) andB(p,z=L) are specified at the opposite crys- white noise included in the system excites an eigenmode that
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aZZCl(Z!t) = K[Cl(zat_ T) - Cl(Z,t)]

+Kcx(zt—=7)—ci(z,1)], (33
t=257

(92202(2,':) = K[Cl(zat_ T) - C2(Z,t)]
+K[c(z,t—7)—Cx(z,1) ], (3b)

where the constari is determined by the strength of the
t=1507 — - nonlinearity and the power of the CP beams, and represents a
e e

measure for the mutual attraction of two beams. An approxi-
mate value oK is calculated below. To further simplify the
problem, the separation of the centers of mass of two beams
d(z,t)=cy(z,t) —cy(z,t) is introduced as one dynamical
FIG. 1. Counterpropagating fundamental beams for a medium o¥ariable, and the center of mass of the syst@fr,t)
lengthL=0.68_, . The left column shows the forward and the right =[c;(z,t) +c,(z,t)]/2 as the other. Furthermore(z,t— )
column the backward bearfthe arrows indicate the direction of js replaced byc;(z,t) — é,ci(z,t) 7. Then the temporal evolu-

propagation The top row is a snapshot after 25r. Both beams  tion of the system can be described as
propagate through the medium as solitonst AtL50r (bottom row

the beams no longer propagate as solitons, but instead deviate on 0=—09,0d(zt)—2Kd(z,t1), (4a)
their way through the crystal.

2K 7,C(z,t) = —3,,LC(z1). (4b)
grows in time and at=100r the beams no longer propagate )
as solitons, i.e., their intensity profiles change along the(NOte that there is n@td(_z_,t) term) .
propagation direction. Both beams deviate inside the me. W€ analyze the stability of the solutiod(z,t)=0 and
dium from the straight initial trajectories. As a consequencd=(z1)=0 using the tools of nonlinear dynamics. The fol-
the beams no longer coincide z£0 andz=L. Since the OWiNg unstable eigenmode is identified as
initial problem is rotationally symmetric, the direction into

which the beams deviate is random. The intensity distribu- d(z,t)=expAt)sin V2K (z=L/2)]e, (58
tion att=150r, presented in the bottom row of Fig. 1, shows B _—
a steady state of the system. Rotating this state by an arbi- C(z) =Aexp(At)cog v2KTA (2= LI2)Jep, (50)

trary angle around theaxis also yields a steady state. There'whereep is unit vector in the transverse plane. The constant

fore the noise present in the system can randomly turn thg o e growth rate of the instability can be determined
state in one or the other direction. Any such rotation, how-from the boundary conditionsc,(0)=c,(L,t)=0 and

ever, takes place on a much slower time scale than the de- _ Z ; ; ;
velopment of the instability. %’ch(o,t) d,C(L,t)=0. Using Eqgs.(5) this translates into

Thus, the numerical results show that the length of the 2A cog 2K 7AL/2) =sin( 2K L/2) (6a)
medium plays a significant role in the stability of CP soli- ’
tons. Another important factor is the power of the beams. 2AThSIN(V2K A L/2) = — cog 2K L/2). (6b)

Decreasing the power of the beams stabilizes the CP solitons.

However, if L is increased, the solitons become unstablepjscarding the unphysical case.>1 [in this casec(z,t
again and change in a way similar to Fig. 1. In additio, if _ 7y can no longer be replaced ly(z,t)—d,c(z,t)r as
is further increased, the beams do not reach steady state, lyine in the above calculatiohi can be shown that the

keep changing with time. _ _ solutions with positiveh (unstable eigenmodesan only
These results seem to contradict results obtained for thgyist if L>L ., where

solitons in copropagating geometry. Two mutually incoherent

solitons always attract each other, therefore one would ex- L.= W/\/R_ (7
pect that the two CP beams always form a stable soliton. To

find an explanation for this instability, we consider the CP  As can be seen from Eqé5) unstable eigenmodes exist
beams as particles whose motion along ztexis is subject for any orientation of the unit vecta@,. These eigenmodes
to forces caused by the refractive index change in the mezompete with each other, but only one can dominate and
dium [10]. Thus, we will only be concerned with the motion grow exponentially. In the real physical model described by
of the “center of mass” of the beams;(z,t) andc,(z,t). Egs. (1) and (2) higher-order effects become important for
The center of mass of each beam will be attracted by thgrowing deviations from the beams’ initial trajectory, thus
waveguide induced in the medium by the beams. Becaudeading to the steady state shown in Fig. 1.

the medium is noninstantaneous, we assume that the motion To ascertain whether this simple criterion can serve as an
of ¢ is determined by the light distribution a timeago. estimate for predicting the onset of instability of CP solitons,
Furthermore, it is assumed that the force acting0is pro- one needs an estimate f& To this end, we consider the
portional to the distance from the center of the waveguidecase where the two beams that form the soliton are slightly
We thus arrive at a simple linear set of equations shifted relative to each other, i.€5(p,2)=y(p+€e,) and
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B(p,2)=¥(p—€e,). Herey(p) is the solitary beam profile
and e measures the distance between the two beams. Insert-

ing this into Eqgs.(1), and assuming a steady state, we find t=251 - —

id,F=pBF+el'(e, V,)EF (8)

and an analogous equation rwhere the real constagtis

the propagation constant of the soliton. The last term on the
right-hand side of Eq(8) bends the beam towards the CP t=150T -
beam and also deforms it. Since we are only interested in the

motion of the center of mass, we ignore this deformation.

Thus, the bending of the beam is averaged over the trans-

verse plane. From the motion of the center of mass we obtain —_—
the equation

et
et
s

FIG. 2. Counterpropagating fundamental and dipole beams for a
medium length ofL=0.825. As in Fig. 1, the beams initially

f (&- Vl)2E0|\If|2dp propagate as solitor{sipper row. When the instability sets in, the
d,,6=T €. 9) light distribution is no longer symmetric to the dipole aximttom
f |,\P | de I’OW).

medium of lengtlL=0.8L . Numerically we found that the
solitons become unstablelif is bigger than 13.1. Equations
(7) and (10) thus can not be used as an exact criterion to

We thus have

r f (ep-Vi)2E0|\I’|2dp predict the stability properties of CP solitons, but can serve
K=—— i (100  as an estimate where to look for the critical length of the
f |‘I’|2dp medium where the solitons become unstable. Furthermore,
they give an insight into the mechanisms which cause the
, ) ) i instability.
Inserting the value oK thus obtained into Eq.7) we find In the next step we investigate the stability of solitons

that L,=0.84_p for the soliton in Fig. 1, which is longer consisting of a fundamental and a dipole mode. Dipole-mode
than the numerically determined stability threshold of abou{,ector solitons are well studied in copropagating geometry,
0.68.p . Nonetheless, this is still reasonably close, considergng are known to be very robustl—13. As in the case of
ing the crude approximations used. In addition, Hg$and  two CP fundamental modes, the simulations show that the
(10) can explai|_1 the fact that. solitons with lower intensity heams no longer propagate as solitons through the medium,
can be stable in longer media because they have a lowgf the medium length exceeds a certain value. In Fig. 2 we
value of_K. This is due to the fact th_at the refractive index present a case where the medium length is slightly above that
change induced by weaker beams is smaller, and therefogitical value. As already seen in Fig. 1, the beams deviate
the waveguides are not as attracting. _ ~ from their initial trajectories as they propagate. It is interest-
Similarly, Egs.(7) and (10) can explain why increasing jng to notice that the deviation occurs in a direction perpen-
the strength of the nonlinearity destabilizes CP solitons. Ingicular to the plane of the dipole. This fact can be explained
creasing the strength of the nonlinearity, for example, byhy reconsidering the arguments that lead to the set of Egs.
increasing the externally applied voltage means increas- (3). There we considered the case of two CP rotationally
ing the value ofl". If we consider the length of the medium symmetric solitons. Because of the rotational symmetry, the
L fixed and instead allow to vary, Eq.(7) can be written as  yalue of K is independent of the direction into which the
K= m?/2L?, whereK_ is the minimum value oK needed to  heams deviate. The problem of a CP fundamental and dipole
obtain an unstable eigenmode in the system of model Eqgeam, however, is not rotationally symmetric. Numerical cal-
(3). Using Eq.(10) this can be translated into an equation for cylations show that the two beams attract each other more

a critical value ofl" where the instability sets in strongly when they deviate perpendicular to the dipole plane
than when they deviate parallel to the plane. This leads to a
5 f 1 |2dp highe_r effective value oK for deviations perp(_andicular to
= ™ (11) the dipole plane, and therefore to a shorter critical lethgth

L2 ) ) according to the estimate, E(). Therefore only two stable

f (€-V.) Eo|¥[*dp steady states of the system exist: the one shown in the bot-
tom part of Fig. 2 and the other one, where both beams
Note that the quotient of the integrals on the right-hand sideleviate by the same amount in the opposite direction.
scales as 17 for solitons with the same maximum intensity, = The following step is to investigate the counterpropaga-
hence in the I(,I") parameter plane the stable and unstabldion of a fundamental beam and a vortex. We found that for
configurations are, according to E(/), separated by the short values ofL, used so far, there is no deviation of the
critical line I'L = const. For solitons with a maximum inten- beams during their propagation through the medium. But, as
sity of 0.9 in each component we calculdfg=16.9 fora  could be expected from the analogy to the copropagating
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t=157T @ o

t=25T ‘ a® FIG. 4. Isosurface plot of two CP vortices. Breakup into three
rotating beamlets is visible. Because of the topological charge, the
beamlets start to spiral, which is only weakly visible due to the
short propagation distance. The beamlets rotate in the direction in-

1=30T ‘ .. dicated by the arrow on the right.

two beamlets, as could be expected, but into three beamlets,
as shown in Fig. 4. They thus strongly remind of rotating
soliton clusters investigated in R¢L4]. As in the case of the
=351 ‘ o counterpropagation of a fundamental and a vortex beam, the
. beamlets start to rotate at the exit faces of the crystal. The
vortices’ diameter must, however, be chosen carefully for the
z=L z=0 rotation to occur. In this case we observe rotation of the

FIG. 3. Temporal evolution of a fundamental beam and a CFpeamIer:]ts f]?r tlmesdup_tbszOT. -:;h's r:Ime c_orresfp(r)]ndbs to
vortex forL=1.1 ;. After a certain time, the vortex breaks up into more than five round trips. After that the motion of the beam-

a dipole that rotates with time. The fundamental beam splits intdets becomes irregular. .
two beamlets that corotate with the dipole. The left column shows N Summary, we have shown that because of the different
the fundamental beam, the right column the vortex. boundary conditions, solitons in photorefractive media be-

have very differently in counterpropagating geometry than in
copropagating geometry. If the medium exceeds a certain
6}'ength, or the coupling exceeds a certain strength, the CP
litons consisting of two fundamental beams become un-
ble. It has been shown that this effect can be explained by
considering a very simple model describing the motion of the
centers of mass of beams. Furthermore, the counterpropaga-

fion of a fundamental and a vortex beam leads to a tempo-

crystal as a dipole. This also leads to a deformation of the, v periodic dynamical state of the system. The counter-
fundamental beam. Note that the dipole and the fundamenta). ;2 yation of two vortices leads to rich dynamic behavior
beam are not aligned in the figure, because the two beams a8t can be periodic, as well as irregular.
shown at two different positions in the crystak=0 andz ’
=L, respectively. The dipole and the fundamental beam do A.D. and M.B. gratefully acknowledge financial support
rotate with time. In the simulations the rotation continuesfrom the Alexander von Humboldt Foundation. Work at the
indefinitely (we stopped the simulations &t+2007). This Institute of Physics was supported by the Ministry of Sci-
rotation, therefore, represents a periodic dynamic state of thence, Technologies, and Development of the Republic of
system. Serbia, under the project Ol 1475. Part of the work at WWU
In the final step we examined the case of two CP vorticesMunster was supported by DFG under Contract No. De-486-
In this case the vortices breakup as well, surprisingly not intal0.

gation, if the medium is long enough. Moreover, this syste
does not possess a steady state. An example of the tempo
dynamics is shown in Fig. 3. Hete=1.1l . At t=157 the
vortex has not yet broken up into a dipole. ¥t 257 how-
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