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Abstract
The topic of this thesis is the excitation of magnetization self-oscillations in a magnetic
nano-wire by spin-Hall effect.
The fundamental equation in magnetics, the Landau-Lifshitz-Gilbert equation results
in a precession movement of the magnetization if the system loses it’s equilibrium. In
this thesis this precession movement will be excited by a spin current originating from
the spin-Hall effect, which will act as negative damping exceeding the Gilbert damping.
In the first part the experiment itself is demonstrated. Different harmonic modes of
oscillation movement are observed and characterized with varying parameters, finding
the optimal parameters for the excitation of magnetization oscillations. It is shown
that magnetization oscillations can be excited in a one-dimensional structure with the
usage of spin-Hall effect.
As a second part micromagnetic simulations are calculated. Two different mode regimes
are found, edge and bulk mode, and the oscillations in the experiment are identified as
edge modes. Spatial profiles of the oscillation movements are obtained and discussed.
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1 Introduction 1

1 Introduction
Today’s every day life is characterized by electronic devices. With the growing need
for data volume memory device research has become an important research field. The
magnetization direction of magnetic particles is for example used as information stor-
age by modern memory devices like hard drives. As a result the fundamental physics
behind magnetic nanostructures are worth researching, as for example the discovery
of the giant magnetoresistance (GMR) by Fert and Grünberg [3] [4] (Nobel Prize in
Physics 2007) and later the tunnel magnetoresistance (TMR) [5] showed when they
were introduced in the field of magnetic field sensors.
With the discovery of these effects depending on the spin orientation of electrons the
research field of spintronics rose with the aim of carrying information without an elec-
tric current solely by spin waves. These spin waves were first introduced as concept
by Bloch in 1930 [6] as part of his research about the temperature dependence on the
magnetization in ferromagnets. Spin waves describe coherent precession movements of
the magnetic moments in a magnetic material. They show typical wave phenomena as
propagation, reflectiom, refraction and interference [7].
In this work the excitation of spin waves with a spin transfer torque (STT) in a permal-
loy (Ni80Fe20) nano-wire by spin-Hall effect is studied. Spin torque oscillations (STO)
have already been observed in various nanoscale devices [8] [9]. However, in these stud-
ies the region where STO could be observed was restricted to the nanoscale and in a
magnetic film as two-dimensional system no STO could be observed [10]. A nano-wire
forms the intermediate structure between a nanoscale region and a two-dimensional
film as a one-dimensional structure.
STT by spin-Hall effect qualifies as excitation method since magnetization movements
can be controlled over a large region and without sending a current directly into the
magnetic material.
Permalloy, being based on metal, is a ferromagnet with low magnetic losses (high mag-
netic permeability) and can be integrated into conventional semiconductor devices,
what makes it a suitable material for research purposes and application.
The typical behavior of spin waves in confined structures consists of building two
eigenmode regimes that are often called edge and bulk mode with respect to their lo-
calization. This is caused by demagnetizing effects at the samples boundaries [11].
In the beginning of this thesis the theoretical framework of magnetization dynamics
and spin-Hall effect will be introduced in chapter 2. The sample used in the experiment
and the experimental setup are described in chapter 3. In chapter 4 the experimental
results are presented. A numeric simulation model for the sample is observed in chapter
5. All findings are summarized and discussed in chapter 6.
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2 Theoretical Framework
In this chapter a brief overview about the theoretical basics of magnetization dynamics
is given. First fundamental theory in form of the Landau-Lifshitz equation is presented.
Subsequently the ferromagnetic resonance is introduced as important phenomena for
the experimental method followed by explanations of spin waves and spin-Hall effect.

2.1 Fundamental Considerations

Static Magnetization The magnetic characteristics of ferromagnetic materials are
caused by the exchange interaction of their electron spins ~S [12]. This exchange inter-
action results from the Pauli exclusion principle and coulomb interaction and therefore
has quantum mechanical origins. Accordingly it is described by the Heisenberg Ex-
change Hamiltonian between two electron spins ~Si and ~Sk

HHeis = −J ~Si · ~Sk (1)

with the exchange constant J . In order to minimize the energy this exchange interaction
favors an alignment of parallel (or anti parallel for J < 0) spins.
Additionally every spin is connected to a magnetic moment ~µ given by

~µi = −gµB~Si (2)

with the Lande factor g of the electron and the Bohr magneton µB = e~
2me

with the
reduced Planck constant ~, the electron charge e and the electron mass me. Due to the
parallel alignment of spins this leads to a macroscopic magnetization first introduced
by Herring and Kittel [13] to describe the macroscopic behavior of a ferromagnet in a
unit volume V of the magnet:

M = 1
V

∑
i

µi. (3)

For temperatures below the Curie point [14] and on a microscopic scale the magne-
tization can be found originating from a spontaneous aligning of the electron magnetic
moments while on a macroscopic scale domain structures of parallel spins are formed,
that minimize the free energy. For higher temperatures the magnetic moments follow
thermal statistics and cancel each other out. Applying an external magnetic field ~H

makes the magnetic moments align parallel to the field direction, until for a strong
enough field a saturation magnetization ~M0 is achieved.
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Motion of Magnetization Since the magnetic moment is connected to the angular
momentum by ~µ = −γ~L with the gyromagnetic ratio γ = gµB

~ it can be changed by a
torque ~T acting on it:

d~L

dt
= ~T . (4)

Following [15] we now want to consider the dynamics of a magnetic system. In magnetics
the torque acting on the system is given by a magnetic external field H with

~T = ~µ× ~H. (5)

With the magnetization as sum over all magnetic moments one gets the Landau-Lifshitz
equation (short LLE) [12]

∂ ~M

∂t
= −γ ~M × ~H. (6)

Figure 1: Precession of the magnetization around the magnetic field as given by the
LLE. Taken from [1].

From the LLE we can see, either by simply acknowledging the fact that ∂ ~M
∂t

stands
perpendicular on both ~M and ~H, or by scalar multiplicating the LLE with M [12],
getting

∂M2

∂t
= 0 (7)

that the systems movement is a precession of ~M with | ~M | = const. (figure 1). With
the energy provided by the magnetic field one can follow

ω = γH. (8)



2 Theoretical Framework 4

Since other physical effects besides the external field can influence the system, instead
of H an effective field Heff can be used [15]

Heff = Hext +Hd +Hex +Ha (9)

that can consist of:

• the external field Hext and the resulting Zeeman energy,

• the dipole field Hd, which results from the dipole-dipole interaction between the
different magnetic moments in the sample,

• the exchange field Hex, which is given by the exchange energy,

• the anisotropy field Ha taking in account anisotropies in the magnetic sample.

For a translationally noninvariant system the dipole part Hd must be considered be-
cause the density of the magnetic moments is not uniform, resulting in nonuniform
magnetic charge densities ρM. When the magnetic moments have a component perpen-
dicular to the magnetic materials surface, they create magnetic charges. These magnetic
charges create the demagnetizing field, that reduces the effective field [16]. We call this
the internal field Hint:

Hint = Hext −Hdemag. (10)

Figure 2: The internal fieldHint of a thin Py sample (size: 1000 nm × 1000 nm × 5 nm).
Left: x-component of Hint, the red and blue lines mark the magnetic charge
densities at the edges. Right: avered field along the x-direction. Both figures
taken from [2].

The demagnetizing field depends on the sample shape and can be calculated by the
demagnetizing tensor N . For a rotational ellipsoid every off-diagonal element vanishes
and the precession frequency can be calculated using the Kittel formula:

ω = γ
√

[Hext + (Nx −Nz)M ] · [Hext + (Ny −Nz)M ] (11)
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with the external field in z-direction. For example for an in-plane magnetized thin film
one gets Nx = 4π and Ny = Nz = 0. Then the frequency is given by

ω = γ
√
Hext (Hext + 4πM). (12)

Damping and the Gilbert Factor Since the LLE only describes a system without
damping, a damping torque pointing towards the static magnetic field can be added
to include losses. It becomes the Landau-Lifshitz-Gilbert equation (LLGE)

∂ ~M

∂t
= −γ ~M × ~Heff −

αG

M0
~M × ∂ ~M

∂t
(13)

with the Gilbert damping parameter αG giving the strength of the damping, but not
any information about its nature.

Figure 3: Precession of the magnetization around the magnetic field including damping.

2.2 Dynamic Magnetic Susceptibility and Ferromagnetic
Resonance

To consider the systems reaction to a dynamic magnetic field we follow [12] using the
dynamic field and magnetization

~H = ~H0 + ~h∼ ~M = ~M0 + ~m∼ (14)

with the constant ~H0 ‖ ~M0 in z-direction and the dynamic components

h∼ � H0 and m∼ �M0. (15)
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Solving the LLE with these assumptions one gets

~m∼ = χ̂ · ~h∼ with χ̂ =


χ iχa 0
−iχa χ 0

0 0 0

 . (16)

χ̂ is the dynamic susceptibility tensor with

χ = γ2M0H0

(γH0)2 − ω2
and χa = γM0ω

(γH0)2 − ω2
. (17)

For the characteristic frequency ωH = γH0 the components of the susceptibility tensor
diverge (figure 4). This phenomenon is described as ferromagnetic resonance (FMR).

Figure 4: Components of the susceptibility tensor. Taken from [12].

To take damping into account one must add the Gilbert torque to the LLE (section
2.1). The solution for the LLGE can simply obtained by replacing H0 with H0 + iαω

γ
.

The susceptibility tensor components then both become complex numbers

χ = χ′ − iχ′′ and χa = χ′a − iχ′′a. (18)
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with the real and imaginary parts

χ′ = γ2M0H0
(γH0)2 − (1− α2)ω2[

(γH0)2 − (1 + α2)ω2
]2

+ 4α2ω2 (γH0)2
(19)

χ′′ = αγM0ω
(γH0)2 + (1 + α2)ω2[

(γH0)2 − (1 + α2)ω2
]2

+ 4α2ω2 (γH0)2
(20)

χ′a = γM0ω
(γH0)2 − (1 + α2)ω2[

(γH0)2 − (1 + α2)ω2
]2

+ 4α2ω2 (γH0)2
(21)

χ′′a = 2αω2γ2M0H0[
(γH0)2 − (1 + α2)ω2

]2
+ 4α2ω2 (γH0)2

(22)

(23)

In this case the characteristic frequency becomes ωH = γH0√
1+α2 and the susceptibility

tensor components no longer diverge. Instead the real parts of the components change
their sign while the imaginary parts have a maximum at ωH (figure 5). This results in
the ferromagnetic resonance (FMR), a strong absorption of electromagnetic energy at
the resonant frequency.

Figure 5: Components of the susceptibility tensor including damping. Taken from [12].

2.3 Spin Waves

Up to this point, we only considered a uniform precession movement of the magneti-
zation in the whole magnet. However, of course it is also possible that the precession
movement is nonuniform, for example because of a local excitation. In this case the
magnetic moments are no longer parallel to each other and so energy is transferred
from one to another by the dipolar and exchange interaction. For the calculation of
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the dipolar energy contribution to ~H one can introduce a magnetic charge density
ρm = −∇ ~M . For a magnetization ~M with a static component ~M0 and a small dynamic
component ~m∼ we can see from the Maxwell equation:

0 = ~∇
(
~H + 4π ~M

)
= ~∇

(
~h∼ + 4π~m∼

)
(24)

~h∼ = −4π~m∼ = −ρm 6= 0. (25)

This dynamic magnetization can be considered as a plane „spin wave“ in the form of
~m = ~m0exp(−i ~k · ~r) with the wave vector ~k. One can easily see that the case of
uniform precession is the special case with ~k = 0.
The first introduction of a dispersion law was made by Bloch [6], only taking the
exchange interaction into account. With an linear approximation Kalinkos and Slavin
[17] found the dispersion law including exchange and dipolar interaction to be

ω2(k) =
(
ωH + l2exωMk

2
) (
ωH + l2exωMk

2 + ωM + sin2 θk
)

(26)

with the frequencies ωH = γH and ωM = γµ0M0, the angle θk between M and k and
the exchange length lex =

√
J

2πM2
0
with the exchange constant J .

We can see that for internal magnetic fields with Hint > 0 the frequency increases
quadratically with k. Furthermore there is a minimal frequency at k = 0 which de-
pends onHint. Spin waves excited with frequencies below that minimum will be damped
exponentially. As a result, for inhomoheneous Hint at different points in a ferromag-
netic sample different spin wave-frequencies can be found.

2.4 Spin Wave Mode Localization

As already mentioned in section 2.1 the dipolar exchange interaction results in a demag-
netizing field Hdemag that is spatially nonuniform for finite structures [16]. Considering
the dispersion relation from above (26) in combination with the nonuniform field Hint

one can see that the minimum frequency for a spin wave to not be disallowed by the
dispersion relation is also spatially nonuniform, meaning that at different points in the
sample different eigenmodes can exist. Since the demagnetizing field strongly reduces
the internal field at the samples edges in field direction but nearly vanishes in the center
regions (III) one can distinguish edge and center modes.
The confinement in a finite structure leads to a quantization of the wave vector. In the
case of a plane wave with ~m = ~m0exp(ikxx+ ikyy) this quantization leads to

kmn =
[

(m+ 1)π
lx

,
(n+ 1)π

ly

]
(27)

Sergej
Hervorheben
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where lx and ly are the side lengths of the sample. While for center modes, assuming
local validity of the dispersion law [17], this already gives a good assumption neglecting
the strong field reduction at the edge regions, edge modes can only exist in the two
edge regions with width Λ1 and Λ2 < lx (assuming a magnetic field in x direction):

kmn =
[

(m+ 1)π
Λ ,

(n+ 1)π
ly

]
(28)

As a result in a confined structure there can be found two different eigenmodes, the
edge and the center mode.

2.5 Spin Wave Excitation with Spin-Hall Effect

In this section we will take a brief look at the spin-Hall effect (SHE) and how one can
use it to excite magnetization dynamics. First theoretical considerations were made by
Dyakonov and Perel [18] concerning semiconductors, later being extended to paramag-
netic materials by Hirsch [19].
If a charge current ~jc of unpolarized electrons scatters at a potential influenced by spin-
orbit coupling the spin orientation gives the direction of the electron deflection. This
leads to a spin current ~js perpendicular to ~jc. There are various numbers of physical
mechanisms leading to SHE being distinguished between intrinsic and extrinsic SHEs
[20].
For a complete description one would have to view the spin current as a tensor, be-
cause the spin current has to be considered as well as the magnetic moment. However,
in this thesis only spin currents flowing in one direction are of interest, so js will be
only scalar.
The spin-Hall angle ΘSH gives the efficiency of the conversion from charge- to spin cur-
rent and is dependent on the material. It is given by the charge conductivity σc = neµ

and the spin Hall conductivity σs = n~µΘSH with the electron mobility µ and electron
density n to be [20]

ΘSH = σse

σc~
. (29)

For platinum [21] found ΘSH = 0.076, however there are several different methods to
find ΘSH with results differing by one order of magnitude [20].
When combining a material with spin-orbit coupling and a magnetic material one
can use the SHE to excite magnetization dynamics. The spin current will diffuse in
the magnetic layer, exerting a spin-transfer torque (STT) on the magnetization. The
spatial scale in which STT is induced in the magnetic layer is limited by spin diffusion
and spin dephasing [22]. As a result the STT is only exerted to a length of a few atomic
layers into the magnetic material. For very thin magnetic layers, like nano-wires, we
can still assume a homogeneous excitation.
This STT acting on the magnetization can be described by the Slonczewski-term [23].
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Expanding the LLGE, the STT for a thin film of thickness t and the polarization of
the spin-magnetic moments ~P can be written as

~TSTT = − β

M0
~M × ~M × ~P (30)

where β = jc
ε
g
µB2eM0t with the spin-polarization efficiency ε gives the growth rate

of the magnetization oscillations by the STT [2]. With this expansion the Landau-
Lifshitz-Gilbert-Slonczewski equation (LLGSE) is given:

∂ ~M

∂t
= ~TH + ~TG + ~TSTT (31)

where ~TH is the torque from the LLE and ~TG is the additional Gilbert torque.
For easier application the STT can be approximately rewritten as Gilbert torque:
Consider an infinite ferromagnet saturated by a magnetic field in z direction and a
dynamic component of the magnetization ~m∼ �M0 and a spin current polarized with
~P ‖ H. Then the Gilbert torque can be approximated to

TG ≈ −αωH(~mx + ~my) (32)

being colinear to
TSTT ≈ −β(~mx + ~my). (33)

The STT could also be included in an effective damping parameter α′ = α − β
ωH

,
regaining the LLGE.

Sergej
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3 Experimental method and sample
In this chapter the examined sample is described and the experimental setup and
method are explained.

3.1 Sample

The nano-wires studied here are made of multilayers of platinum (7 nm thickness),
permalloy (5 nm) and aluminium oxide (<5 nm) on top and fabricated on a sapphire
ground layer. The multilayers are created with sputtering and the wire pattern is
created by electron-beam lithography. The active region is defined by the space of 1.8
µm between the leads consisting of a Chromium (7 nm) Gold (35 nm) bilayer.
The resulting nano-wire is 6 µm long with an active region of 1.8 µm and 180 nm wide.
Figure 6 shows a scanning electron microscope (SEM) image of a sample.

Figure 6: SEM image of a similiar sample.

3.2 Experimental method

The active region of the nano-wire mainly consists of the platinum and the permalloy
layer. In the nonmagnetic Pt layer the SHE effect is used to create a spin current from
a charge current. This spin current, being oriented transverse to the charge current,
flows to the Pt/Py interface and excites spin torque oscillations in the magnetic Py
layer. A saturating magnetic field (H > 800Oe) is applied in the plane of the sample
and a direction nearly perpendicular to the axis of the nano-wire.
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A direct current source provides the charge current Idc that results in the SHE happen-
ing in the Pt layer. A bias tee is used to extract the microwave signal resulting from
the FMR in the sample, which is registered by a spectrum analyzer.
The microwave spectrum is measured for different values of Idc and H and different
angles between the magnetic field direction and the nano-wire axis. By the variation
of those parameters information about the behavior of magnetization oscillations and
FMR in the nano-wire are obtained.

Figure 7: Experimental setup.

Sergej
Durchstreichen
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4 Experimental results
Here the experimental results are presented. To acquire knowledge about the magnetic
oscillations in the nano-wire the behavior of the microwave spectrum was observed
under various different angles θ and strengths of the magnetic field H and different
currents Idc. A typical microwave spectrum of the device for θ = 10◦, H = 472 Oe and
Idc = 2.7 mA is shown in figure 8.

Figure 8: Expample of a microwave spectrum emitted by the sample at θ = 10◦, H =
472 Oe and Idc = 2.7 mA. Curves are guides for the eyes.

There is a clear peak (1.) at the characteristic frequency of f = 4.18 GHz immediately
followed by a second, smaller peak (2.). A third (3.) broader, even smaller peak can
be seen at even higher frequencies. From micromagnetic simulations later in this thesis
(section 5) we can see that none of these match the frequency of a bulk mode (see
section 2.4).
A Lorentz fit gives a good approximation of the behavior of the microwave spectrum
for the first edge mode. For future observations the microwave spectra will always be
Lorentz fitted to make statements about maximum power, characteristic frequency f0

and full width at half maximum (FWHM), which indicates the damping.
From theoretical considerations one would expect an ideal thin peak. The nonzero line
width results from thermal fluctuations and nonlinear effects.
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4.1 Dependence on the magnetic field direction

First measurements with variation of the magnetic field direction indicate a symmetric
behavior with the angle Θ of the magnetic field, that gives the deviation from being
perpendicular to the nano-wire axis. We can find the angle where the magnetic field is
exactly perpendicular to the nano-wire axis. This angle is set to be Θ = 0.
Now the optimal position for the magnetic field in perspective to the wire-axis had
to be found. Therefore the magnetic field was rotated around the sample and the mi-
crowave spectrum was measured every 1◦. After an initial saturating magnetic field of
H > 800 Oe the magnetic field strength was set to H = 522 Oe. The electric current
was set to Idc = 2.7 mA and the angle was rotated in the area −25◦ > θ > 25◦. For
each angle the maximum power and the frequency are presented in figure 9.

Figure 9: Signal power and frequency depending on the angle Θ.

First observations show that the system behaves mostly axisymmetrically at angles
up to θ = 25◦. The maximum power can be achieved at the angles θ = −14◦ and
θ = 12◦ and nearly vanishes for angles |θ| > 22◦ and |θ| < 2◦.
The symmetric behavior is expected and follows directly from the symmetry of the
system. For angles below 2◦ the differential FMR is too low to show effect, while
for angles over 22◦ the component perpendicular to the direction of the spin current
becomes too weak.
To get reasonable results, in the following the angle will be set to |θ| = 10◦.

4.2 Dependence on the magnetic field strength

To find the field strength where the FMR is at its greatest, it was varied in an area
330 Oe < H < 840 Oe with steps of ∆H = 8.38 Oe. The charge current was set to
Idc = 2.7 mA and the magnetic field direction was set to an angle of Θ = ± 10◦. In
Figure 10 the frequency, the power and the full width at half maximum (FWHM) of

Sergej
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the FMR-peaks are displayed.

Figure 10: Signal power, frequency and FWHM depending on the magnetic field.

The frequency seems to increase linearly with the magnetic field, while the power
shows a peak at around H = 475 Oe. The behavior of the FMR-power is asymmetric:
at the left flank the power increases strongly with the magnetic field, while at the right
flank it decreases much slower. This asymmetric behavior indicates that we observe
the first mode of magnetic self-oscillations. At lower magnetic fields, meaning lower
oscillation frequencies, the oscillation excitation from the SHE is not strong enough to
work against the systems Gilbert-damping. At higher magnetic field strengths energy
partially flows in the excitation of higher oscillation modes, which results in additional
microwave signals while the signal from the first mode decreases. For low magnetic field
strengths the peaks are very broad (high FWHM) and become the narrowest roughly at
the same magnetic field where the peak height is at its maximum. For even higher fields
they become broader again, but the FWHM increases much slower than it decreases
at low fields.
For maximum signal powers the magnetic field should be set around 450 Oe < H <

500 Oe.
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4.3 Dependence on the direct current

The direct currents regulates the spin current generated by the SHE. In order to
test the dependency of the system on the current we vary the current in an area
2.2 mA > Idc > 3.3 mA and measure the microwave spectrum at steps of 0.5 mA. The
magnetic field is set to H = 472 IOe. Again, by lorentz-fitting the peak height, FWHM
and the frequency are obtained and displayed in figure 11.

Figure 11: Signal power, frequency and FWHM depending on the direct current.

The power signal reaches a maximum value at Idc = 2.7 mA, roughly at the same
current where the peak width shows a minimum (lowest FWHM). The power of the
signals at higher currents decreases slightly slower than it increases at lower currents.
Also the peaks become much broader at higher currents. Below the critical current
Icrit = 2.2 mA however, there is no FMR peak. This characterizes the minimum Idc

that is needed for the SHE to exceed the systems natural damping. Theoretically one
would expect the FMR power to increase further with Idc, but the nonlinear dynamic
character of the system and effects such as four-magnon scattering ([24]) cap the FMR
excitation at currents over 3.3 mA.
The FMR-frequency decreases with rising current, while it behaves nearly linearly at
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lower currents (approximately until Idc = 2.4 mA) and then decreases faster.

4.4 Resonant frequency at zero current

With the sample used in this thesis, a FMR-spectrum can only be detected with a
current in the range 2.2 mA > Idc > 3.3 mA as seen in section 4.3. Since the resonant
frequency varies with the current, we still need to obtain the resonant frequency at
zero current because of the different critical current at different currents and to com-
pare them to the results of micromagnetic simulation later. Therefor we assume linear
behavior of the resonant frequency at lower currents and extrapolate the resonant fre-
quency at zero current from the values we measured with Idc ≤ 2.4 mA (figure 14).

Figure 12: Frequency against current for different magnetic fields from H = 250 Oe to
H = 675 Oe. Θ = 10◦.
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Figure 13: Example of the linear extrapolation.

Figure 14: Calculated resonant frequencies at zero current for different magnetic fields
H and angles Θ.

The current dependent frequency is measured for magnetic fields ranging from H =
250 Oe to H = 675 Oe and the resonant frequency at zero current is calculated by

Sergej
Hervorheben



4 Experimental results 19

extrapolation for three different angles Θ = 5◦, 10◦, 15◦.
We can see that the resonant frequencies extrapolated here follow roughly the same
behavior as the measured frequencies in chapter 4.2. We can also see that the reso-
nant frequency at zero current f0 increases with the angle Θ, as expected from the
measurements made in chapter 4.2.
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5 Micromagnetic simulation
The theoretical description of magnetization dynamics in confined structures can often
only be achieved by approximation of equations or for special cases (ellipsoid and its
limiting cases[12]). Micromagnetic simulations give an alternate approach on a theo-
retical description by numeric integration of the LLGE.
In this chapter micromagnetic simulation will be used to obtain a model for our sample
giving additional information about the magnetization dynamics. The program we are
using is mumax3 [25], which is a GPU-accelerated simulation program.

5.1 Basics of micromagnetic simulation

The principal concept of micromagnetic simulation is the fragmentation of a magnetic
sample into cells whose behavior is given by the LLGE and the interaction with near or
neighboring cells. Similar to the theoretical considerations in chapter 2 the quantum-
mechanical origin of magnetism is only approximated by a mean field approximation
[?]. With this method magnetization dynamics can be described on a time scale of ps
and a spatial scale of nm, with upper limits given by computational time and memory.
To use micromagnetic simulation the sample geometry has to be broken to a number
of N = NxNyNz cubic cells, this approach is called finite differences. These cells should
have the same size, which should be of the order of the exchange length. For permalloy
the exchange length was found to be 5.7 nm [26].
For each cell the contribution of each energy term to the effective field is calculated
using discrete equations, each with different computational effort. All simulations in
this thesis were done without taking into account thermal fluctuations (T = 0 K).

5.2 Sample and parameters

The sample in mumax3 is represented by a cell grid. Since we want our simulation to
represent the sample used in the experiments, grid size and cell size are chosen as fol-
lows: The simulated sample is 190 nm wide (x), 1.91 ţm long and 5 nm high. It consists
of 38 cells in x-direction, 382 cells in y-direction and 2 cells in z-direction, resulting in
cell sizes of 5 nm× 5 nm× 2.5 nm (figure 15). The size was chosen accordingly to the
exchange length, while minimizing the used computation time.
To include the leads at each end of the sample, two additional cell grids of the same
size are added, one at each side of the sample. Additionally, as described in section
2.1, the demagnetizing field is influenced by the samples boundaries. To minimize the
influence of the demagnetizing field originating from the limitation of the simulation
grid, periodic boundary conditions are introduced in y-direction, meaning that the sim-
ulation behaves as if the whole setting is repeated 5 times at each side of the sample
in y-direction.
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The saturation magnetization is set to be 600 Oe and the exchange stiffness is set to
be 13 · 10−12 J/m, both typical values for permalloy. The damping parameter α is ex-
emplary set to be 0.0001 in the region of the nano-wire to get reasonable computation
times without changing the behavior and 0 in the regions of the leads. The magnetic
field is applied uniformly, its strength and direction can be varied while the angle of
Θ = 0◦ coincides with the x-axis.

Figure 15: Shematic of the sample used in simulation.

5.3 Simulation

Like in the experiment magnetization oscillations are to be excited inside the sample.
The first step in the simulation is to acquire a realistic ground state. Therefor the
damping parameter is set to α = 1, a very high value, and the simulation time runs
for a time of 5 ns. After that short period of time the state of the system is saved as
ground state, this state will later be subtracted to show the temporal behavior. For
the following simulation α is set back to its original values.
The excitation by the STT in the experiment can not be simulated directly by mumax3.
Instead we introduce an excitation by an additional external magnetic field in z-
direction. To find the resonant frequency all frequencies of the chosen area have to
be excited. We choose the magnetic excitation field to be a sinc function

Hexc = sin (2πfmaxt)
2πfmaxt

(34)
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with the time t and the maximum frequency fmax chosen to be 20 GHz. With its Fourier
transformation being the rectangle function all frequencies with f ≤ fmax are equally
excited.

5.4 Simulation results

5.4.1 Ground state

In the simulation results for the ground state are as expected. Since the internal field
is reduced at the edges by the demagnetizing field (chapter 2.1) and the magnetic field
mainly points in x-direction, the x-component of the magnetization is also reduced at
the edges while the y-component is greater at the edges (figure 16).

Figure 16: Components of the magnetization in ground state for Θ = 10◦ and H =
700 Oe for each cell. Left: x-component, right: y-component.

5.4.2 Data processing

To acquire information about the magnetization oscillation excited in the nano-wire,
the time behavior of the magnetization inside the sample is analyzed. Each component
of the magnetization and its behavior in the time space can be extracted from the
simulation data. With a Fourier transformation the behavior of each magnetization
component in the frequency space can be obtained. For each frequency then one can
infer the oscillation amplitude in the whole sample at this frequency by finding the am-
plitude in each cell for the chosen frequency. In figure 17 these steps of data processing
are illustrated.
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(a) Time dependent behavior of the y-
component of the amplitude in an exam-
ple cell.

(b) Frequency spectrum of the same cell ob-
tained via Fourier analysis. The maximum
is at f = 4, 941 GHz.

(c) y-component of the amplitude for oscilla-
tions at the frequency f = 4.941 GHz.

Figure 17: Data processing on the example of a field strenght H = 600 Oe at Θ = 10◦.

5.4.3 Dynamics

In the experiments the frequency spectrum always showed at least two peaks. In the
spectra obtained by the simulation there are always exactly two peaks as it can be seen
in figure 18 for different magnetic field strength.
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(a) 300 Oe (b) 400 Oe

(c) 500 Oe (d) 600 Oe

(e) 700 Oe (f) 800 Oe

Figure 18: Spectrum of the z-component of the amplitude for different external mag-
netic fields obtained by micromagnetic simulation.

We can again identify the peak at lower frequencies as edge mode and the peak at
higher frequencies as bulk mode. The edge mode peak has its maximum at a frequency
of f = 4.941 GHz, an example of the corresponding amplitudes is shown in figure 19
(y-component can be found in figure 17c) for H = 600 Oe and Θ = 10◦.
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(a) x-component (b) z-component

Figure 19: Components of the oszillation amplitude at f = 4.941 GHz withH = 600 Oe
and Θ = 10◦ (y-component can be found in figure 17c).

(a) x-component (b) y-component

(c) z-component

Figure 20: Absoulute values of the components of the oszillation amplitude at f =
4.941 GHz with H = 600 Oe and Θ = 10◦.

One can see that the amplitudes are highest (and so the oscillations are strongest)
at the edges of the nano-wire and get reduced going to the center.
At the frequency of f = 7.361 GHz the bulk mode peak has its maximum. The corre-
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Figure 21: Frequency of the edge mode in dependence of the angle Θ taken from sim-
ulation data.

sponding amplitudes are displayed in figure 20. Here we have the strongest oscillations
split, being partially in the center region and partially also at the edges of the nano-
wire. We find that these oscillations have a different sign at the center than the ones at
the edges. This suggests that we do not have a „pure“bulk mode, but a superposition
of bulk and edge mode.
Varying the direction of the external magnetic field it is found that the system behaves
perfectly symmetric according to the frequency of the edge mode (figure 21) as already
seen in the experiments.

(a) H = 300 Oe (b) H = 800 Oe

Figure 22: Internal magnetic field at external fields H.
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For lower strengths of the external magnetic field the internal magnetic field also
changes not only in strength, but also in form (figure 22). At the field strength of
H = 300 Oe the region where Hint = 0 Oe is much broader than for example at
H = 800 Oe. This also affects the magnetization oscillation within the sample. In fig-
ure 23 the z-component of the amplitude is shown for different magnetic fields. For
low magnetic fields the oscillations are mainly located at the center of the sample. For
increasing magnetic fields the region where the magnetic field is zero inside the sample
reduces and the oscillations move to the edges.



5 Micromagnetic simulation 28

(a) H = 300 Oe (b) H = 400 Oe

(c) H = 500 Oe (d) H = 600 Oe

(e) H = 700 Oe (f) H = 800 Oe

Figure 23: z-component of the oscillation amplitude at different magnetic fields.

The frequency of the edge mode obtained by the simulation can be directly com-
pared to the frequency at zero current obtained by the experiment. For the angles
Θ = 5◦, 10◦, 15◦ the frequencies of the edge mode for different magnetic fields in the
area 200 Oe ≤ H ≤ 750 Oe are determined (figure 24).
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Figure 24: Frequency of the edge mode determined from simulation.

We can see that the dependence on the angle Θ and the magnetic field H roughly
matches the behavior we found in the experiment (figure 14),even though they only
match qualitatively. This confirms that the oscillations observed in the experiment
actually are oscillations in the edge regions of the nano-wire.
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6 Discussion
In this section the results from the experiment and the micromagnetic simulations are
compared and discussed.
We found that magnetization oscillation can be excited inside the nano-wire as active
region demonstrating that it is possible to excite self-oscillatory dynamics by spin-orbit
(SO) torques in an extended region. This opposes recent experiments [27], that showed
that uniform application of SO torques on an extended ferromagnetic film does not
excite magnetic self-oscillations because of nonlinear magnon scattering processes. In
[28] it is argued that the quantization inside the nano-wire geometry reduces the effect
of those nonlinear magnon scattering processes. As a result enables the excitation of
self-oscillatory magnetization dynamics inside the sample. Four-magnon scattering for
example can be suppressed by a geometry that is narrower than a critical width, which
is given by the four-magnon scattering wave vector [24]. For a 5 nm thick permalloy
nano-wire this width is about 0.5 µm [28].
The frequency spectrum found in the experiments has one major peak and, depending
on the chosen parameters, up to two smaller peaks (figure 8). In contrast the simulation
shows two clear peaks, one for the edge mode and one for the bulk mode. Compar-
ing the frequencies at which those peaks can be found we can conclude that all peaks
found in the experiments are harmonics of the edge mode, the bulk mode could not be
measured at any frequency or magnetic field. This suggests that the bulk mode is not
excited in the sample at all and all energy is absorbed by edge modes.
The experimental setup shows a nearly symmetrical behavior considering the angle Θ
(figure 9). It can be seen that the microwave signal originating from the FMR can only
be measured for angles 2◦ ≤ |Θ| ≤ 25◦. For lower angles the effect of the differential
FMR is too low to be measured while for larger angles the component of the magnetic
field perpendicular to the nano-wire axis becomes too small. In the simulation also a
symmetrical behavior was observed. However, the behavior of the frequency showed
a different form than the measured data. The reason for the difference in behavior
probably comes from the nonzero direct current at which the experimental data was
obtained.
The dependence on the magnetic field showed a maximum amplitude at a external
magnetic field of H = 475 Oe (figure 10). For field lower than H = 300 Oe no FMR
intensity could be measured since the signal becomes too small (see section 2). At
magnetic field strengths larger than H = 500 Oe the FMR intensity decreases again.
Because of the the broader FMR peaks at those magnetic field strengths we argue that
instead of the first harmonic edge mode higher modes are excited. In the simulation
instead we observed that the edge mode peak becomes smaller with increasing mag-
netic field strength while the bulk mode peak at first also decreases and then for fields
larger than H = 450 Oe increases again.
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For the dependence on the SHE controlling direct current we found that a critical cur-
rent has to be reached to exceed the Gilbert-damping factor and to excite self-oscillatory
magnetization dynamics. It was also found that the maximum FMR amplitude corre-
sponds to a current of IDC = 2.7 mA. For larger currents nonlinear magnon scattering
effects suppress excitation of self-oscillatory dynamics.
The resonant frequencies at zero current show the same behavior with external mag-
netic field direction and strength as found before (figure 14). They match with the find-
ings from the simulation for resonant frequencies showing that the oscillation modes
measured in the experiment indeed are edge modes as the ones observed in simulation.
For all experimental data it must be considered that the sample did not have a perfect
smooth shape due to the creation process.
As a conclusion self oscillations excited by STT could be measured in a nano-wire as
a nearly one-dimensional structure and the measurement result match the theoretical
results obtained from micromagnetic simulation for the most part.
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