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Stabilization and breakup of coupled dipole-mode
beams in an anisotropic nonlinear medium
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We study the mutual trapping of two dipole-mode light beams in a medium with a nonlocal anisotropic satu-
rable nonlinearity. It is shown that the incoherent attraction of perpendicularly aligned dipole-mode beams
leads to the stabilization of their composite structure. Our numerical analysis gives a stationary solution that
is stable only with respect to small amplitude modulations. The coupled solitary structure disintegrates in a
well-defined way when the numerical perturbations or the experimental propagation length exceeds a certain
limit. In this case a new and more robust, multicomponent solitary transverse light structure consisting of
two dipole-mode vector solitons will be generated. © 2002 Optical Society of America
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1. INTRODUCTION
Spatial optical solitons have attracted much research in-
terest during the past decade and were extensively stud-
ied in planar (1 1 1)D geometry as well in bulk medium
in two transverse dimensions.1 Stable self-trapped opti-
cal beams in both transverse dimensions will form only in
materials that possess a saturable nonlinearity that pre-
vents the beam from undergoing a catastrophic collapse,
as it would in a material with a Kerr nonlinearity.2 Re-
cently, investigations of self-focused transverse light
structures concentrated on the prediction and generation
of various combinations of composite optical beams with
complex internal structures in saturable nonlinear
media.3–9 The basic concept of these combined struc-
tures, also denoted vector solitons, is that they are a
promising tool for stabilizing light beams, such as multi-
humped beams and optical vortex beams, that do not
propagate in a self-consistent and stable way by them-
selves. The copropagation of such a beam that exhibits a
complex internal structure with a mutually incoherent
bell-shaped fundamental beam induces a refractive-index
change in the nonlinear material that supports the stable
and self-confined propagation of both contributing beams.
The two beams induce an effective multimode waveguide
in which they propagate as eigenmodes. Among various
possible configurations is that of the dipole-mode vector
soliton, which consists of a double-humped beam in one
component and a bell-shaped Gaussian beam in the other
and displays a surprising robustness.7 For example, it
has been shown that a vector soliton consisting of a fun-
damental beam and an optical vortex undergoes a transi-
tion into a dipole-mode vector soliton with nonvanishing
angular momentum.8,10,11 Further, the existence of vari-
ous multipole vector solitons with higher order-
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components that exhibit quadrupole and even dodecago-
nal structures has been demonstrated.12

Recently the stabilization of multihump optical beams
by means of incoherent interaction was shown for so-
called necklace-ring vector solitons, which consist of azi-
muthally modulated components.13,14 The simplest solu-
tion of this class of necklace ring-vector solitons is an
incoherent superposition of two dipole components that
complement each other in an isotropic medium to form a
perfect ring structure for total intensity distribution.
Here we study such a structure in an anisotropic model
for a medium with photorefractive nonlinearity. We in-
vestigate the generation and the propagation behavior of
a multicomponent solitary wave consisting of two dipole-
mode beams without a fundamental stabilizing compo-
nent. First, we analyze the vectorial attraction of diverg-
ing dipole modes that do not form a localized and self-
trapped light structure when they propagate separately
in an anisotropic saturable medium. We then apply the
iterative technique of Petviashvili15,16 and demonstrate
that the incoherent attraction of the two modes compen-
sates for the repulsion of their out-of-phase lobes, which
supports the generation of a self-trapped ring-shaped soli-
tary structure. To analyze the stability of the structure
we start from this numerically exact solution and, using
the beam propagation method described in Ref. 17, finally
reveal the unstable propagation behavior that leads to a
splitting of the composite structure. Because of numeri-
cal noise, the initially ring-shaped optical beam disinte-
grates into three composite quasisolitons that repel one
another and separate in the radial direction. The arbi-
trary breakup behavior changes when we apply an initial
perturbation to one of the components. Because of the
anisotropic and nonlocal characteristics of the nonlinear
2002 Optical Society of America
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material, the composite light structure spreads only in
the horizontal direction, while one of the constituent di-
pole beams undergoes a transition into two dipole-mode
structures that serve as the higher-order mode of two
dipole-mode vector solitons. Our theoretical investiga-
tions are supported by experimental data derived from a
setup with a photorefractive strontium barium niobate
crystal as a nonlinear material. The controlled and de-
termined disintegration of two-dimensional solitary light
structures as a result of light-induced splitting is a new
and unique property of composite optical spatial solitons.

2. THEORETICAL APPROACH
Choosing the direction of propagation along the j axis and
neglecting absorption, we can describe the propagation of
two incoherently coupled beams in a photorefractive non-
linear material in the paraxial approximation18:
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where U and V are the slowly varying amplitudes
of two optical beams, ¹'

2 is the transverse Laplacian
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4reff is the cou-

pling constant, k is the wave number of light, ne is the or-
dinary unperturbed refractive index of the medium, w is
the initial beam waist, and reff represents the effective
electro-optic coefficient. The transverse coordinates x
and y are scaled by beam waist w, and propagation coor-
dinate j is scaled by diffraction length LD 5 knw2. With
typical beam waist parameters of w 5 10–12 mm, a
wavelength of l 5 532 nm, and an ordinary refractive in-
dex of strontium barium niobate of n 5 2.3, a single dif-
fraction length is equivalent to 3–4 mm in a real optical
system. f describes the electrostatic potential induced
by photoexcitation of charge carriers and satisfies the dif-
ferential equation19
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Here, normalized intensity I 5 uUu2 1 uVu2 is given in
units of saturation intensity Id , and E0 describes an elec-
tric field that is applied in the transverse x direction.
Diffusion effects of the charge carriers are dominated by
drift in the external electric field and are therefore ne-
glected here. We choose the parameters that correspond
to our experimental conditions to be E0 5 3.6 kV/cm and
reff 5 180 pm/V. The system of Eqs. (1) and (2) is not in-
tegrable, and an analytical solution of the problem does
not exist. Therefore we use a numerically exact proce-
dure based on the work of Petviashvili.15,16 As we are in-
terested in solitary solutions that propagate along j with-
out changing their transversal shape, we make the ansatz

U~x, y, j! 5 u~x, y !exp~ib1j!,

V~x, y, j! 5 v~x, y !exp~ib2j!, (3)
where b1/2 are independent propagation constants. In-
serting Eqs. (3) into Eqs. (1), we obtain a new set of equa-
tions:
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which represents an eigenvalue problem with eigen-
values b1 and b2 and eigenfunctions u, v, and
]xf(x, y) 5 ]f(x, y)/]x. In what follows, we Fourier
transform Eqs. (4) to express the problem by a pair of
fixed-point equations:

u~k! 5
F̂@g]xfu~x, y !#~k!

b1 1 k2/2
,

v~k! 5
F̂@g]xfv~x, y !#~k!
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where F̂(k) is the two-dimensional Fourier transform in
the transverse plane with transverse wave vector k. The
simple iterations of Eqs. (5) do not converge in general.
Here the procedure proposed by Petviashvili defines a
functional,

Mj 5
* dkF̂@g]xfsj~x, y !#~k!sj* ~k!

* dk~b j 1 k2/2!usj~k!u2 , (6)

with s1(x, y) 5 u(x, y) and s2(x, y) 5 v(x, y), that en-
ables us to seek solutions to Eqs. (5). Suppose that
sj(x, y) is a solution to Eqs. (4); then Mj@sj(x, y)# 5 1,
and multiplying the right-hand sides of Eqs. (5) by
uMju23/2 leaves the fixed points unaltered and finally leads
to a convergence for the iteration of Eqs. (5). Our nu-
merical procedure is as follows: Choosing the initial
functions u0 and v0 similar to the expected solutions for u
and v, we iterate

un11~k! 5 uM1u23/2un~k!,

vn11~k! 5 uM1u23/2vn~k!, (7)

after each step calculating the new potential f from Eq.
(2), with un(k) and vn(k) given by Eqs. (5). The iteration
stops when the relative error becomes smaller than 1025

in both components.

3. NUMERICAL RESULTS
The initial dipole-mode beams u and v are chosen as a
pair of Gaussian beams with a relative phase shift of p
[Fig. 1(a)]. The u component is aligned along the y axis,
and the v component is oriented along the x axis and is
therefore parallel to the external electric field. The two
single lobes of the two components have the same initial
beam profile and peak intensity, I 5 1, and are slightly
squeezed in the horizontal direction to match the ellipti-
cal shape of a photorefractive soliton.20 When we apply
the iterative process described above to the intensity dis-
tribution illustrated in Fig. 1(a), the routine converges
and yields a transversal intensity distribution, which is
depicted in Fig. 1(b) with the u component in the upper
row and the v component below. The two components
maintain their symmetry axis, which is horizontal for the
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u and vertical for the v component; in particular, the u
component displays a slightly different intensity profile,
and the distance between its two lobes increases. This
behavior is not surprising because our theoretical model
is inherently anisotropic and does not support any solu-
tions uuu2 1 uvu2 with cylindrical symmetry. The aniso-
tropic nature of the model becomes especially apparent
when each component propagates separately in the me-
dium. To investigate this behavior in detail we make use
of the beam propagation method.17 Figure 1(c) displays
the intensity profiles after a propagation of j 5 4.5 dif-
fraction lengths. The single lobes remain self-trapped,
whereas their separation is much more obvious for the v
component. The light-induced refractive-index change in
between the two lobes and at the horizontal margins of
the beamlets is negative.19 Because light tends to propa-
gate toward the region of elevated index of refraction, the
appearance of a defocusing effect leads to an effective re-

Fig. 2. Numerical simulation at several stages of propagation
for simultaneous propagation of both components u and v. Top,
uuu2 1 uvu2; middle, uuu2; bottom, uvu2. (a) j 5 0, (b) j 5 9.5, (c)
j 5 16.

Fig. 1. (a) Initial intensity distribution and (b) the numerical
exact solution of two perpendicularly aligned dipole mode beams
given by the Petviashvili routine. (c) The same components after
they have propagated separately in the nonlinear medium
(j 5 4.5).
pulsion of the two lobes in the horizontal direction. Per-
pendicularly to the applied electric field, i.e., along the
vertical direction, the refractive-index change is always
positive, and, because of the nonlocal nature of our model,
it can even be strong enough to overcome the repulsion of
the two out-of-phase lobes, leading to the formation of a
bound state: a dipole.21 This vertically aligned bound
dipole solitary structure propagates in a nondiverging
way for several propagation lengths and could therefore
serve as a stabilizing component to prevent the other,
horizontally aligned, dipole lobes from separating. Fig-
ure 2 illustrates the propagation behavior when both mu-
tually incoherent dipole-mode beams propagate simulta-
neously in the nonlinear medium for various distances at
[Fig. 2(a)] j 5 0, [Fig. 2(b)] j 5 9.5, and [Fig. 2(c)]
j 5 16. Here, the total intensity of the two components
uuu2 1 uvu2 is shown in the top row and the intensity dis-
tributions of the single constituents uuu2 and uvu2 are illus-
trated the middle and bottom rows, respectively. We
start from the same initial conditions as depicted in Fig.
1(b) that were calculated by the Petviashvili procedure.
Figure 2(b) represent the two beam profiles after they
have propagated nine diffraction lengths. Now the re-
pulsion of the horizontally aligned dipole [Fig. 2(b), bot-
tom] is prevented by the other, vertically orientated com-
ponent [Fig. 2(b), middle], which is affected as well, and
its lobes display a kidneylike shape. The total intensity
distribution, depicted in the top row of Fig. 2(b), becomes
smoother and resembles a horizontally squeezed ring.
On further propagation to j 5 16, the two-component-
structure displays a symmetry-breaking instability and
splits into three beamlets that separate from one another
in the radial direction; i.e., they fly apart. This behavior
demonstrates that the numerically calculated solution
given by the Petviashvili routine indeed forms a bound
composite solitary state in which the two constituents at-
tract and stabilize each other, at least for a certain propa-
gation distance. The discretization to a numerical grid of
128 3 128 transversal data points for the beam propaga-
tion method includes a small amount of numerical noise,
which is responsible for the final breakup of the light
structure at larger propagation distances. Consequently,
the composite light structure does not remain stable and
splits into three composite quasi solitons that repel one
another.

4. EXPERIMENT
The experimental setup for generating two coupled
dipole-mode optical beams is similar to the one that was
described earlier in Ref. 8. Here we derive four beams
from a frequency-doubled Nd:YAG laser (l 5 532 nm)
with the help of an extended Mach–Zehnder-like configu-
ration. Two of the beams are reflected by a mirror
mounted upon a piezoelectric device and propagate trans-
versely shifted to a second, mutually coherent beam.
With the help of the piezoelectric device we shift the rela-
tive phase between a pair of beams by p to obtain two di-
pole structures. Subsequently, one of the dipole beams is
reflected by a mirror mounted upon a piezoelectric device
that oscillates at ;1 kHz before it is aligned perpendicu-
larly to the other dipole beam. The fast-oscillating mir-
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ror effectively destroys the coherence between the two di-
pole modes as a result of the crystal’s noninstantaneous
response to variation in the intensity of light. This effect
also permits the observation of the single constituents of
composite solitary structures by blocking one component
and recording the intensity of the remaining light from
the other constituent within a short time (Dt ' 0.1 s).
Both dipole modes are then focused onto the front face of
a strontium barium niobate crystal (i.e., SBN:60, doped
with 0.002% cerium by weight). The nonlinear medium
is biased by a 3.6-kV/cm dc electric field along its c axis,
and the beams, which have a focal spot size of 12 mm
(FWHM), propagate 5 or 13.5 mm inside the material.

The experimental results are depicted in Figs. 3 and 4.
The input intensity distribution and the repulsive propa-
gation behavior when each component propagates sepa-
rately 13.5 mm in the crystal are depicted in Fig. 3. The
single frames are arranged in the same way as for the nu-
merical simulation shown in Fig. 1. The general agree-
ment between the simulations and the experimental re-
sults is evident. The experiment reveals the anisotropic
interaction of the single lobes of each dipole mode. The
repulsion between the beamlets that are out of phase is
slightly stronger along the horizontal than along the ver-
tical direction. The relative distance between the two
lobes of the u component increases from 37 to 58 mm,
whereas the two lobes of the v components spread from 33
to 66 mm during propagation. The difference from the
numerical simulations depicted in Fig. 1 can be explained
by the fact that the initial separation and the transverse
shape of the dipole lobes do not correspond exactly to the
numerical initial conditions. Figure 4 depicts the two
components copropagating simultaneously in the nonlin-
ear material at different propagation steps. Here the
single frames are arranged in the same way as in Fig. 2.
The two components have almost equal total power of 2.3
mW, and the crystal is biased by a voltage of 3.6 kV/cm.
Figure 4(a) illustrates the input intensity, and Fig. 4(b)
shows the total intensity uuu2 1 uvu2 and the single com-
ponents u and v after a propagation of 5 mm. The total
intensity distribution resembles a squeezed ring, and the
structure does not break up yet. The two horizontally
aligned lobes of the v component remain in their typical
dipole shape [Fig. 4(b), bottom] whereas the perpendicu-

Fig. 3. Experimental results: (a) input intensity distribution,
(b) beam profiles after 13.5-mm separate propagation.
larly aligned lobes of the u component are strongly af-
fected, stretch in the vertical direction, and become kid-
ney shaped [Fig. 4(b), middle]. When both beams
propagate further to 13.5 mm, the breakup of the coupled
dipole-mode solitary structure becomes apparent. The u
component splits into a complex structure consisting of
four peaks [Fig. 4(c), middle], whereas the v component
becomes strongly vertically stretched [Fig. 4(c), bottom].
Even though the propagation distance of 13.5 mm, which
corresponds to 4.5 diffraction lengths, is much shorter
than in the numerical simulation depicted in Fig. 2(b),
vertically aligned dipole mode u already displays a
symmetry-breaking instability and no longer exists as a
dipole mode. It is indeed surprising that the experiment
displays decay of the u component with a subsequent for-
mation of a four-peak structure, in contradiction to the
simulations depicted in Fig. 2. Inasmuch as the v com-
ponent is elongated along the vertical direction, the struc-
tures in Fig. 4(c) resemble two robust dipole-mode vector
solitons. The elongated lobes of the v component act as a
fundamental mode that traps two vertically aligned di-
pole modes. The stabilizing influence of the u component
that was mentioned above was therefore not strong
enough to prevent the breakup of the composite structure.

Comparing these experimental results with the theo-
retical ones, we have found a significant difference in the
breakup behavior. However, the experimental genera-
tion of a certain initial profile is often not perfect because
of the existence of optical impurities and aberrations. To
account for these deviations of the ideal beam profile in
our simulations, we simulate the propagation behavior,
inducing a supplementary initial perturbation by chang-
ing the intensity of one component relative to the other.
Starting from the exact results depicted in Fig. 1(b) and
increasing the amplitude of the v component by 10% re-
sult in the evolution of the beams’ intensities at different
propagation stages as shown in Fig. 5, with [Fig. 5(a)]
j 5 2.5, [Fig. 5(b)] j 5 4.5, and [Fig. 5(c)] j 5 10. The
single frames are arranged in the same way as in Fig. 4,
and now the good agreement between numerical calcula-

Fig. 4. Experimental results: (a) input intensity distribution;
(b), (c) beam evolution after 5- and 13.5-mm propagation, respec-
tively. The three rows depict the total intensity uuu2 1 uvu2 and
the single constituents uuu2 and uvu2.



Ahles et al. Vol. 19, No. 3 /March 2002/J. Opt. Soc. Am. B 561
tions and experimental results is obvious. Figure 5(a)
corresponds to the experimental results depicted in Fig.
4(b). The squeezed-ring shape of the total intensity as
well as the kidney shape of the u component is almost
identical in both cases. At j 5 4.5, which corresponds to
a 13.5-mm propagation distance, the u component’s break
up into four beamlets is also evident. At larger propaga-
tion distances the destabilizing effect of the v component
becomes apparent as the coupled structure splits into two
equal parts that spread in the horizontal direction. This
behavior, although it was expected for our experiments,
could not be realized because of the limited length of our
crystal sample. However, the vertical separation of the u
component’s lobes in Fig. 5(c) is much smaller than in the
separate propagation depicted in Fig. 1(c), which is an in-
dication that the lobes effectively get trapped by the co-
propagating lobes of the v component that serve as the
fundamental constituents of two dipole-mode vector soli-
tons.

5. CONCLUSIONS
We have demonstrated the effect of mutual stabilization
of two perpendicularly aligned dipole-mode optical beams
in an anisotropic saturable nonlinear medium. We have
shown the existence of a numerically exact solution in the
form of a composite solitary structure with a ring-shaped
total intensity profile. The numerical beam propagation
method has revealed symmetry-breaking instability at
propagation distances that are typically larger than 10
diffraction lengths. The structure’s splitting is strongly
dependent on numerical noise and initial perturbations
and therefore shows two different situations in which
breakup can occur. Simulations with a remarkable ini-
tial perturbation display a spatial development than that
is identical to experimental results. It is the inherent
anisotropy of the medium in particular that is responsible
for the well-defined splitting of one dipole into four parts
that become the higher-order components of two mutually

Fig. 5. The same sequence of frames as in Fig. 2 but with 10%
initial perturbation for (a) j 5 2.5, (b) j 5 4.5, (c) j 5 10.
repelling dipole-mode vector solitons. To summarize, we
have demonstrated the conversion of two mutually inco-
herent dipole-mode beams into a pair of dipole-mode vec-
tor solitons that survive for large propagation distances.
These results underline the results of previous
investigations7–11 that have shown that the dipole-mode
vector soliton is probably the most robust of the various
configurations of multicomponent self-focused optical
beams in saturable bulk nonlinear media.
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7. J. J. Garcı́a-Ripoll, V. Pérez-Garcı́a, E. A. Ostrovskaya, and
Yu. S. Kivshar, ‘‘Dipole-mode vector solitons,’’ Phys. Rev.
Lett. 85, 82–85 (2000).
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