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Conservation of Angular Momentum in Magnetic Dynamic Processes

by Lena Funcke

The current thesis provides a brief overview of several aspects of magnetic dynamic pro-
cesses, especially the conservation of the angular momentum.

The first issue this thesis considers is whether it is possible to measure experimentally the
mechanical oscillations of a magnetic film caused by an elliptic magnetization precession un-
der the condition of the ferromagnetic resonance. This effect is a dynamic analogon of the
static effect that was originally discovered by Einstein and de Haas and relies on the total
angular momentum conservation of the magnetic subsystem and the lattice. The elliptical
precession of the magnetization is associated with an oscillation of the longitudinal compon-
ent of the magnetization. Therefore, the angular momentum conservation law demands that
this oscillation is compensated by a corresponding mechanical oscillation of the sample. In
order to determine the amplitude of the mechanical oscillation of the film, an experimental
design of this film was simulated in this thesis. However, the simulations indicated that this
amplitude is too small for detection by currently available experimental techniques.

In the second train of thoughts, the thesis presents simulations of the three-magnon split-
ting process, a non-linear process that is caused by the presence of the magnetic dipolar
interaction between magnons. Earlier experimental and theoretical findings, related to this
splitting, pointed out the incompleteness of the quantum description of the process, if the
interaction between the magnetic subsystem and the lattice of the magnetic sample is ig-
nored. Therefore, the three-magnon splitting factor characterizing the increase of angular
momentum in the process was determined in this thesis to confirm the existence of some basic
theoretical problems in the quantum mechanical description of the magnonic quasi-particles
which ignores the lattice.



Acknowledgements

Although T owe a debt of gratitude to various people, only few of them can be considered
within this preamble.

To begin with, I would like to express my sincere thanks to Prof. Dr. Sergej Demokritov
for taking care of my initial enquiry to complete my bachelor’s thesis at this institute,
for allowing me to join his working group and for cooking me a cuppa tea in a moment
of frustration when the work of months turned out to yield no results. Furthermore, the
thanks are also due to Dr. Viadislav Demidov, who consented to be the second evaluator of
my work.

Above all, a heartfelt debt of gratitude is owed to Dr. Henning Ulrichs for introducing me
into this new field of micromagnetic simulation and dedicating so much time to all of my
questions, no matter how inexperienced they sounded. It was an enriching experience to
discuss the issues raised within the progress of the thesis with him, and I am thankful that
he endured my pigheadedness until both of us were satisfied with the outcomes. Similarly,
Dr. Oleksandr Dzyapko deserves my specific thanks for introducing me into the experimental
work in the beginning of my thesis and for extensively discussing several simulation questions
and the physical interpretation of the results with me in the end.

And also the other members of the working group Nonlinear Magnetic Dynamics must not be
forgotten, since they were the reason why this four months will remain as a pleasant memory.
Here, I would like to thank especially Philipp Seibt, Michael Evelt and Aleksandr Sadovnikov
for their support whenever I needed help with handling the sometimes inscrutable Linux and
for a friendly, funny and warmly atmosphere in the office.

Concerning my whole Bachelor studies I would like to thank all my professors for sharing
their knowledge of this highly fascinating subject with me, for their support and their
friendly attitude making it a pleasure to study physics at this university. Here, also my
fellow students, tutors and the teams of the examination and international offices have to
be mentioned and thanked for a pleasant and uncomplicated cooperation.

Last, but far from least, my deepest gratitude is due to my boyfriend, my family and my
friends who encouraged me whenever sluggish work and unexpected results raised frustration.
Thanks to you all!

il



Contents

Declaration of Authorship
Abstract
Acknowledgements

List of Figures

Abbreviations & Symbols

1 Introduction

2 Theory of Dynamic Processes in a Magnetic Film
2.1 Fundamental Considerations . . . . . . . . . ... .. .. ... ...
2.2 Uniform Precession . . . . . . . . . ...
2.3 Spin Waves . . . . . .. e
2.3.1 Non-Linear Coupling of Magnetic Modes . . . . . .. .. ... .. ..
2.3.2  Three-Magnon Splitting . . . . . . .. ... ... L.
2.4 M, Magnetization Change of Elliptic Precession . . . . . ... .. .. .. ..

3 Theory of Einstein de Haas Effect
3.1 Historical Overview . . . . . . . . . . . . . e
3.2 Adjusted Experimental Design . . . . .. .. ... ... L.
3.3 Gyromagnetic Ratio and Landé Factor . . . . .. ... ... ... ......
3.4 Torsional Oscillations . . . . . . . . . . . . . .. .

4 Simulations
4.1 Programs . . . . . . .. e e e
4.2  Simulation Parameters . . . . . . .. ... o o0
4.2.1 Micromagnetic Sample . . . . . . ... L Lo

ii

iii

vi

vii

O -1 O Ot~ Ww W

11
11
12
13
14



Contents v

4.2.2  Optimal Static Field H . . . .. ... ... ... ... ........ 17

423 Damping . . . . . . . L 17

4.3 Simulation Output and Fourier Transforms . . . . . . . . .. ... ... ... 18
4.4 Simulation Methods . . . . . . . . . . ... 19
4.4.1 FEinstein de Haas Effect . . . . . . ... ... ... .. .. ....... 19

4.4.2 Splitting Factor of Three-Magnon Splitting Process . . . . . . . . .. 20

5 Results & Discussion 21
5.1 Optimal Simulation Parameters . . . . . . .. ... .. ... ... ...... 21
5.2 Einstein de Haas Effect . . . . . . . . . . ... ... . Lo 21
5.3 Splitting Factor of Three-Magnon Splitting Process . . . . . ... .. .. .. 23

6 Conclusion 30

A Derivation of Oscillation Amplitude via Conservation of Angular Mo-

mentum 31
B Calculation of Threshold Field of Three-Magnon Splitting 32
C Expansion of M, for Small Dynamic Magnetization Components 34

D Demonstration of Equality of Uniform Precession and Spin Waves for

k—0 36
E Commented Scripts and Data 38
E.1 Scripts . . . . . . e 38
E.2 Data . . . . . . e e e e 42

References 46



List of Figures

2.1

2.2
2.3

3.1

3.2

5.1
5.2
2.3
5.4
5.5

E.1
E.2
E.3
EA4

Microscopic circular and elliptic precession of magnetic moments and mag-
netization . . . . . . ... L
SPIN WaVES . . . v v o o o e e e e e e e
Spin wave spectrum and three-magnon splitting . . . . . . . .. ... .. ..

Replica of original setup as well as schematic setup of Einstein de Haas ex-
periment . . . . . . . L.l e

Elliptic magnetization inducing film oscillations . . . . . . ... .. ... ..

Magnetization distribution of uniform precession . . . . . . . . .. .. .. ..
Spatial fourier transform of uniform precession . . . . . . ... ... ... ..
Magnetization distribution of spin waves . . . . . . . ... ...
Spatial fourier transform of spin waves . . . . .. .. .. ... ... ... ..

Fourier energies of uniform and spin wave modes as a function of the static
magnetization change AM, . . . . . ... o

Exemplary time evolution of magnetization components of uniform precession
Ascertainment of k vector of spin waves via excitation with pumping

Time evolution of magnetization components for splitting process . . . . . .
Comparison of absolute and real magnetization distributions of spin waves

vi

o}

11
12

24
25
26
27

28

42
43
44
45



Abbreviations & Symbols

>

Static magnetic field

Dynamic magnetic field

Static magnetic flux density

Saturation magnetization

Magnetization vector

Dynamic magnetization along dimension ¢

Static z component of magnetization

Maximal reduction of static z component of magnetization
New variables for magnetization components

Gilbert damping constant

Reduced Planck constant, h = % = 1.05457 - 10~34Js
Vacuum permeability, po = 47 - 107755

Time

Exchange constant

Exchange length

Demagnetization factors along dimension i

Wave length

Wave number k = 27”, absolute value of wave vector k
Angle between magnetic precession and k

Mass of electron, m, = 9,109 - 10~ 3kg

Charge of electron, e = —1.602 - 10~1°C

g-factor of electron, g = —2.00232

vil



Abbreviations & Symbols

viii

Wy

FMR
LL eq.

LLG eq.

Spin of electron

Bohr magneton

Gyromagnetic ratio
Spin-magnetic moment of electron
Frequency

Radial frequency

Static field frequency
Magnetization frequency
Resonance frequency

Relaxation frequency

Pumping frequency

Fourier power as a function of frequency f

Fourier energy = integrated Fourier power as a function of frequency f

Length (x), width (y) and height (z) of YIG film

Density of YIG film

Mass of YIG film

Moment of inertia of YIG film
Oscillation angle of YIG film

Mechanical damping constant of YIG film
Yttrium iron garnet, a ferrimagnetic insulator with a < 1074,

v =1.7588-10"T, p=517-10°

A=3.7-10"21 M, = 1392602,
Ferromagnetic resonance
Landau-Lifshitz equation

Landau-Lifshitz-Gilbert equation



“Nature isn’t classical, dammit, and if you want to make a
simulation of nature, you’'d better make it quantum mech-
anical, and by golly it’s a wonderful problem, because it

doesn’t look so easy.”
— R. P. Feynman, [Fey82, p. 486]
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Chapter 1

Introduction

The research field of magnonics has the intention to explore the quasi-particles magnons.
These quantized spin waves are elementary spin excitations in magnetic materials.

During the last years, scientific interest in the field of magnonics as a sub field of spintron-
ics has continuously increased as magnons can garner, transmit and process information.
Hence, one can regard spintronics as a new paradigm for prospective information techno-
logies (cf. [WABT01, p. 1] and [Ulrl4, p. 1|); however, the underlying physics has to be
further explored before spintronics can actually be used for practical purposes.

First of all, technical disturbances might occur due to macroscopic effects of the magnet-
ization precession on the mechanics of the magnetic sample. Therefore, the interest in an
experiment arose with the purpose to determine the amplitude of macroscopic torsional os-
cillations of a YIG film caused by an elliptic magnetization precession. As former rough
estimations indicated an amplitude barely large enough to be measured, the exact charac-
teristics of the film oscillation will be ascertained analytically as well as numerically in this
thesis.

Moreover, the thesis presents simulations of the three-magnon splitting process, a non-linear
process that is caused by the presence of interaction between magnons. Concerning this split-
ting, earlier experimental and theoretical findings [KDD*11] pointed out the incompleteness
of the quantum description of the related interaction between the magnetic subsystem and
the lattice of the magnetic sample. Hence, in this thesis the splitting factor characterizing
the increase of angular momentum in the three-magnon splitting process is ascertained to
confirm the existence of some basic theoretical problems in the quantum mechanical descrip-
tion of the magnonic quasi-particles, which ignores the lattice dynamics.



Chapter 1: Introduction 2

In general, all these presented issues are related to the conservation of angular momentum
in the magnetic system which is the main topic of this thesis. It is structured as follows:

Chapter 2 presents an introduction into the theory of magnetic dynamic processes in a
magnetic film. Fundamental properties of magnetic systems will be introduced, followed
by an overview of different types of magnetic oscillations. Firstly, uniform precession of
magnetization is explained, and, secondly, a qualitative and mathematical description of
spin waves and splitting processes is elucidated. In preparation for the subsequent chapter,
the time-dependent change of the magnetization component of the elliptic magnetization
precession, that is parallel to the field, is derived. This is required for further calculations
describing the Einstein de Haas effect presented in

Chapter 3 which starts with a short historical overview on the Einstein de Haas experi-
ment showing that the angular momentum of a magnetic subsystem is coupled to the one of
the lattice. Afterwards, an adjusted experimental design is presented that considers the oscil-
lation of a magnetic cuboid induced by the elliptic magnetization precession. Subsequently,
the mathematical background of the related quantum mechanical entities gyromagnetic ra-
tio and Landé factor is given. Moreover, the macroscopic torsional oscillations of the cuboid
caused by the elliptic magnetization precession are described.

Chapter 4 presents the programs used for the simulations, the optimal simulation para-
meters and the evaluation methods of the obtained numerical data. Furthermore, the differ-
ent approaches to the two simulation topics are explained, leading to the results displayed
in

Chapter 5 which comprises the results as well as their discussion. Initially, the analytically
and numerically determined oscillation amplitudes of the magnetic cuboid are compared.
Subsequently, the splitting factor in three-magnon splitting and the consequent spin and
magnetic moment of the magnons are ascertained.

Chapter 6 consists of a short conclusion and emphasizes the huge impact the clarification
of the mentioned inconsistencies would have on this field of research.

Finally, in the appendices A, B, C and D one finds theoretical derivations clarifying some
statements presented in the theoretical chapters. The last appendix E contains commented
scripts and further data illustrating the process and the results of this thesis.



Chapter 2

Theory of Dynamic Processes in a
Magnetic Film

2.1 Fundamental Considerations

The following theoretical considerations of this chapter, including the formulas as well as
the connections, are mainly taken from [GM96] and partly also from [NB14] and [Ulr14].
The collective magnetism in a ferromagnetic material is caused by the exchange interaction
of the electrons leading to an unbalanced spin system. The resulting net spins align spon-
taneously for temperatures below the Curie point [Kit53, pp. 356f.].

Herring and Kittel [HK51, p. 5] introduced the magnetization M, a continuously differenti-
able vector field, to replace the individual spins s as measures describing the system. This
micromagnetic approach describes the magnetization as a macroscopical entity

M — %Z“ (2.1)

constituted microscopically by the spin-magnetic moments

l"l'si = —9gHUBSi, (22)

where V' is the volume of the magnetic sample, g is the Landé factor of an electron and
up = fo‘ is the Bohr magneton with A as the reduced Planck constant, e as the charge and

m. as the mass of an electron. When applying an external magnetic field H, the spins start

to align along the field. Above a certain field strength, all spins point in the direction of the
field and the saturation magnetization M is reached.

3
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If one wants to consider the dynamics of a magnetic system, the fundamental equation
describing the precession of magnetization in a solid body is the following non-linear equation
of motion,

oM

W = —’}/M X Heff; (23)

known as the Landau-Lifshitz (LL) equation (cf. [LP92, p. 278]) with v = %2 and the

effective magnetic field

H.,;;=Hy+H. +h+h)y. (2.4)

H combines the static external and demagnetizing field, H., the effective field of the
exchange interaction, h represents the alternating component of the external field and h,,
is the alternating demagnetizing field.

For a system with damping, the Landau-Lifshitz-Gilbert (LLG) equation has to be used (cf.
[Satll, p. 26]),

oM )
W:—”)/MXHeff‘i‘%oMXM, (25)

which contains the Gilbert damping term and will be important in the following section.

2.2 Uniform Precession

In a magnetic system with M || H || e,, an external stimulus can deflect the magnetization
from its static equilibrium position so that it starts to precess around H as stated by the
LL eq. (2.3). If the resulting macroscopic magnetization (cf. fig. 2.1(b)) precesses in phase
in different points of the sample (cf. fig. 2.1(a)), this is called a uniform precession.

For an ellipsoidal sample, magnetized along one of its axes, the frequency of this precession
is described by the Kittel formula |Kit48, p. 155]

wo =3/ [H + (No = N.)MoJ[H + (N, — N.) Mo, (2.6)

where NN; are the demagnetization factors. For a sample geometry of an infinite film, i.e.
N, =N, =0and N, = po = 47 - 1077, where the y-axis is perpendicular to the film-plane,
while the x- and the z-axis are in the plane, the equation is simplified to
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Fig. 2.1 Schematic figures of (a) a microscopic circular uniform precession of the magnetic
moments (figure taken from [Dzyl0, p. 14]) and (b) macroscopic elliptic precession of the
magnetization in a YIG film.

wo =7V H(H + poM). (2.7)

In an infinite medium, the uniform precession can be assumed to be circular (cf. fig. 2.1(a)).
However, in a tangentially magnetized film with [y << [y,l3, the dynamic dipolar fields in-
duce an ellipticity of magnetic precession (cf. fig. 2.1(b)). When the precessing magnetiza-
tion vector points out-of-plane, the induced magnetic charges at the opposing surface create
a strong demagnetizing field and the vector is pushed back in the direction parallel to the
static field H. This ellipticity is described mathematically in sec. 2.4.

2.3 Spin Waves

The already described uniform precession of magnetization around the external field can be
assumed as a wave with a wave vector of k = 0. In general, all wave-like excitations of the
equilibrium state of magnetization are called spin waves. However, the spin waves described
in this chapter are the propagating ones, having k # 0 and consisting of magnetic moments
that do not precess in phase (cf. fig. 2.2). As the spin waves are collective excitations
analogous to lattice vibrations, they can be quantized to quasi-particles, called magnons.

The concept of spin waves was introduced by Bloch [Blo30, p. 4], who derived the dispersion
law of spin waves in 1930, but only took into account the exchange interaction. Holstein
and Primakoff [HP40, p. 4] included dipolar interaction into their later, more exact theory.
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Fig. 2.2 Spin wave in a chain of spins at a distance of a, (a) perspective and (b) top view.
One wavelength is shown, the wave line goes through the top of the spin vectors. (figure
taken from [Kit53, p. 365|)

An approximate dispersion relation of the spin waves in a system with both exchange and the
magnetic dipolar interaction was determined by Kalinikos and Slavin (cf. [GM96, p. 181],
[KS86, p. 6,7,10,55,60], [Kal80, p.5,6,9]) to

w® = (wy + Zwnk?) (wy + Z,wnk® + war sin® dy) (2.8)

where v is the angle between M and k, the frequencies are defined as wy = vH and
wy = YoMy, and I, = /ﬁ is the exchange length with A as the exchange constant.
0

2.3.1 Non-Linear Coupling of Magnetic Modes

One excitation mechanism for spin-waves is the parametric pumping process where several
modes with the same frequency but different wave vectors and propagation directions are
excited. As described in oscillator theory (cf. e.g. [NMO7, p. 15]]), a parametrically excited
system contains a time-dependent parameter like the magnetic field. Hence, the energy is
pumped into the system by a modulation of the internal parameter, in the present case
the magnetization. This modulation is achieved by applying a dynamic field h(t), which is
perpendicular to the static field H.

The perpendicular pumping process is based on non-linear coupling between different spin
wave modes. For a mathematical description, one has to assume an approximative form of
the magnetization |GM96, p. 247|

M = Mye, + m(r,t),  where m(r,t)= Z my(t)e " (2.9)
k

is the fourier transformed representation of the dynamic component of the magnetization.
After substituting this ansatz into the LL equation (eq. 2.3), one receives two differential
equations [GMO96, p. 248|
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,dag

it = woto = (s + ihy) + Do, (2.10)
.dak *
ar (Ax + vhz)ar + BraZy + Qug. (2.11)

The variables and parameters are (cf. [GM96, pp. 247,181 and |Ulrl4, p. 7|)

1
ap = M(mkz + imy,), a’, analogously, (2.12)
0
1
Ay = wy + P wyk? — §wM(P0(1 —sin® ;) — 1), (2.13)
1
|Bi| = in(Pou + sin? ;) — 1). (2.14)

By = 1721_;12 is a term which takes into account the finite size of the film in the y direction

(constant taken from [GM96, p. 248] and [Ulrl4, pp. 6,7]). The expressions €2, and Q,
comprise higher order mixed terms in ay, a} including ag [GM96, p. 248|. Therefore, they

describe the interactions between different modes.

2.3.2 Three-Magnon Splitting

In a linear approximation, equation 2.11 and the adjoint equation describe the coupled
oscillations of two harmonic oscillators a, and a*,, which correspond to spin waves with
wave vectors k and —k. The mathematical derivation of this solution can e.g. be found
in [ABP68|. However, in a parametric pumping process the uniform mode aq is so strongly
excited that one has to include also non-linear terms describing the coupling of the uniform
mode to other spin wave modes due to Q,9 and Q,; (cf. [NB14, p. 17]). This energy transfer
from the modulating source to the oscillators is most effective if [GM96, p. 250]

nwy = Wi + Wo (215)

with n = 1,2,3,.... The frequencies w; and w, are the ones of the spin waves and w,, is the
pumping frequency that modulates the coupling.

Returning to the description of spin waves as quasi-particles, relation 2.15 describes the
process of annihilation of n particles with the frequency w, and creation of two particles
with the frequencies w; and wy. At a certain threshold amplitude of the periodic field h,
the energy transferred to the spin waves exceeds the energy loss that they face, i.e. their
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amplitudes start to increase exponentially which results in unstable behaviour. Since the
value of n in eq. 2.15 is the order of the instability, the first-order instability corresponds to a
three-magnon splitting process. This process is shown in fig. 2.3, where the upper and lower
borders of the area indicating the allowed frequencies and wave vectors of the spin waves refer
to spin waves propagating perpendicular (Damon Eshbach modes) and parallel (backward
volume modes) to the applied field, as labelled. Here, the created magnons (spin waves)
with wave vectors k and —k have degenerated energies (w; = ws) to ensure momentum and
energy conservation (all these considerations were taken from [GM96, p. 250] and [KDD*11,
p. 663]).

As explained in [KDD"11, p. 663], the angular mo-
mentum, however, is not conserved due to the the

increase of the total number of magnons which, ac-
cording to Bloch’s exchange theory, carry an an-
gular momentum equal to & (ref. [Blo30]). Hence,
three-magnon splitting is not allowed if an isolated

Frequency

magnetic system is considered, as it was done in
Bloch’s model only describing the exchange inter-
action [Blo30]. If one includes the magnetic dipolar

Wavevector interaction, this restriction is removed. Mathemat-

ically spoken, the Hamiltonian operator describing
Fig. 2.3 Spin-wave spectrum with indic-

ated three-magnon splitting in YIG (figure )
taken from [KDD*11, p. 663]). operator of the angular momentum of the magnetic

subsystem alone, but with the operator of the total

the dipolar interaction does not commute with the

angular momentum combining the magnetic sub-
system and the lattice (cf. [KDD*11, p. 663] and [BSPA59]). Therefore, the quantization
of spin waves leading to a spin of 1 is only valid for the total system of magnetic subsystem
and lattice.
Therefore, when incorporating the dipolar interaction into the model, the splitting factor
characterizing the increase of angular momentum parallel to the static field differs from 2 as
parts of the spin are carried by the lattice (cf. e.g. [NB14, pp. 22-26]). Due to this coupling
of the magnetic subsystem with the lattice, not the classical magnon but rather a mixture
of magnetic and lattice oscillation is an exact eigen excitation of the system. However, as
an approximate quantization is used, which provides only the magnetic part of this com-
posite particle, the splitting factor differs from 2. This factor providing information on the
magnetic part of both the spin and the magnetic moment of the magnons will be derived
numerically in this thesis for specific parameters.
Surprisingly, a coherent quantum treatment of the angular momentum flow from the mag-
netic subsystem into the lattice and vice versa is still missing, though exchange and dipolar
interactions occurring in a ferromagnet have firstly been described quantum mechanically
already more than 70 years ago ([KDD*11, p. 663], [HP40], [Maj07]).
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2.4 M, Magnetization Change of Elliptic Precession

The conservation of the angular momentum in the magnetic subsystem that is parallel to
the static field is violated not only in the three-magnon process, but also in the elliptic
precession of magnetization. This observation will be important in the next chapter where
the consequences of the time-dependent change of M, parallel to H on the magnetic sample
are illustrated. In order to calculate this magnetization change, one has to consider weak
<< 1. The magnitude of the

dynamic fields that cause small dynamic amplitudes ‘mMLO"
magnetization vector | M| has to stay constant due to the conservation of the total magnetic
moment. An informative expression for M, can be derived using basic trigonometry and an

expansion for small amplitudes (cf. app. C)

M, = \/MO2 — m2 cos? wyt — m2sin® wyt (2.16)
1 1
NMO—W( m2 4+ m? )—1-4—]\40(771 — m2) cos 2wpt. (2.17)

This equation shows some consequences of the excitation of magnetic precession, which
are also illustrated numerically in ch. 4. The second term on the right hand side of the

equation describes the reduction of the static component M, .rr = My — m2 +m )

g (
(effective magnetization), leading to a negative non-linear frequency shift of 4tﬁoe dlSpeI‘SIOIl
relation 2.8 (cf. [Ulrl4, p. 17]). The third term shows that the resulting oscillation of the
magnetization with frequency 2w, only exists for elliptic and vanishes for circular precession.
If eq. 2.17 is rearranged and differentiated with respect to t, one obtains the final expression

of the time-dependent change of M.,

2 m2
M, = 2wp4TX40 (1 — W) sin 2wyt = 2prm sin 2wy t. (2.18)

To describe the strength of the ellipticity of uniform precession, one has to take a look at
the ratio of the dynamic magnetization components m,, perpendicular to the static field!

1

my _(HA (N, = N M\
H+ (N, — N,) - M, '

— (2.19)

This formula is only valid for « = 0 and a small initial magnetization deflection. It illustrates
that for large static fields the Zeeman energy is much higher than the demagnetization energy

!This formula is taken from [GM96, p. 26] apart from the typing error of leaving out the saturation
magnetization My which was done in this source.
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and the ellipticity vanishes.
Eq. 2.19 equals the ellipticity relation for spin waves,?

N|=

1
.92 —= —
my . W Sin 19]€ 2 . Ak + ’Bk|
— i1 A = g =" 2.20
My ! ( * WH + lgwak'Q) ! <Ak — |Bk| ( )

for k — 0. As it can be easily seen in eq. 2.20, the ellipticity is strongest for uniform
precession, i.e. for small wave numbers k with By comparable to Aj. For large k, the
exchange effect dominates, so that A, >> By, and the magnetic precession becomes circular
(cf. |Ulrl4, p. 16]).

To find a complete expression describing the time-dependent change of M., the formula 2.18
raises the need for a term characterizing the component m,. For this purpose, one has to
calculate the amplitude of uniform precession (cf. [Suh57, p. 1,17,22| and [NB14, p. 17]). If
one includes spin waves losses via the substitution wg — wq + tw,q, Wwhere w,q is proportional
to the Gilbert constant «, and assumes a circularly polarized dynamic field that oscillates
with the pumping frequency w,, the expression [GM96, p. 249]

h )
ag = DAL (2.21)
Wo — Wp + 1Wro

for the amplitude of uniform precession follows, which is twice as large as the precession
amplitude when regarding a linear polarized field. When taking into account eq. 2.12 and
2.21, the expression for m,

MMy - 1My - Movh iwpt
my=|14+1—2 Moag = |1 +i—2 — . (2.22)
My My Wy — Wp + Wi

is obtained. If resonant excitation with wy = w, is assumed, one can write the real part of
My as

Re(m,) = (1 + (ﬂy) ~ Mogh - cos wyt (2.23)

Wro

and one receives the same time dependency as already assumed in eq. 2.16.

As mentioned, a complete expression for the time-dependent change of M, has to derived
in order to describe mechanical film oscillations described in the next chapter. For this
purpose, one has to insert eq. 2.19 and 2.23 into eq. 2.18.

2In [GM96, p. 184], the formula (7.23) referring to eq. 2.20 contains the typing error of leaving out the
exterior power of the fraction, which is shown in the app. C.



Chapter 3

Theory of Einstein de Haas Effect

3.1 Historical Overview

In the year 1915, long before the discovery of quantum mechanics, A. Einstein and W. J. de
Haas conducted a simple experiment to prove the coupling between the angular momentum
and the magnetic moment of single atoms (J[EdH15]).
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(a) (b)

Fig. 3.1 (a) Replica of the original setup of the Einstein de Haas experiment (figure taken

from [DPG]J). (b) Schematic setup of the Einstein de Haas experiment. Left side: Without

a magnetic field, the magnetic dipole moments g point in different, random directions.

Right side: When a magnetic field B is applied, The magnetic moments align parallel to

the applied external field; their total angular momentum L., induces a mechanical angular
momentum L,q.(figure taken from [HRWO03, p. 1240])

11
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Einstein and de Haas attached an iron cylinder to a thin string and inserted it into a coil
as shown in fig. 3.1(b). In the beginning, the magnetic dipole moments of the atoms in the
cylinder pointed in various directions, so that the angular momenta cancel each other out
(cf. 3.1(b), left). Subsequently, the coil applied a magnetic field parallel to the cylinder and
the magnetic moments aligned parallel to it (cf. 3.1(b), right).

As there were no external torques acting on the cylinder, the total angular momentum re-
mains zero. Hence, if the atomic angular momenta align antiparallel to the magnetic field,
they have to transfer an angular momentum to the cylinder, thereby rotating it. Afterwards,
the torsion of the string induces a torque stopping the rotation of the cylinder and trans-
posing it into a harmonic torsional oscillation.

This experiment indicated that the mechanical angular momentum and the magnetic mo-
ment of an atom are coupled in opposing directions [HRWO03, p. 1240]. Furthermore, the
resulting relation of the magnetic moment to the angular momentum for the spin was twice
as large as for the orbital angular momentum [Dem96, p. 161].

A general conclusion of this experiment is that a change of the angular momentum of a
magnetic state can cause a wvisible rotation of a macroscopic object.

3.2 Adjusted Experimental Design

To connect the considerations of sec. 2.4 with the static Einstein de Haas effect, macroscopic
torsional oscillations of a magnetic film are considered, which are induced by its elliptic
magnetization precession.

Fig. 3.2 A schematic figure of the elliptic magnetization inducing oscillations of the YIG
film.

As mentioned, former estimations indicated that the amplitude of this precession can be
barely large enough to be measured. To encourage or reject the possibility to measure this
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precession in a real experiment, an adjusted experimental design has to be conducted that
will be examined analytically and numerically in the subsequent chapter.

Instead of an iron cylinder, the design consists of a YIG film with a volume of (100-10-100)zm
(cf. fig. 3.2). Moreover, the physical principles behind the oscillations examined in this thesis
differ slightly from the ones in the original Einstein de Haas experiment. There, angular
momentum flew from the magnetic subsystem into the lattice as the spins changed their
direction. This situation is comparable to the three-magnon splitting process where the
magnetic system is fundamentally excited, so one spin of the system flips and a magnon is
created. The resulting rotation of the lattice caused by the angular momentum flow from
the lattice into the magnetic subsystem is damped rapidly in case of a single three-magnon
splitting process and therefore cannot be observed.

The analytical and numerical calculations in this thesis, however, describe film oscillations
induced by the elliptic precession of magnetization. Here, the spin part of the angular
momentum L, is not constant, so for a total angular momentum conservation of the whole
system, the film has to oscillate mechanically around the z axis. This effect differs from the
one in the original static experiment as one now describes a forced oscillation based on a
time-dependent, periodical torque acting on the lattice.

3.3 Gyromagnetic Ratio and Landé Factor

The connections of the following theoretical considerations are mainly taken from [Sch].

In order to derive the maximal torque D,,.. acting on the film as induced by the change
of the magnetization component parallel to the magnetic field M,, one primarily has to
consider the gyromagnetic ratio and the Landé factor for the spin of an electron [Dem96,
p. 161],

K —ge 2m6 Hs
v=—= and = —

s 2m, 9 —e s

respectively. (3.1)

The whole magnetic moment of the film is pty;,,, = Npg, where p, is the spin-magnetic
moment of an electron and NN is the number of electrons with an uncompensated spin.
Therefore, the magnetization is

Ny,

Pl’film
M = =i
V V

(3.2)

where V' = [,l5l5 is the volume of the film.
The whole magnetic angular momentum of the film is L,,,, = Ns, where s is the spin of
one electron. From these considerations it follows that
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_ 2me MV

—€ Lpag

g (3.3)

Due to the oscillation of the film, the magnetization and the angular momentum of the film
are time dependent. As these quantities are the only time-dependent ones in the formula,
one can derive them with respect to ¢ and define D(t) = L(t),

_2me MV
- —e Dinag

9 (3.4)

In this thesis, only the magnetization change M, is considered, M & M,, and one receives
the torque acting on the film

2m, VM, VM,

o : (3.5)

Dmag = Lmag -

At this point, the oscillation amplitude could be derived by considering the conservation of
angular momentum: L,,,5 + Lyecn, = 0 (cf. app. A). However, another approach leading to
the same result is presented in the following chapter.

3.4 Torsional Oscillations

If one considers a periodic force Fp - cos(2w,t) that acts on a mass m attached to a spring
with spring constant k, the equation of motion, [Dem94, pp. 363f.]

mi = —kx — bt + Fy cos(2wpt), (3.6)

follows, where x is the free coordinate of the system, 2w, as the pumping frequency and b
describing the damping of the oscillation. This equation of motion can be converted into
the inhomogeneous differential equation

i+ 2B + wir = K - cos(2w,t) (3.7)

using the abbreviations

w(2] = m7 6 = 5 K = DR (38)



Chapter 3: Theory of Einstein de Haas Effect 15

where wy is the eigen frequency of the undamped oscillation.

To return to the initial adjusted experimental design and aiming for a description of
the forced rotary oscillations of the YIG cuboid, one has to consider a torsional oscillation
and substitute the Cartesian deflection coordinate = by the oscillation angle ¢ in eq. 3.7.
Furthermore, K can be expressed by

(3.9)

where D = Jcclltf = J% [Dem94, p. 150]. D,z is the maximal torque exerting the periodical

force on the film which possesses the inertial torque J [Dem94, p. 149|
J = im(l2 +13), (3.10)
12 '

where [y is the length (in x direction) and [y is the width (in y direction) of the film. The
maximal torque therefore amounts to

ma:c QDOJ\/ 40.)2 (4Bwp)2‘ (311)
Thus, one receives a maximal oscillation angle of [Dem94, pp. 365|

Dmax 1 Dmax
Yo = ~ 2
R L

(3.12)

whereas the approximation neglects both the mechanical damping 3 and the eigen frequency
wo, which are small in comparison to the pumping frequency w, ~ 10'°Hz. To finally obtain
the oscillation amplitude of the YIG film in y direction, simple trigonometric considerations
and the approximation sin(z) ~ x for small = lead to

ll ll Dmaa:
== . 1
Yo =75 - sin o ~ 5 <4Jw§) (3.13)

Subsequently, one can insert eq. 3.5 and 2.18 into the expression 3.13:

ll Mz,mamv 1 ll QwPAmV 1 ll AmV
yo = — . 5 = — . 3 —_ — . . (314)
2 ¥ 4Jw, 2 v 4Jw; 2 2Jwyy

The numerical methods for the determination of a specific value for this amplitude is presen-

ted in the subsequent chapter and the result is shown afterwards in ch. 5.



Chapter 4

Simulations

4.1 Programs

All the simulations that will be presented in this thesis were implemented with the micromag-
netic simulation program mumax?®, which is GPU-accelerated (cf. [Van]|). The simulations
comprised a magnetic sample that was segmented in finite, cube-shaped cells. The applied
uniform magnetization followed the LL equation (eq. 2.3) in each cell, taking into account
i.a. the magnetostatic, exchange and anisotropy interactions. A more thorough explanation
can be found in [VVAW]|.

The display of the similar program OOMMF (Object Oriented MicroMagnetic Framework,
cf. |Nat]) was used to review the created magnetic fields and the received magnetization
distribution of the simulated cuboid. Statistical analysis was performed using Scilab, Mat-
lab, QtiPlot and Origin.

An exemplary selection of the used codes is presented in the appendix E to gain a deeper
insight into the methods of this thesis.

4.2 Simulation Parameters

4.2.1 Micromagnetic Sample

With mumax, a micromagnetic grid with a size of (256, 32, 256) cells was created. The cell
sizes were (0.15, 0.16, 0.15)um so that the whole cuboid had a size of (38.4, 5.12, 38.4)um.
Here, the y size of the cuboid was chosen to 5.12um as in former experiments [KDD¥11]
this width was chosen to 5.1ym. The spin waves were described by a wave number of
k= 5’236u+n’ i.e. a wavelength of A = 27 /k &~ 1.2um, so the film has to be more extended

16
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than this wavelength to observe the spin waves. Due to long simulation times, the size of
the cuboid remained constant so that the optimal values of the other simulation parameters
had to be ascertained just once.

As disturbing edge effects obstructed the effective excitation of uniform precession and spin
waves, periodic boundary conditions as well as a removal of surface charges were simulated.
However, these methods did not result in the desired enhancement of excitation. The im-
plemented alternative solution of this problem was a relatively small cell size and large grid
size in y direction, so only the layer y=16 in the homogeneous middle of the cuboid was
used to analyse the magnetization distribution of the different excited modes. One negative
consequence of the small cell size in y direction were the only 7.5 times larger cuboid sizes
in z and x direction, since the cell had to be nearly a cube for effective simulations.

4.2.2 Optimal Static Field H

The static magnetic field H was applied in z direction. To gain the optimal field and
pumping frequency f = frag, it was necessary to take into account the dispersion curve of
backward volume modes with k || H (cf. fig. 2.3). The excitation was optimal when the
secondary magnon frequency f/2 was situated directly on the dispersion curve, which means
that no further, non-backward volume modes were excited with k L H. Hence, one had to
minimize the dispersion relation (eq. 2.8) to receive the optimal minimal magnon frequency
fmin for which the three-magnon process was still allowed. Due to f = frur L. Sfrmins
Af = frur — 2+ fmin = 0 had to be determined, so Af was calculated for different H.
Since the FMR frequency is dependent on the confinement of the cuboid, it was obtained
numerically by applying a spatially constant temporal field pulse for different H.

It is important to emphasize that in this small YIG film the demagnetization fields lower
the effective field in the film significantly. One analytical source |Ulr] states for the used
parameters a lowering of the external applied field of 10mT. A numerical examination
pointed out that an external field of H.,; = 65mT causes an internal field of H;,; = 46.32mT,
so even a higher decrease was observed. As the calculations were done with the dispersion
relation for an infinite film, this effect had to be taken into account.

4.2.3 Damping

The actual damping o = 107* in YIG is very small. Accordingly, as the spin waves are
damped very slowly in experiments, this material enables favourable experimental condi-
tions. In simulations, however, the disadvantages predominate due to very long transients.
Hence, the damping was raised artificially to o = 1072 which had no significant effect on the
processes apart from making them faster. Moreover, the various non-linear processes scale
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differently with «, so the increased threshold fields led to a bigger interval in which only the
first instability arose.

4.3 Simulation Output and Fourier Transforms

The first output of the mumax simulations was a tabular consisting of the time, the magnet-
ization components that are averaged over the whole cuboid and freely selectable parameters
like the total energy, the internal field components, etc. as one can see in app. E.1. Due to
a chaotic uniform and spin wave distribution at the edges of the film (cf. e.g. fig. 5.3(a)-
5.3(d)), the magnetization components that were only averaged over the center of the cuboid
were also saved. Therefore, merely a range of 8.55x8.55um? was considered in which the
modes were excited effectively.

The total energy in the table, however, did not provide any information on the energy distri-
bution among the different modes. In order to determine the energy of the uniform or spin
wave modes, the fourier spectrum P(f) of the modes had to be generated. Afterwards, the
selection of and integration over the desired peak at its specific frequency led to its fourier
energy E(f).

As a consequence, another output of the simulations was the spatial distribution of the
magnetization in the y=16 layer as implemented due to limited disc space. For a fre-
quency resolution in the fourier spectrum of Af = 1/7 = 0.1GHz and a frequency range
of f =10,1/2" feampling] = [0,1/2 - 10]Ghz = [0,5]Ghz, a number of N = fiumpiing - 1T =
10GHz-100ns = 1000 magnetization distributions were saved covering a period of 7' = 100ns.
A temporal fourier transform of the oscillating out-of-plane (y) component of the 1000 saved
magnetization distributions created fourier maps consisting of the local fourier amplitudes
(real part, imaginary part and absolute value). If one for example considers a coherent
excited mode with several nodes (mn) and frequency f,,, then the fourier map concerning
the frequency f,,, displays the spatial structure of this mode. Thus, one can display the
absolute value of the wave distribution as shown in fig. 5.1(a).

For the purpose of analysing the mode structure, the complex amplitude of the fourier maps
was transformed using a spatial fourier transformation. This method was required to es-
tablish the spatial wave vector as exemplary shown in fig. 5.4(a). The order in which the
temporal and spatial fourier transforms were applied did not matter, since all information
was conserved.

In contrast, the information of the fourier maps is reduced if the whole fourier spectrum of
the magnetization is ascertained, i.e. the data is processed to display it compactly. There-
fore, for every frequency map the global sum of the local, squared absolute values A?(x, z, f;)
was added up to gain the total fourier power P(f;) of the i’ frequency:
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P(fi) =) Az, fi). (4.1)

To conclude, the whole mathematical calculation that was performed to obtain the complete
spectrum P(f) can be outlined in a simple way: M (r,t) — A(r, f) — P(f).

4.4 Simulation Methods

4.4.1 FEinstein de Haas Effect

In the previously presented adjusted experimental design similar to the Einstein de Haas
experiment, the considered cuboid was a YIG film with a volume of (100 - 10 - 100)um. Due
to already mentioned reasons, a smaller cuboid with a volume of (38.4 - 5.12 - 38.4)um was
simulated. However, as this extension is roughly half of the one in the gedankenexperiment,
the results may not be the same but at least similar for this larger volume.

First of all, the demagnetization factors /V; had to be determined numerically, because the
ideal case of N, = N, =0 and N, = 4r- 10~7 for an infinite film is not given in the numerical
considerations due to the finite extension of the cuboid in z and x direction. As these factors
are only spatially constant in ellipsoids, one had to incorporate effective demagnetization
factors for more complex shapes. The demagnetization factors describe the reduction of
the internal magnetic field due to dipolar fields occurring because of the divergence of the
magnetization:

Hint,i = Hezt,i - NZM’L (42)

Since it is relatively easy to determine the internal magnetic field, the demagnetization
factors could be calculated directly.

The next step was to apply uniform precession due to its highest ellipticity. As described in
the theory, an external stimulus exciting the precession was needed for this purpose, which
was in this case a dynamic magnetic field exciting the FMR mode of the sample: w, = wrpp.
Here, the case for « = 0 and a small initial magnetization deflection is equivalent to the case
for a > 0 and a small dynamic field, because in the latter case the pumping compensates
the damping losses and therefore enables the same dynamic equilibrium.

The simulations finally delivered the values of the parameters needed for the calculation of
the YIG film precession amplitude. A detailed explanation of the simulation method for
exciting uniform precession is given in the next chapter.
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4.4.2 Splitting Factor of Three-Magnon Splitting Process

As already explained in sec. 2.3.2, the splitting factor of three-magnon splitting should be
<2 when incorporating the dipolar interaction into the spin wave model, because a part of
the spin is carried by the lattice. In the simulations that will be presented in this subsection,
this splitting factor will be determined.

The simulation method was based on a separate excitation of the uniform and the spin wave
modes subsequently leading to a comparison of the obtained magnetizations and energies of
these modes.

The direct excitation of the spin waves was done with a field that consisted of the static field
H = He, and a dynamic field h(z,t) = h(z,t)e, that was both temporally and spatially
periodic:

H,,(z,t) = H + h(z,t) = He, + hoe, - sin(k.z) - sin(2m fswt).

The dynamic field was modulated in the direction z of the static field, so that backward
volume modes were excited with k || H. It was applied in x direction to ensure perpendic-
ular pumping being most effective in in-plane direction, because the in-plane magnetization
m, is larger than the out-of plane magnetization m,,.

The excitation of this mask (cf. exemplary script in sec. E.1) takes place with the smallest
allowed spin wave frequency to enable optimal efficiency.

In order to determine the wave vector k. of the spin waves, further simulations had to be
done: Three-magnon splitting processes were conducted by pumping energy into the FMR
with a spatially homogeneous and temporal periodic field h(t) = hoe, - sin(27 fragrt). To
enable this splitting process, the inequality hg > hy,-1 had to be fulfilled, where hy,,; were
the threshold fields of the different instabilities. The derivation of this threshold field
of the first-order instability process can be found in app. B. Subsequent to the simulations,
the described temporal and spatial fourier transforms of the resulting magnetization distri-
butions were accomplished and yielded the desired wave vector (cf. fig. E.2(a)-E.2(d) in
app. E).

Lastly, the fourier energy of this spin wave mode was established as a function of the h field
and the magnetization decrease AM, (cf. sec. 2.4). Afterwards, this energy was compared
to the energy of the FMR mode of uniform precession. The excitation of uniform precession
was implemented in simple simulations taking a dynamic field h(t) = hoe, - sin(27 frarrt)
with the same hg as in the case of spin wave excitation. Care had to be taken to keep this
field smaller than the threshold field of the three-magnon splitting: ho < hypr 1.
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Results & Discussion

5.1 Optimal Simulation Parameters

First of all, an optimal external static field of H.,; = 65.26mT was calculated. However,
due to possible analytical inaccuracies the field in the simulations was chosen to be slightly
smaller, i.e. H.,; = 65mT. The resonance frequency fryr = 3.26GHz was obtained numer-
ically, yielding to a spin wave frequency of fsy = 1.63GHz.

The demagnetization factors of the YIG film were determined to be N, = 1.50 - 1077,
N, =1.48-10"" and N, = 9.74 - 10". These factors do not only agree with the theoretical
expectation that N, >> N, ~ N, but also with N, + N, + N, = 12.72- 107" ~ 47 - 107"
Furthermore, the resulting internal field H;,, . = 44.60mT for H.,;. = 65mT, that was cal-
culated via eq. 4.2, is in good agreement with the numerically obtained H;,; . = 46.32mT.

The threshold field for the three-magnon process was calculated to hy; = 9.4 - 107°mT
for a YIG damping of « = 1-107*, and to hyp1 = 9.4 - 107*mT for the artificially higher
damping of & = 1-1073. The wave vector of the spin waves created in the three-magnon
process was determined to k, = 5.236}%11.

5.2 Einstein de Haas Effect

As described in the theoretical chapters (eq. 2.18 and 3.14), the YIG film has an oscillation
amplitude of

2 2
Yo = l—l . amy , where Am = My My .
2 2Jwyy

21
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m?2 and Z—g can be either analytically determined via eq. 2.23 and 2.19 or alternatively
numerically obtained by plotting the magnetization components of the mumax tables (cf.
sec. 4.3). However, even the analytical approach bases on numerical parameters as the
demagnetization factors of a real cuboid with finite extension cannot be calculated analyt-
ically.

In tab. 5.1, the analytical and numerical parameters and resulting amplitudes are presented
for a comparison of the analytical calculations and the simulation. These parameters were
calculated for a dynamic field of hg = 2 (4) - 107*mT < hyp,1. The external field H = 65mT
was taken into account for the analytically derived values of m,, Z—z and yy because the
formulas used incorporated the confinement of the cuboid and the resulting attenuated
static field. In order to determine the numerically derived 1, the internal field H = 46.32mT
was considered. The reason is that the parameters m,, m, and Z—Z used to calculate the
numerical value for gy, are functions of the effective internal field. In the numerical case, m,

my

and m, were obtained and —* could be derived from this values. In contrast, analytically

m, and =2 could be calculated and m,, was deduced from these two values.

My

Tab. 5.1 Comparison of analytically and numerically determined values for H = 65mT
and ho = 2(4) - 10~*mT.

Quantity | Analytical Value | Numerical Value
m, |A/m] 134.0(268.0) 107.1(214.4)
my [A/m] 80.7 (161.5) 64.1(128.3)
lao| [A/m] | 11.23(22.47)-10~* | 8.97(17.94) - 10~*
Z—Z [ 0.602 (0.602) 0.598 (0.598)
Yo [m] 2.50(10.01) - 10722 | 1.63(6.54) - 1072

To discuss the obtained results, several aspects can be concluded:

To begin with, the proportionalities m,, m,, |ag| o< hy can be deduced from the eq. 2.23, 2.19
and 2.21 and are in accordance with the simulation results. Moreover, the proportionality
Yo o< hi can be understood when expanding yo (eq. 3.13) for small arguments of the sine.
Then, a proportionality 3, oc m?2 follows.

Furthermore, the validity of the formula for the ratio :—z for the simulated dynamic fields hg
has to be checked as it is only given for small hg. In the orders of magnitude of hy = 10~*mT
these ratios obtained for different h fields differed only in the fourth decimal place, which
means that the approximation for a negligible small deflection of the magnetization from
its static equilibrium position is reasonable.

In a comparison of the analytically and numerically obtained values, small deviations are
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noticed. As the analytical results appear to be constantly higher than the numerical ones,
one can indicate that even the inclusion of the demagnetization factor and the internal field,
respectively, could not facilitate an appropriate correction of the formulas for an infinite
film. For example, the wave vector of the uniform precession cannot exactly equal zero
for a film of finite extension. In such a system, no propagating waves but only standing
waves exist with k,, = T The smallest wave number £ = % = 0'116;%111 is formed by
m =n = 1, i.e. does not equal zero. Therefore, the theoretical approximation of an ideal
uniform precession can be assumed to cause small deviations.

Furthermore, the analytically obtained values for the uniform precession amplitude
|a0.an.1| = 11.23 (22.47) - 107, that was calculated with the model incorporating the demag-
netization factors, deviates from the value taken from eq. 2.21, |ag . 2| = 13.00 (26.00)-10~4,
that was determined for an infinite film with the use of the internal static field. Again, both
results are higher than the numerically determined amplitude of |ag pum.| = 8.97 (17.94)-10~%.
Moreover, the numerically and analytically obtained resonance frequencies are not the same,
even if the demagnetization factors were considered in the analytical derivation. Numeric-
ally, the resonance frequency was determined to fryr = 3.26GHz. Analytically, a smaller

FMR frequency of fryr = 3.04GHz followed.

The major result is that the obtained precession amplitude gy, can be assumed to be
too small to measure it in an experiment. This assumption is based on a comparison of the
amplitude yy ~ 1072'm with the sizes of e.g. an atom ~ 107%m or a proton ~ 10~'°m.
In the introduced adjusted experimental design that ought to be realized experimentally,
it would be even smaller than in the simulations because a littler film was used that has a
smaller moment of inertia.

5.3 Splitting Factor of Three-Magnon Splitting Process

In the following, the results of the excitation of uniform precession will be presented. Fig.
5.1(a) shows the spatial magnetization distribution of the whole simulated film. The typical
distribution of a uniform mode can be identified, and furthermore some caustic waves that
are normally positioned at the surfaces of a film. The related averaged upper (blue) and
lower (green) halves of this distribution is presented in fig. 5.1(b) and show that the uniform
precession is not effectively excited at the edges of the film. As a consequence, in fig. 5.1(c)
and 5.1(d) the 57 cells in the middle of the film were extracted to present the same quantities
in an area of a relatively homogeneous internal field.
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Fig. 5.1 Magnetization distribution of uniform precession excited with hg = 4 - 10~*mT.
(a) Spatial magnetization distribution in the cells 0-256. (b) Averaged upper (blue) and
lower (green) half of the spatial magnetization distribution in the cells 0-256. (¢) and (d)
show the same quantities, for the cells 100-156, i.e. the 57 cells in the middle of the film.




Chapter 5: Results & Discussion 25

After transforming the cells 100-156 of the second magnetization component using a spatial
fourier transformation, one obtained the spatial fourier spectrum as shown in fig. 5.2(a).
When regarding the cross section k, = 0, one obtained a single intensity peak around %k, = 0
as theoretically expected.
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Fig. 5.2 Spatial fourier transform of uniform precession excited with A = 4-10~#mT. (a)
Spatial fourier spectrum and (b) cross section k, = 0 of the spatial fourier spectrum, both
in the 57 cells in the middle of the film.

The magnetization distributions of the spin waves excited with a temporally and spatially
periodic dynamic field (cf. fig. 5.3(a) and 5.3(b)) suggests that it only gets effectively excited
in the middle of the film, even more than in the case of uniform precession.

The actual wavelength of the spin wave is twice as large as in the presented distributions
because the absolute value was plotted instead of the real magnetization distribution. For
a comparison, the real and absolute values of this magnetization distribution can be seen in
the appendix E in fig. E.4(a)-E.4(d).
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Fig. 5.3 Magnetization distribution of spin waves excited with hg = 4-10~*mT. (a) Spatial

magnetization distribution in the cells 0-256. (b) Averaged upper (blue) and lower (green)

half of the spatial magnetization distribution in the cells 0-256. (¢) and (d) show the same
quantities, for the cells 100-156, i.e. the 57 cells in the middle of the film.
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The cross section of the spatial fourier spectrum of the cells 100-156 of the magnetization
distribution (fig. 5.4(a)) yielded the value of k = k, = 5.236L that was already part of
the dynamic field mask. Again the fourier profile agrees with the theoretical expectation
represented by iso-frequency curves in the k,, k, phase space as illustrated in [Ulrl4, p. 21].
As the k vectors are nearly symmetric around zero, they describe standing waves.

ES
|

_y Cells

K
Intensity [a.u.]

x Cells - k x Value [/m]
(a) (b)

Fig. 5.4 Spatial fourier transform of spin waves excited with hg = 4-10~*mT. (a) Spatial
fourier spectrum and (b) cross section k, = 0 of the spatial fourier spectrum in the 57 cells
in the middle of the film.

Finally, the fourier energies of uniform precession and spin waves was obtained as a function
of the static magnetization change AM, = M,(hy = 0) — M,(hy). The evidence that the
fourier energy is proportional to the actual energy of the mode is given by the fact that the
integral over the whole fourier spectrum is proportional to the total energy of the system
deduced from the mumax output tables.

Fig. 5.5, where the data points refer to dynamic field strengths of h = 0 — 8 - 10~*mT,
indicates that this relationship is linear. Furthermore, F(AM, = 0) = 0 is given for hy =0
because only the perpendicular dynamic field decreased the static magnetization component
parallel to the static field.
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Fig. 5.5 Fourier energies of uniform and spin wave modes as a function of the static
magnetization change AM, parallel to the static field. The data points refer to dynamic
field strengths of hg = 0 — 8- 10~#mT.

As the optimal static field H could not be determined very accurately, the mask exciting the
spin waves was potentially not perfectly matching and therefore not of optimal effectivity,
as one can deduce from the lower spin wave fourier energies. However, by cancelling out
the energy dependency on the dynamic field, results were obtained that were independent
of the effectiveness of excitation with this approach.

As indicated by the arrows in fig. 5.5, the splitting factor is of interest, that describes how
much magnetization change corresponds to the splitting of the uniform mode into two spin
waves. Looking at the two equations of the linear fits

Eypla.u.] = (1.53 £0.39)[a.u.] + (421.65 £ 0.44) - AM, pyp - [m/A], (5.1)
Eswla.u.] = (0.20 & 0.54)[a.u.] + (228.79 &£ 1.17) - AM, sw - [m/A], (5.2)

one sees that the slope for uniform precession is roughly twice as large as the one for spin
waves. However, this splitting factor does not exactly equal 2, but:
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Splitting factor = 1.84 + 0.01.

If one fixates the data point (0,0) in the linear fits, the slopes are 422.90 &+ 0.51 for uni-
form precession and 229.1040.76 for spin waves. Here, a splitting factor of 1.854+0.01 results.

Based on these results, one has to conclude that the simple quantization scheme of magnons
with a magnetic moment of 2up and spin 1 cannot be confirmed. Instead, the conjecture
stated in the supplementary information (p.7) of [KDDT11] gets affirmed: The uniform
mode does not split into two magnons having spin 1. The secondary magnons rather carry
spins that are smaller by 0.92 than the spin of the initial magnon with k£ = 0.

The magnetic moment of quasi-particles is defined as [KPS97, p. 187]

8w0
Hyp = —homr (5.3)
and the spin can be calculated to
3w0
Syp. = Boors” (5.4)

Hence, the evaluation of the Kittel formula (eq. 2.7) and the numerically obtained frequen-
cies result in a magnetic moment of 2.50up and a spin of 1.25 for the uniform mode. As
a consequence of the splitting factor, the magnetic moments of the secondary spin waves
have to equal 2.30up and their spin is 1.15. These values apply only to the specific chosen
magnetic field and film extension. In general, the spins can be both higher and lower than
1, as described e.g. in [NB14, pp. 22-26].

These results that indicate a magnon spin # 1 are merely received in the case of incorpor-
ating dipolar energy (cf. e.g. [NB14, pp. 22-26]). Therefore, these determined spins of the
uniform and the spin wave modes are only the magnetic parts of the total spin consisting of
a magnetic and a lattice part (ref. [KDDT11|). This explanation is based on the necessity
of the spin being integer 1 as the magnon is a boson, shown e.g. by its ability to conduct
Bose Einstein condensation [DDDT06].

As already mentioned, a coherent quantum description of this phenomenon is still missing.
This fact acts as a great motivation for further research potentially leading to a consistent
description of the quantum mechanical properties of ferromagnet including exchange as well
as dipolar interactions.



Chapter 6

Conclusion

To recapitulate, the current thesis provided a brief overview on several aspects of magnetic
dynamic processes.

It was presented that in contrast to former estimations, the amplitude of the YIG film
oscillation induced by the elliptic magnetization precession is too small to be measured in an
experiment. Furthermore, the violation of angular momentum conservation was illustrated
as was already expected based on previous results. As the simulations resulted in an obtained
three-magnon splitting factor of 1.84 instead of 2, the consequential magnon spin # 1 can
only be described by the introduction of a total magnon spin consisting of a magnetic as
well as a lattice part.

Since still no coherent quantum description of this phenomenon exists, it acts as a great
motivation for further research aiming for a complete account of the quantum mechanical
properties of a ferromagnet, incorporating exchange as well as dipole interactions.
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Appendix A

Derivation of Oscillation Amplitude via
Conservation of Angular Momentum

Another derivation of the precession amplitude of the YIG film was conducted by S. O.
Demokritov and simply bases on the consideration of the angular momentum conservation,

Lmag + Lmech = 0. (A]')
As mentioned, the change of the magnetic angular momentum can be written as (eq. 3.5)

V M, ~ V2w,Amsin(2w,t)
gl gl '

(A.2)

Lmag =

With the precession angle ¢ = g sin(2w,t) of the YIG film and the related angular velocity
) = ¢ one obtains an expression for the mechanical angular momentum and its derivative,

Lieen(t) = JQ = J2w,posin(2wpt)  and  Lyeen(t) = —J4wpo sin(2wyt). (A.3)
The conservation of angular momentum (eq. A.1) leads to

2w,VA
Lp¥ O sin(2wyt) — J4w? o sin(2wyt) = 0, (A.4)
f)/

and finally to expressions for the maximal oscillation angle and for the oscillation amplitude
as already derived in sec. 3.4 (eq. 3.14):

and Yo =5 %Yo = 5" (A.5)

2 2

%o .

- 2Jwyy 2Jwyy
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Appendix B

Calculation of Threshold Field of
Three-Magnon Splitting

The threshold field for the first-order Suhl instability can be calculated to [GM96, p. 252]

AHyAH,
hipp1 = ———= B.1
thr,1 L (B.1)

with [GM96, p. 20]
2wr0,rk (B 2)

AHg =

The frequency w, can be calculated to

O (B.3)

with the dispersion relation (cf. 2.8 [KS86, p. 6,7,10,55,60|, [Kal80, p.5,6,9], diagonal ap-

proximation)

W= \/wH <wH + :T]Z (1- e—klz)). (B.4)

After differentiating w (eq. B.4) with respect to wy we receive

w
Wy = (wH + ﬁ (1-— e_kl2)> ; (B.5)
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hence, for AH,, follows

AH;, = (2]—1 + “2?40 (1- e_kh)) . (B.6)
2

To receive AHy we can expand the exponential function in eq. B.4 for £ — 0 into a Taylor
series to the first order and receive the Kittel formula for an infinite film [Kit48, p. 6]

w=\wg(wyg +wy)- (B.7)

After differentiating w (cf. eq. B.7) with respect to wg,

1
Wrop = & <WH + §WM> (B.8)
follows and therefore

Finally we obtain a threshold field for the Suhl instability of

03(2H + uoMo) (2H + 14300 (1 — e4%2) )
hthr,l = M. )
0

(B.10)

so a proportionality of hy,, o< o was derived. For the typical damping of YIG oo = 1-1074,
a threshold field of hy,; = 9.4 - 107%mT followed. With the artificially higher damping of
a =1-1072 one receives a threshold field of h,.; = 9.4 - 10~*mT. This threshold field is of
course only an approximation as the formulas for an infinite film were used.



Appendix C

Expansion of M, for Small Dynamic
Magnetization Components

The expression for the magnetization component parallel to the static field

— 2 _ 2 cos2w.t — m2 sin?
Mz—\/MO myg, €os® wpt — my sin” wyl

m? m?
= My -] 1 — —2 cos? wyt — —2 sin® wyt (C.1)
\/ M? Mg b

Ma,y

shall be expanded for small dynamic amplitudes | << 1into the more informative

approximative term

1 1
M, ~ My — m(mi +m2) + 4—]\40(7713 — m2) cos 2wpt. (C.2)

Therefore, one just considers terms up to the first order. For the zeroth order follows

M.(0) = M. (C.3)

2
For the first order, the Taylor term for the expansion points (%) =0 are

Mo - %(1 —0—0) ¥ (= coswt) ( . o) (C.4)

[
|
A,
=
[N}
&
=
Y
Et
|
N—
Q
=

1
My 5(1-0-0)"
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With the trigonometric relations

1 1
cos® wt = 5(1 + cos 2wt), sin®wt = 5(1 — cos 2wt ) (C.6)

finally the following desired informative approximative expression for M, is obtained

1 1 1
M, = My — A (mi - =(1 + cos 2wt) +m, - 5(1 — o8 2wt)>
1 1
~ My — (m2 +m) (m2 —m) cos 2wt. (C.7)

4M,



Appendix D

Demonstration of Equality of Uniform
Precession and Spin Waves for £ — 0

In [GM96, p. 184] it is stated that for spin waves the relation

1
-9 -5
m wyy sin” ¥ 2 A+ |B
e N B it i 2k S (B i} | B (D.1)
is given for arbitrary k-vectors. However, this expression contains a typing error and the
correct relation is the following

Mo o (1 S T (I 02)

My w + nk? Ay — | By

To show this equality, the case & — 0 has to be considered for which this ratio has to
transition into the expression for uniform precession (|GM96, p. 26| apart from the forgotten

M)

my _ <H+(Ny_Nz)'MO)§ (D.3)
My H + (N, — N,) - M,
Therefore, we have to consider the terms Ay and |By| in eq. D.2:
Ay = wi + P wyk® — %wM(Po(l —sin?0y) — 1), (D.4)
| By| = %wM(PO(l +sin® ;) — 1), (D.5)
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where we can neglect the term oc k2. Finally, one has to Taylor expand P, for small &

l—e ™ 1—(1—kly—..)

Fo = ki, iy

~ 1. (D.6)

and insert this expressions into the second term of eq. D.2:

N|=

My _ (WH - %wM(l (1 —sin?dy) — 1) + %UJM(l (1 4+ sin?9,) — 1))

My wir — Swar(1- (1 —sin?dp) — 1) — wp(1- (1 +sin® ) — 1)

N

( wr + wyy sin® Y )
= —

wy + %wM sin? ¥y — %wM sin? Jg

ol

N _

= —i (1 + Hgin? 190) . (D.7)
wH

In comparison to eq. D.1 [GM96, p. 184 one can see that this relation contains the mistake

of leaving out the exterior power of the fraction, as it exists in eq. D.7. This observation

can be elucidated by further conversions of eq. D.T7:

M, E: H + pMysin® 9\ 2
This expression is identical with the one for uniform precession:
H+ (N, — N,)- M\ 2
My __ (HA W, = Ne) - My (D.9)

for N, = N, =0 and N, = psin?dg = 47 - 1077 due to sin®¥y = 0 as the angle between
M and k = 0 is ¥ = m/2. These expressions for N,, N,, N, are exactly the ones for the
considered infinite film.



Appendix E

Commented Scripts and Data

E.1 Scripts

Exemplary mumax Script

The following script is an exemplary mumax script showing the simulation parameters and
the output for excitation of spin waves with a spatially and temporally periodic h field mask.

SetGridsize (256, 256, 32)
SetCellsize (0.15e—6, 0.15e—6, 0.16e—6)
// Mumax convention —> thesis convention: (x,y,z) —> (z,x,y).

Msat = 139261 // Saturation magnetization in A/m.
Aex = 3.614e—12 // Exchange constant in I/m.

alpha = 0.02

// Initial higher damping for faster relaxation of magnetization.

Bstatic := 65e—3 // Static field in T.

B_ext = vector(Bstatic, 0, 0) // Static field applied in x(z) direct.
Bexc := 4e—7 // Dynamic field in T.

£f:=1.63e9 // SW frequency f=f FMR/2.
m=uniform(1,0,0) // TInitial magnetization parallel to static field.
relax () // Relaxation into static equilibrium .
OutputFormat = OVF1_TEXT // File format of output is .ovf.

alpha = le—3 // After relaxation, correct damping is turned on.

mxcrop:=Crop(m, 100, 156, 100, 156, 15, 16)
// Only magnetization in the middle of the cuboid is saved,
// as only there the SW excitation is effective.

FixDt = 2.5e—11
// Integration time. Integration method: Bogacki Shampine method,
// one of Runge Kutta approximation methods.

38




Appendix E: Commented Scripts and Data

39

tableautosave (5e—11) // Every be—11 seconds all 3 magnetization comp. are saved.
tableAdd (E_total) // Time evolution of total energy of system is added to table,
tableAdd (mxcrop) // as well as magnetization in middle of the cuboid,
tableAdd (B_eff) // and effective , internal field.
k1:=5.236€6 // k vector of the SW.
mask := newslice(3, 256, 256, 32)
// Create mask for spatially and temporally periodic dyn. field ,
for i:=0; i<256; it++{ // for all x cells,
for j:=0; j<256; j++H{ // all y cells,
for k:=0; k<32; k++{ // and all z cells.
r := index2coord(i, j, k) // Creation of coordinates for field.
x 1= r.X() // Only x coordinates important.
B := Bexcxsin (klxx)

// Spatially periodic profile of dynamic field with SW k vector.
mask.set (1, i, j, k, B)
} // Set mask for whole (i,j,k) coordinate system,
1 // apply field in y(x)=1 direction.

}

B_ext.add(mask, sin(2xpixfxt))

// Add temporally perdiodic (with SW frequency) mask to static field.
// To create UP and not SW, take not mask but

//B_ext = vector(Bstatic, Bexcxsin (2xpixfxt), 0).

run(b5e—7)

// Run simulation for 500ns until dynamic equilibrium is reached.
autosave (CropLayer (m, 16),0.1x1e—9)

// Save layer z(y)=16 magnetization comp. for every cell, every 0.lns.
run(100e—9)

// Run saving for 100ns so that 1000 magnetization profiles are saved.
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Exemplary Scilab Script

In order to obtain the FMR frequencies for a range of different H fields to determine the
optimal one for which Af = fryr — 2+ finin = 0 is given, a dynamic field pulse was applied
to the micromagnetic mumax sample for different static fields. The following exemplary
Scilab script (mostly written by H. Ulrichs) presents the method to read out the FMR, peaks
and therefore acts as an exemplary script illustrating the different evaluation methods used
in this thesis.

clear // Clear all parameters
clf() // and figures.

// Define Lorentz function for fitting FMR peaks.
function e=lor(p,z)

x=z(1);

y=2(2);

e—y—p(1)*1/2xp(3) /%pi/((x—p(2))"2+1/4xp(3)*p(3));
endfunction

// Open and read table comprising time, magn. comp. and total energy.
filelocation="'/home/mumax/simulation /Lena/256x256x32/find FMR.out/table.txt';

a=mopen (filelocation, 'r');
b=mfscanf(11,a, '%s');

// Find frequency maxima = FMR
maxima=zeros (25,3);

for j=1:20 // For e.g. 20 maxima corresponding to 20 pulses with different H field
data=zeros (10000,2); // Matix "data" will have two components...

for i=1:10000

b=mfscanf (5,a, '%f'); // Define data as:

data(i,1)=b(1); // First column of table: time.

data(i,2)=b(4); // Fourth column of table: z(y) magn. comp.
end
deltaf=1/500; // Frequency resolution .
f=linspace (0,deltaf*(10000—-1),10000); // Frequency.

// Fourier transform data to receive frequency spectrum.
c=abs(fft (data(:,2)));

// Plot frequency spectrum = fourier transformed data containing FMR peaks.
subplot (211)
plOt(f,C);

" Find maxima in frequency spectrum with
[value ,index|=max(c(1:5000))

pO=[max(c);f(index);0.1]; // initial guess of maxima
Z=[f(index —100:index+100)',c(index —100:index+100,1)]"
/ and Z=matrix [zl,...zn]| where z i is the ith simulation.

// Fit FMR peaks with Lorentz function.
[p,err]=datafit (lor,Z,p0);

/
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Plot the Lorentz fits in spectrum.
plot (£,p(1)*1/2xp(3)/4pi*((£-p(2)).72+1/4xp(3)*p(3))."(=1),'r")

maxima(j,1)=60e—3+(0.5e—3)x*i

// Starting value of static field: H=60mT. End value: H=70mT.

// 20 steps (=20 maxima) in a distance of 0.5mT.

maxima(j,2)=p(2);

maxima (j,3)=p(3);

// Plot maximum — FMR frequency as a function of number of maximum (1-10).

//
1/

subplot (212)
plot (j,p(2),'r.")

end
mclose (); // Close table.
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E.

2 Data

Exemplary Time Evolution of Magnetization Components of Uniform Precession
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Fig. E.1 Exemplary time evolution of magnetization components of uniform precession

excited with hg = 4 - 1074mT. The (a) M, in-plane component and (b) M, out-of-plane

component increase due to hg. (¢) The amplitude of the M, component parallel to the static

field first was saturated (cf. to hysteresis curve) but increased due to the perpendicular

dynamic field until finally a dynamic equilibrium is obtained. (d) The total energy E o
—MyH increases as the scalar product MyH gets smaller.
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Ascertainment of k Vector of Spin Waves via Excitation with Pumping
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Fig. E.2 Ascertainment of k vector of spin waves via pumping with FMR frequency and

ho = 80 - 10~*mT. Cells 100-156 of: (a) Spatial magnetization distribution. (b) Averaged

upper (blue) and lower (green) half of the spatial magnetization distribution. (c) Spatial

fourier spectrum. (b) Cross section k; = 0 of the spatial fourier spectrum leading to
k. =5.236 1.
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Fig. E.3 Time evolution of out-of-plane magnetization component for splitting process
with hg = 40 - 107*mT. After a transient of approximately 500ns, the splitting process

starts.
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Comparison of Absolute and Real Magnetization Distributions of Spin Waves
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Fig. E.4 Comparison of absolute and real magnetization intensity distributions of spin
waves excited with hg = 4 - 107#mT. (a) Absolute values of spatial magnetization distri-
bution in the cells 0-256. (b) Averaged upper (blue) and lower (green) half of the spatial
magnetization distribution in the cells 0-256. (c) and (d) show the same quantities, but
real instead of absolute values.
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