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Conservation of Angular Momentum in Magnetic Dynamic Processes

by Lena Funcke

The current thesis provides a brief overview of several aspects of magnetic dynamic pro-
cesses, especially the conservation of the angular momentum.
The �rst issue this thesis considers is whether it is possible to measure experimentally the
mechanical oscillations of a magnetic �lm caused by an elliptic magnetization precession un-
der the condition of the ferromagnetic resonance. This e�ect is a dynamic analogon of the
static e�ect that was originally discovered by Einstein and de Haas and relies on the total
angular momentum conservation of the magnetic subsystem and the lattice. The elliptical
precession of the magnetization is associated with an oscillation of the longitudinal compon-
ent of the magnetization. Therefore, the angular momentum conservation law demands that
this oscillation is compensated by a corresponding mechanical oscillation of the sample. In
order to determine the amplitude of the mechanical oscillation of the �lm, an experimental
design of this �lm was simulated in this thesis. However, the simulations indicated that this
amplitude is too small for detection by currently available experimental techniques.
In the second train of thoughts, the thesis presents simulations of the three-magnon split-
ting process, a non-linear process that is caused by the presence of the magnetic dipolar
interaction between magnons. Earlier experimental and theoretical �ndings, related to this
splitting, pointed out the incompleteness of the quantum description of the process, if the
interaction between the magnetic subsystem and the lattice of the magnetic sample is ig-
nored. Therefore, the three-magnon splitting factor characterizing the increase of angular
momentum in the process was determined in this thesis to con�rm the existence of some basic
theoretical problems in the quantum mechanical description of the magnonic quasi-particles
which ignores the lattice.
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Chapter 1

Introduction

The research �eld of magnonics has the intention to explore the quasi-particles magnons.
These quantized spin waves are elementary spin excitations in magnetic materials.
During the last years, scienti�c interest in the �eld of magnonics as a sub �eld of spintron-
ics has continuously increased as magnons can garner, transmit and process information.
Hence, one can regard spintronics as a new paradigm for prospective information techno-
logies (cf. [WAB+01, p. 1] and [Ulr14, p. 1]); however, the underlying physics has to be
further explored before spintronics can actually be used for practical purposes.
First of all, technical disturbances might occur due to macroscopic e�ects of the magnet-
ization precession on the mechanics of the magnetic sample. Therefore, the interest in an
experiment arose with the purpose to determine the amplitude of macroscopic torsional os-
cillations of a YIG �lm caused by an elliptic magnetization precession. As former rough
estimations indicated an amplitude barely large enough to be measured, the exact charac-
teristics of the �lm oscillation will be ascertained analytically as well as numerically in this
thesis.
Moreover, the thesis presents simulations of the three-magnon splitting process, a non-linear
process that is caused by the presence of interaction between magnons. Concerning this split-
ting, earlier experimental and theoretical �ndings [KDD+11] pointed out the incompleteness
of the quantum description of the related interaction between the magnetic subsystem and
the lattice of the magnetic sample. Hence, in this thesis the splitting factor characterizing
the increase of angular momentum in the three-magnon splitting process is ascertained to
con�rm the existence of some basic theoretical problems in the quantum mechanical descrip-
tion of the magnonic quasi-particles, which ignores the lattice dynamics.

1



Chapter 1: Introduction 2

In general, all these presented issues are related to the conservation of angular momentum
in the magnetic system which is the main topic of this thesis. It is structured as follows:

Chapter 2 presents an introduction into the theory of magnetic dynamic processes in a
magnetic �lm. Fundamental properties of magnetic systems will be introduced, followed
by an overview of di�erent types of magnetic oscillations. Firstly, uniform precession of
magnetization is explained, and, secondly, a qualitative and mathematical description of
spin waves and splitting processes is elucidated. In preparation for the subsequent chapter,
the time-dependent change of the magnetization component of the elliptic magnetization
precession, that is parallel to the �eld, is derived. This is required for further calculations
describing the Einstein de Haas e�ect presented in

Chapter 3 which starts with a short historical overview on the Einstein de Haas experi-
ment showing that the angular momentum of a magnetic subsystem is coupled to the one of
the lattice. Afterwards, an adjusted experimental design is presented that considers the oscil-
lation of a magnetic cuboid induced by the elliptic magnetization precession. Subsequently,
the mathematical background of the related quantum mechanical entities gyromagnetic ra-
tio and Landé factor is given. Moreover, the macroscopic torsional oscillations of the cuboid
caused by the elliptic magnetization precession are described.

Chapter 4 presents the programs used for the simulations, the optimal simulation para-
meters and the evaluation methods of the obtained numerical data. Furthermore, the di�er-
ent approaches to the two simulation topics are explained, leading to the results displayed
in

Chapter 5 which comprises the results as well as their discussion. Initially, the analytically
and numerically determined oscillation amplitudes of the magnetic cuboid are compared.
Subsequently, the splitting factor in three-magnon splitting and the consequent spin and
magnetic moment of the magnons are ascertained.

Chapter 6 consists of a short conclusion and emphasizes the huge impact the clari�cation
of the mentioned inconsistencies would have on this �eld of research.

Finally, in the appendices A, B, C and D one �nds theoretical derivations clarifying some
statements presented in the theoretical chapters. The last appendix E contains commented
scripts and further data illustrating the process and the results of this thesis.



Chapter 2

Theory of Dynamic Processes in a

Magnetic Film

2.1 Fundamental Considerations

The following theoretical considerations of this chapter, including the formulas as well as
the connections, are mainly taken from [GM96] and partly also from [NB14] and [Ulr14].
The collective magnetism in a ferromagnetic material is caused by the exchange interaction
of the electrons leading to an unbalanced spin system. The resulting net spins align spon-
taneously for temperatures below the Curie point [Kit53, pp. 356f.].
Herring and Kittel [HK51, p. 5] introduced the magnetizationM , a continuously di�erenti-
able vector �eld, to replace the individual spins s as measures describing the system. This
micromagnetic approach describes the magnetization as a macroscopical entity

M =
1

V

∑
i

µsi
(2.1)

constituted microscopically by the spin-magnetic moments

µsi
= −gµBsi, (2.2)

where V is the volume of the magnetic sample, g is the Landé factor of an electron and
µB = e~

2me
is the Bohr magneton with ~ as the reduced Planck constant, e as the charge and

me as the mass of an electron. When applying an external magnetic �eldH , the spins start
to align along the �eld. Above a certain �eld strength, all spins point in the direction of the
�eld and the saturation magnetization M 0 is reached.

3



Chapter 2: Theory of Dynamic Processes in a Magnetic Film 4

If one wants to consider the dynamics of a magnetic system, the fundamental equation
describing the precession of magnetization in a solid body is the following non-linear equation
of motion,

∂M

∂t
= −γM ×Heff , (2.3)

known as the Landau-Lifshitz (LL) equation (cf. [LP92, p. 278]) with γ = gµB
~ and the

e�ective magnetic �eld

Heff = H0 +Hex + h+ hM . (2.4)

H0 combines the static external and demagnetizing �eld, Hex the e�ective �eld of the
exchange interaction, h represents the alternating component of the external �eld and hM
is the alternating demagnetizing �eld.
For a system with damping, the Landau-Lifshitz-Gilbert (LLG) equation has to be used (cf.
[Sat11, p. 26]),

∂M

∂t
= −γM ×Heff +

α

M0

M × Ṁ , (2.5)

which contains the Gilbert damping term and will be important in the following section.

2.2 Uniform Precession

In a magnetic system withM ‖H ‖ ez, an external stimulus can de�ect the magnetization
from its static equilibrium position so that it starts to precess around H as stated by the
LL eq. (2.3). If the resulting macroscopic magnetization (cf. �g. 2.1(b)) precesses in phase
in di�erent points of the sample (cf. �g. 2.1(a)), this is called a uniform precession.
For an ellipsoidal sample, magnetized along one of its axes, the frequency of this precession
is described by the Kittel formula [Kit48, p. 155]

ω0 = γ
√

[H + (Nx −Nz)M0][H + (Ny −Nz)M0], (2.6)

where Ni are the demagnetization factors. For a sample geometry of an in�nite �lm, i.e.
Nx = Nz = 0 and Ny = µ0 = 4π · 10−7, where the y-axis is perpendicular to the �lm-plane,
while the x- and the z-axis are in the plane, the equation is simpli�ed to
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(a) (b)

Fig. 2.1 Schematic �gures of (a) a microscopic circular uniform precession of the magnetic
moments (�gure taken from [Dzy10, p. 14]) and (b) macroscopic elliptic precession of the

magnetization in a YIG �lm.

ω0 = γ
√
H(H + µ0M0). (2.7)

In an in�nite medium, the uniform precession can be assumed to be circular (cf. �g. 2.1(a)).
However, in a tangentially magnetized �lm with l2 << l1, l3, the dynamic dipolar �elds in-
duce an ellipticity of magnetic precession (cf. �g. 2.1(b)). When the precessing magnetiza-
tion vector points out-of-plane, the induced magnetic charges at the opposing surface create
a strong demagnetizing �eld and the vector is pushed back in the direction parallel to the
static �eld H . This ellipticity is described mathematically in sec. 2.4.

2.3 Spin Waves

The already described uniform precession of magnetization around the external �eld can be
assumed as a wave with a wave vector of k = 0. In general, all wave-like excitations of the
equilibrium state of magnetization are called spin waves. However, the spin waves described
in this chapter are the propagating ones, having k 6= 0 and consisting of magnetic moments
that do not precess in phase (cf. �g. 2.2). As the spin waves are collective excitations
analogous to lattice vibrations, they can be quantized to quasi-particles, called magnons.
The concept of spin waves was introduced by Bloch [Blo30, p. 4], who derived the dispersion
law of spin waves in 1930, but only took into account the exchange interaction. Holstein
and Primako� [HP40, p. 4] included dipolar interaction into their later, more exact theory.
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Fig. 2.2 Spin wave in a chain of spins at a distance of a, (a) perspective and (b) top view.
One wavelength is shown, the wave line goes through the top of the spin vectors. (�gure

taken from [Kit53, p. 365])

An approximate dispersion relation of the spin waves in a system with both exchange and the
magnetic dipolar interaction was determined by Kalinikos and Slavin (cf. [GM96, p. 181],
[KS86, p. 6,7,10,55,60], [Kal80, p.5,6,9]) to

ω2 =
(
ωH + l2exωMk

2
) (
ωH + l2exωMk

2 + ωM sin2 ϑk
)
, (2.8)

where ϑk is the angle between M and k, the frequencies are de�ned as ωH = γH and
ωM = γµ0M0, and lex =

√
A

2πM2
0
is the exchange length with A as the exchange constant.

2.3.1 Non-Linear Coupling of Magnetic Modes

One excitation mechanism for spin-waves is the parametric pumping process where several
modes with the same frequency but di�erent wave vectors and propagation directions are
excited. As described in oscillator theory (cf. e.g. [NM07, p. 15]]), a parametrically excited
system contains a time-dependent parameter like the magnetic �eld. Hence, the energy is
pumped into the system by a modulation of the internal parameter, in the present case
the magnetization. This modulation is achieved by applying a dynamic �eld h(t), which is
perpendicular to the static �eld H .
The perpendicular pumping process is based on non-linear coupling between di�erent spin
wave modes. For a mathematical description, one has to assume an approximative form of
the magnetization [GM96, p. 247]

M = M0ez +m(r, t), where m(r, t) =
∑
k

mk(t)e−ikr (2.9)

is the fourier transformed representation of the dynamic component of the magnetization.
After substituting this ansatz into the LL equation (eq. 2.3), one receives two di�erential
equations [GM96, p. 248]
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−ida0
dt

= ω0a0 − γ(hx + ihy) + Ωn0, (2.10)

−idak
dt

= (Ak + γhz)ak +Bka
∗
−k + Ωnk. (2.11)

The variables and parameters are (cf. [GM96, pp. 247,181] and [Ulr14, p. 7])

ak =
1

M0

(mkx + imky), a∗−k analogously, (2.12)

Ak = ωH + l2exωMk
2 − 1

2
ωM(P0(1− sin2 ϑk)− 1), (2.13)

|Bk| =
1

2
ωM(P0(1 + sin2 ϑk)− 1). (2.14)

P0 = 1−e−kl2

kl2
is a term which takes into account the �nite size of the �lm in the y direction

(constant taken from [GM96, p. 248] and [Ulr14, pp. 6,7]). The expressions Ωn0 and Ωnk

comprise higher order mixed terms in ak, a∗k including a0 [GM96, p. 248]. Therefore, they
describe the interactions between di�erent modes.

2.3.2 Three-Magnon Splitting

In a linear approximation, equation 2.11 and the adjoint equation describe the coupled
oscillations of two harmonic oscillators ak and a∗−k, which correspond to spin waves with
wave vectors k and −k. The mathematical derivation of this solution can e.g. be found
in [ABP68]. However, in a parametric pumping process the uniform mode a0 is so strongly
excited that one has to include also non-linear terms describing the coupling of the uniform
mode to other spin wave modes due to Ωn0 and Ωnk (cf. [NB14, p. 17]). This energy transfer
from the modulating source to the oscillators is most e�ective if [GM96, p. 250]

nωp = ω1 + ω2 (2.15)

with n = 1, 2, 3, .... The frequencies ω1 and ω2 are the ones of the spin waves and ωp is the
pumping frequency that modulates the coupling.
Returning to the description of spin waves as quasi-particles, relation 2.15 describes the
process of annihilation of n particles with the frequency ωp and creation of two particles
with the frequencies ω1 and ω2. At a certain threshold amplitude of the periodic �eld h,
the energy transferred to the spin waves exceeds the energy loss that they face, i.e. their
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amplitudes start to increase exponentially which results in unstable behaviour. Since the
value of n in eq. 2.15 is the order of the instability, the �rst-order instability corresponds to a
three-magnon splitting process. This process is shown in �g. 2.3, where the upper and lower
borders of the area indicating the allowed frequencies and wave vectors of the spin waves refer
to spin waves propagating perpendicular (Damon Eshbach modes) and parallel (backward
volume modes) to the applied �eld, as labelled. Here, the created magnons (spin waves)
with wave vectors k and −k have degenerated energies (ω1 = ω2) to ensure momentum and
energy conservation (all these considerations were taken from [GM96, p. 250] and [KDD+11,
p. 663]).

Fig. 2.3 Spin-wave spectrum with indic-
ated three-magnon splitting in YIG (�gure

taken from [KDD+11, p. 663]).

As explained in [KDD+11, p. 663], the angular mo-
mentum, however, is not conserved due to the the
increase of the total number of magnons which, ac-
cording to Bloch's exchange theory, carry an an-
gular momentum equal to } (ref. [Blo30]). Hence,
three-magnon splitting is not allowed if an isolated
magnetic system is considered, as it was done in
Bloch's model only describing the exchange inter-
action [Blo30]. If one includes the magnetic dipolar
interaction, this restriction is removed. Mathemat-
ically spoken, the Hamiltonian operator describing
the dipolar interaction does not commute with the
operator of the angular momentum of the magnetic
subsystem alone, but with the operator of the total
angular momentum combining the magnetic sub-

system and the lattice (cf. [KDD+11, p. 663] and [BSPA59]). Therefore, the quantization
of spin waves leading to a spin of 1 is only valid for the total system of magnetic subsystem
and lattice.
Therefore, when incorporating the dipolar interaction into the model, the splitting factor
characterizing the increase of angular momentum parallel to the static �eld di�ers from 2 as
parts of the spin are carried by the lattice (cf. e.g. [NB14, pp. 22-26]). Due to this coupling
of the magnetic subsystem with the lattice, not the classical magnon but rather a mixture
of magnetic and lattice oscillation is an exact eigen excitation of the system. However, as
an approximate quantization is used, which provides only the magnetic part of this com-
posite particle, the splitting factor di�ers from 2. This factor providing information on the
magnetic part of both the spin and the magnetic moment of the magnons will be derived
numerically in this thesis for speci�c parameters.
Surprisingly, a coherent quantum treatment of the angular momentum �ow from the mag-
netic subsystem into the lattice and vice versa is still missing, though exchange and dipolar
interactions occurring in a ferromagnet have �rstly been described quantum mechanically
already more than 70 years ago ([KDD+11, p. 663], [HP40], [Maj07]).
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2.4 Mz Magnetization Change of Elliptic Precession

The conservation of the angular momentum in the magnetic subsystem that is parallel to
the static �eld is violated not only in the three-magnon process, but also in the elliptic
precession of magnetization. This observation will be important in the next chapter where
the consequences of the time-dependent change ofMz parallel toH on the magnetic sample
are illustrated. In order to calculate this magnetization change, one has to consider weak

dynamic �elds that cause small dynamic amplitudes
∣∣∣mx,y

M0

∣∣∣ << 1. The magnitude of the

magnetization vector |M | has to stay constant due to the conservation of the total magnetic
moment. An informative expression for Mz can be derived using basic trigonometry and an
expansion for small amplitudes (cf. app. C)

Mz =
√
M2

0 −m2
x cos2 ωpt−m2

y sin2 ωpt (2.16)

≈M0 −
1

4M0

(m2
x +m2

y) +
1

4M0

(m2
y −m2

x) cos 2ωpt. (2.17)

This equation shows some consequences of the excitation of magnetic precession, which
are also illustrated numerically in ch. 4. The second term on the right hand side of the
equation describes the reduction of the static component Mz,eff = M0 − 1

4M0
(m2

x + m2
y)

(e�ective magnetization), leading to a negative non-linear frequency shift of the dispersion
relation 2.8 (cf. [Ulr14, p. 17]). The third term shows that the resulting oscillation of the
magnetization with frequency 2ωp only exists for elliptic and vanishes for circular precession.
If eq. 2.17 is rearranged and di�erentiated with respect to t, one obtains the �nal expression
of the time-dependent change of Mz,

Ṁz = 2ωp
m2
x

4M0

(
1−

m2
y

m2
x

)
sin 2ωpt

!
= 2ωp∆m · sin 2ωpt. (2.18)

To describe the strength of the ellipticity of uniform precession, one has to take a look at
the ratio of the dynamic magnetization components mx,y perpendicular to the static �eld1

my

mx

= −i
(
H + (Ny −Nz) ·M0

H + (Nx −Nz) ·M0

)− 1
2

. (2.19)

This formula is only valid for α = 0 and a small initial magnetization de�ection. It illustrates
that for large static �elds the Zeeman energy is much higher than the demagnetization energy

1This formula is taken from [GM96, p. 26] apart from the typing error of leaving out the saturation
magnetization M0 which was done in this source.
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and the ellipticity vanishes.
Eq. 2.19 equals the ellipticity relation for spin waves,2

my

mx

= −i
(

1 +
ωM sin2 ϑk

ωH + l2exωMk
2

)− 1
2

= −i
(
Ak + |Bk|
Ak − |Bk|

)− 1
2

(2.20)

for k → 0. As it can be easily seen in eq. 2.20, the ellipticity is strongest for uniform
precession, i.e. for small wave numbers k with Bk comparable to Ak. For large k, the
exchange e�ect dominates, so that Ak >> Bk, and the magnetic precession becomes circular
(cf. [Ulr14, p. 16]).
To �nd a complete expression describing the time-dependent change ofMz, the formula 2.18
raises the need for a term characterizing the component mx. For this purpose, one has to
calculate the amplitude of uniform precession (cf. [Suh57, p. 1,17,22] and [NB14, p. 17]). If
one includes spin waves losses via the substitution ω0 → ω0 + iωr0, where ωr0 is proportional
to the Gilbert constant α, and assumes a circularly polarized dynamic �eld that oscillates
with the pumping frequency wp, the expression [GM96, p. 249]

a0 =
γh

ω0 − ωp + iωr0
· eiωpt (2.21)

for the amplitude of uniform precession follows, which is twice as large as the precession
amplitude when regarding a linear polarized �eld. When taking into account eq. 2.12 and
2.21, the expression for mx

mx =

(
1 + i

my

mx

)−1
M0a0 =

(
1 + i

my

mx

)−1
M0γh

ω0 − ωp + iωr0
· eiωpt (2.22)

is obtained. If resonant excitation with ω0 = ωp is assumed, one can write the real part of
mx as

Re(mx) =

(
1 +

(
my

mx

)2
)−1

M0γh

ωr0
· cosωpt (2.23)

and one receives the same time dependency as already assumed in eq. 2.16.
As mentioned, a complete expression for the time-dependent change of Mz has to derived
in order to describe mechanical �lm oscillations described in the next chapter. For this
purpose, one has to insert eq. 2.19 and 2.23 into eq. 2.18.

2In [GM96, p. 184], the formula (7.23) referring to eq. 2.20 contains the typing error of leaving out the
exterior power of the fraction, which is shown in the app. C.



Chapter 3

Theory of Einstein de Haas E�ect

3.1 Historical Overview

In the year 1915, long before the discovery of quantum mechanics, A. Einstein and W. J. de
Haas conducted a simple experiment to prove the coupling between the angular momentum
and the magnetic moment of single atoms ([EdH15]).

(a) (b)

Fig. 3.1 (a) Replica of the original setup of the Einstein de Haas experiment (�gure taken
from [DPG]). (b) Schematic setup of the Einstein de Haas experiment. Left side: Without
a magnetic �eld, the magnetic dipole moments µ point in di�erent, random directions.
Right side: When a magnetic �eld B is applied, The magnetic moments align parallel to
the applied external �eld; their total angular momentum Lges induces a mechanical angular

momentum Lrot.(�gure taken from [HRW03, p. 1240])

11
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Einstein and de Haas attached an iron cylinder to a thin string and inserted it into a coil
as shown in �g. 3.1(b). In the beginning, the magnetic dipole moments of the atoms in the
cylinder pointed in various directions, so that the angular momenta cancel each other out
(cf. 3.1(b), left). Subsequently, the coil applied a magnetic �eld parallel to the cylinder and
the magnetic moments aligned parallel to it (cf. 3.1(b), right).
As there were no external torques acting on the cylinder, the total angular momentum re-
mains zero. Hence, if the atomic angular momenta align antiparallel to the magnetic �eld,
they have to transfer an angular momentum to the cylinder, thereby rotating it. Afterwards,
the torsion of the string induces a torque stopping the rotation of the cylinder and trans-
posing it into a harmonic torsional oscillation.
This experiment indicated that the mechanical angular momentum and the magnetic mo-
ment of an atom are coupled in opposing directions [HRW03, p. 1240]. Furthermore, the
resulting relation of the magnetic moment to the angular momentum for the spin was twice
as large as for the orbital angular momentum [Dem96, p. 161].
A general conclusion of this experiment is that a change of the angular momentum of a
magnetic state can cause a visible rotation of a macroscopic object.

3.2 Adjusted Experimental Design

To connect the considerations of sec. 2.4 with the static Einstein de Haas e�ect, macroscopic
torsional oscillations of a magnetic �lm are considered, which are induced by its elliptic
magnetization precession.

Fig. 3.2 A schematic �gure of the elliptic magnetization inducing oscillations of the YIG
�lm.

As mentioned, former estimations indicated that the amplitude of this precession can be
barely large enough to be measured. To encourage or reject the possibility to measure this
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precession in a real experiment, an adjusted experimental design has to be conducted that
will be examined analytically and numerically in the subsequent chapter.
Instead of an iron cylinder, the design consists of a YIG �lm with a volume of (100·10·100)µm
(cf. �g. 3.2). Moreover, the physical principles behind the oscillations examined in this thesis
di�er slightly from the ones in the original Einstein de Haas experiment. There, angular
momentum �ew from the magnetic subsystem into the lattice as the spins changed their
direction. This situation is comparable to the three-magnon splitting process where the
magnetic system is fundamentally excited, so one spin of the system �ips and a magnon is
created. The resulting rotation of the lattice caused by the angular momentum �ow from
the lattice into the magnetic subsystem is damped rapidly in case of a single three-magnon
splitting process and therefore cannot be observed.
The analytical and numerical calculations in this thesis, however, describe �lm oscillations
induced by the elliptic precession of magnetization. Here, the spin part of the angular
momentum Lz is not constant, so for a total angular momentum conservation of the whole
system, the �lm has to oscillate mechanically around the z axis. This e�ect di�ers from the
one in the original static experiment as one now describes a forced oscillation based on a
time-dependent, periodical torque acting on the lattice.

3.3 Gyromagnetic Ratio and Landé Factor

The connections of the following theoretical considerations are mainly taken from [Sch].
In order to derive the maximal torque Dmax acting on the �lm as induced by the change
of the magnetization component parallel to the magnetic �eld Ṁz, one primarily has to
consider the gyromagnetic ratio and the Landé factor for the spin of an electron [Dem96,
p. 161],

γ =
µs
s

=
−ge
2me

and g =
2me

−e
µs
s
, respectively. (3.1)

The whole magnetic moment of the �lm is µfilm = Nµs, where µs is the spin-magnetic
moment of an electron and N is the number of electrons with an uncompensated spin.
Therefore, the magnetization is

M =
µfilm
V

=
Nµs
V

, (3.2)

where V = l1l2l3 is the volume of the �lm.
The whole magnetic angular momentum of the �lm is Lmag = Ns, where s is the spin of
one electron. From these considerations it follows that
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g =
2me

−e
MV

Lmag
. (3.3)

Due to the oscillation of the �lm, the magnetization and the angular momentum of the �lm
are time dependent. As these quantities are the only time-dependent ones in the formula,
one can derive them with respect to t and de�ne D(t) = L̇(t),

g =
2me

−e
ṀV

Dmag

. (3.4)

In this thesis, only the magnetization change Ṁz is considered, Ṁ
∧
= Ṁz, and one receives

the torque acting on the �lm

Dmag = L̇mag =
2me

−e
V Ṁz

g
=
V Ṁz

γ
. (3.5)

At this point, the oscillation amplitude could be derived by considering the conservation of
angular momentum: L̇mag + L̇mech = 0 (cf. app. A). However, another approach leading to
the same result is presented in the following chapter.

3.4 Torsional Oscillations

If one considers a periodic force F0 · cos(2ωpt) that acts on a mass m attached to a spring
with spring constant κ, the equation of motion, [Dem94, pp. 363f.]

mẍ = −κx− bẋ+ F0 cos(2ωpt), (3.6)

follows, where x is the free coordinate of the system, 2ωp as the pumping frequency and b
describing the damping of the oscillation. This equation of motion can be converted into
the inhomogeneous di�erential equation

ẍ+ 2βẋ+ ω2
0x = K · cos(2wpt) (3.7)

using the abbreviations

ω2
0 =

κ

m
, β =

b

2m
, K =

F0

m
, (3.8)
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where ω0 is the eigen frequency of the undamped oscillation.

To return to the initial adjusted experimental design and aiming for a description of
the forced rotary oscillations of the YIG cuboid, one has to consider a torsional oscillation
and substitute the Cartesian de�ection coordinate x by the oscillation angle ϕ in eq. 3.7.
Furthermore, K can be expressed by

K =
F0

m
=
Dmax

J
, (3.9)

where D = J d
2ϕ
dt2

= J F
m
[Dem94, p. 150]. Dmax is the maximal torque exerting the periodical

force on the �lm which possesses the inertial torque J [Dem94, p. 149]

J =
1

12
m(l21 + l22), (3.10)

where l1 is the length (in x direction) and l2 is the width (in y direction) of the �lm. The
maximal torque therefore amounts to

Dmax = ϕ0J
√

(ω2
0 − 4ω2

p)
2 + (4βωp)2. (3.11)

Thus, one receives a maximal oscillation angle of [Dem94, pp. 365]

ϕ0 =
Dmax

J

1√
(ω2

0 − 4ω2
p)

2 + (4βωp)2
≈ Dmax

4Jω2
p

(3.12)

whereas the approximation neglects both the mechanical damping β and the eigen frequency
ω0, which are small in comparison to the pumping frequency ωp ≈ 1010Hz. To �nally obtain
the oscillation amplitude of the YIG �lm in y direction, simple trigonometric considerations
and the approximation sin(x) ≈ x for small x lead to

y0 =
l1
2
· sinϕ0 ≈

l1
2
·
(
Dmax

4Jω2
p

)
. (3.13)

Subsequently, one can insert eq. 3.5 and 2.18 into the expression 3.13:

y0 =
l1
2
·

(
Ṁz,maxV

γ
· 1

4Jω2
p

)
=
l1
2
·
(

2ωp∆mV

γ
· 1

4Jω2
p

)
=
l1
2
·
(

∆mV

2Jωpγ

)
. (3.14)

The numerical methods for the determination of a speci�c value for this amplitude is presen-
ted in the subsequent chapter and the result is shown afterwards in ch. 5.



Chapter 4

Simulations

4.1 Programs

All the simulations that will be presented in this thesis were implemented with the micromag-
netic simulation program mumax3, which is GPU-accelerated (cf. [Van]). The simulations
comprised a magnetic sample that was segmented in �nite, cube-shaped cells. The applied
uniform magnetization followed the LL equation (eq. 2.3) in each cell, taking into account
i.a. the magnetostatic, exchange and anisotropy interactions. A more thorough explanation
can be found in [VVdW].
The display of the similar program OOMMF (Object Oriented MicroMagnetic Framework,
cf. [Nat]) was used to review the created magnetic �elds and the received magnetization
distribution of the simulated cuboid. Statistical analysis was performed using Scilab, Mat-
lab, QtiPlot and Origin.
An exemplary selection of the used codes is presented in the appendix E to gain a deeper
insight into the methods of this thesis.

4.2 Simulation Parameters

4.2.1 Micromagnetic Sample

With mumax, a micromagnetic grid with a size of (256, 32, 256) cells was created. The cell
sizes were (0.15, 0.16, 0.15)µm so that the whole cuboid had a size of (38.4, 5.12, 38.4)µm.
Here, the y size of the cuboid was chosen to 5.12µm as in former experiments [KDD+11]
this width was chosen to 5.1µm. The spin waves were described by a wave number of
k = 5.236 1

µm
, i.e. a wavelength of λ = 2π/k ≈ 1.2µm, so the �lm has to be more extended

16
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than this wavelength to observe the spin waves. Due to long simulation times, the size of
the cuboid remained constant so that the optimal values of the other simulation parameters
had to be ascertained just once.
As disturbing edge e�ects obstructed the e�ective excitation of uniform precession and spin
waves, periodic boundary conditions as well as a removal of surface charges were simulated.
However, these methods did not result in the desired enhancement of excitation. The im-
plemented alternative solution of this problem was a relatively small cell size and large grid
size in y direction, so only the layer y=16 in the homogeneous middle of the cuboid was
used to analyse the magnetization distribution of the di�erent excited modes. One negative
consequence of the small cell size in y direction were the only 7.5 times larger cuboid sizes
in z and x direction, since the cell had to be nearly a cube for e�ective simulations.

4.2.2 Optimal Static Field H

The static magnetic �eld H was applied in z direction. To gain the optimal �eld and
pumping frequency f = fFMR, it was necessary to take into account the dispersion curve of
backward volume modes with k ‖ H (cf. �g. 2.3). The excitation was optimal when the
secondary magnon frequency f/2 was situated directly on the dispersion curve, which means
that no further, non-backward volume modes were excited with k ⊥H . Hence, one had to
minimize the dispersion relation (eq. 2.8) to receive the optimal minimal magnon frequency

fmin for which the three-magnon process was still allowed. Due to f = fFMR
!

= 2 · fmin,
∆f = fFMR − 2 · fmin = 0 had to be determined, so ∆f was calculated for di�erent H.
Since the FMR frequency is dependent on the con�nement of the cuboid, it was obtained
numerically by applying a spatially constant temporal �eld pulse for di�erent H.
It is important to emphasize that in this small YIG �lm the demagnetization �elds lower
the e�ective �eld in the �lm signi�cantly. One analytical source [Ulr] states for the used
parameters a lowering of the external applied �eld of 10mT. A numerical examination
pointed out that an external �eld ofHext = 65mT causes an internal �eld ofHint = 46.32mT,
so even a higher decrease was observed. As the calculations were done with the dispersion
relation for an in�nite �lm, this e�ect had to be taken into account.

4.2.3 Damping

The actual damping α = 10−4 in YIG is very small. Accordingly, as the spin waves are
damped very slowly in experiments, this material enables favourable experimental condi-
tions. In simulations, however, the disadvantages predominate due to very long transients.
Hence, the damping was raised arti�cially to α = 10−3 which had no signi�cant e�ect on the
processes apart from making them faster. Moreover, the various non-linear processes scale
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di�erently with α, so the increased threshold �elds led to a bigger interval in which only the
�rst instability arose.

4.3 Simulation Output and Fourier Transforms

The �rst output of the mumax simulations was a tabular consisting of the time, the magnet-
ization components that are averaged over the whole cuboid and freely selectable parameters
like the total energy, the internal �eld components, etc. as one can see in app. E.1. Due to
a chaotic uniform and spin wave distribution at the edges of the �lm (cf. e.g. �g. 5.3(a)-
5.3(d)), the magnetization components that were only averaged over the center of the cuboid
were also saved. Therefore, merely a range of 8.55x8.55µm2 was considered in which the
modes were excited e�ectively.
The total energy in the table, however, did not provide any information on the energy distri-
bution among the di�erent modes. In order to determine the energy of the uniform or spin
wave modes, the fourier spectrum P (f) of the modes had to be generated. Afterwards, the
selection of and integration over the desired peak at its speci�c frequency led to its fourier
energy E(f).
As a consequence, another output of the simulations was the spatial distribution of the
magnetization in the y=16 layer as implemented due to limited disc space. For a fre-
quency resolution in the fourier spectrum of ∆f = 1/T = 0.1GHz and a frequency range
of f = [0, 1/2 · fsampling] = [0, 1/2 · 10]Ghz = [0, 5]Ghz, a number of N = fsampling · T =

10GHz·100ns = 1000 magnetization distributions were saved covering a period of T = 100ns.
A temporal fourier transform of the oscillating out-of-plane (y) component of the 1000 saved
magnetization distributions created fourier maps consisting of the local fourier amplitudes
(real part, imaginary part and absolute value). If one for example considers a coherent
excited mode with several nodes (mn) and frequency fmn, then the fourier map concerning
the frequency fmn displays the spatial structure of this mode. Thus, one can display the
absolute value of the wave distribution as shown in �g. 5.1(a).
For the purpose of analysing the mode structure, the complex amplitude of the fourier maps
was transformed using a spatial fourier transformation. This method was required to es-
tablish the spatial wave vector as exemplary shown in �g. 5.4(a). The order in which the
temporal and spatial fourier transforms were applied did not matter, since all information
was conserved.
In contrast, the information of the fourier maps is reduced if the whole fourier spectrum of
the magnetization is ascertained, i.e. the data is processed to display it compactly. There-
fore, for every frequency map the global sum of the local, squared absolute values A2(x, z, fi)

was added up to gain the total fourier power P (fi) of the ith frequency:
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P (fi) =
∑
x,z

A2(x, z, fi). (4.1)

To conclude, the whole mathematical calculation that was performed to obtain the complete
spectrum P (f) can be outlined in a simple way: M(r, t)→ A(r, f)→ P (f).

4.4 Simulation Methods

4.4.1 Einstein de Haas E�ect

In the previously presented adjusted experimental design similar to the Einstein de Haas
experiment, the considered cuboid was a YIG �lm with a volume of (100 · 10 · 100)µm. Due
to already mentioned reasons, a smaller cuboid with a volume of (38.4 · 5.12 · 38.4)µm was
simulated. However, as this extension is roughly half of the one in the gedankenexperiment,
the results may not be the same but at least similar for this larger volume.
First of all, the demagnetization factors Ni had to be determined numerically, because the
ideal case of Nx = Nz = 0 and Ny = 4π ·10−7 for an in�nite �lm is not given in the numerical
considerations due to the �nite extension of the cuboid in z and x direction. As these factors
are only spatially constant in ellipsoids, one had to incorporate e�ective demagnetization
factors for more complex shapes. The demagnetization factors describe the reduction of
the internal magnetic �eld due to dipolar �elds occurring because of the divergence of the
magnetization:

Hint,i = Hext,i −NiMi. (4.2)

Since it is relatively easy to determine the internal magnetic �eld, the demagnetization
factors could be calculated directly.
The next step was to apply uniform precession due to its highest ellipticity. As described in
the theory, an external stimulus exciting the precession was needed for this purpose, which
was in this case a dynamic magnetic �eld exciting the FMR mode of the sample: ωp = ωFMR.
Here, the case for α = 0 and a small initial magnetization de�ection is equivalent to the case
for α > 0 and a small dynamic �eld, because in the latter case the pumping compensates
the damping losses and therefore enables the same dynamic equilibrium.
The simulations �nally delivered the values of the parameters needed for the calculation of
the YIG �lm precession amplitude. A detailed explanation of the simulation method for
exciting uniform precession is given in the next chapter.
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4.4.2 Splitting Factor of Three-Magnon Splitting Process

As already explained in sec. 2.3.2, the splitting factor of three-magnon splitting should be
<2 when incorporating the dipolar interaction into the spin wave model, because a part of
the spin is carried by the lattice. In the simulations that will be presented in this subsection,
this splitting factor will be determined.
The simulation method was based on a separate excitation of the uniform and the spin wave
modes subsequently leading to a comparison of the obtained magnetizations and energies of
these modes.
The direct excitation of the spin waves was done with a �eld that consisted of the static �eld
H = Hez and a dynamic �eld h(z, t) = h(z, t)ex that was both temporally and spatially
periodic:

H tot(z, t) = H + h(z, t) = Hez + h0ex · sin(kzz) · sin(2πfSW t).

The dynamic �eld was modulated in the direction z of the static �eld, so that backward
volume modes were excited with k ‖H . It was applied in x direction to ensure perpendic-
ular pumping being most e�ective in in-plane direction, because the in-plane magnetization
mx is larger than the out-of plane magnetization my.
The excitation of this mask (cf. exemplary script in sec. E.1) takes place with the smallest
allowed spin wave frequency to enable optimal e�ciency.
In order to determine the wave vector kz of the spin waves, further simulations had to be
done: Three-magnon splitting processes were conducted by pumping energy into the FMR
with a spatially homogeneous and temporal periodic �eld h(t) = h0ex · sin(2πfFMRt). To
enable this splitting process, the inequality h0 > hthr,1 had to be ful�lled, where hthr,i were
the threshold �elds of the di�erent instabilities. The derivation of this threshold �eld hthr,1
of the �rst-order instability process can be found in app. B. Subsequent to the simulations,
the described temporal and spatial fourier transforms of the resulting magnetization distri-
butions were accomplished and yielded the desired wave vector (cf. �g. E.2(a)-E.2(d) in
app. E).
Lastly, the fourier energy of this spin wave mode was established as a function of the h �eld
and the magnetization decrease ∆Mz (cf. sec. 2.4). Afterwards, this energy was compared
to the energy of the FMR mode of uniform precession. The excitation of uniform precession
was implemented in simple simulations taking a dynamic �eld h(t) = h0ex · sin(2πfFMRt)

with the same h0 as in the case of spin wave excitation. Care had to be taken to keep this
�eld smaller than the threshold �eld of the three-magnon splitting: h0 < hthr,1.
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Results & Discussion

5.1 Optimal Simulation Parameters

First of all, an optimal external static �eld of Hext = 65.26mT was calculated. However,
due to possible analytical inaccuracies the �eld in the simulations was chosen to be slightly
smaller, i.e. Hext = 65mT. The resonance frequency fFMR = 3.26GHz was obtained numer-
ically, yielding to a spin wave frequency of fSW = 1.63GHz.
The demagnetization factors of the YIG �lm were determined to be Nx = 1.50 · 10−7,
Nz = 1.48 · 10−7 and Ny = 9.74 · 10−7. These factors do not only agree with the theoretical
expectation that Ny >> Nx ≈ Nz but also with Nx + Ny + Nz = 12.72 · 10−7 ≈ 4π · 10−7.
Furthermore, the resulting internal �eld Hint,z = 44.60mT for Hext,z = 65mT, that was cal-
culated via eq. 4.2, is in good agreement with the numerically obtained Hint,z = 46.32mT.
The threshold �eld for the three-magnon process was calculated to hthr,1 = 9.4 · 10−6mT

for a YIG damping of α = 1 · 10−4, and to hthr,1 = 9.4 · 10−4mT for the arti�cially higher
damping of α = 1 · 10−3. The wave vector of the spin waves created in the three-magnon
process was determined to kz = 5.236 1

µm
.

5.2 Einstein de Haas E�ect

As described in the theoretical chapters (eq. 2.18 and 3.14), the YIG �lm has an oscillation
amplitude of

y0 =
l1
2
·
(

∆mV

2Jωpγ

)
, where ∆m =

m2
x

4M0

(
1−

m2
y

m2
x

)
.

21



Chapter 5: Results & Discussion 22

m2
x and

m2
y

m2
x
can be either analytically determined via eq. 2.23 and 2.19 or alternatively

numerically obtained by plotting the magnetization components of the mumax tables (cf.
sec. 4.3). However, even the analytical approach bases on numerical parameters as the
demagnetization factors of a real cuboid with �nite extension cannot be calculated analyt-
ically.
In tab. 5.1, the analytical and numerical parameters and resulting amplitudes are presented
for a comparison of the analytical calculations and the simulation. These parameters were
calculated for a dynamic �eld of h0 = 2 (4) · 10−4mT < hthr,1. The external �eld H = 65mT
was taken into account for the analytically derived values of mx,

my

mx
and y0 because the

formulas used incorporated the con�nement of the cuboid and the resulting attenuated
static �eld. In order to determine the numerically derived y0, the internal �eld H = 46.32mT
was considered. The reason is that the parameters mx, my and my

mx
used to calculate the

numerical value for y0 are functions of the e�ective internal �eld. In the numerical case, mx

and my were obtained and my

mx
could be derived from this values. In contrast, analytically

mx and
my

mx
could be calculated and my was deduced from these two values.

Tab. 5.1 Comparison of analytically and numerically determined values for H = 65mT
and h0 = 2 (4) · 10−4mT.

Quantity Analytical Value Numerical Value

mx [A/m] 134.0 (268.0) 107.1 (214.4)

my [A/m] 80.7 (161.5) 64.1 (128.3)

|a0| [A/m] 11.23 (22.47) · 10−4 8.97 (17.94) · 10−4
my

mx
[ ] 0.602 (0.602) 0.598 (0.598)

y0 [m] 2.50 (10.01) · 10−22 1.63 (6.54) · 10−22

To discuss the obtained results, several aspects can be concluded:
To begin with, the proportionalitiesmx,my, |a0| ∝ h0 can be deduced from the eq. 2.23, 2.19
and 2.21 and are in accordance with the simulation results. Moreover, the proportionality
y0 ∝ h20 can be understood when expanding y0 (eq. 3.13) for small arguments of the sine.
Then, a proportionality y0 ∝ m2

x follows.
Furthermore, the validity of the formula for the ratio my

mx
for the simulated dynamic �elds h0

has to be checked as it is only given for small h0. In the orders of magnitude of h0 = 10−4mT

these ratios obtained for di�erent h0 �elds di�ered only in the fourth decimal place, which
means that the approximation for a negligible small de�ection of the magnetization from
its static equilibrium position is reasonable.
In a comparison of the analytically and numerically obtained values, small deviations are
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noticed. As the analytical results appear to be constantly higher than the numerical ones,
one can indicate that even the inclusion of the demagnetization factor and the internal �eld,
respectively, could not facilitate an appropriate correction of the formulas for an in�nite
�lm. For example, the wave vector of the uniform precession cannot exactly equal zero
for a �lm of �nite extension. In such a system, no propagating waves but only standing
waves exist with kx,y = m·π

l1,2
. The smallest wave number k =

√
2·π
l1,2

= 0.116 1
µm

is formed by
m = n = 1, i.e. does not equal zero. Therefore, the theoretical approximation of an ideal
uniform precession can be assumed to cause small deviations.
Furthermore, the analytically obtained values for the uniform precession amplitude
|a0,an.,1| = 11.23 (22.47) · 10−4, that was calculated with the model incorporating the demag-
netization factors, deviates from the value taken from eq. 2.21, |a0,an.,2| = 13.00 (26.00)·10−4,
that was determined for an in�nite �lm with the use of the internal static �eld. Again, both
results are higher than the numerically determined amplitude of |a0,num.| = 8.97 (17.94)·10−4.
Moreover, the numerically and analytically obtained resonance frequencies are not the same,
even if the demagnetization factors were considered in the analytical derivation. Numeric-
ally, the resonance frequency was determined to fFMR = 3.26GHz. Analytically, a smaller
FMR frequency of fFMR = 3.04GHz followed.

The major result is that the obtained precession amplitude y0 can be assumed to be
too small to measure it in an experiment. This assumption is based on a comparison of the
amplitude y0 ≈ 10−21m with the sizes of e.g. an atom ≈ 10−10m or a proton ≈ 10−15m.
In the introduced adjusted experimental design that ought to be realized experimentally,
it would be even smaller than in the simulations because a littler �lm was used that has a
smaller moment of inertia.

5.3 Splitting Factor of Three-Magnon Splitting Process

In the following, the results of the excitation of uniform precession will be presented. Fig.
5.1(a) shows the spatial magnetization distribution of the whole simulated �lm. The typical
distribution of a uniform mode can be identi�ed, and furthermore some caustic waves that
are normally positioned at the surfaces of a �lm. The related averaged upper (blue) and
lower (green) halves of this distribution is presented in �g. 5.1(b) and show that the uniform
precession is not e�ectively excited at the edges of the �lm. As a consequence, in �g. 5.1(c)
and 5.1(d) the 57 cells in the middle of the �lm were extracted to present the same quantities
in an area of a relatively homogeneous internal �eld.
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(a) (b)

(c) (d)

Fig. 5.1 Magnetization distribution of uniform precession excited with h0 = 4 · 10−4mT.
(a) Spatial magnetization distribution in the cells 0-256. (b) Averaged upper (blue) and
lower (green) half of the spatial magnetization distribution in the cells 0-256. (c) and (d)
show the same quantities, for the cells 100-156, i.e. the 57 cells in the middle of the �lm.
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After transforming the cells 100-156 of the second magnetization component using a spatial
fourier transformation, one obtained the spatial fourier spectrum as shown in �g. 5.2(a).
When regarding the cross section kx = 0, one obtained a single intensity peak around kz = 0

as theoretically expected.

(a) (b)

Fig. 5.2 Spatial fourier transform of uniform precession excited with h = 4 · 10−4mT. (a)
Spatial fourier spectrum and (b) cross section kx = 0 of the spatial fourier spectrum, both

in the 57 cells in the middle of the �lm.

The magnetization distributions of the spin waves excited with a temporally and spatially
periodic dynamic �eld (cf. �g. 5.3(a) and 5.3(b)) suggests that it only gets e�ectively excited
in the middle of the �lm, even more than in the case of uniform precession.
The actual wavelength of the spin wave is twice as large as in the presented distributions
because the absolute value was plotted instead of the real magnetization distribution. For
a comparison, the real and absolute values of this magnetization distribution can be seen in
the appendix E in �g. E.4(a)-E.4(d).
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(a) (b)

(c) (d)

Fig. 5.3 Magnetization distribution of spin waves excited with h0 = 4·10−4mT. (a) Spatial
magnetization distribution in the cells 0-256. (b) Averaged upper (blue) and lower (green)
half of the spatial magnetization distribution in the cells 0-256. (c) and (d) show the same

quantities, for the cells 100-156, i.e. the 57 cells in the middle of the �lm.
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The cross section of the spatial fourier spectrum of the cells 100-156 of the magnetization
distribution (�g. 5.4(a)) yielded the value of k = kz = 5.236 1

m
that was already part of

the dynamic �eld mask. Again the fourier pro�le agrees with the theoretical expectation
represented by iso-frequency curves in the kx, kz phase space as illustrated in [Ulr14, p. 21].
As the k vectors are nearly symmetric around zero, they describe standing waves.

(a) (b)

Fig. 5.4 Spatial fourier transform of spin waves excited with h0 = 4 · 10−4mT. (a) Spatial
fourier spectrum and (b) cross section kx = 0 of the spatial fourier spectrum in the 57 cells

in the middle of the �lm.

Finally, the fourier energies of uniform precession and spin waves was obtained as a function
of the static magnetization change ∆Mz = Mz(h0 = 0) −Mz(h0). The evidence that the
fourier energy is proportional to the actual energy of the mode is given by the fact that the
integral over the whole fourier spectrum is proportional to the total energy of the system
deduced from the mumax output tables.
Fig. 5.5, where the data points refer to dynamic �eld strengths of h = 0 − 8 · 10−4mT,
indicates that this relationship is linear. Furthermore, E(∆Mz = 0) = 0 is given for h0 = 0

because only the perpendicular dynamic �eld decreased the static magnetization component
parallel to the static �eld.
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Fig. 5.5 Fourier energies of uniform and spin wave modes as a function of the static
magnetization change ∆Mz parallel to the static �eld. The data points refer to dynamic

�eld strengths of h0 = 0− 8 · 10−4mT.

As the optimal static �eld H could not be determined very accurately, the mask exciting the
spin waves was potentially not perfectly matching and therefore not of optimal e�ectivity,
as one can deduce from the lower spin wave fourier energies. However, by cancelling out
the energy dependency on the dynamic �eld, results were obtained that were independent
of the e�ectiveness of excitation with this approach.
As indicated by the arrows in �g. 5.5, the splitting factor is of interest, that describes how
much magnetization change corresponds to the splitting of the uniform mode into two spin
waves. Looking at the two equations of the linear �ts

EUP [a.u.] = (1.53± 0.39)[a.u.] + (421.65± 0.44) ·∆Mz,UP · [m/A], (5.1)

ESW [a.u.] = (0.20± 0.54)[a.u.] + (228.79± 1.17) ·∆Mz,SW · [m/A], (5.2)

one sees that the slope for uniform precession is roughly twice as large as the one for spin
waves. However, this splitting factor does not exactly equal 2, but:
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Splitting factor = 1.84± 0.01.

If one �xates the data point (0,0) in the linear �ts, the slopes are 422.90 ± 0.51 for uni-
form precession and 229.10±0.76 for spin waves. Here, a splitting factor of 1.85±0.01 results.

Based on these results, one has to conclude that the simple quantization scheme of magnons
with a magnetic moment of 2µB and spin 1 cannot be con�rmed. Instead, the conjecture
stated in the supplementary information (p.7) of [KDD+11] gets a�rmed: The uniform
mode does not split into two magnons having spin 1. The secondary magnons rather carry
spins that are smaller by 0.92 than the spin of the initial magnon with k = 0.
The magnetic moment of quasi-particles is de�ned as [KPS97, p. 187]

µq.p. = −~∂ω0

∂H
(5.3)

and the spin can be calculated to

sq.p. =
∂ω0

∂ωH

. (5.4)

Hence, the evaluation of the Kittel formula (eq. 2.7) and the numerically obtained frequen-
cies result in a magnetic moment of 2.50µB and a spin of 1.25 for the uniform mode. As
a consequence of the splitting factor, the magnetic moments of the secondary spin waves
have to equal 2.30µB and their spin is 1.15. These values apply only to the speci�c chosen
magnetic �eld and �lm extension. In general, the spins can be both higher and lower than
1, as described e.g. in [NB14, pp. 22-26].
These results that indicate a magnon spin 6= 1 are merely received in the case of incorpor-
ating dipolar energy (cf. e.g. [NB14, pp. 22-26]). Therefore, these determined spins of the
uniform and the spin wave modes are only the magnetic parts of the total spin consisting of
a magnetic and a lattice part (ref. [KDD+11]). This explanation is based on the necessity
of the spin being integer 1 as the magnon is a boson, shown e.g. by its ability to conduct
Bose Einstein condensation [DDD+06].
As already mentioned, a coherent quantum description of this phenomenon is still missing.
This fact acts as a great motivation for further research potentially leading to a consistent
description of the quantum mechanical properties of ferromagnet including exchange as well
as dipolar interactions.



Chapter 6

Conclusion

To recapitulate, the current thesis provided a brief overview on several aspects of magnetic
dynamic processes.
It was presented that in contrast to former estimations, the amplitude of the YIG �lm
oscillation induced by the elliptic magnetization precession is too small to be measured in an
experiment. Furthermore, the violation of angular momentum conservation was illustrated
as was already expected based on previous results. As the simulations resulted in an obtained
three-magnon splitting factor of 1.84 instead of 2, the consequential magnon spin 6= 1 can
only be described by the introduction of a total magnon spin consisting of a magnetic as
well as a lattice part.
Since still no coherent quantum description of this phenomenon exists, it acts as a great
motivation for further research aiming for a complete account of the quantum mechanical
properties of a ferromagnet, incorporating exchange as well as dipole interactions.
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Appendix A

Derivation of Oscillation Amplitude via

Conservation of Angular Momentum

Another derivation of the precession amplitude of the YIG �lm was conducted by S. O.
Demokritov and simply bases on the consideration of the angular momentum conservation,

L̇mag + L̇mech = 0. (A.1)

As mentioned, the change of the magnetic angular momentum can be written as (eq. 3.5)

L̇mag =
V Ṁz

γ
=
V 2ωp∆m sin(2ωpt)

γ
. (A.2)

With the precession angle ϕ = ϕ0 sin(2ωpt) of the YIG �lm and the related angular velocity
Ω = ϕ̇ one obtains an expression for the mechanical angular momentum and its derivative,

Lmech(t) = JΩ = J2ωpϕ0 sin(2ωpt) and L̇mech(t) = −J4ω2
pϕ0 sin(2ωpt). (A.3)

The conservation of angular momentum (eq. A.1) leads to

2ωpV∆m

γ
sin(2ωpt)− J4ω2

pϕ0 sin(2ωpt) = 0, (A.4)

and �nally to expressions for the maximal oscillation angle and for the oscillation amplitude
as already derived in sec. 3.4 (eq. 3.14):

ϕ0 =
∆mV

2Jωpγ
and y0 =

l1
2
· ϕ0 =

l1
2
·
(

∆mV

2Jωpγ

)
. (A.5)
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Appendix B

Calculation of Threshold Field of

Three-Magnon Splitting

The threshold �eld for the �rst-order Suhl instability can be calculated to [GM96, p. 252]

hthr,1 =
∆H0∆Hk

πM0

(B.1)

with [GM96, p. 20]

∆H0,k =
2ωr0,rk
γ

. (B.2)

The frequency ωr can be calculated to

ωr = αω
∂ω

∂ωH
(B.3)

with the dispersion relation (cf. 2.8 [KS86, p. 6,7,10,55,60], [Kal80, p.5,6,9], diagonal ap-
proximation)

ω =

√
ωH

(
ωH +

ωM
kl2

(1− e−kl2)
)
. (B.4)

After di�erentiating ω (eq. B.4) with respect to ωH we receive

ωr = α

(
ωH +

ωM
2kl2

(
1− e−kl2

))
, (B.5)
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hence, for ∆Hk follows

∆Hk = α

(
2H +

µ0M0

kl2

(
1− e−kl2

))
. (B.6)

To receive ∆H0 we can expand the exponential function in eq. B.4 for k → 0 into a Taylor
series to the �rst order and receive the Kittel formula for an in�nite �lm [Kit48, p. 6]

ω =
√
ωH(ωH + ωM). (B.7)

After di�erentiating ω (cf. eq. B.7) with respect to ωH ,

ωr0 = α

(
ωH +

1

2
ωM

)
(B.8)

follows and therefore

∆H0 = α(2H + µ0M0). (B.9)

Finally we obtain a threshold �eld for the Suhl instability of

hthr,1 =
α2(2H + µ0M0)

(
2H + µ0M0

kl2

(
1− e−kl2

))
πM0

, (B.10)

so a proportionality of hthr ∝ α2 was derived. For the typical damping of YIG α = 1 · 10−4,
a threshold �eld of hthr,1 = 9.4 · 10−6mT followed. With the arti�cially higher damping of
α = 1 · 10−3 one receives a threshold �eld of hthr,1 = 9.4 · 10−4mT. This threshold �eld is of
course only an approximation as the formulas for an in�nite �lm were used.



Appendix C

Expansion of Mz for Small Dynamic

Magnetization Components

The expression for the magnetization component parallel to the static �eld

Mz =
√
M2

0 −m2
x cos2 ωpt−m2

y sin2 ωpt

= M0 ·

√
1− m2

x

M2
0

cos2 ωpt−
m2
y

M2
0

sin2 ωpt (C.1)

shall be expanded for small dynamic amplitudes
∣∣∣mx,y

M0

∣∣∣ << 1 into the more informative
approximative term

Mz ≈M0 −
1

4M0

(m2
x +m2

y) +
1

4M0

(m2
y −m2

x) cos 2ωpt. (C.2)

Therefore, one just considers terms up to the �rst order. For the zeroth order follows

Mz(0) = M0. (C.3)

For the �rst order, the Taylor term for the expansion points
(
mx,y

M0

)2
= 0 are

M0 ·
1

2
(1− 0− 0)−

1
2 (− cos2 ωt)

(
m2
x

M2
0

− 0

)
(C.4)

M0 ·
1

2
(1− 0− 0)−

1
2 (− sin2 ωt)

(
m2
y

M2
0

− 0

)
. (C.5)
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With the trigonometric relations

cos2 ωt =
1

2
(1 + cos 2ωt), sin2 ωt =

1

2
(1− cos 2ωt) (C.6)

�nally the following desired informative approximative expression for Mz is obtained

Mz = M0 −
1

2M0

(
m2
x ·

1

2
(1 + cos 2ωt) +m2

y ·
1

2
(1− cos 2ωt)

)
≈M0 −

1

4M0

(m2
x +m2

y)−
1

4M0

(m2
x −m2

y) cos 2ωt. (C.7)



Appendix D

Demonstration of Equality of Uniform

Precession and Spin Waves for k → 0

In [GM96, p. 184] it is stated that for spin waves the relation

my

mx

= −i
(

1 +
ωM sin2 ϑk
ωH + ηk2

)− 1
2

= −i
(
Ak + |Bk|
Ak − |Bk|

)
(D.1)

is given for arbitrary k-vectors. However, this expression contains a typing error and the
correct relation is the following

my

mx

= −i
(

1 +
ωM sin2 ϑk
ωH + ηk2

)− 1
2

= −i
(
Ak + |Bk|
Ak − |Bk|

)− 1
2

. (D.2)

To show this equality, the case k → 0 has to be considered for which this ratio has to
transition into the expression for uniform precession ([GM96, p. 26] apart from the forgotten
M0)

my

mx

= −i
(
H + (Ny −Nz) ·M0

H + (Nx −Nz) ·M0

)− 1
2

. (D.3)

Therefore, we have to consider the terms Ak and |Bk| in eq. D.2:

Ak = ωH + l2exωMk
2 − 1

2
ωM(P0(1− sin2 ϑk)− 1), (D.4)

|Bk| =
1

2
ωM(P0(1 + sin2 ϑk)− 1), (D.5)
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where we can neglect the term ∝ k2. Finally, one has to Taylor expand P0 for small k

P0 =
1− e−kl2
kl2

=̇
1− (1− kl2 − ...)

kl2
≈ 1. (D.6)

and insert this expressions into the second term of eq. D.2:

my

mx

= −i
(
ωH − 1

2
ωM(1 · (1− sin2 ϑ0)− 1) + 1

2
ωM(1 · (1 + sin2 ϑ0)− 1)

ωH − 1
2
ωM(1 · (1− sin2 ϑ0)− 1)− 1

2
ωM(1 · (1 + sin2 ϑ0)− 1)

)− 1
2

= −i
(

ωH + ωM sin2 ϑ0

ωH + 1
2
ωM sin2 ϑ0 − 1

2
ωM sin2 ϑ0

)− 1
2

= −i
(

1 +
ωM
ωH

sin2 ϑ0

)− 1
2

. (D.7)

In comparison to eq. D.1 [GM96, p. 184] one can see that this relation contains the mistake
of leaving out the exterior power of the fraction, as it exists in eq. D.7. This observation
can be elucidated by further conversions of eq. D.7:

my

mx

= −i
(

1 +
γµM0

γH
sin2 ϑ0

)− 1
2

= −i
(
H + µM0 sin2 ϑ0

H

)− 1
2

. (D.8)

This expression is identical with the one for uniform precession:

my

mx

= −i
(
H + (Ny −Nz) ·M0

H + (Nx −Nz) ·M0

)− 1
2

(D.9)

for Nx = Nz = 0 and Ny = µ sin2 ϑ0 = 4π · 10−7 due to sin2 ϑ0 = 0 as the angle between
M and k = 0 is ϑ0 = π/2. These expressions for Nx, Ny, Nz are exactly the ones for the
considered in�nite �lm.



Appendix E

Commented Scripts and Data

E.1 Scripts

Exemplary mumax Script

The following script is an exemplary mumax script showing the simulation parameters and
the output for excitation of spin waves with a spatially and temporally periodic h �eld mask.

SetGridsize (256 , 256 , 32)

SetCellsize ( 0 . 15 e−6, 0 .15 e−6, 0 .16 e−6)
// Mumax convent ion −> th e s i s convent ion : (x , y , z ) −> ( z , x , y ) .

Msat = 139261 // Saturat ion magnet izat ion in A/m.

Aex = 3.614 e−12 // Exchange constant in I /m.

alpha = 0.02

// I n i t i a l h igher damping f o r f a s t e r r e l a x a t i o n o f magnet izat ion .

Bstatic := 65e−3 // S t a t i c f i e l d in T.

B_ext = vector ( Bstatic , 0 , 0) // S t a t i c f i e l d app l i ed in x ( z ) d i r e c t .

Bexc := 4e−7 // Dynamic f i e l d in T.

f :=1.63 e9 // SW frequency f=f_FMR/2 .

m=uniform ( 1 , 0 , 0 ) // I n i t i a l magnet izat ion p a r a l l e l to s t a t i c f i e l d .

relax ( ) // Relaxat ion in to s t a t i c equ i l i b r i um .

OutputFormat = OVF1_TEXT // F i l e format o f output i s . ov f .

alpha = 1e−3 // After r e l axa t i on , c o r r e c t damping i s turned on .

mxcrop :=Crop (m , 100 , 156 , 100 , 156 , 15 , 16)

// Only magnet izat ion in the middle o f the cuboid i s saved ,

// as only the re the SW ex c i t a t i o n i s e f f e c t i v e .

FixDt = 2.5 e−11
// In t e g r a t i on time . I n t e g r a t i on method : Bogacki Shampine method ,

// one o f Runge Kutta approximation methods .
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tableautosave (5e−11) // Every 5e−11 seconds a l l 3 magnet izat ion comp . are saved .

tableAdd ( E_total ) // Time evo lu t i on o f t o t a l energy o f system i s added to tab le ,

tableAdd ( mxcrop ) // as we l l as magnet izat ion in middle o f the cuboid ,

tableAdd ( B_eff ) // and e f f e c t i v e , i n t e r n a l f i e l d .

k1 :=5.236 e6 // k vec to r o f the SW.

mask := newslice (3 , 256 , 256 , 32)

// Create mask f o r s p a t i a l l y and tempora l ly p e r i o d i c dyn . f i e l d ,

f o r i :=0; i<256; i++{ // f o r a l l x c e l l s ,

f o r j :=0; j<256; j++{ // a l l y c e l l s ,

f o r k :=0; k<32; k++{ // and a l l z c e l l s .

r := index2coord (i , j , k ) // Creat ion o f coo rd ina t e s f o r f i e l d .

x := r . X ( ) // Only x coo rd ina t e s important .

B := Bexc* s i n ( k1*x )

// Spa t i a l l y p e r i o d i c p r o f i l e o f dynamic f i e l d with SW k vecto r .

mask . s e t (1 , i , j , k , B )

} // Set mask f o r whole ( i , j , k ) coo rd inate system ,

} // apply f i e l d in y (x )=1 d i r e c t i o n .

}

B_ext . add ( mask , s i n (2* pi*f*t ) )

// Add tempora l ly pe rd i od i c ( with SW frequency ) mask to s t a t i c f i e l d .

// To c r ea t e UP and not SW, take not mask but

//B_ext = vecto r ( Bstat i c , Bexc* s i n (2* pi * f * t ) , 0) .

run (5e−7)
// Run s imu la t i on f o r 500 ns un t i l dynamic equ i l i b r i um i s reached .

autosave ( CropLayer (m , 16) , 0 . 1*1 e−9)
// Save l ay e r z ( y )=16 magnet izat ion comp . f o r every c e l l , every 0 .1 ns .

run (100e−9)
// Run sav ing f o r 100 ns so that 1000 magnet izat ion p r o f i l e s are saved .
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Exemplary Scilab Script

In order to obtain the FMR frequencies for a range of di�erent H �elds to determine the
optimal one for which ∆f = fFMR − 2 · fmin = 0 is given, a dynamic �eld pulse was applied
to the micromagnetic mumax sample for di�erent static �elds. The following exemplary
Scilab script (mostly written by H. Ulrichs) presents the method to read out the FMR peaks
and therefore acts as an exemplary script illustrating the di�erent evaluation methods used
in this thesis.

c l e a r // Clear a l l parameters

clf ( ) // and f i g u r e s .

// Def ine Lorentz func t i on f o r f i t t i n g FMR peaks .

f unc t i on e=lor (p , z )

x=z (1 ) ;

y=z (2 ) ;

e=y−p (1 ) *1/2*p (3 ) /%pi /( ( x−p (2 ) )^2+1/4*p (3 ) *p (3 ) ) ;
endfunct ion

// Open and read tab l e compris ing time , magn . comp . and t o t a l energy .

filelocation= ' /home/mumax/ s imu la t i on /Lena/256 x256x32/find_FMR . out/ tab l e . txt ' ;

a=mopen( filelocation , ' r ' ) ;

b=mfscanf (11 , a , '%s ' ) ;

// Find f requency maxima = FMR

maxima=ze ro s (25 ,3 ) ;

f o r j=1:20 // For e . g . 20 maxima corre spond ing to 20 pu l s e s with d i f f e r e n t H f i e l d

data=ze ro s (10000 ,2) ; // Matix "data" w i l l have two components . . .

f o r i=1:10000

b=mfscanf (5 , a , '%f ' ) ; // Def ine data as :

data (i , 1 )=b (1 ) ; // F i r s t column o f t ab l e : time .

data (i , 2 )=b (4 ) ; // Fourth column o f t ab l e : z ( y ) magn . comp .

end

deltaf=1/500; // Frequency r e s o l u t i o n .

f=l i n s p a c e (0 , deltaf *(10000−1) ,10000) ; // Frequency .

// Four i e r trans form data to r e c e i v e f requency spectrum .

c=abs ( f f t ( data ( : , 2 ) ) ) ;

// Plot f requency spectrum = f o u r i e r transformed data conta in ing FMR peaks .

subplot (211)

p l o t (f , c ) ;

// Find maxima in f requency spectrum with

[ value , index ]=max( c ( 1 : 5000 ) )

p0=[max( c ) ; f ( index ) ; 0 . 1 ] ; // i n i t i a l guess o f maxima

Z=[f ( index−100: index+100) ' , c ( index−100: index+100 ,1) ] '

// and Z=matrix [ z1 , . . . zn ] where z_i i s the i t h s imu la t i on .

// Fit FMR peaks with Lorentz func t i on .

[ p , err ]= d a t a f i t ( lor , Z , p0 ) ;
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// Plot the Lorentz f i t s in spectrum .

p l o t (f , p (1 ) *1/2*p (3 ) /%pi * ( ( f−p (2 ) ) .^2+1/4*p (3 ) *p (3 ) ) .^(−1) , ' r ' )

maxima (j , 1 )=60e−3+(0.5e−3)*i
// Sta r t i ng value o f s t a t i c f i e l d : H=60mT. End value : H=70mT.

// 20 s t ep s (=20 maxima) in a d i s t ance o f 0 . 5mT.

maxima (j , 2 )=p (2 ) ;

maxima (j , 3 )=p (3 ) ;

// Plot maximum = FMR frequency as a func t i on o f number o f maximum (1−10) .
subplot (212)

p l o t (j , p (2 ) , ' r . ' )

end

mclose ( ) ; // Close t ab l e .
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E.2 Data

Exemplary Time Evolution of Magnetization Components of Uniform Precession

(a) (b)

(c) (d)

Fig. E.1 Exemplary time evolution of magnetization components of uniform precession
excited with h0 = 4 · 10−4mT. The (a) Mx in-plane component and (b) My out-of-plane
component increase due to h0. (c) The amplitude of theMz component parallel to the static
�eld �rst was saturated (cf. to hysteresis curve) but increased due to the perpendicular
dynamic �eld until �nally a dynamic equilibrium is obtained. (d) The total energy E ∝

−M0H increases as the scalar product M0H gets smaller.
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Ascertainment of k Vector of Spin Waves via Excitation with Pumping

(a) (b)

(c) (d)

Fig. E.2 Ascertainment of k vector of spin waves via pumping with FMR frequency and
h0 = 80 · 10−4mT. Cells 100-156 of: (a) Spatial magnetization distribution. (b) Averaged
upper (blue) and lower (green) half of the spatial magnetization distribution. (c) Spatial
fourier spectrum. (b) Cross section kx = 0 of the spatial fourier spectrum leading to

kz = 5.236 1
µm .
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Fig. E.3 Time evolution of out-of-plane magnetization component for splitting process
with h0 = 40 · 10−4mT. After a transient of approximately 500ns, the splitting process

starts.
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Comparison of Absolute and Real Magnetization Distributions of Spin Waves

(a) (b)

(c) (d)

Fig. E.4 Comparison of absolute and real magnetization intensity distributions of spin
waves excited with h0 = 4 · 10−4mT. (a) Absolute values of spatial magnetization distri-
bution in the cells 0-256. (b) Averaged upper (blue) and lower (green) half of the spatial
magnetization distribution in the cells 0-256. (c) and (d) show the same quantities, but

real instead of absolute values.
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