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1 Introduction

Magnetic nanostructures have already found their way into our every day life. Mod-
ern hard disk drives use the magnetization direction of small magnetic particles to
store information. The discovery of the giant magnetoresistance (GMR) in magnetic
multilayers by Grünberg and Fert ( [1], [2]) once more enhanced storage capacities
and was rewarded with the Nobel Prize in physics in 2007 [3]. This gave rise to
a new technology: spintronics. Spintronic devices not only use the charge of an
electron as a carrier of information, but also the spin. And whereas spintronics is
gradually integrated into modern technical applications, the field of magnonics has
been moving into the focus of fundamental research. In this technology, information
will be solely carried by spin waves and their particle-analogue, magnons, without
any electrical current at all [4].

The concept of spin waves was introduced by Bloch in 1930, when trying to ex-
plain the temperature dependence of the magnetization of ferromagnetic substances
at low temperatures [5]. One can understand a spin wave as a precession of mag-
netic moments in a magnetic material, which shows a coherent phase relation [3].
Like waves of other origins (e.g. light or sound) spin waves also show typical wave
phenomena such as propagation, reflection, refraction, interference or focusing [3].
To be able to integrate magnonic devices into current complementary metal-oxide-
semiconductor (CMOS) technology, two main goals have to be achieved: Magnetic
materials with small losses compatible to silicon-based technology have to be found
and components have to be shrunk from the micro- to the nanometer scale [3]. For
the latter the nature of spin excitations in nanomagnets with a complex geometry
have to be understood [4]. The purpose of this work is to investigate the parametric
excitation of spin waves in a permalloy nanoellipse. The questions now are: Why
parametric excitation, why permalloy (Py) and why an ellipse?

Parametric excitation in general describes a whole class of nonlinear wave phe-
nomena [6]. In this thesis we use the term to describe the nonlinear decay of a
photon into two magnons with opposite wave vectors. This is practically realized by
applying an ac magnetic field parallel to the magnetization of a magnetic sample.
Note that a threshold magnitude has to be exceeded for the nonlinear excitation to
set in. Parametric processes in magnetic samples have first been reported by Damon
and Bloembergen [7]. The main theory has been worked out by Anderson, Suhl and
Schlömann ( [8], [9], [10]) in the 1950s and 1960s. In recent years numerous studies
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1 Introduction

of parametric excitation in ferromagnets, especially in permalloy, have been pub-
lished. Parametric excitations were used to delay [11] and recover [12] microwave
signals and were found be a side effect of switching the magnetization in thin mag-
netic films [13]. Studies of solitons in ferrimagnetic materials have also been carried
out using parametric excitation (e.g. [14]). Moreover, the technique was used to
investigate the spin wave spectra of a Py microstripe [15] and Py elliptic dots [16]
similar to what is the scope of this work. It is well suited for this task, because
it allows the mode selective excitation of spin wave modes with all kinds of spatial
profiles including antisymmetric modes, which can otherwise only be investigated
with very low excitation efficiency [16].

New magnetic materials are needed for magnonics to advance. For years yttrium
iron garnet (YIG) was the material of choice for parametric processes in magnets,
especially because of its very low spin wave damping [6]. However, YIG cannot
be integrated into conventional semiconductor technology, which is a substantial
flaw for possible applications. The metal based alloy permalloy (Ni80Fe20) is a
ferromagnet with low magnetocrystalline anisotropy and considerably low losses. It
is widely used in basic research.

Spin wave spectra of confined structures usually show a typical behaviour: There
are frequency bands containing allowed spin wave modes and those bands are sep-
arated by forbidden frequency gaps. Allowed spin waves of one band usually cor-
respond to special spatial mode profiles and very often they are called center and
edge modes to refer to that localization. The band formation is caused by magne-
tizing effects at the samples boundaries. As investigated structures become smaller
and smaller the importance of these effects grows [4]. Years of research have led to
a rigorous understanding of spin waves in stripes and rectangular elements. Ana-
lytical theory and numerical simulations are in good agreement with experimental
results [17]. Rounded shapes, especially on the nanoscale, have so far mostly been
investigated using arrays of quasi-identical samples (e.g. [18]). A substantial draw-
back of this method is that it only produces average results ignoring small differences
between the samples [19]. Strictly speaking, no conclusions can be drawn from these
experiments concerning the magnetization dynamics of a single magnetic structure.
Thus, the magnetization dynamics of a single elliptic element are of great scientific
interest.

In this work we study the spin wave spectrum of a nanoscale permalloy elliptic
disk. First, the basic theory of magnetization dynamics and parametric excitation is
introduced in Chapter 2. Details of the sample as well as the experimental technique
are given in Chapter 3 and the experimental results are presented in Chapter 4. In
Chapter 5 we develop a numeric simulation model to explain our experiments before
we summarize and combine our findings in Chapter 6.

A short summary of the results is given here. It is found that the ellipse has
two spin wave frequency regimes: an edge mode regime and a center mode regime.
An anomalous spatial profile is shown by the edge modes contradicting both ana-
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lytical theory and findings in other structures. This is qualitatively explained by
micromagnetic simulation, which assumes a weaker magnetism at the edges of the
ellipse. The parametric excitation threshold is found to be significantly higher for
edge modes compared to center modes. This is likely to be caused by higher losses
of these modes. A theoretical model for amplitude limitation mechanism is success-
fully applied to the data giving strong evidence that parametric mode amplitudes
are limited by nonlinear damping.
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2 Theory

In this chapter a short summary of the theory of magnetization dynamics is given.
The purpose is to introduce the tools needed to analyse the coming experiments.
Note that the dynamics can be understood in a purely classical theory. However,
quasiparticle language is used if convenient for illustration.

The structure of this chapter is as follows. First, the basic equation of motion, the
Landau-Lifshitz-Gilbert equation, is discussed followed by the dispersion relation for
an infinite thin film. Subsequently, the effects of confined sample geometries on spin
waves and the theory of parametric excitation of spin waves are presented.

2.1 Basic theory of magnetization dynamics

Landau-Lifshitz-Gilbert equation

The time evolution of the angular momentum L of a body in classical mechanics is
given by [20]

dL

dt
= T, (2.1)

where T is the torque acting on the body. On the other hand, the torque of a
magnetic moment m in a magnetic field H is determined by [21, p. 84]

T = m×H. (2.2)

The magnetic moment is connected to the angular momentum by m = γL so that
the combination of the above equations gives us

dm

dt
= γm×H. (2.3)

Here γ is the gyromagnetic ratio, a constant which is specific for each system.
Depending on the the context the g-factor is sometimes used instead of γ. Both
constants are connected by the relation [21, p. 95]

g = −2meγ

eµ0

. (2.4)
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H

Θ M
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dt

Figure 2.1: The magnetization M precesses around the magnetic field H as described
by the Landau-Lifshitz equation. The derivative dM/dt stands perpendicular on both
the field and the magnetization.

For permalloy and pure metals the absolute value of g is approximately 2. By
adding up the magnetic moments in e.g. a ferromagnet we introduce the macroscopic
magnetization M =

∑
m and get the Landau-Lifshitz equation [22, p. 33]:

∂M

∂t
= −|γ|M×H. (2.5)

Note that as we are using classical field equations the magnetization is continuous,
so that M = M(r, t). The transformation from a single magnetic moment to a
continuous field also causes the time derivative to change from a total derivative to
a partial one [20].

We have not yet specified the nature of the magnetic field H. Let us first consider
the simple case of a static external magnetic field. It follows from the Landau-
Lifshitz equation (2.5) that as long as the magnetization is not parallel to the ex-
ternal field it will precess around H as shown in Fig. 2.1. The precession angle θ
is constant, because the Landau-Lifshitz equation does not contain any dissipative
terms [21, p. 86].

To account for other physical effects than external fields H is extended to a so
called effective field Heff [20]:

Heff := −δU(M)

δM
, (2.6)

where δ denotes to the functional derivative of the potential energy of the magne-
tization field U

(
M(r, t)

)
. We will not go into mathematical detail here, but rather

discuss the components of the potential energy as it gives us valuable insights into
the physics of magnets. U is in general given by [20]

U = Uext + Udemag + Uex + Ua. (2.7)
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2.1 Basic theory of magnetization dynamics

Each energy term can be associated with an effective magnetic field. In explaining
the components we mainly follow [22] and [20]:

� Zeeman energy Uext: This is the energy imposed by an external field Hext.
It is given by the simple relation Uext = −MHext.

� Demagnetization energy Udemag: It describes the dipole-dipole interaction
between the magnetic moments of the sample. The corresponding demagne-
tization field Hdemag is always directed opposite to the magnetization [21, p.
50]. In bounded samples the demagnetization field is highly inhomogeneous,
thus playing a huge role in defining frequency and spatial profile of spin waves.
In the following, we will often combine the external and the static part of the
demagnetization field to the internal field Hint = Hext + Hdemag.

� Exchange energy Uex: This energy term originates in the quantum mechan-
ical Pauli principle. Therefore, it favours a configuration in which all magnetic
moments are directed in the same direction.

� Anisotropy energy Ua: Sources of anisotropy can be manifold. The most
common type is magnetocrystalline anisotropy, which arises from the fact that
the lattice structure of a solid magnetic material can define an easy axis of
magnetization. In the case of permalloy it can be neglected. Other anisotropies
include surface anisotropy, i.e. at a surface it might be favourable for a sys-
tem to turn the magnetization out of plane whereas inside the sample the
magnetization is aligned in plane.

Equation (2.5) describes the time evolution of an undamped system. To include
damping a phenomenological damping term is introduced. The equation of motion
then becomes [20]

∂M

∂t
= −|γ|M×Heff −

αG
M

M× ∂M

∂t
, (2.8)

where the Gilbert damping parameter αG describes the strength of the damping.
This is the so called Landau-Lifshitz-Gilbert equation. It is the central equation to
describe magnetization dynamics. Note that the damping parameter αG does not
contain any information about the nature of damping. The damping processes in
general include magnon-magnon interaction as well as energy transfer to phonons
(lattice vibrations) and excitation of conduction electrons [20].

Spin wave dispersion relation for an infinite thin film

We will now state the solution of the Landau-Lifshitz equation for an infinite thin
film. We follow the analysis of [23] and [24]. Assume a ferromagnet with infinite
boundaries in y- and z-direction and finite thickness L in x-direction (Fig. 2.2).
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Figure 2.2: Infinite film with thickness L in x-direction, which is magnetized along the
z-axis. Plane waves are a solution of the Landau-Lifshitz equation for this system. They
travel along ζ enclosing an angle ϕ with the z-axis.

The film is magnetized to saturation with the magnetization directed in plane. The
saturation magnetization is MS. The effective field is given by

Heff (r, t) = ezHint︸ ︷︷ ︸
Constant internal field

+ hd(r, t)︸ ︷︷ ︸
Dynamic dipole field

+ α∇2m(r, t)︸ ︷︷ ︸
Dynamic exchange field

. (2.9)

Note that α in this case is the exchange constant and not the damping parameter.
The first task is to solve the Landau-Lifshitz equation (2.5). For this a linearisation
has to be carried out [22, p. 18]. The solutions then have to be adjusted to the
boundary conditions imposed by the Maxwell equations. Usually one only takes the
magnetostatic approximation of these equations into account. In the case of the
infinite thin film a Green tensor function can be used to define the dynamic dipole
field. One then gets a plane wave solution for the dynamic magnetization

m(ζ, t) ∝ exp
[
i(ωt− qζζ)

]
, (2.10)

where ζ is the in-plane direction of propagation of the spin wave (see Fig. 2.2). The
angle between z and ζ will be called ϕ. The dispersion relation is given by:

ω2(q) =
[
ωH + ωM

(
1 + αq2 − P

)][
ωH + ωM

(
αq2 + P sin2(ϕ)

)]
with ωH = γHint, ωM = γMS and P = 1− 1

qL

(
1− exp(−qL)

)
. (2.11)

Figure 2.3 shows the dispersion relation for different values of the internal field Hint.
The frequency f = ω/2π undergoes a very shallow minimum at q ≈ 104 cm−1. This
is not shown in the Figure. For greater wave vectors the frequency then increases
monotonously. For Hint > 0 the increase is roughly quadratic. A higher internal
field also leads to higher spin wave frequencies. An important feature is that for
each internal field there is a minimum frequency given by the intersection of the
dispersion relation with the frequency axis. Spin waves with a frequency below the
minimum frequency will be exponentially damped. This has a big impact on spatial
profiles of spin waves in confined samples.
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2.1 Basic theory of magnetization dynamics
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Figure 2.3: Dispersion relation for spin waves in an infinite film with thickness L = 3 nm
for different internal fields Hint. The wave propagates in z-direction, so that ϕ = 0◦.
The saturation magnetization is held constant at MS = 5.30× 105 A/m. The frequency
f = 6.525 GHz corresponds to an experimental result. One sees that a mode at this
frequency can only exist in areas where the internal field is smaller than µ0Hint = 84 mT.

Spin wave modes in confined structures

The lateral confinement of a sample has two consequences: the formerly continuous
wave vector becomes quantized and the internal field becomes inhomogeneous. Both
consequences will be discussed in the following.

Quantization of wave vector

A confined magnetic sample can be treated as a magnetic resonator [25]. If the
confinement is three dimensional, only standing spin waves can exist. As there is no
propagation any more the definition of a wave vector becomes somewhat difficult.
One should rather speak of a characteristic wave vector. We introduce a simple
quantization scheme, in which the approximate characteristic wave vector in the
direction of the e.g. z-axis is given by [17]

qnz =
(n+ 1)π

∆zn
. (2.12)

∆zn is the spatial localization length of a spin wave and n denotes to the number
of nodal lines in z-direction. The wave vectors in the other directions are defined
equivalently.
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Figure 2.4: Internal field Hint, z in an elliptic cylinder as used in the experiments. The
field was calculated with micromagnetic simulation program OOMMF for an external
field of µ0H = 90 mT (solid lines) and µ0H = 40 mT (dashed lines). It is shown for a
section in z-direction (left) and y-direction (right). The pink inset shows the direction
of the in-plane magnetization. Even at areas with large curvature the deviation from the
z-direction is very small.

Mode localization due to an inhomogeneous internal field

The analytical calculation of the demagnetization field Hdemag and thus the internal
field Hint is a rather complex task. In case of an ellipsoid the field is homogeneous
and can be expressed by a demagnetization tensor [22, p. 23]. For an elliptic disk
an analytical solution is no longer possible and a numerical integration of elliptic
integrals has to be carried out [26]. Instead, we used a different approach called
micromagnetic simulation, which will be discussed in Chapter 5. We present first
results here.

Figure 2.4 shows the component of the internal field pointing in the direction
of the z-axis for an elliptic disk with the same lateral dimensions as used in the
experiments. This data was obtained with the simulation program OOMMF. One
sees that in the center of the ellipse the internal field is reduced by about 5 mT
compared to the static external field of 90 and 40 mT respectively. This is to be
expected, because the magnetization of the ellipse is parallel to the external field
and the demagnetization field always points in the opposite direction (s. Sec. 2.1).
The internal field is more or less homogeneous over a wide range of the ellipse, but
becomes strongly inhomogeneous at the edges. Within a range of less than 50 nm
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2.2 Parametric excitation of spin waves

H

Figure 2.5: Experimentally measured spatial profile of an edge mode in an elliptic disk
with lateral dimensions of 1.3×2.4µm. The maxima are located on the major axis of the
ellipse. This axis is parallel to the static magnetic external field. Figure taken from [27].

the field rapidly decreases to zero.
The inset in Fig. 2.4 shows the direction of the in-plane magnetization. One sees

that the deviations from the z-direction are very small, even at areas with large
curvature.

Following [17] we now assume local validity of the dispersion relation (2.11). This
shows us that low frequency modes must be confined to the edges of the ellipse.
They are often referred to as localized, end or edge modes ( [17], [18], [25]). In this
thesis we will use the term edge modes.

The spatial localization of modes with certain frequencies in this section was based
on the combination of the dispersion relation of an infinite thin film with a simulated
internal field. This was a very qualitative argumentation. A rigorous solution of the
Landau-Lifshitz equation for spin waves in a confined structure should reproduce
a corresponding mode profile. An analytical solution was presented for magnetic
stripes [17]. However, in case of an elliptic disc an analytical approach is not possible
without severe simplifications and we shall concentrate on micromagnetic simulation.

Edge modes have already been experimentally observed in different geometries
including stripes [17] and elliptic elements [27]. Figure 2.5 shows the spatial profile
of such a mode in an ellipse. The mode’s peak intensities are located at the ends of
the major axis of the ellipse. The static magnetic field is also applied in the direction
of that axis. This is a typical result.

2.2 Parametric excitation of spin waves

So far, we have discussed the spin wave spectrum of confined ferromagnetic struc-
tures. All arguments were made without stating the type of excitation. One way to
excite magnetization dynamics is to apply an ac external field, which is not parallel
to the equilibrium direction of the magnetization.

In our experiments we used a different method called parallel parametric exci-
tation. In this technique an external ac field h∼ is applied parallel to the static
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2 Theory

magnetization. The theory of parametric excitation of spin waves was mainly devel-
oped by Anderson, Suhl and Schlömann ( [8], [9], [10]) and is very well summarized
and enhanced in the book of L’vov [6]. First, we give an explanation for parallel
pumping of spin waves in terms of classical physics. Then we will state the most
important formulae used in the analysis of our experiments.

Physics of parallel parametric excitation

Consider the precession of the magnetization as in Fig. 2.1. Equation 2.5 tells
us that during the precession the length of M = (mx,my,mz) is constant. This
simply means that no magnetic moments are created or destroyed. Then one of the
components of M, say mz, can expressed using the other two [9]

mz =
√
M2 −m2

x −m2
y. (2.13)

In general the precession can be elliptical, so that

mx = m̂x cos(ωt) and my = m̂y sin(ωt). (2.14)

Substituting (2.14) into (2.13) and using basic trigonometry yields

m2
z = M2 − m̂x

2 + m̂y
2

2
+
m̂y

2 − m̂x
2

2
cos(2ωt). (2.15)

Hence, mz oscillates at double the frequency of mx and my. Vice versa, if one
excited mz by an external field, the other two components oscillate at half the
frequency. This is the basic idea of parallel parametric excitation. Note that this
effect vanishes for a circular oscillation of mx and my. We introduce the ellipticity
[22, p. 26]

ε = 1− m̂x
2

m̂y
2 , (2.16)

where an ellipticity ε = 0 has the meaning of a circular precession. We see that

m2
z ∝ const.+ ε cos(2ωt). (2.17)

The ellipticity of the precession is caused by small perturbations that destroy the
symmetry of the magnetic system such as shape anisotropies or dipole-dipole inter-
action ( [6], [8]).

Theory of parametric excitation

To describe parallel parametric excitation of spin waves an oscillating term has to
be added to the effective field (2.9) and the Landau-Lifshitz equation (2.5) has to
be solved. The effective field becomes [23]
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Figure 2.6: Pumping field needed for parametric excitation of spin waves for different
pumping frequencies. The mode’s amplitude grows with time in the shaded area. In the
white area the pumping amplitude is too small to parametrically excite the mode. The
threshold field hth is smallest for resonant excitation.

Heff (r, t) = ezHint + hd(r, t) + α∇2m(r, t)︸ ︷︷ ︸
Effective field without pumping

+ ezh∼ cos(ωpt)︸ ︷︷ ︸
Pump field

, (2.18)

where ωp is the pumping frequency and h∼ is the pump field amplitude. Different
mathematical methods can then be used to solve the equation of motion ( [6], [9]).
The result is that pairs of spin waves with opposite wave vectors are created. In
quasiparticle language one could say that a microwave photon with frequency ωp
and q ≈ 0 decays into two magnons with opposite wave vectors and a frequency of
ωp/2. The complex amplitudes a of the spin waves initially grow exponentially with
a characteristic time constant τ [6, p. 101]

a(q, t) ∝ exp(t/τ). (2.19)

For τ we get [6, p. 100]

1

τ
= −ωr(q) +

√
|h∼ · V (q)|2 − [ω(q)− ωp/2]2, (2.20)

where ωr is the relaxation frequency of a spin wave mode, V is the coupling of the
external field to the mode and ω is its frequency defined by the dispersion relation.

Let us now discuss Equ. (2.20) in more detail. It is shown for a single spin wave
mode in Figure 2.6. For the mode to grow due to parallel parametric excitation
the condition 1/τ > 0 has to be fulfilled. First, let us assume resonance, so that
ωp/2 = ω. The excitation condition then takes the simple form |hV | > ωr. We
see that the pump field has to exceed a certain threshold value hth = ωr/V . The
condition h∼ = hth then means that the pump field exactly compensates the losses
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due to damping. The threshold becomes smaller the better the external field couples
to the mode. The coupling V is proportional to the ellipticity ε [22, p. 256].

Figure 2.6 indicates that the threshold field is smallest for a resonant excitation.
If the resonance condition does not hold, parametric excitation is still possible, but
the excitation amplitude has to be increased drastically. For example, if one excites
with a frequency 5 % away from the resonant frequency, the pumping field has to
be six times higher.
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3 Experimental Method and Sample

The magnetization dynamics of a small elliptic element was investigated using Micro-
Brillouin Light Scattering Spectroscopy (microBLS). In this chapter we will give
details on the sample used in the experiments. We will also briefly outline the basic
concept of microBLS and its capabilities.

3.1 Sample

An elliptic permalloy (Ni80Fe20) cylinder with lateral dimensions of 1000×250×3 nm
was fabricated on top of a 1000-nm-wide and 160-nm-thick Au transmission strip
line using electron-beam lithography and ion milling [19], as shown in Figure 3.1.
If not stated otherwise a static magnetic field of µ0H = 90 mT was applied along
the short axis of the ellipse to ensure saturation magnetization, meaning that no
magnetic domains were present in the sample. The topology of the sample has been
scanned using atomic force microscopy (AFM). A section along the z-axis is plotted
in Figure 3.2. One sees that the thickness of the ellipse does not change abruptly
at the boundaries, but undergoes a smooth increase over a range of 20 nm.

z

y
H

h~ M

Py ellipse Au strip line

1000 nm

250 nm

Microwave 
pulse

Figure 3.1: Sample geometry. In reality, the strip line is wider than shown. Magnetiza-
tion dynamics were excited by microwave pulses, which caused a dynamic magnetic field
h∼ parallel to the static magnetic field H.
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Figure 3.2: AFM profile of the sample. The boundary of the ellipse is not sharp, but
shows an increase of thickness over 20 nm.

To parametrically excite magnetization dynamics microwave pulses with a dura-
tion of 100 ns, a repetition period of 2µs and varying powers P were applied. An
insulator was used between the microwave generator and the strip line to prevent
intensity fluctuations due to reflections of microwaves in the cable. The pulsing was
necessary to avoid overheating of the sample. The microwaves resulted in a dynamic
magnetic field h∼ parallel to the static magnetic field. The magnitude of the field
was proportional to the square root of the microwave power, h∼ = A

√
P , where A is

a constant calibration factor, which depends to the characteristics of the strip line.
A is unknown and so is the absolute magnitude of h∼.

3.2 Micro-Brillouin Light Scattering Spectroscopy

Detection of magnetization dynamics with BLS

The detection of spin waves using Brillouin Light Scattering (BLS) spectroscopy
utilizes the inelastic scattering of a photon with a magnon [28]. This process is
shown in Fig 3.3. If a photon with energy ~ωI and momentum ~qI scatters with a
magnon with energy ~ω and momentum ~q, conservation laws require the scattered
photon to fulfil the following conditions [28]:

ωS = ωI ± ω
qS = qI ± q. (3.1)

In these equations a ”+”-sign corresponds to the annihilation, the ”−”-sign to a
creation of a magnon. Equations (3.1) show that energy and momentum of the
magnon can be determined by analysing the frequency and energy shift of the scat-
tered photon. This is the basic principle of BLS.
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3.2 Micro-Brillouin Light Scattering Spectroscopy

Figure 3.3: Inelastic scattering process in BLS. Solid lines represent photons, dashed
lines represent magnons. Figure taken from [28, p. 455]

.

The process can also be understood in terms of classical electrodynamics. A
magnon or spin wave is a collective excitation of a solid material and changes its op-
tical constants, more precisely the dielectric permittivity tensor ε. One can say that
the dynamic magnetization causes a fluctuation of the polarizability of a medium
due to the Lorentz force. An incoming plane wave is then inelastically scattered.
This effect is called magneto-optical and is analogous to the elasto-optical effect [29].
In the process of inelastic scattering the polarization of the scattered light is rotated
by 90◦ with respect to the incoming light [30]. The differential cross section is
proportional to [31]

d2σ

dΩdωS
∝ 〈δε∗(qI − qS)δε(qI − qS)〉ωI−ωS

, (3.2)

where δε is the dynamic part of the dielectric permittivity tensor. 〈...〉 indicate the
statistical average. This essentially comes down to the following relation for the
intensity I of the scattered light [32]:

I(q) ∝ |F2D [m(r)]|2 , (3.3)

where F2D denotes to a two-dimensional Fourier transform. The conservation laws
(3.1) follow directly from the time invariance of magnetization dynamics and the
translation invariance of an infinite film. However, in confined structures - such as
elliptic elements - the translation invariance is broken and momentum conservation
is no longer fulfilled [17]. The Fourier integral then has to be restricted to the area
of the sample. Also, the incoming light in reality is a laser spot and not a plane
wave. This again causes confinement leading to insecurities of the wave vector of
the scattered light [30].
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3 Experimental Method and Sample

Figure 3.4: microBLS setup. For a detailed description see text. Fig. taken from [30].

Setup

The microBLS setup has been described in detail in [30]. A short summary is given
here. The setup is shown in Fig. 3.4. A laser with wave length of λ = 532 nm is
used as light source. The laser is working in continuous wave mode and has a power
of 1 mW. To reduce divergence the beam is expanded and filtered using a small
round diaphragm. The light is then linearly polarized and focused on the magnetic
sample, which is mounted on a xyz piezoelectric stage. It allows for positioning
with a precision of about 50 nm. Position of the sample and focus of the laser spot
are stabilized using the image of a CCD camera. The laser spot has a diameter of
250 nm.

The backscattered light is collected by the objective and sent through a beam split-
ter. The beam splitter now differentiates between signals from magnons and other
signal sources like phonons and elastic scattering using the fact that the magnon
signal has a different polarization [33]. The scattered light is passed on to a Fabry-
Pérot interferometer, which analyses the spectral components of the backscattered
photons. Note that magnons typically lie in the GHz range and the frequency reso-
lution of the spectrometer thus has to be about 10−5. Therefore, the interferometer
is operated in a sixpass configuration, which makes a resolution of ∆f ≈ 100 MHz
possible.

In microBLS the wave vector sensitivity is sacrificed for a higher spatial resolution
compared to normal BLS. The objective simply collects all magnon signals up to a
maximum wave vector and integrates them. One can estimate the maximum wave
vector to be qmax ≈ (1.5 − 2.5) × 105cm−1 [30]. The expression for the scattered
intensity (3.3) becomes
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3.2 Micro-Brillouin Light Scattering Spectroscopy

ImicroBLS =

∫
0≤|q|≤qmax

d2q I(q) with I(q) ∝ |F2D [m(r) ·G(r)]|2 . (3.4)

Here G is a scalar function describing the laser spot. In our case it can be ap-
proximated by a Gaussian function with a full-width at half maximum (FWHM) of
250 nm.

microBLS allows for both space and time resolved measurement of the magneti-
zation dynamics. Spatial measurements can be done by moving the laser spot over
the sample surface using the piezoelectric stage. The spatial resolution is limited by
the spot diameter of the laser of about 250 nm. By synchronizing the spectrometer
with the microwave pulses the time development of magnetization is recorded with
a temporal resolution of 1 ns.
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4 Experimental results

Experimental results are presented and their immediate consequences are discussed.
First, the thermal spectrum is compared to a parametrically excited spectrum. In
the parametric spectrum six strong spin wave modes are identified. The spatial and
temporal characteristics of these modes are further investigated. This will give a
comprehensive overview of the physics involved in the parametric excitation of spin
waves in nanoellipses.

4.1 Spectral characteristics

Thermal spectrum
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Figure 4.1: Thermal spectrum of ellipse. Red line shows Lorentz fit.

A thermal spectrum of the ellipse at a temperature of 22 ◦C was recorded. The
laser spot was positioned at the center of the ellipse and no microwave pulses were
applied. The microBLS spectrum in Figure 4.1 shows one major peak. The signal
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4 Experimental results

is caused by the thermal excitation of magnons, which as pseudobosons obey the
Bose-Einstein statistics. No other spin waves modes can be identified. A Lorentz fit
of the data results in a frequency of (7.34 ± 0.61) GHz, where the error is given by
the full-width at half maximum (FWHM).

Parametrically excited spectrum

We will now show and discuss the spectrum, which was measured when parametri-
cally exciting magnetization dynamics parallel to the static magnetic field. To get
an overview of the sample’s modes the system was excited at frequencies ranging
from 10 to 16 GHz with a step size of 0.05 GHz and microwave powers ranging from
5 to 32 mW with different step sizes. The spectrum was recorded at the center of
the ellipse.

We always recorded a BLS signal at half the excitation frequency fp/2. This value
is also stated in Figures. The results are shown in Figure 4.2. Figure 4.2a and b
are split up into two parts to enhance visuability. Each part was normalised to its
respective maximum. We separate the spectrum into two parts: one ranging from
5.8 to 6.6 GHz and one ranging from 7.0 to 7.8 GHz.

At a frequency of f0 = 7.350±0.025 GHz a single large peak can be identified from
P = 5 mW on (Fig. 4.2b and d). The error is given by the step size of the frequency.
This frequency coincides with the peak frequency in the thermal spectrum. It is
constant over the whole power range up to P =13 mW and the peak has the highest
BLS intensity at all power levels. At P = 6.4 mW and P = 7.0 mW two more
peaks appear. We will label these as f1 and f2 corresponding to the frequencies
of 7.225 GHz and 7.575 GHz respectively. Both frequencies are also constant up to
P =13 mW (Fig. 4.2f and h). At higher microwave powers the peaks broaden and
coalesce, which makes it impossible to identify individual modes. There was no
further analysis done at such high powers, so we do not present the data here.

In the low frequency regime three peaks can be seen: fe1 = 6.025 GHz, fe2 =
6.250 GHz and fe3 = 6.525 GHz. All three modes can be identified up to powers of
more than P =30 mW. Their frequencies are constant as well. At certain power lev-
els, e.g. P = 7.1 mW and P = 8.9 mW, further peaks can be spotted at frequencies
of about 6.1 and 6.5 GHz (Fig. 4.2c and e). However, as they are not constantly
present over a wide power range, we excluded them from further analysis.

By combining the dispersion relation in Fig. 2.3 and the computed internal field
Hint in Fig. 2.4 we can already roughly discuss some spatial characteristics of the
identified modes. We see that modes with frequencies below 6.6 GHz are spectrally
prohibited in the center part of the ellipse where the internal field is about µ0Hint =
85 mT. We conclude that these modes must be located at the edges of the ellipse
where the internal field decreases to values allowing for those low frequency modes
to exist. This justifies the names for two frequency regimes: the edge mode regime
and the center mode regime.
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4.1 Spectral characteristics
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Figure 4.2: Parametric resonance curves. Colour plots show dependence of BLS inten-
sity on excitation frequency fp/2 and microwave power P in edge mode and center mode
frequency regimes. Symbols indicate identified modes. Grayscale plots show sections for
different microwave powers P . Identified modes are indicated with arrows.
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4 Experimental results

4.2 Spatial characteristics

Spatial profiles of the modes found in the parametric spectrum were investigated.
Each mode was excited parametrically, so that the excitation frequency was twice
the mode frequency. The laser spot was then moved along the major axis of the
ellipse in steps of 50 nm. The microwave power ranged from 5 mW to 10 mW.

The microBLS intensity is proportional to the squared absolute value of the mag-
netization amplitude. Spatial features are also blurred due to the laser spot diameter
of 250 nm. Therefore, nodal lines of a mode appear as a decreased BLS intensity,
not a complete vanishing.

Results are shown in Figure 4.3, again distinguishing between edge and center
mode regime. It was not possible to resolve the spatial profile of any mode in the
direction of the ellipse’s minor axis due to laser spot diameter of 250 nm.

The center mode at f0 = 7.350 GHz shows a half-sine profile at all power levels.
There are no nodal lines. From comparison with other similar publications ( [16]
and [34]), due to the high BLS signal power as well as the appearance in the thermal
spectrum, we conclude that the mode at f0 is the so called fundamental mode of
the ellipse, which corresponds to a quasiuniform oscillation.

The mode at f1 = 7.225 GHz also shows a half-sine profile without nodal lines.
However, its BLS intensity is too small to justify a characterisation as fundamental
mode. There are two possible spatial profiles for the mode at f1. On the one hand,
the mode could have nodal lines perpendicular to the static magnetic field, so that
they cannot be resolved with microBLS. This would correspond to a decrease in
frequency relative to f0. Such modes are called backward-volume like. On the other
hand, the mode at f1 could also be located at the edge. Such a mode has been
found in elliptic permalloy dots before, its frequency also being very to close to the
fundamental mode’s frequency [18].

The mode at f2 = 7.575 GHz shows a minimum at the center of the major axis of
the ellipse. This minimum becomes more distinct with increasing microwave power.
Since microBLS only records the intensity and not the amplitude of the magneti-
zation, the mode at f2 can be interpreted as an antisymmetric eigenmode. The
BLS intensity at y = 0 nm is not zero, because of the finite size of the laser spot.
The nodal line of the mode is parallel to the static magnetic field. These modes
are often referred to as Damon-Eshbach like modes. Note that the observation of
antisymmetrical modes is a special feature of parametric excitation. A linear exci-
tation (h∼⊥H) of antisymmetric modes is very inefficient compared to parametric
excitation [16].

The center of mass of the fundamental mode’s profile shows a shift of −59 nm away
from the center of the ellipse. The shift starts at a microwave power of 7.1 mW.
It could be connected to the onset of the mode at f1 GHz. At least two effects
could be responsible for the shift of the fundamental mode. One explanation is
the simultaneous excitation of both modes, so that the profiles in Fig. 4.3 are in
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4.2 Spatial characteristics
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Figure 4.3: Spatial profiles of edge and center modes for different microwave powers.
The laser was moved along the major axis of the sample as indicated by the red dotted
line. For the fundamental mode the center of mass of the curve is shown.
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Figure 4.4: Integrated BLS intensity of different modes as function of pumping power.
Inset shows detailed data for the edge modes.

fact a superposition. The other effect is called ”mode hybridization”, a nonlinear
phenomenon, which has been reported for permalloy [35]. We will further discuss
both possibilities in Chapter 6.

In the edge mode regime an anomalous edge mode structure is found below
P =8.9 mW for the mode at fe1 and for both other edge modes over the whole
power range. The maximum BLS intensity is measured at y ≈ ±400 nm. Note
that due to the laser spot the actual maximum (or minimum in case of an antisym-
metric mode) of the magnetization amplitude is likely to be located even closer to
y = ±500 nm, which corresponds to the sharp edges of the ellipse. Such anomalous
spatial distributions of edge modes contradict prior experimental results (Fig. 2.5)
and analytical theory [17]. We will try to find an explanation for the structure using
micromagnetic simulations in Chapter 5.

Moreover, the mode at fe1 = 6.025 GHz undergoes a transition: The minimum be-
comes less distinct with increasing microwave power and finally completely vanishes
at powers above 8.9 mW.

4.3 Dependence of mode intensities on microwave
power

By integrating the spatial profiles discussed in Section 4.2 we can analyse the BLS
intensity of every mode as a function of microwave power.

First, we look at the fundamental mode. Between P =5.0 mW and P =6.0 mW the
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4.4 Temporal characteristics

BLS intensity shows a nonlinear increase. Above P =6.0 mW the increase becomes
less steep and at P =9.0 mW slows down further. The fundamental mode has the
highest BLS intensity over the whole power range.

The intensity of the mode at f1 does not siginificantly grow until the microwave
power reaches P =7.1 mW. We then see a sharp increase between P =7.1 mW
and P =9.0 mW before the mode saturates at 66 % of the fundamental mode’s
intensity. A similar behaviour is seen for the mode at f2 with a linear increase
between P =6.6 mW and P =8.5 mW and saturation at 33 % of the intensity of the
fundamental mode. The threshold character of the parametric excitation process
can be seen very well for all three modes. From this analysis the threshold of the
modes at f0 and f1 is estimated to be about 5 mW, the one of the mode at f2 about
7 mW. However, near the threshold the shown BLS intensity does not represent the
dynamic equilibrium value of the magnetization, because it is strongly influenced
by the transient growth towards equilibrium (s. Sec. 4.4). Hence, this analysis
underestimates mode’s intensities near the threshold.

Edge mode intensities are significantly smaller than center mode intensities over
the whole power range. The modes at fe1, fe2 and fe3 reach only 2.4, 7.5 and 17.5 %
of the fundamental mode’s intensity respectively. However, it is important to notice
that this might be due to the BLS detection method. Edge modes are localized in a
small area and therefore should have a rather large wave vector, for which the BLS
setup is less sensitive.

When looking at the edge modes alone, one again sees a threshold like behaviour
with a similar threshold Pth ≈ 4 mW. The mode at fe3 has the biggest BLS intensity.
It shows a light decrease at 10 mW. The other two edge modes have not reached
their maximum intensity at P =10 mW as the inset in Figure 4.4 suggests. However,
measurements beyond P =10 mW were not carried out.

We would like to stress that the results obtained in this section are at the heart of
any technical application. Any kind of device would have to be operated in between
the threshold and saturation power. An excitation below the threshold would have
no effect whereas an excitation over the saturation power would simply be a waste
of energy.

4.4 Temporal characteristics

We will now present and discuss the time development of the parametrically excited
modes. This will give us important information about the parametric threshold and
the coupling of the dynamic external field to the different modes.

The time development was measured making use of the fact that the spectrometer
clock was synchronized with the microwave pulse generator. For each mode the
time dependence was determined for different microwave powers ranging from about
4.0 mW to 12.6 mW. The power range varied slightly from mode to mode. We recall
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1 . 5 1 . 7 1 . 9 2 . 1 2 . 3 2 . 5 2 . 7 2 . 9 3 . 1 3 . 3
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 3 5

0 . 4 0
c )

b )  7 . 9  m W

1/τ
 (n

s-1 )
√P  ( m W 1 / 2 )

a )

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0
0 . 0

0 . 5

1 . 0

5 . 6  m W

  

 

 

7 . 9  m W
1 0 . 0  m W

T i m e  ( n s )

No
rm

ali
se

d B
LS

 in
ten

sit
y

f 0 = 7 . 3 5 0  G H z

0 1 0 2 0 3 0
1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

 

T i m e  ( n s ) 

 

 

Figure 4.5: a) Time development of BLS intensity of the fundamental mode at f0 for
different microwave powers. b) Time dependence at P=7.9 mW on a logarithmic scale.
Line shows exponential fit of the onset of growth. The slope defines the time constant
2/τ . c) Time constant 1/τ vs

√
P =̂h∼. Red line shows best linear fit of the data.

from Section 3.1 that each pulse had a duration of 100 ns and a repetition period of
2µs.

Figure 4.5a shows the intensity of the fundamental mode over time. The time
t = 0 corresponds to the onset of the microwave pulse. The time it takes for the
mode to reach its maximum intensity critically depends on the pumping power.
At P = 5.6 mW the maximum is reached after approximately 90 ns whereas at
P = 10.0 mW the time has shrunk to only 25 ns. Figure 4.5b presents the time
development for P = 7.9 mW on a logarithmic scale. As expected from Section 2.2
the mode intensity grows exponentially over the first 8 ns. Afterwards the growth
slows down and becomes linear. All modes have in common that the intensity
saturates at a certain level. We will look at this saturation in more detail in the
discussion.

We will now present the analysis that was used to get information about the
coupling and the threshold of a mode. The routine is discussed for the fundamental
mode, but is identical for each mode. We start with Equ. (2.20). It states that
the exponential growth of the amplitude in case of resonance is determined by a
characteristic time constant

1

τ
= −ωr + |V · h∼| = −ωr + Ṽ

√
P . (4.1)
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4.4 Temporal characteristics
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Figure 4.6: Time development analysis for mode at f2. Components equivalent to Fig.
4.5.

where Ṽ is the coupling and ωr is the relaxation frequency. It follows that the
microBLS intensity grows with I ∝ exp(2t/τ). To determine 2/τ the intensity
was fitted with an exponential function as shown in Fig. 4.5b. This was done
for each power. In agreement with the equation above 1/τ scales linearly with√
P (Fig. 4.5c). The slope of a linear fit results in a coupling of Ṽf0 = (0.225 ±

0.007) ns−1 mW−1/2.

At the parametric threshold the energy flowing into the mode exactly compensates
its losses, which means that τ = ∞ or 1/τ = 0. Hence, the threshold field is given
by the intersection of the linear fit with the horizontal axis in Figure 4.5c. For the
fundamental mode we get Pth, f0 = (hth, f0)

2 = (2.9± 0.1) mW.

The intersection of the linear fit with the vertical axis defines the relaxation fre-
quency ωr. We stress that the physical meaning of this relaxation frequency ωr is
subject of a current research. For now it can be interpreted as the relaxation fre-
quency above the parametric excitation threshold. It is unclear, if it can be linked
to the relaxation frequency of a spin wave mode, when no microwaves are applied
(ωr(P = 0)). From Fig. 4.5c we get ωr,f0 = (0.38 ± 0.02) ns−1. The described
analysis is shown for the other modes in Fig. 4.6 to 4.9.

The threshold power Pth and the coupling Ṽ are plotted for all five modes in
Fig. 4.10. Taking into account the error bars one sees that the threshold power for
all three center modes is the same and lies at about 3 mW. The edge modes have a
significantly higher threshold of (3.69±0.07) mW and (4.27±0.14) mW respectively.

No clear trend can be made out for the coupling Ṽ . Coupling is highest for the
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Figure 4.7: Time development analysis for mode at f1. Components equivalent to Fig.
4.5.

1 . 9 2 . 1 2 . 3 2 . 5 2 . 7 2 . 9 3 . 1 3 . 3
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 3 5
c )

b )  6 . 9  m W

1/τ
 (n

s-1 )

√P  ( m W 1 / 2 )

a )

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0
0 . 0

0 . 5

1 . 0

5 . 0  m W

  

 

 

6 . 9  m W

1 0 . 0  m W

T i m e  ( n s )

No
rm

ali
se

d B
LS

 in
ten

sit
y

f e 3 = 6 . 5 2 5  G H z

0 1 0 2 0 3 0

1 0 - 2

1 0 - 1

1 0 0

 

T i m e  ( n s ) 

 

 

Figure 4.8: Time development analysis for mode at fe3. Components equivalent to Fig.
4.5.
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Figure 4.9: Time development analysis for mode at fe2. Components equivalent to Fig.
4.5.
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Figure 4.10: Threshold power Pth (•) and coupling V (�) determined for the modes
at fe2, fe3, f0, f1 and f2. The threshold for the edge modes is significantly higher than
the one of the center modes. No clear trend can be made out for the coupling.
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4 Experimental results

fundamental mode and the edge mode at fe3 and about 35 % lower for the other
three modes. The strong coupling of the fundamental is expected as the coupling
grows with the ellipticity of a mode and the ellipticity is greater for small wave
vectors [22, p. 256]. As the modes at f1 and f2 supposedly have greater characteristic
wave vectors the smaller coupling is also expected. We will present further analysis
of the threshold and the coupling in the discussion.
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5 Micromagnetic simulation

The theoretical description of magnetization dynamics in confined, non-ellipsoidal
samples leads to equations which can often only be solved approximately or for very
special cases [17]. Another approach is the numeric integration of the full Landau-
Lifshitz-Gilbert equation (2.8). This is called micromagnetic simulation.

In this chapter we will develop a simulation model for our sample. This will give
us additional information about important system parameters such as the saturation
magnetization MS as well as spatial profiles and ellipticity ε of certain modes.

5.1 Basics of micromagnetic simulation

To study the magnetization dynamics of a sample using micromagnetic simulation,
the geometry has to be broken down into a finite number of three dimensional cells.
The cell size should be of the order of the exchange length lex [19]. This is the
length scale on which the exchange interaction still has an effect. It is about 5.7 nm
for permalloy [36]. For each cell the Landau-Lifshitz-Gilbert equation (2.8) is then
numerically integrated. The differential equations are coupled over the effective
field.

We used two different programs with two different approaches: the object-oriented
micromagnetic framework (OOMMF) [37] and nmag [38]. Both programs are avail-
able for free. With OOMMF the sample is split up into rectangular parallelepiped
cells. This approach is often referred to as ”finite differences”. It has the advan-
tage that the demagnetization field can be calculated using a fast Fourier transform,
which speeds up calculations significantly. However, rounded geometries cannot be
implemented without staircases. nmag, on the other hand, divides each sample
into tetrahedras (”finite elements”), so that round shapes can be discretised much
better. However, the calculation performance is much poorer. Both programs cal-
culate dynamics at a temperature of T = 0 K, which means that we neglect thermal
excitations of magnons.
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Figure 5.1: Routine to determine a spectrum with micromagnetic simulation: a) A field
pulse is applied perpendicular to the static external magnetic field. The pulse linearly
excites a broad range of modes. b) Time development of the average out-of-plane
component of the magnetization mx. c) The spectrum is obtained using a fast Fourier
transform (FFT) of mx(t). Plot shows the squared absolute values. Dotted line indicates
the experimental thermal spectrum (s. Fig. 4.1).

5.2 Spectral characteristics

Mode intensities

A linearly excited spectrum was calculated using OOMMF. The elliptic disk was
discretised with a cell size of 3 nm×5 nm×5 nm in the x-, y- and z-direction respec-
tively. As the thickness of the ”real” ellipse was 3 nm, the problem was effectively
being treated as two-dimensional. The external magnetic field had a magnitude of
µ0Hext = 90 mT and was directed in-plane enclosing an angle of 3◦ with the z-axis
to account for experimental inaccuracies. The saturation magnetization was taken
to be MS = 7.95 × 105 A/m. The exchange constant A, which characterises the
strength of the exchange interaction, had a magnitude of A = 1.3 × 10−11 J/m.
Both are literature values for permalloy. The g-factor was lowered to 1.95 as exper-
imentally observed in Py films with a thickness of 3 nm [39]. No anisotropy energy
(Ua) was taken into account.

To obtain an initial configuration for dynamic simulations the system was relaxed
for 15 ns from a state of homogeneous magnetization MSez with a high Gilbert
damping parameter of αG = 0.8. From the relaxed state first insights such as the
internal field Hint shown in Figure 2.4 can be obtained. We have already discussed
the results in Section 2.1.

For the calculation of the spin wave spectrum a spatially uniform Gaussian field
pulse was applied perpendicular to the static external field (Figure 5.1a). The pulse
had a full-width at half maximum (FWHM) of about 1.7 ps leading to a very broad
spectral range. The magnitude was 10 mT. The Gilbert damping parameter was
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Figure 5.2: a) Comparison of discretisation used by OOMMF (rectangular) and nmag
(tetrahedral). The rectangular approximation at points with large curvature is much
worse compared to the tetrahedral approach. b) Comparison of the spectra simulated
with both programs. The edge mode peak intensity calculated with nmag is even higher
than with OOMMF. Therefore, no edge mode amplification due to the discretisation was
found.

taken to be αG = 0.008, which is the literature value for Py. The time development
of the average out-of-plane component mx(t) is shown in Figure 5.1b. Note that
antisymmetrical modes cannot be recorded, because they average out. However, as
our field pulse is uniform in space, no antisymmetric modes can be excited anyway.

The spectrum was then obtained by a Fourier transform of the time development.
Figure 5.1c compares the simulated spectrum with the thermal spectrum recorded
with microBLS. We see a huge mismatch between simulation and experiment. The
simulated spectrum shows five peaks with rather small linewidth. The dispersion
relation (2.11) together with the wave vector quantization scheme (s. Sec. 2.1)
shows that the fundamental modes (no nodal lines) corresponds to a theoretical
frequency of f = 8.52 GHz. Therefore, only the peak at 8.25 GHz in the simulated
spectrum can be a center mode. All the other modes should correspond to edge
modes. The first edge mode peak has a higher intensity than the center mode peak.
In the experimental spectrum one large peak was recorded and edge modes were not
observed at all. Also the frequencies do not match. The thermal peak frequency is
at 7.34 GHz whereas the simulated center mode has a frequency of 8.25 GHz.

We will now discuss possible explanations for the mismatch between simulation
and experiment. A large edge mode peak can be an artefact of the rectangular
discretisation of round geometries done by OOMMF, because the staircases at the
edges can lead to a wrong calculation of the demagnetization field [40]. To check this
possibility, the same simulation was repeated using nmag. One can see the difference
in discretisation in Figure 5.2a. Whereas OOMMF produces large staircases at
points where the curvature of the geometry is large, the tetrahedras used by nmag
approximate the rounded geometry much better.

The resulting spectrum is shown in Figure 5.2b. In principle, nmag reproduces
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Figure 5.3: Filtered spin wave spectra to simulate microBLS measurements. Each
spectrum is normalised to the intensity of the edge mode at 5.35 GHz. By applying
different filters the center mode intensity can be more than doubled compared to the
edge mode, thus leading to a better match with experimental data.

the spectrum calculated with OOMMF. Again five peaks can be seen. The center
mode peak lies at a frequency of 8.2 GHz, which is slightly lower than 8.25 GHz.
The deviation between the two is biggest for the largest edge mode peak, which
appears at a frequency of 5.65 GHz instead of 5.35 GHz. However, the edge mode
peak calculated by nmag has an even higher intensity compared to the center mode,
thus not confirming the edge mode amplification due to a rectangular discretisation.
Still, it is worth noting that different magnetization dynamics are observed at the
edges where the difference between the two simulation approaches has the biggest
impact.

As the large edge mode peak is not an artefact of discretisation, simulations
were continued using OOMMF, because of its better performance and easier post-
simulation processing due to the regular rectangular grid.

So far, we have analysed the Fourier transform of the simulated average mag-
netization mx(t). To compare this with microBLS measurements has two major
flaws: First, the laser spot size is significantly smaller than the ellipse and therefore
does not record magnetization dynamics at the edges when pointed at the center of
the ellipse, and, second, microBLS only detects spin waves up to a maximum wave
vector qmax. According to Equ. (3.4) the microBLS intensity is proportional to:

ImBLS ∝
∫ qmax

0

dq I(qy, qz) with I(qy, qz) = |F2D[mx(y, z) ·G]|2 . (5.1)
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5.2 Spectral characteristics

To simulate the BLS measurement the following post-simulation routine is intro-
duced:

1. Instead of performing a Fourier transform of the average magnetization, the
time development of the out-of-plane component mx(t) of each cell is Fourier
transformed. This produces spatially resolved Fourier profiles for each fre-
quency.

2. The spatial data is then multiplied with a two-dimensional Gaussian function
G = G(y, z) to emulate the laser spot. The Gaussian function has full-width
at half maximum (FWHM) of 250 nm corresponding to the diameter of the
laser spot. It is positioned in the center of the ellipse where measurements
were done.

3. A two-dimensional Fourier transform is performed and the absolute values for
each wave vector are then squared. Note that this step is more complicated
on an irregular grid used by nmag, because either the use of a FFT require
resampling or a much slower Fourier transform algorithm has to be used.

4. All components with a wave vector q =
√
q2
y + q2

z > qmax = 2.5 × 105 cm−1

are set to zero, which is equivalent to a lowpass in q-space with a cut off wave
vector qmax. Then the intensity for each frequency is obtained by adding up
the remaining wave vector components.

Figure 5.3 shows the resulting spectra. When no filter is applied, simply meaning
G = 1 and qmax = ∞, the edge mode at a frequency of 5.35 GHz has a larger
intensity than the center mode at 8.25 GHz. The spectrum is comparable to Fig.
5.1, which was obtained using the average magnetization. Applying the lowpass
filter in q-space alone, the center mode intensity is increased by more than 25 % to
about the same level as the edge mode. The Gaussian filter alone leads to an even
bigger increase. Finally, the combination of both filters produces a center mode
with an intensity of 2.13 times the edge mode’s intensity. The other three edge
mode peaks are almost completely vanished.

Still, the simulated spectrum looks very different compared to the experimentally
recorded one. Hence, there must be other reasons for the mismatch. One might
be the different types of excitations. Both programs, nmag and OOMMF, simulate
magnetization dynamics at zero temperature. Thermal excitations have to obey
the laws of thermodynamics and statistical mechanics and thus may substantially
differ from excitations by an external field. To simulate non-zero temperatures a
fluctuation term Hfl can be introduced into the effective field of the Landau-Lifshitz-
Gilbert equation. The explicit formulation of this term is, however, quite tricky and
we therefore did not use this approach. A description can be found in [17].
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Figure 5.4: a) Simulated center mode frequency as a function of saturation magne-
tization MS. Dotted line shows the experimental value of 7.35 GHz. It is reproduced
for MS = 5.30 × 105 A/m. b) Comparison of spin wave spectra corresponding to
MS = 5.30× 105 A/m and MS = 7.95× 105 A/m, which is the literature value for Py.

Mode frequencies

The calculated spectra did not only show a mismatch in the intensities, but also in
frequencies of the modes. The latter can be adjusted by varying the magnitude of
the saturation magnetization MS. The simulated center mode frequency of 8.25 GHz
is too high compared to the experimental one of 7.35 Ghz. From the dispersion
relation for an infinite film (2.11) we see that the saturation magnetization has
to be decreased to lower the resonance frequency. Physically a lower saturation
magnetization can be interpreted as a surface anisotropy. The corresponding energy
term Ua increases for thin samples: Ua ∝ 1/L [39].

To adjust the saturation magnetization, spectra were simulated with OOMMF
following the scheme described at the beginning of Section 5.2.

The center mode frequency as a function of saturation magnetization is shown
in Figure 5.4a. The experimentally derived frequency is reproduced for MS =
5.30× 105 A/m, which is about two thirds of the literature value for permalloy. The
corresponding spectra are plotted in Fig. 5.4b. One sees that the adjusted spectrum
only has three peaks instead of five. The edge mode frequency was increased from
5.35 GHz to 5.70 GHz. The difference in intensity between both modes has become
even larger, but we will ignore that at this point, because we have already discussed
possible solutions.

5.3 Spatial characteristics

The spatial resolution of numerical simulations, which is defined by the cell size of
a few nanometers, easily outwins every experimental technique at hand [3]. Hence,
spatially resolved simulation results can help to interpret experimental data. The
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5.3 Spatial characteristics

way to obtain such mode profiles was already used for the filter mechanism: The
time development of each cell is Fourier transformed separately. By plotting the
squared absolute value of each cell for a given frequency, we get spin wave mode
profiles in terms of Fourier intensity, which can be compared with experiments.

Up to this section we have implicitly used a model ellipse with sharp magnetization
edges. That means the saturation magnetization MS is 5.30 × 105 A/m inside the
ellipse and 0 A/m outside. This is indicated in Figure 5.5a as are the resulting spatial
profiles for the largest edge and the center mode (Fig. 5.5c and e). The center mode
has the largest FFT intensity at the center of the ellipse and shows no nodal lines.
The spatial profile matches well with the experimental profile of the fundamental
mode (s. Section 4.2). One sees additional center mode components at the edges
of the ellipse at z = 0 nm and z = 250 nm. The edge mode is located at the long
ends of the ellipse. The localization length is about 50 nm into the direction of the
center. Such profile coincides with analytical theory [17].

To make the simulation results better comparable to experimental data, a post-
simulation scheme similar to the filter in Section 5.2 was applied. First, the FFT
amplitudes were multiplied with a two-dimensional Gaussian function with a full-
width at half maximum (FWHM) of 250 nm to account for the laser spot diameter.
The squared absolute values were then added up. The center of the Gaussian was
varied to simulate measurements at different points of the ellipse. The routine can
be summarized by the following formula:

I(yc, zc) =
∑
i,j

∣∣∣∣∣mx(yi, zj) · exp

(
−1

2

(
yi − yc
σ

)2
)

exp

(
−1

2

(
zj − zc
σ

)2
)∣∣∣∣∣

2

, (5.2)

where yc and zc define the center of the Gaussian function in y- and z-direction
respectively. σ is connected to the full-width at half maximum (FWHM) by the
relation FWHM = 2σ

√
2 ln 2. The summation is carried out over all cells.

The routine yields profiles also shown in Figure 5.5. The center mode profile is
significantly blurred but keeps its structure. The components at the edges disappear.
The structure of the edge mode changes strongly. Although it is actually located
at the edges, the simulated BLS profile has its peak intensity at the center rather
looking like the fundamental mode. However, the strongest edge modes in the
experiment had an anomalous structure being located at the short ends of the ellipse.
Such profiles are not reproduced by the simulation with a sharp magnetization
profile.

The experiment can be fitted by assuming a sinusoidal-like reduction of the sat-
uration magnetization at the edges of the ellipse as indicated in Fig. 5.5b. Such a
”round” magnetization profile has the physical meaning of lower density of magnetic
moments at the edges, caused by a very large surface-to-volume ratio at the edges
(”edge anisotropy”). It also partially takes care of the fact, that the thickness does
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Figure 5.5: Spatial profiles of center and edge mode for different model ellipses, one
with a sharp saturation magnetization profile (a) and one with sinusoidal-like reduction of
MS at the edges (b). For each mode and model the FFT intensity meaning the squared
absolute value of the magnetization is shown. Moreover, each profile is also multiplied
with a Gaussian function to simulate BLS measurements. Details of the routine are given
in the text. To fit the experiment, where edge modes at the short ends were found, the
rounded profile has to be introduced.
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5.4 Ellipticity of modes

not change abruptly at the edges of the ellipse (Fig. 3.2). However, we stress that a
lowering of the saturation magnetization is not identical to a decrease in thickness.

In this model the edge mode peak intensity is situated close to the sharp ends with
a distance of 15 nm to the ellipse’s edge. Edge mode dynamics are significantly less
intense at the long ends. Simulating BLS measurements, the profile is once more
changed. It has two maxima on the long axis of the ellipse and a local minimum at
the center as found experimentally. The center mode profile does not change due to
the rounded edge.

The round edge profile also has implications on the spin wave spectrum. Sharp
and smooth edge are compared in Figure 5.6a. The adjustment shifts both edge and
center mode to higher frequencies. The center mode intensity compared to the edge
mode is once more reduced. It can be slightly increased by the filtering procedure.

Figure 5.6b shows that the structure of the internal field Hint is also considerably
affected by the rounded edge. Instead of decreasing to zero, the field now undergoes
a minimum. The position of the minimum fits well with the location of the edge
mode’s peak intensity. Hence, one can say that the edge mode is located in the
”dip” of the internal field (s. Fig. 5.6c). This also explains the increase of the edge
mode’s frequency. Because the internal field does not decrease to zero any more,
the average internal field at the edges is higher leading to higher frequencies.

5.4 Ellipticity of modes

The threshold field for parallel parametric excitation is given by the simple relation
hth = ωr/V , where V is the coupling to the external magnetic field (s. Sec. 2.2). V
is proportional to the ellipticity ε of the mode. As the simulation gives access to all
components of the magnetization, the ellipticity of a mode can be calculated easily
by equating (2.16). We did this for each cell of the simulation individually. The
amplitude of a mode was given by the Fourier coefficient at the mode’s frequency.
To get a single value for the whole sample, each cell value εi was then weighted with
the mode’s amplitude at that point:

ε =

∑
i

εimx,i∑
i

mx,i

. (5.3)

This takes care of the fact that the modes are localized at certain points in the ellipse
and thus the ellipticity is most important at those points. We get for the center
mode εCenter = 0.83± 0.04 and for the edge mode εEdge = 0.88± 0.03. The error is
given by the standard deviation. We see that both ellipticities coincide within error
margins.
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Figure 5.6: a) Spectrum, b) internal field and c) edge mode profile for different mag-
netization models. The annex ”filtered” refers to the filtering technique described in
Section 5.2. The sinusoidal-like magnetization profile leads to a shift of both edge and
center mode frequencies. The internal field undergoes a minimum instead of decreasing
to zero. The minimum coincides with the location of the edge mode.
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6 Discussion and Outlook

In this Chapter, experimental and simulation findings are summarized and combined
to give an overview of the different features of parallel parametric excitation in a
permalloy nanoellipse.

It was found that the parametric spin wave spectrum can be split up into two
frequency regimes, i.e. the edge mode regime and the center mode regime. This is
typical for confined magnetic samples and is a consequence of the highly inhomoge-
neous internal field. In both regimes we found three different spin wave modes each,
which were further investigated. It is worth noting that the edge modes could be
distinguished up to very high pumping powers of more than 30 mW whereas center
modes could only be distinguished up to 13 mW.

Spatial profiles of the center modes together with the strong BLS signal in both
the thermal and the parametric spectrum revealed that the mode at f0 = 7.35 GHz
was the fundamental mode. The half-sine profile showed a shift of more than 50 nm,
which coincided with the onset of the mode at f1 at 7.225 GHz. It was suggested
that the shift might be due to a simultaneous excitation of both modes. By using
the time development data of the modes from Section 4.4 we can check this as-
sumption. We have extracted both the above the threshold relaxation frequency ωr
and the coupling V of the modes, so that we are now able to plot the parametric
resonance condition Equ. (2.20). Figure 6.1 shows that a simultaneous parametric
excitation at one of the resonance frequencies is not possible in the power range up
to 10 mW in which the spatial profiles were recorded. One would require at least
15 mW at a frequency of fp = 2f1 and at least 25 mW at fp = 2f0. The lowest
threshold power for a simultaneous excitation of 7 mW is given for a pumping fre-
quency of fp = 2 ·7.27 GHz. Hence, a simultaneous excitation of both modes cannot
be the reason for the shift of the center mode. Another possible explanation is mode
hybridization, which has already been observed in permalloy elliptic elements [35].
The hybridization also leads to a change in the spatial profile of the affected modes.
However, that effect was reported for much higher pumping powers of several hun-
dred mW, in which the spin wave behaviour is nonlinear. It is not clear, if such an
effect can be observed in the power range of our experiments. Another self-evident
reason for the shift might be a slight asymmetry of the ellipse. Supporting this the-
ory is the fact that none of the modes is perfectly symmetric. Still, the question has
to be answered, why an effect caused by a geometrical asymmetry should depend
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Figure 6.1: Parametric resonance condition for the center modes f0 and f1. In the
blue area none of the modes can be excited by parametric excitation. In the yellow and
green area one of the modes can be excited, and in the red area both modes are excited
simultaneously.

on pumping power.
It was not possible to distinguish individual center modes in the parametric reso-

nance curves for pumping powers higher than 12.6 mW. Looking at Fig. 6.1 one sees
that this effect is indeed caused by the simultaneous excitation of more than one
mode. E.g. at a microwave power of 20 mW the fundamental mode with a resonance
frequency of 7.35 GHz can be parametrically excited with frequencies ranging from
fp = 2 · 7.2 GHz to fp = 2 · 7.5 GHz.

Spatial profiles of the edge modes showed an anomalous edge mode structure.
Contrary to prior findings in stripes and rectangular elements [17] as well as elliptic
elements [18] the mode’s peak intensity was located at the sharp edges of the ellipse.
This result was explained qualitatively using micromagnetic simulation. It was
shown that a decrease of the saturation magnetization MS at the edges explains this
finding. The lowering leads to a change of the internal field structure, which then
shows a minimum at a distance of 15 nm from the ellipse’s geometrical boundary.
The maximum edge mode intensity is located in that minimum. This result is
in agreement with linearly excited edge modes in a Py ellipse [27]. Figure 6.2
compares experimental and simulated data for a section along the long axis of the
ellipse (y-direction). One sees that the minimum of the experimental profile is
much more distinct, meaning that the edge mode intensity along the long ends of
the ellipse is much weaker than simulated. The experimental data also shows an
asymmetry, which is not seen in the simulation. To further fit the simulation to
the experiment the saturation Magnetization MS and the length scale on which
MS decreases to zero at the edges have to be optimized. This is a rather time
consuming task since the simulation of only 20 ns of the rounded edge model takes
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Figure 6.2: Comparison of experimental and simulated spatial profiles of the edge mode
along the long axis of the ellipse. The experimental data corresponds to the mode fe3
at a pumping power of 5 mW (s. Fig. 4.3). The simulated profile is a section through
the 2D FFTxGauss-map at z = 125 nm in Fig. 5.5.

about 60 h computation time. We also recommend to introduce a surface anisotropy
term into the simulation as well as comparing the OOMMF data with finite element
programs such as nmag. Moreover, it should be worth trying to implement the exact
topology into the simulation using the results of the AFM measurement (Fig. 3.2).
This might also help to resolve the mismatch between the experimental and the
simulated spectrum. Non-zero temperature simulations might also be promising in
that context.

Note that a lot of conclusions concerning the spatial structure of modes were only
made indirectly by combining spatially resolved experimental data, the dispersion
relation for an infinite thin film and micromagnetic simulation. Especially the lo-
calization of the so called edge modes was not observed directly in the experiment,
because the spatial resolution of the microBLS setup was not high enough. The same
is true for any mode structure along the short axis of the ellipse. On the way to
magnonics on the nanoscale experimental techniques with a significantly higher spa-
tial resolution will be needed. Near-field Brillouin light scattering as demonstrated
in [27] is one possible approach for that.

Parametric excitation thresholds determined with the time development data var-
ied significantly from the thresholds that could be read of the power dependence of
mode intensities (Section 4.3). This is due to the short microwave pulses, which
only had a duration of 100 ns. The time it takes to experimentally observe para-
metric excitation grows nonlinearly with decreasing pumping power [13]. Hence,
measurements integrating the time development of a mode over a short microwave
pulse underestimate the mode intensity or even make the observation of the mode
impossible, because it cannot grow above noise levels within 100 ns.
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6 Discussion and Outlook

The parametric excitation threshold Pth was found to be significantly higher for
edge modes compared to center modes as was shown in the analysis of time resolved
data. The analytical expression is hth = ωr/V , where ωr is the relaxation frequency
and V is the coupling of the mode to the pump field. Thus, a higher threshold has
to be caused by a higher relaxation frequency or lower coupling. The coupling was
determined experimentally, resulting in relative coupling constants of

Vfe3
Vf0

= 1.11± 0.04 and
Vfe2
Vf0

= 0.68± 0.03. (6.1)

The coupling of the mode fe2 is significantly lower, so that the higher threshold
seems plausible. However, the coupling of the mode fe3 is even higher than the one
of the fundamental mode. This result is in agreement with the ratio of ellipticities
calculated using micromagnetic simulation:

εEdge

εCenter

= 1.06± 0.06. (6.2)

To explain the experimentally higher threshold, we therefore have to assume a
considerably higher relaxation frequency ωr for the edge mode. Note that we restrict
this conclusion to excitations above the parametric threshold, because the relation
between the relaxation frequency above and below the threshold is still subject to
current scientific debate as pointed out before. A higher relaxation frequency is
in principle linked to a higher damping of a mode. There are numerous possible
reasons for this as damping in ferromagnets in general is very complex [22, p. 18].
Nevertheless, as the higher damping seems to be linked to the localization of the
modes at the edges of the ellipse, we suggest that an edge effect is responsible.
This might be an increased scattering because of the ”roughness” of the edges or
oxidization.

When a spin wave is excited parametrically, it grows exponentially. However, the
exponential growth soon stops, becomes linear and the intensity (or amplitude) then
levels off completely at a certain value. We will now discuss mechanisms that limit
the amplitude of parametrically excited waves. We start with the full version of
Equ. (2.20):

1

τ
= −ωr(q) +

√
|h∼ · V (q)|2 − [ω(q)− ωp/2]2. (6.3)

A mode stops growing if 1/τ → 0. This happens, if one of the parameters in
Equ. 6.3 changes as a function of the amplitude of the mode. We discuss all three
possibilities:

Coupling V (q):

The coupling of the mode is directly linked to its ellipticity ε and thus to the relative
intensities of the out-of-plane and the in-plane component of the magnetization. It
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is imaginable that this ratio changes with growing amplitude, but it is not possible
to measure the ellipticity with our setup. A measurement should be possible with
the MOKE technique, where out-of-plane and in-plane component can be measured
separately [41]. Another possibility would be to extract the intensity-dependent
ellipticity out of micromagnetic simulation.

A third way is to assume the following model:

V (I) = V0 − λI, (6.4)

where I is the intensity of the mode and λ > 0 describes the strength of the effect.
By substituting this into (6.3) in the case of resonance, one gets

I ∝ const.+
1√
P
. (6.5)

Such a dependence is not shown by the experimental data.

Resonance frequency ω(q):

It is a well known effect that the resonance frequency of a spin wave mode decreases
with increasing amplitude. The oscillation leads to a reduction of the effective
magnetization and thereby modifies the resonance condition. This is called nonlinear
frequency shift [35]. This shift was not observed in our experiments. The frequencies
of all modes were constant over a wide power range (Section 4.1). Therefore, this
effect cannot play a major role in amplitude limitation observed here.

Relaxation frequency ωr(q):

The effect that the losses of a mode increase with its intensity is called nonlinear
damping [6]. It has been reported to have a strong influence on spin waves in
thin permalloy films [42]. Thus, we look at it in more detail. Let us assume the
following simple approach for the dependence between the relaxation frequency and
the stationary amplitudes a(q) [6, p. 101]:

ωr = ωr0 + η
∑
q

|a(q)|2, (6.6)

where η is a coefficient describing the strength of the nonlinear effect. This can be
brought into the form ∑

q

|a(q)|2 = −hthV
ωr0

+
V

ωr0
h∼. (6.7)

This essentially means that the stationary intensity of the mode grows linear
with the applied field. As h∼ ∝

√
P we can check the model by revisiting the

47



6 Discussion and Outlook
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Figure 6.3: BLS intensity of the three center modes as a function of
√
P . Coloured

lines are best linear fits. The linear dependence can be clearly seen, giving evidence that
the amplitudes of parametrically excited modes are limited by nonlinear damping.

power dependence of the modes presented in Section 4.3. Figure 6.3 shows the BLS
intensity as a function of

√
P for the three center modes. The indicated linear fits

approximate the data very well, thus supporting the hypothesis that the amplitudes
are limited by nonlinear damping.

In conclusion, we have discovered several new effects of parallel parametric exci-
tation of spin waves in permalloy nanoellipses. Edge modes with an anomalous
spatial profile were observed and described qualitatively by a micromagnetic simu-
lation model. The parametric excitation threshold of edge modes was found to be
significantly higher than the one of center modes. Further analysis showed that this
is most likely associated with higher losses of the edge modes. Finally, evidence for
an amplitude limitation due to nonlinear damping was presented.

Still, a lot of questions remain unanswered and should inspire extensive follow-up
research. The anomalous edge mode profile should be reproduced in other samples,
preferably with higher spatial resolution. Its dependence on sample parameters
such as lateral dimensions and material should be determined. The micromagnetic
simulation model needs to be further optimized to match the experimental results
quantitatively and not only qualitatively. An integration of surface anisotropy and
the exact sample geometries seem to be the most promising approaches for that.
The reasons of the higher parametric excitation threshold of edge modes has not
yet been understood. Higher losses are only a phenomenological answer to that and
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do not explain the underlying physics. The influence of the surface on the edge
modes seems self-evident due to their location, but has to be confirmed by further
experiments. The same accounts for the amplitude limiting mechanisms in nanoscale
ferromagnets. To explore the nature of both damping and amplitude limitation will
be highly relevant for future applications of magnonics on the nanoscale.
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