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Preface

The covering lemma is one of the most central theorems of inner model theory.
In fact it is not a single theorem, it is rather a family of theorems which apply
to different core models under specific smallness assumptions. The first proof of a
covering lemma is due to Jensen and proved for the constructible hierarchy L in [2].
The covering lemma for L is the following theorem:

Theorem (Jensen). Exactly one of the following statements holds.

o L covers, i.e. for all sets X of ordinals there is some Y € L such, that X CY
andY < X 4+ ¥;.

o 0f exists.

Thus, in the latter case, higher core models can be constructed. The proof relies on
fine structure theory, which was developped by Jensen in [9] to allow an in depth
study of the constructible hierarchy. Later Dodd and Jensen constructed a new
core model K in [3] and proved covering for it in [4] and [5]. We want to rework
the proof of these papers, to be precise, we want to prove the following theorem:

Theorem (Dodd-Jensen). Assume —(0) then one of the following statements
holds true:

e K covers, i.e. for all sets X of ordinals there is some Y € K such, thal
XCY andY <X +N;.

e There is a Prikry generic sequence C' over K such that K[C] covers, i.e. for all
sets X of ordinals there is some Y € K[C] such, that X CY andY < X +R;.

Notice that the assumption =(0f) implies that no inner model has two measurable
cardinals. If one allows the core models to have a regular limit of measurables,
then covering may fail, that is, one can no longer expect finding a maximal Prikry
system such that K[C] covers. If one allows such cardinals in the core model, the
covering lemma will have to be be different, but one can still prove that for every
set x one can find a Prikry system C,, such that K[C,| covers z, an in depth study
of the behavior of such Prikry sequences can be found in [7].

We assume the reader is familiar with fine structure theory as in [11], with inner
model theory as in [12] and with basic facts about Prikry forcing, mainly about
Prikry sequences as in [8].

This paper has the following structure:

In the first section we will fix our notation and recall some definition and properties
of premice and of K.

The second section introduce collapsing mice and presents in lemma 2.12 how to
get an inner model theoritic grasp on the question. It’s a crucial lemma which is
needed in every proof of covering in a form or another. As a matter of fact this
lemma restates the covering theorem as a pure inner model theoritic problem.
Then to prove covering we will split the proof in two parts, by considering a new
hypothesis:

(H) If > Ng is singular in V, then p is singular in K too.

and proving the following: Suppose =(0")



i. (H) implies that K covers.

ii. If (H) fails there is a Prikry generic C' over K such that K[C] covers.

section three is devoted to a more detailed analysis of elementary substructures
of K, which leads to the main lemma of the proof of covering: the fact, that for
carefully chosen —but nonetheless sufficiently many— elementary substructures of K,
their transitive collapses are not moved in the coiteration with K. In the second
part of section two, we will prove the first part of covering, i.e. under (H) the core
model already covers.

In section four we will study the —(H) case, we will show how the above mentioned
coiterations give rise to Preprikry sequences and we will derive a unique sequence,
which will behave well enough to be ”truly” Prikry.

In the fifth section, we prove the measurability of the least counter example to (H),
and finish the proof of the covering theorem by using all methods of section two
and the insights given by section three.

I want to thank Professor Dr. Ralf Schindler for allowing me to work on this
interesting subject and his advice while writing this paper, Philipp Doebler for his
corrections of my grammar and spelling errors, Klaus Loerke for his I¥XTEX advice
and last but not least, my parents for their unconditional support during my studies.

Benjamin Claverie



1

Preliminaries

If not noted elsewhere, every notation is supposed to be found in [11] for fine
structural notations or [12] for ¥*-theoretic or inner model theoretic concepts.

We write cf (u) for the cofinality of u, and cp(w) for the critical point of .

Let M be a premouse, p, (M) is the n'® projectum of M, as in [11] definition
5.1,

p(M) the standard parameter of M, as in [11] definition 6.3,

we write M™ for M™PM) | ag in [11] definition 5.1,

Hyy = HM () asin [12] p. 18.

hﬂ'l(«s ,p) is the iterated composition of the 3; skolem functions of the ap-
propriated reducts as in [11] p. 33,

ham(X) denotes the 3; skolem hull of M with parameter from X as in [11]
convention, p. 14,

R3EH(X) is the hull formed by the iterated composition of the ¥ skolem
functions of the appropriated reducts as in [11] p. 33, these are denoted
RN (X) in [12].

I'(k, M) is the set of all good Eg") (M)-functions f : K — M for n such that
Pn+1(M) > K as in [12] p. 73.

Let o : JE — JTE,/ cofinally, M > JZ such that 7 is a cardinal in M, then

I'(o, M) is the set of all good Eg") (M) functions f : vy — M such that v <7
and pp+1(M) = 7 as in [12] p. 96.

I'*(k, M) is the set of all good 25”’ (M)-functions f : kK — M for n < k such
that pp4+1(M) > k as in [12] p. 93.

Ult(M, U) denotes the coarse ultrapower by a measure U.

Ult* (M, E) denotes the ¥* ultrapower as in [12] section 3.1; typical elements
are of the form [o, f] with @ < 1h(F) and f € T'(cp(E), M), one can show
that they have the form 7 (f)(«) too ([12], lemma 3.1.5).

Ult(n)(/\/l,E) denotes the (™ ultrapower as in [12] section 3.5; typical ele-
ments are of the form [a, f] with a € E and f € T*(cp(E), M).

Let o : Q — @, for M > Q||7 such that 7 is a cardinal in M. We denote by
Ult(M, o | 7) the model N such that & : M — N is the canonical extension
of o [ k:Q|T — Q|supo”7 as in [12] p. 102.

We use the iterability concepts of [12]. K[C] is the model given by Prikry forcing
over the filter generated by C, for more on Prikry forcing see [8].

In diagrams representing iteration a curly arrow means that we allow drops to occur,
a normal arrow means an iteration map, hence that no drop occurs.

Definition 1.1 ([12] p. 109). A premouse is an acceptable J-structure M =
(JE E,.) satisfying:

i.

E C{(v,z); v <wa Az Cv}. Set E, ={x;(v,z) € E}.



ii. Vv < wa, either E, = ) or v is a limit, SZ has a largest cardinal x and E,
is a normal measure over SE with critical point x and the stucture M|y =
(JE E,,) is amenable.

iii. (Coherency) Let v < wa and
7: 8P —p N weakly
where N = (|N|; E'). Then v + 1 C wicore(N), E' | v =E | v and E| = 0.
iv. M||v is sound for all v < a.

We will call the mouse active (or having an active measure) if E,, # 0 and passive
otherwise.

As said before M|y = (JE™ EM), let further M|v = (JE™ 0).
We write M <IN if M = N||v for some v < ORNN and M <N if M = N||v for
some v < ORNN

Definition 1.2.

e (0%) is the statement: There is an iterable premouse with an active measure.

e (07) is the statement: There is an iterable premouse M and «a, 3 € OR such
that EM and Ef}/l are active measures and 3 < a.

e (0%) is the statement: There is an iterable "premouse” M = (JF E,, E, 1)
such that both F, and E,,; have same critical point, further £, is a mea-
sure of order 1 in M. For an exact definition of 0% see [12] p. 200.

Notice that the mouse in the (0¥) case doesn’t match with our definition, one should
weaken the conditions on premice to allow such a mouse, but since we work under
—(0%) during all this work, we won’t formulate it, the only thing to remember, is
that no mouse can have two measures with the same critical point.

Definition 1.3. A weasel W is a class sized model of the form L[E] such that W ||«
is a mouse for all & € OR, see [12] p. 175.

A weasel W is universal if and only if the coiteration of W with any coiterable
premouse terminates, i.e. its length is strictly less than oo, see [12] p. 184.

Let W be a universal weasel. A measure U on W with critical point x is W-correct
if and only if

e setting v = k™, (JF U) is a premouse;
e Ult(W,U) is well-founded.

We stress that we do not assume that U € W. ([12], p. 218)

Definition 1.4 ([12] p. 212 ff.). (=0%)

A mouse M is strong if and only if there is a universal weasel W such that M =
W ||« for an « € OR

The measure sequence E¥ is inductively define as follows:

K F if F is the only measure such that (JF, F) is strong;
v 0 if JE is strong and for no measure F is (JF, F) strong.



We set .
K=LEN = |J J.
a€OR

K is called the core model; if —(0T) then K is called the Dodd-Jensen core model.

Theorem 1.5 ([12] p. 226 and 232). Suppose =(0%).
o K is a universal weasel.
e Let U be K-correct, then there is a v such that U = EX.

o Leto: K — W be an elementary map from K to a universal weasel, then W
is a simple iterate of K and o is the iteration map.



2 Collapsing mice and embeddings

To prove covering, we must first give it more structure, i.e. reduce the problem to
something on which we can ”unleash” inner model theory and fine structure theory,
this will be done in the next lemma in which we show, that ”good” maps already
covers V, such that we only have to check, that such maps have their range in K
or K[C].

Definition 2.1. Let N be a premouse with a largest cardinal 7. A mouse M > N
is called a collapsing mouse for A if and only if
e NNOR is a cardinal of M, if M > A, and
e there is some n such that p,41(M) <7 < pp(M) and
M = R U {p(M)}),
hence M is n-sound.

Lemma 2.2. For a given N, there is at most one collapsing mouse for N.

Proof. Deny. Let M, M’ be two collapsing mice for N and v = N N OR and 7 the
largest cardinal of /. We coiterate M and M’. Let Q be the last model on the
M-side and Q' the last model of the M’-side. As both are mice only one side is
non simple(c.f. [12] lemma 5.3.1), let us suppose without loss of generality that the
M-side is simple and let 7 be the associated iteration map:

M a Q
A

M/ B NN N NN NN NN Q’

As the M’-side is the non-simple side, Q@ < Q'(c.f. [12] lemma 4.4.2). Further as
M|y =N = M||v both iterations are above 7 as 7 is the largest cardinal in M ||v.
Let M/ be the structure of the M’-side of the coiteration, M; the structure on the
M-side, (v;, a;) the indices of the coiteration. Let n be such that pp11 (M) < n <
pn(M).

1. Case Q< Q.

Then @ is sound hence @ = M. Let

ae (B nPm) \ M,

We have that a € @', hence a € M" as P(n)N Q" C P(n) N M’ (c.f. [12] 4.2.2).
But P(n) N M’ = P(n) N M as v is a cardinal in both structures, hence a € M, a
contradiction.

2. Case Q = Q.

Suppose @ # M then @ is not n-sound, hence Q = Q' # M’. Since Q and M are
mice they are solid (c.f. [12] 5.2.1). As @ is solid, we have that 7(p(M)) = p(Q).
Let X be the closure of nUp(Q) under functions of I'(n, Q). The transitive collapse
of X is M, since M is transitive and (k1" (&, p(M))) = th“l(f,p(Q)) as & < n.
Thus 7 : M —% X. Let M* be the last truncate on the M’-side, hence:




Since M* is a truncate, it is sound, let ¢ be the associated iteration map from N*
to Q’. We also have that @’ and M* are solid and that the standard parameter of
M* is mapped on the standard parameter of Q’, thus

M =Ry U {p(MP)}) = his™ (n U {p(Q)}),

thus M = M*. Let i be such that M* = M;||a;. Let v; be the index of the first
used measure on the M-side. Suppose ¢ > ] By the normality of the iteration
E,f‘j/‘i = Elf\;[ (), but on the other side E = EM # () since that measure was
used. Thus ¢ = j but then as v; = v; we have that E{,\J/l E,f‘/‘ , thus we wouldn’t
use that measure, a contradiction.

The only possibillity to get M = Q = Q’, if M’ is moved, Q' could not be 7-sound,
hence M’ is not moved and M = M’ O(Lemma 2.2)

Remark 2.3. If N = K|, such that N has a largest cardinal n with K F "7 is a
cardinal”, and M > N is a collapsing mouse for A/, then M <1 K.

Proof. We coiterate N with K, since K is universal the A side is simple. We have
the following diagram, where @ is the last structure on the AV-side and Q' the last
structure on the Q' side, let 7 be the associated iteration map.

N u Q
N

K RSN NN NN NN Q/

1. Case N is not moved.

Then N <1 @', this is clear if there is no drop on the K-side, if there is a drop it
suffices to notice that @’ is not n-sound if a measure is used on the K side. Let v
be the index of the first measure used in the K-side, v is a cardinal in all structure
of the K-side with the possible exception of K and v < v, but then N < Q’||v since
N projects to n < v and v is a cardinal in Q’. Then as K||v = Q||v we have in fact
that N < K.

2. Case N is moved.

Hence @ is not sound, thus K must be moved, and there is a drop on the K-side.
Q = @', since Q' is a mouse and @ is not sound. Recall that N > K|y, hence the
coiteration is above 1. Hence we are in the same case as case 2 of the proof of 2.2
the same argument leads to N' <1 K. O(Remark 2.3)

Definition 2.4. Let A be a premouse. A mouse M > N is called a generalized
collapsing mouse for N if and only if

e NNOR = 1 is a cardinal of M, if M >N/, and
e if A/ has a largest cardinal u, then M is u-sound or else

e there is a n < w such that p,41(M) < 7 < pp(M) and

M =13 (U {p(M)}).
In this situation, we say that M is 7-sound.

Remark 2.5. If M is a collapsing mouse for A, then M is a generalized collapsing
mouse for N.



Remark 2.6. If M is a generalized collapsing mouse for /\/',ind if M > N_such
that 7 = N N OR is a cardinal of M (if N' < M), ppr1(M) < 7 and M =
h%rl(T U{p(M)}), then M < M.

In particular, there is at most one generalized collapsing mouse for N

Proof. If N has a largest cardinal, then we have already proved this result. If 7 is
a limit cardinal, then the coiteration of M with M is above 7 and the arguments
of 2.2 shows that there are no step in the coiteration, hence M I M or M < M.

Let us suppose that Mim, as pn+1(M) < 7, 7 can not be a cardinal in a extension
of M, but it is one in M, a contradiction! O(Remark 2.6)

Notation 2.7. Let u be a regular cardinal, K & X < K||u such that K is transitiv

and 7 : K — K||u the uncollapsing map.
Let (kT : 4 < a™) be an enumeration of the transfinite cardinals of K, and k7. =

ORN K. Let k7~ be either the cardinal predecessor of £T in K if it exists or KT
else. For i < a” let MT be either

i. K,ifr [ k] =id and P(k] )N K C K, or else

K2

ii. the generalized collapsing mouse for K|xT if it exists.
For each ¢ < o™ let n] be either

i. 0,if MT =K, or else

ii. the n such that pp4+1(MT) < KT < pp(MT).

We write M7 for Ult(MZ,n | 7) and call it the lift up of M7 through m. For

2

X < K|lp, let mx : Kx = KX — K||u be the uncollapsing map.

Definition 2.8. Let p1 be a regular cardinal and 7 : H— H,, fully elementary such
that H is transitive. We call m almost good if and only if for all i < o™ if MT
exists, then M7 is normally iterable above 7(xk] ).

Remark 2.9. MT is undefined if and only if 7 [ k7~ # id and there is no gener-
alized collapsing mouse for K|xT.

Lemma 2.10. Let m, K as above, then for all i < o™ such that MT ezists and is
not K, MT is (k] )-sound, further the following is equivalent:

1. /\;lf is normally iterable above K],
ii. /\;lf is an initial segment of K,
iti. MT is iterable.

Hence if one of these conditions holds, /\;lf is the generalized collapsing mouse for
K|n(kT).

Proof. We already know that M7 > K|r(x7) (c.f. [12] 3.6.3), by [12] lemma 3.6.9
MT is w(kT~)-sound as M7 is kT -sound.

The only non trivial part of the equivalence is (i)=-(ii). Let M = MZ, we drop
all m and ¢ in the notation and write 7 for 7, k for K7~ . Suppose M is normally
iterable above . As M|t = K|T we can coiterate M and K since coiterations are
normal iterations and the coiteration will be above x. Thus we are strictly in the



same situation as in the proof of remark 2.3 if ¥ < 7, and thus it leads to the same
result. If kK = 7, then Case 1 of the proof of 2.3 still holds, and the other part as
well using the fact that the coiteration is above 7. O(Lemma 2.10)

Lemma 2.11. Let X < K||p and i < o™ such that M7* = K then the following
s equivalent:

i. MI* is normally iterable above K]* ™,

. MTX is iterable.

Proof. We only have to show (i)=-(ii). Let W = Ult(K,7nx [ k] *), n = x]* " and
T=k;*. If 7x | 7 =1id then W = K and we have nothing to show, thus we can
suppose that 7 is the critical point of 7x. As K|t = W|r the coiteration is above
7, hence W and K are coiterable. Let @ be the last model on the W-side, K* the
last model on the K-side. As K is universal the W-side is simple, let m be the

associated iteration map:

4% a Q
A
K o K

Thus @ is iterable. Thus, as 7 is fully elementary, W is also iterable. ~ [(Lemma 2.11)

Lemma 2.12 (frequent extension of embeddings). Let 0 be a cardinal and
Kk > Ny be a reqular cardinal. The set

S = {ran(m) N O; 7 is almost good and card(rw) = K}
is stationary in [0]".
Proof. Let 2 = (0;(f; : i < k)) be an algebra. Let u be a regular cardinal which

is large enough. We recursively define sequences (Y; : i < &), (K; : i < x) and
(m; + 4 < k) such that:

i Y; < K||u, for all ¢ < &,
ii. Y; < &, for all i < &,
iii. Y =U,., Y, for all limit ordinals A < &,
iv. Yig1 2 f;7Y, <, forall j <i <k,
v. m i K, & Y;, where K; is transitiv, and

i
vi. If j <a™ and ./\;l;” is not normally iterable above m; (k7' ™), then let
Nij =X ;= {[ai’ja Pk < w} < M7,

where oy’ € m;(dom(fy7)) and f7 € T'(m;, M?), be such that N ; is transi-
tive and X ; is a witness for /\;l;” not being normally iterable above 7; (57" ).

In this situation let {a}%’j; k< w} C Y4, for each such j.

10



Eet ob: Nij— /\;l;r be the uncollapsing map, 7; ; = 7r;1 om;, for i < j < k, and
Yi=m.1"Y; =ran(T; ).

We claim that (Y, 7,) is as desired. Obviously Y}, is closed under the f;’s. Let us
assume that 7, is not as desired and work toward contradiction. By assumption
there is a j < ™ such that M7* is not normally iterable above m(x7"7). Let

X = {laf? f )k < wh < M,

where a7 € m,(dom(f;7)) and f; € T(m,, M"), be a witness to the non normal
iterability above (k7" ), N, ; its transitive collaps and of : N ; — MJ" the
uncollapsing map.
Let ji > i be a regular cardinal which is large enough and pick a Z < Hj with the
following property:

. Z<k

ii. {f,':],k < w} U {EK} C Z, and

iii. ZNK, =Y, for an iy < k,

We construct Z in w steps, first pick a Zy < Hj; such that (i) and (ii) holds, if Z,
is defined then pick a ¢,,+1 such that Z, NK, C Yinﬂ, there is such a ?z'n+1 by the
regularity of x, and let Z,1 < Hj such that 7n+1 U sup {a;a S 7n+1 N OR} -
Zn+1 and (i) and (ii) holds for Z,, 1. Then

Z =\ Zn
nw

is a structure with the properties (i),(ii) and (iii). The construction shows that

ZNk € k. Let 0 : K — Z be the uncollapsing map, we have that o(K;,) = K,
and o [ K;, = T, . Further let j be such that U(KJ;”’) =}~ und n = n;m. We
have that:

Z 7 M7 is the generalized collapsing mouse for Edn?””,
hence
K E ”U_l(/\/l}r") is the generalized collapsing mouse for 0_1(F,€|m;")”,

but as K|k]" = a(fiom;io), we have that o~ '(M]") = M;—r“ as generalized

collapsing mice are unique. Hence, by the elementarity of o, n = n}r”. We define:
[ :Nﬁ,j — M;io
(@) (e f]) = [, 0 ()],

where a € 7 (dom(f)) and f € I'(m,;, M7*). Fora Eé") formula ¢ we have following

11



equivalences:
MO Eo(@((oF) " (o /1))
M2 p(fo, 07 ()
o € miy({usu € dom(e™ () A M F (e ()(w)})
o €m0 T o ({ s w € dom(e™ () A ME® F oo™ (H)(w) })
o € Ty 0 o({u;u € dom(a~'(f)) A Uﬁl(M}TN) F @(071”)(“))})
o € T ({u; u € dom(f) ANMT- E o(f(w)})
M E (o f])
X Eo(la, f])

Hence @ is well defined and ® : N j —m /\;l;“
0

[ A A A

Suppose /\;l;—r“ is normally iterable above Fio(ﬁg—rioi), then by 2.10 it is already

iterable. Thus it is normally iterable above ®(p,+1(Nx, ;)) and hence by [12]
4.3.7 N, ; is normaly iterable above pp41(N, ), but this is a contradiction to

Prt1Nij) < (0F)7 (kF<7). Thus /\;l;”’ is not iterable, hence not normally it-
erable above (Ii;io_), and we already had choosen a witness J\/ﬁ =< /\;l%% to the

non normal iterability above 7, (ﬁ;iof). We define ¥ as follows:

W N, *HM}F"

%0,J

() (e £ = T (i) (@)

Let (Ugo )~ ([az”ja f;i”]) €N, jandpbea Eén)-formula, we write «, f for a?c”’j, ,i”’j.

Ny F (@) o ) = M F o, f])

o € miy ({us w € dom(f) A MT® E o(f())})
721 (@) € Tl { s € dom(f) A ME® F (f(u)) )
7M@) € {wu € dom(Fig u(f)) A M F (i (/) ()}
MG* E @ (Figun () (m ()
M F o (((e2) 7 (o )

i

rterue

The fourth equivalence holds since a(/\/l;—_%) = Mjrando | K, = i, Hence VU is

E((J"). /\/;073 is not iterable above ((J‘j R ), but /\/l;-r“ is iterable, a contradiction

to [12] 4.3.7! O(Lemma 2.12)

io)—l( Tig —

Corollary 2.13. Let K = X < K|\ such that mx is almost good, cp(nx) = k
exists and P(k) N K = P(k) N K. Then Ult(K,U) is iterable, where

U={zePk)NK; kemx(x)}.
Proof. We define an embedding from Ult(X,U) in K, the lift up of K through
7 | ep(m)TE.
k:UW(K,U) —» K
[f1 = [, f]

12



Let f: x — K and ¢ be a formula, then s € mx (dom(f)) and

Ult(K,U) FEo([f]) <= {a;KFo(f(a))} €U
— renmx({a; KFEo(f(a))})
= wemx({a;a e dom(f) ANK F o(f(a))})

= KFo(k f])

Hence k is elementary and thus Ult(K,U) is iterable.

Remark that, if iy is the cannonical ultrapowermap and 7 the cannonical map
from K to K, then k o iy = 7 by definition, moreover, as U is a normal ultrafilter,
k(k) = k([id]) = [k,1d] = mx(id)(k) = &, hence k < cp(k). Further

(K < gt UID) K o K

hence all are equal and cp(k) > s+ UIt(EU) O(Corollary 2.13)

13



3 When K covers

Definition 3.1. Let W be an inner model, that is W E ZFC and W C V and
OR C W. We say W covers if and only if for all sets X of ordinals there is some

Y € W such, that X C Y and Y < X + Ny.
We say W covers strongly if and only if the following holds:
if K > Ny is a cardinal and 0 > &, then [0]" N W is stationary in [0]".

Theorem 3.2 (Covering). Assume =(07) then one of the following statements
holds true:

o K covers.

e There is a Prikry generic sequence C' over K such that K|[C] covers.

We will prove a stronger version:

Theorem 3.3. Assume —(01). Ezactly one of the following statements holds true.

1. K covers strongly.

it. There is a u > Ry such that K E”u is measurable” and there is some C C
Prikry generic over K such that K[C|] covers strongly.

We want to restrict the study of this problem to regular xs:

Lemma 3.4. Let W be a inner model and k > Ny a singular cardinal, such that
[0 "W s stationary in [0]* for all @ > X and all X < K, then [0]*NW is stationary
in [0]" for all 0 > k.

Proof. Let k > Ny be as in the lemma (k;;7 < cf(k)) a witness to the singularity
of k. Let further 2 = (0, (f;;j < k)) be an algebra with § > k a cardinal. By
assumption for all i and all n < w and for all X,, € [f]<* m < n, we can find a X
such that X is closed under (fj;7 < ;) and Unmen Xm C X. Hence there is (in V)
a function

O - [[1S]" NW — [0S N W,

such that for all (X,,,;;m < n) € [[0]S%]", ®7((X,,;m < n)) is closed under (f;;j <
Hi).

Let B; = ([0]S%;(®™n < wA i < cf(k))); as we can choose in W a bijection
between [0]S* and some ¢’ and w - cf(k) < & there is a Z C [0]<” such that Z € W
and Z is closed under all ®. We want to show that |JZ is closed under all f;.
Let aq,...,a, € |JZ and j < k. There are X;,...,X,, € Z and i < cf(k) such
that j < k; and ay, € X, for all m < n. Then ®7((X,;m < n)) € Z and
filar,...,an) € OP((Xpm;m < n)) thus fij(aa,...,a,) € JZ. O(Lemma 3.4)

Let us now consider the following hypothesis:
(H) If o > Ny is singular in V, then p is singular in K too.
We will split the proof of covering in two parts:

i. (H) implies that K covers strongly.

ii. If (H) fails and 0f doesn’t exist, then there is a Prikry generic C' over K such
that K[C] covers strongly.
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We intend to prove the first part in this section, but as most of the lemmata don’t
use (H) and in fact are needed in later sections, it will be explicitely stated in the
lemmata if the results are proven under (H).

Definition 3.5. Let 7 : H — H,, be elementary and H transitive. The embedding
7w will be called a good map if 7 is almost good as defined in 2.8, is iterable and if
7 is continuous at points of cofinality w.

Until the end of this section fix a 7 such that 7 is good and x = cp(7) exists, let
further K = Kdom(m),

Lemma 3.6. P(k)NK ¢ K.

Proof. Deny. As P(k) NK = P(k) N K, kK = kK. Let
U={XCnkr XePkrNK,kem(X)}.

By Corollary 2.13, we know that K* = Ult(K,U) is iterable, even k : K* — K is
an elementary embedding such that cp(k) > k75 = kTK" = 7K where K was
the lift up of K trough w. Hence

(%) K*||s™™ = K| t8 = K||x X,
We coiterate K* with K, since both are universal weasels, we get the following
diagram:

P

K

where iy is the ultrapower map by U. Because of (x), i [ k75 +1 =7 | k™8 =1id
and cp(j oiy) = k and cp(j) > k75 + 1. This is an outright contradiction to the
fact that there can be only one elementary embedding from K to a universal weasel,
as we have noted in 1.5. O(Lemma 3.6)

Lemma 3.7. Let 1 be minimal such that P(n) N K # P(n) N K, then
n<k=k=nk

Proof.

As GCH holds in K, if § < k, then cardf(’P(é)) =K L k.

1.Case r = 61K,

Because of acceptability, we have a one to one function f : K —> P?(é). Thus a one
to one function 7(f) : 7(k) =% P (5), since 7(§) = 6. As card® (k) < card® (7 (k)),
card(PE(6)) < card(PX(4)). Hence P(8) N K C P(8) N K, since w(f) | k = f.

2. Case 6K < k.

We have a one to one function f : 75 —~ PK(§). Hence n(f) : 6tK - PK (),
as 7(67K) = 67K and () = 6. But fora X C 6 7(X) = X, hence for all o < 5K
f(a) = 7(f)(«) and therefore 7(f) = f. Thus P()) N K =P(H) N K.
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Hence if & is a limit cardinal only case 2 occurs and p = k and if & is a successor
cardinal then case 1 shows that ¥ = k. O(Lemma 3.7)
Therefore the coiteration of K with K is above n and as K is a universal weasel,
the . K-side is simple. There must be a drop in the first step of the coiteration since
nTE < K. Let My = K||¢ denote the truncated model.

Lemma 3.8. K is not moved in the coiteration of K and K.

Proof. Let v; be the iteration indices, x; the associated critical points and let K;
and M, be the structures on the K- side and Mo-side of the coiteration. We write
E,, for EXi and E,, for E}\'i. We treat the coiteration of K with K as if it were
the coiteration of M, with K.

K K
Al
Mo o Mo

As we work towards contradiction, let us suppose that K is moved. Let ¢; be the
maximal ¢ such that v; is the cardinal successor of x; in M;||¢ or, in other words,
the maximal ¢ such that FE,, is a total measure over the corresponding truncate.
Claim 1. Every mouse M} = M,||(; projects to x; and is x;-sound.

Proof.
Suppose first that ¢; < ht(M;).
M7 is a truncate of M; hence it is sound, hence it is sound above x;. Thus

hence /i:r?i is not a cardinal in M, and it will be collapsed in M;||(; + w, by the
definition of (;, thus M,||(; projects to k;. Suppose now that &; < ht M;, we prove
this case by induction on 4. For the successor step: let M, 1; = Ult"(M*, E,,),
where M¥ = M,||(; satisfies the claim. Let n be such that p,+1(MF) < k; <
pn(M7).

Each 2 € M1 is of the form 7!, | (f)(k;) where !, | is the associated ultrapower

map and f € I'(k;, M}). There is a good Zg"il)(/\/l;‘) function g such that f ~
g(&, p) with a parameter p € M.
As M} is k;-sound by induction hypothesis for all p € M;:

where £ < k;. Hence

miir1(p) € WLl (ki U{p(Miy1)}),

as iteration maps are X*-preserving. Thus we even get:
@ =g (ki KL (€1 (0(Mi41)))),

where ¢’ is a good Zg"_l)(/\/liﬂ) function with the same functionally absolute
definition as g, as

Tt (P(M])) = p(Miga).

We just have seen that x is 25”) (M)-definable with parameters less than x; + 1.
Hence:

M1 =50 (ki + 1) U {p(Mis1)}).
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If A is a limit ordinal, then every x € M, is of the form 771/\?\(:131) for an i large
enough and an z; € M;. By induction hypothesis we know that for every x;:

z; € Btk U {p(M3)}),

where n is such that p,41 (M) < ki < pp(M]). Without loss of generality one can
choose i large enough such that there is no truncation between ¢ and A\ and that

Pt (M) < ki < pul(MG)

for all © < j < A. Because of the elementarity of the iteration maps, the claim
follows as in the successor step. O(Claim 1)
Let ¢ be the first index such that EE # (. Then we have that K; = K. Let
EEKi =E,,.

Claim 2. The model Ult*(M}, E,,) is iterable above k.

Proof. Let o : M7 —= M = Ult* (M, E,,)

We have that M ||x; = K||x; and that M is s;-sound and that it projects to ;.
Hence M is the collapsing mouse to K|v;. Hence M the liftup of M through =
is iterable, as 7 is good. Thus M <1 K by 2.10. Let 7 : M} — M be the associated
liftup of 7. Since E,, is a measure on M}, we have that 7(E,,) is a total measure
on K too and Ult(K,n(E,,)) is iterable. Let o' : K — Ult(K,n(E,,)) be the
associated ultrapower map. K E ” M is iterable”, hence

Ult(K,7(E,,)) E "o’ (M) is iterable”,

and thus o’ (M) is truly iterable. We want to embed M in o’ (M):

Therefore we define:
d:M—o (M)
[f1 = o' (@) (ki)

Let us compute the level of elementarity of ®. For a function f € I'(k;, M) and a
Eg ™) fomula ¢, with m such that Pmr1(MF) <k < pm(/\/lj) we have that:

ME@(f]) <= (€ <rs M F@(f(€)} €
= T{E < ris M7 E(f(€ ))}) (
<:>{§<7r(m)/\/lh<p {)}
<:>{§<7TRZ)KE”M?Q0( ()& ”}Ew E,,)
= Ul(K,7(E.,)) 7o (M) E o (o' (T(f)(n(ki))))”
= ﬂ':w(f(f)(f))

Notice for the second equivalence that as 7 is the lift up of 7, 7 | K|v; =7 | K|v;.
Hence @ is Z(()m)—elemenﬁary (notice that we used that 7 was~2(()m)—elementary t00).
As ¢’ (M) is iterable, M is normally iterable above py,41(M) by [12] 4.3.7. Hence
it is iterable above k; if ppmy1(M) < k4, but since M is m-sound, Pmi1(M) <
Pmt1(MZ) (c.f. [12] 3.2.3),thus we have proved the claim. O(Claim 2)

K2
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Since M?*||k; = M||r; and &; is a cardinal in both structures, the coiteration is
above k; and exists. Let Qo be the last sturcture on the Mj-side and @)1 the last
structure on the M-side. By [12] 5.1.6. the M-side of the coiteration is simple,
and we get the following diagram:

M Qo

X o

M~ Q1

Claim 3.

i. M7 coiterate simply with M above £; to a common mouse Q.

ii. 7oo =7, where 7 and 7* are the respective iteration maps.
O
ii. B, =FEy,

Proof.

i. We know that the M -side must be simple, hence Qo < Q1 or Qo = Q1.
Let us suppose that Qg < Q1.

Let
ac (2 M NP ) \ M.

Then a € Egm)(Qo). We can see @ as an iterate of M, if we extend the
iteration of M to Q; with a truncation to Q. But then a has to be in Q
and therefore in M too, as the coiteration is above ;. If we lengthen the
iteration at the beginning, by regarding M as an iterate of M, the iteration
is still above k; and we have that a € M}, a contradiction! Now we have the
following diagramm:

ii. As the coiteration is above k;, we have that:

*

Too [ KkKi=m"| K

Because of the soundness of M}, every z € M is of the form h{\" (€, p(M?))
for a £ < k;. From the elementarity of the maps we now get that:

m(x) = hgy T E 7 (pM])) = hg T (€, T 0 o (p(M]))) = T o o ().

ili. Now cp(7n*) = k;, hence, the first measure of the M?-side had to be El{\;{@
Hence E" # () and for a € P(ki) N M, we have that:

aeEi\iAz < ki €7 (a) =Foo(a) & ki €o(a) < a€E,,

18



For the second equivalence we have to check that cp(7) > k;. We already

know that M7 > K|v;, hence M = Ult(M?, E,,) > Ult(K|v;, E,,) = N. By
coherency E,“j\/ = (), thus EM»: = () and the measure used in the first step had
a critical point greater than r;, but as the iteration is normal, x; can not be
a critical point later.

O(Claim 3)
But as £, was used in the coiteration with K, they can’t be equal, a contradiction!
O(Lemma 3.8)

Now we know that for a good m, if 7 is the K-side of the coiteration of K with K,
then for all i < 1h(Z)

K||xiK aM?
and M7 is the collapsing mouse for ?Mj?, where in a slight abuse of notation we
allow H;FK to be K NOR if k; is the largest cardinal of K.

Theorem 3.9 (weak covering). Suppose 0% does not exist, then for all 3 > No,
=V
ofV(BHE) =B .

Proof. Deny. Let 8 be minimal with 6 = cf¥ (815) < Bv. Remark that all we have
proved thus far was only under —(0%). Let 7 be good such that {3;; i < 6} C ran(),
where (3;,4 < 0) is a strictly monotonous sequence witnessing the cofinality of 375
Bp = BT and card(dom(7)) = R;-0. Let K = K9°™(7) As we have seen there is a

collapsing mouse for f”ﬂ*? and its lift up M is an initial segment of K, moreover
(c£.[12] 3.6.5.)

g =supr” {asa < (x71(B) K | = K.

Further M is a collapsing mouse for K | 5+M, hence M projects to 3, hence there is
a subset of 3 that is not in M thus 7% will be collapsed to § in K, a contradiction
to the fact that 7% is a cardinal in K! O(Theorem 3.9)

Lemma 3.10. (H)

Let m be good and K = K°™™)  [In the coiteration of K with K, there are only
finitely many measures that are used on the K -side.

Proof. Deny. Let Z be the iteration tree of the K-side. Then there is a i such
that i + w < I0(Z) and 7}, (ki) = Kigyn, Where K, = cp(n],,, j1ny1). Let & =
sup{r;;i <j<i+w}
As % is measurable in M7, , it has to be inaccessible in K, hence 7 (%) is inaccessible
in K. But 7" {k;;i < j <i+w} is cofinal in 7z, hence with (H) it must be less
than Wy. A contradiction if we suppose that ran(mw) N Ry € wy + 1.

O(Lemma 3.10)

Lemma 3.11. (H)

K covers strongly.

Proof. We prove this by induction on 6, for regular 8. We know that if x > X; and
0 > Kk, then {ran(mw) N 6;7 is good and card(w) = k} is stationary in [0]". We now
have to check that for such a 7:

ran(m) N 6 € K.
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Let K = K9om(7) T the iteration tree of the K side of the coiteration of K with K,
k such that MZ is the collaps mouse for K |07 n such that p,41(M) < 771(0) <
pn(M), M the lift up of M through w. Then:

ran(m) N 6 = hx;':'l (7r”pn+1(/\/l%) U {ﬂ(p(./\/lf)),ﬂ(ng), e ,w(nf)}) ne,

By induction hypothesis 77 p,,+1(MZ) € K and thusran(r)N 0 € K. O(Lemma 3.11)
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4 Towards a unique Prikry generic sequence

Lemma 4.1. Let M be a sound mouse and I a simple iteration of M above p,, (M
Then k € MZL is a critical point of the iteration if and only if k € h}’\jl}l (k

{p(MZL)}), with n is such that ppi1(M) < k < pp(M).

).
@]

Proof. Let k; be the critical points of the iteration. Suppose & is a critical point
and k € h’]\j{i(n U{p(MZL)}). Let «f, ) : MF — MF, | be the iteration map such

that cp(nf,, ) = x. Then x ¢ h;’;{zl (kU {p(MZL)}) implies that
RN (nU{pME))).

but
hx{izil(’ﬁ U {p(MzZ-‘rl)}) - ran(ﬂiz,iﬂ),

a contradiction!

n+1
ML,
Let 7 be minimal such that either:

Suppose conversly that x ¢ b (kU {p(MZL)}. Suppose & is not a critical point.

e cp(nf;y) > K, or
e if there are no j sich that cp(nj ;) > &, then i = 1h(Z) = 6.
Then 7}, | £+ 1=id, as s is not a critical point. By [12] 4.2.4.
ME = B (o (M) U {25 < i} U {p(MD))).
But we have chosen i such that x > sup {k;;j < i}, hence
ME = Wi (s (M) Usup {55 < i} U {p(MF)}) = Wiz (s U {p(MT) }).
Hence ranm}, = h"MJrgt(fi U {p(MZL)}), since 7}y | K+ 1 =1id, but therefore s €

ranm; g too, thus k € hle}l (kU {p(ML)}), a contradiction! O(Lemma 4.1)

We now work under (—H), let ;1 > Ry be minimal with cf(u) < 7 and p regular in
K.

Definition 4.2. A map 7 : H — Hy, with > pu+V alarge enough regular cardinal,
will be said to be very good if:

e every ./\;lf, as defined in 2.7, is iterable,
e 7 is continuous at points of cofinality w,
e 1 € ran(m),

(m) N p is cofinal in ,

[ ]
—
]
=

[ % = Cf(,LL) Nl.

Such 7s exist, since cf (u)- Ry < 7.

Let Z = Z™ be the K-side of the coiteration with K|7~!(x), where K = Kdom(m),
MZL_ cannot be a finite iterate of K, else s would be singular in K. On the other
side there can be no ¥ < pu, which would be the supremum of the first w many
critical points of the iteration, because of the minimality of p, therefore cf(y) = w

and MZ = MZ.
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Notation 4.3. Let {x];;n < w} be the first w many critical points of the iteration
T, we write Cx for {kT;n < w} and Cy for {n(k]);n < w}.
Further X Cfir Y if X \ Y is finite and X =i Y, if X Cfi" Y and Y Cfir X

Lemma 4.4. Let 7,7 be very good and ran(r’) C ran(r),then Cr Nran(r’) Cfin
Chror.

Proof. Let M = Ult(./\/lfgl;w’1 on’ | #~Y(p)), write @ = 71 (p).

M is Ti-sound, and p,(M) < 7. But since M%L fi-sound and p,(MZ)) < 7, we
have M < Mgl, by 2.5.

1. Case M = MZ | in this case we want to show even more:

Cr Nran(n’) =" O,

Let

1

¢eCrNran(r ton).

If
(o) THE) =E¢ O
then it is generated by 777 < &, that is there is a term 7 such that:

-

— Iﬂ', 7\'/
£=rM= (i, p(MZ)),
but then B } ~
E=n"on'(€) = M7, p(M))
with 77 < €. Thus it could not have been in C.

On the other side, if £ € O and & = 771 o7/ (€) ¢ C then there is a term 7 such
that

& =M. p(M))
with 77 < € and £ is uniquely determined by:

ME 3ij < & €= mM(i7,p(M)).

Thus it holds for £ in Mg/ and & ¢ C... Hence C, N ran () =fin o,
2. Case M a M%
There is a term 7 such that

{MpM) | = M= (E 7. pME)
where € < py,(MZ") and 7 € Cy. Let

keran(r ton)\ (n7ton')Cr

large enough, i.e. 77 < k, such that k = JM(S_;,p(./\;l)), with & < k and o some
term. Since M and p(M) are terms in MZ | there is a term 7* such that

—

*MIW % a7 =
)= 1 (EF 0 p(ME )
with £ < p, (ML) and 7* € Cx N k. Thus & ¢ C. O(Lemma 4.4)
Lemma 4.5. There are cofinally many very good m such that for all very good

m with ran(w) C ran(m) there is a very good wo with ran(m) C ran(ms) and
Cyr, Cran(m).
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Proof. Deny. Let (7;;4 < wi) be continuous at wy such that for all 7 there is no @
with ran(m;11) C ran(7) and Cz C ran(m;). But since otp(Cr, ) = w there must
be a i with Cr, C ran(m;), and ran(m;) C ran(m,, ). Contradiction!

O(Lemma 4.5)

Lemma 4.6. There is a very good 7 such that for all very good 71 with ran(mw) C
ran(my) there is some very good my with ran(m;) C ran(my) and Cr, = C,.

Proof. Deny. Let (m;;4 < wy) be continuous at w; such that for all ¢ < wy ran(m;) C
ran(m;41), and whenever 7 is such that ran(m;y1) C ran(7) then Cx £ C,,. We
write Z¢ for Z™. We want to thin out this sequence until we get a contradlctlon.
We already know by Lemma 4.4 that Cr, N ran(m;) Cfin €. for all i < w;. Hence
le cfin Cr, for all but boundedly many ¢ < w;. Let us assume without loss of
generality that 7o < g is such that Cr, \ 70 C Cx, for all i <w;. Further, with the
help of lemma 4.5 we may choose the 7; such that C,, C ran(m), thus by lemma
4.4 we can find a vy < y1 < u such that for all i Cyr, \ 71 C Chr,.

Let M; = Ult(MZ, « Lom; | m; () and 75, o 7; the associated lift up of 7 om;.
We may assume that /\/ll < M%I: ' = N, because otherwise Chr, =fin Cr,, as we have
seen in the first case of the proof of lemma 4.4.

Claim 1. N[+ =,

Proof. For i < wy let ; be the associated map of the liftup of MI to K, to prove
the claim it suffices to show that

M, where pi' = 71 (p).

1<wi

P(p) Nran(7y, ) U P(p) Nran(7;).

1<wi

For i < wq let M% be the kt'-structure of the iteration Z°, ﬁfjl the compositions

of the associated iteration maps and ngi the associated critical points. Let a €
P(n) Nran(7y, ) and
a=75(a) € P(/) NN

As a is in a direct limit there is some n and some @ such that for the iteration map
alla= ﬂgtj (@), with

n,w

acPrn)NME,
There is an i such that for some m:
Ty (kn”") = mi(KT),
since Cr,, \ 70 C C;. Let b,b such that
a=m, om(b) and b= wfjﬁw(é).
It suffices to prove that 7;(b) = a, since ran(7;) NP (u) C ran(m;t1)-
b= M0 (7,p(ME,) with 7 < 7,

hence .
z* i
b =7 (7,p(MZ))-
Without loss of generality:

i

p(M;) = o) o mi(p(ME)) € ran(nZ)
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)

and 7! o m; () € ran(w
We have then:

ol omi(b) = mok o mi(nk, (D))

= rMi(n Lo m(7), p(M5))
T ).

n,w

€ ran(m

Ii

Say o) o m;(b) = 7L, (a’). We want to show a’ =a. For § < k% "

n

sed < denl, (a)

< Jemy; om(b)

= dem om(x B
— deny om(b)ashC ngz
— dem,!omd) =a.

O(Claim 1)
In particular cf” (u = wy. As N is the generalized collapsing mouse for pu/,
there is a n such that p,+1(N) < 1/ < pp(N).
Claim 2. cf(N" NOR) = w;
Proof. Let us suppose the contrary and work toward contradiction.
1. Case cf(N"NOR) = w.
Let (ng, k < w) be a monotonous sequence, cofinal in N™ N OR. We have that

B (1 U ADN™)Y) <5, Nl
But as A is y/-sound, it follows that
N = hjen (1 U{p(N)})
= Bhrn i, (1 U{PN™)})

k<w

1+N )

Let p, = sup (hfl\fl\m (' U{pNM}H N u"“\/n), wr < N as the skolemhulls all
have cardinality x. but then (uz, k < w) is a monotonous sequence, cofinal in p
a contradiction to cf (/™) = w;!

2. Case cf(N"NOR) > wy.

We use the same argument, pick a monotonous, cofinal sequence (ng; k < 6) with
0 = cf(N" N OR) > wy. Define (ux, k < 0) as above, then the p; are a sequence
which is cofinal in 1/ and of order type 6 > w1, a contradiction! O(Claim 2)

Let (1;;% < w1) be a monotonous cofinal sequence in N™ N OR, let
i 2 Ny = T, (0 U {p(N)}) <y N[

where ¢; is the uncollapsing map and let p; be such that o;(p;) = p(N™). We know
that N'; € N. Hence N; € N, thus we can fix a j(i) for all i < w; such that
N; e Mj(i). Thus {Nz,ﬁz} € Mj(i)7 further

VB € W o {py0) ),

for mj;) such that pn,,+1(Mju) < 1’ < pny,, (Mjiy). Pick a monotonous se-
quence (g, k < w) cofinal in p’. For all ¢ choose a 4; such that:
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NiB;} € 0™ (3, U{ 2t }
L4 {Napz} € M (7 p(M](z)> )a
e 7; = ¢, for some k.

By the pigeonhole principle, there must be a k¥ < w such that for w; many i’s
v = €. Hence without loss of generality 4; = 7, = 72 < p' for all 4,j < w;. We
have now that C, \ 71 C Cy, for all i < wy, Cr., \ Y0 C Cy, for all i < wy and
Cr., #fin O for all i < wy, since we are working towards contradiction. Hence we
can choose a & € Cr, \ 71 such that £ € Cr, \ Cr,, and & =751 (€) > 7.

We are now ready to produce the contradiction:

€ € han(EU{p(N™)}), hence € € hprnyy, (€U {p(N™)}) for almost all i. Thus
€€ hg,(EUD,). Let j = j(i), then € € h’}fl(é U U {p(Mj)}L but 7; =72 < &
Hence

genytEu{pm,) .

and thus € couldn’t have been in a C,, a contradiction! O(Lemma 4.6)
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5 When K|[C] covers

We still work under (—H). As all results are based on 5.2, all the following only
holds below —(07).

Notation 5.1. Let 7 be a very good function (in the sense of definition 4.2).

Let M™ = Ult (ML, 7 [ 7~ (u)) be the liftup of ML to K, 7 its associated
ultrapower map.

Then let U™ denote the active measure of M7™ and U™ that of MZ, further let

U=y {f]’r;ﬂ' very good}.
Remark 5.2. For all X € P(u) Nran(r) N K either C Cf* X or C, Cfin )\ X.

Proof. Let X € P(p) Nran(r) N K, X = 77 1(X) and {x];k <w} be the crit-
ical points of the iteration Z7, M%W the structures of the iteration and wf: the
compositions of the associated iteration maps, then

XeML = hnMJrgl: (ran(ﬂ'g;o) U{ki; k< w}) ,
with n such that p,1(MZ) < 771 (1) < pu(MZL)). Therefore there is a term 7
such that

— ™ ™

X =M~ (Wo,oo(x)a Ko aﬁfq)
But then for all £ > 1

™ P ™
X = Tk, 00 (T F (Wo,k(‘m)a Ko aHlfl))
Let X5 = 7Mi (”({71;(35)7 RSy “?71)7 we have:
K€ X1 =100 0 M1 (K1) <= K] € Xi1 = 7 11(X0)
— X, e El"

T v < T (I7 w
= m (X)) =Xk em (Bl )=E; ()
= K} € Xpn1
— KpeX

(¥): That equality holds because we work below 0f, and therefore there can be only
one active measure on a mouse. Notice that we only need 0% to prove this, since
under 0% there can be no mouse with two measure having the same critical point.

O(Remark 5.2)

We want to prove that U is a < u-complete ultrafilter over K. In order to prove it,
we will heavily use that it is in fact generated by the Cj:

Lemma 5.3. For all very good 7 and for all X € M™

XelU™ «— C, cirx.

Proof. Tt suffices to show that for all X € M™ = M:
XeUr=(C,cinx

Let X € P(u) N M then there is a § < p+M such that X € M||6. Since M is
acceptable there is an

fip—Pu)nM|s
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with f surjective and
fengt @ uiny),

where p is the standard parameter of M, n is such that pn+1(M) <u< pn(M)
and i < ¢’ < p such that ¢’ € ran(m). Hence f = X = (X;;4 < p) € ran(7) and
there is an 7 such that X; = X. Then

X)) € W (@) U BY)

where P is the standard parameter of MZ and n is such that p, (ML) <
ﬂ_l(u)_< pn(ML).
If £ € C, £ large enough, then
MEZ £V < n L) [(wl()?)) eUTefe (fl()?)) ] .
j

J

This is proved as in 5.2. Hence
MEVj <8 (()?)j =X, €U —n(€) € (X); = Xj) .

Thus X € U™ <= ¢* € X for all sufficiently large £* € Cj; and this is what we
wanted to prove. O(Lemma 5.3)

Now we want to show that U is an ultrafilter, therefore we need to show that the
U™ are compatible enough, i.e. if an X has measure one somewhere, then for every
other measure, that measures X, the set X is still measure one.

Lemma 5.4. For all very good m and «’, for all X € ran(n) Nran(n’) we have that
XelU™ <= XeUr.

Proof. Pick a 7 such that ran(7) Uran(n’) C ran(7), then by lemma 4.4 C; Cfi» O,
and Cz Cin €. If X € U™ then C, Cfin X hence Cz Ci" X. On the other hand
if X € U™, then Cz Cfi® X. As C3 is cofinal in C, (as each Cj has order type w),
C, cannot be in x\ X modulo finitely many elements, therefore C; Ci™ X, hence
XeU™.

Analogously, one can prove X € U™ <= X e U™. O(Lemma 5.4)

Lemma 5.5. U is a < p-complete ultrafilter on K.

—

Proof. Deny. Let X € K be such that ;<x(X): is a counter-example. Then there

is a very good 7 such that X, X € ran(r). Thus for all i € A Nran(x), (X); € U.

Hence X = 7M% (K, ., KT, {p(/\/lg)}) with k7 being the critical points of the
iteration Z™, and as we have seen before:
for all K7 > k7,77 1(\) and for all i < 7= 1())

This shows that

C, cfin ﬂ {(77_1()2))1-;2' < 71'_1()\)},

hence C, Cfi" N {(X)z,z < )\}; a contradiction! O(Lemma 5.5)

The same argument proves that U is a < p-complete normal ultrafilter on K. In
order to prove that U € K it suffices to verify (c.f. Theorem 1.5):
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Lemma 5.6. Ult(K;U) is iterable.

Proof. We already know that for cofinally many «, the ultrapower Ult(K ||, U) is
iterable, as cofinally many are liftups from very good maps. Suppose that Ult(K;U)

is not iterable. Let o : V' — Vj be an elementary embedding with 6 large enough,
such that

e 0(K)=K|#,

e 0(U)=U,

e o() = p and

e Ult(K,U) is not iterable.

Let K = Ult(K[E™%;0 | @), then Ult(K,U) is not iterable. We coiterate K
and K. The same argument as in the proof of 3.8 shows that there is a drop in
the first step, say a > u™X, such that « is minimal with p,,(K||a) < g moreover
ptl = supo’mt™® < ptX (cf. 3.6.4) since cf(utX) > w; by weak covering.
Therefore the coiteration of K with K is in fact a coiteration of K with K||a for
some a < ut¥. Let K* the last model on the K-side and K* that on the K-side,
the K-side is simple, further K* < K*.

K K*
A
K~ Ko K*

Let N, N*, N” and N"* be respectively the U-ultrapower of K|la, K*, K and K*
and 1, if;, iy and if; the respective ultrapower map.

K| s K
\ if
U N UN*

We know that N is iterable and N’ is not. We want to show that N'* is neither.
We define:

® N — N
i (f)() — i (T()) (1),

where 7 is the coiteration map from K to K* and iys beeing the right ultrapower
map (using U) as in the diagramm. Now we have:

N'E oo () = {e<mEFe(f)}eU
= {e<mR FernNE)} e
= N E (i ()W)
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Notice that the second equivalence holds since

{e<mBeer(N©)} = {e<mEre(f©)} = {6 < mKEo(fE)},

as 7 | p = id. Now if we prove that N'* is iterable we get an outright contradiction.
We want to copy the iteration of K|la to K* to an iteration of N to N**.

Klla K*

AN

i A

e

NN N NN N ok

There can be no drop at the beginning, else we just had chosen « a little smaller.
As i is at least X* preserving, we can copy the iteration (c.f. [12] 4.3.1). We want to
analyze the copy maps further. Let N; and K be the structures of the iterations.
Let v = v;41 be an index and its critical point k. Let ipx : K; —px Kji1, and

iE_A(f) : N —Ey, Nji1, where i : K; — N is the ultrapower map by U. We know
that we can complete the diagram such that it commutes,

Kj —— Kjn
ipK

El/
J/ij lij+l

Nj—— N1
‘2l

by defining:
ij+1 Kjp1 — Ny
i ()0) = i (150D (R):
Then we want to show :

€ ijr(X) <= peij(X)
— X eUl.

If kK > p then
pei(X) = neipy  oij(X)
= pEijy10ipr(X)
= p€ijri(X).

If 4 = & (this can only happen in the first step of the iteration),
then X = igx (X) N« thus:

p=r€ij1(X) < p€ijroipn(X)Niji(k)
— MEiEN()Oij(X)
Vo
= peij(X).

Remark that this holds since there is no drop in the first step. We want to show
that we can embed Ult(K,41,U) in Nj4q1. Let k : Ult(K41,U) — N,41 such that

k(i (F) (1) = i541(f) (1),
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where igj“ is the associated ultrapower map. Let f : 4 — K* be a map in K* and

¢ a formula.

ULt(K;j41,U) E i (f)(n) <= {a < Kip Eo(f(a)} €U
— peij{a<p K Fo(f(a)})
= peijri({a <K Fo(f(a))})
= pefa<ij(p);Nji Ee(f(a))
= Njp Fo(f(p)

Thus we can embedd A* in N**, and we arrive at the announced contradiction.
O(Lemma 5.6)

We now let C' = C; with a 7 as in lemma 3.6. All that remain to be shown is that
if kK > Ny is a cardinal and 0 > & then [0]" N K[C] is stationary in [0]". Therefore
it suffices to proof the following:

Lemma 5.7. Suppose 0F does not exists. Let # : H — H, be elemantary such

that H is transitive. Let K = KA. Let us assume that 7 is very good and that
C eran(w). Then 7 (H NOR) € K[C].

Proof.

First, as we work below 0f, there can be no fi above p which is regular in K and
singular in V', as we could repeat the arguments of the last two sections, and this
would lead to mice having two active measures. Thus (H) holds above p and by
repeating the arguments of 3.10 we get: if 7 denotes the shortest normal tree on K
such that K 9 MZ and if Cz denotes {fr(cp(ﬂfi+1));i +1 <1h(Z)}, then

i. forall e < p, Cs Ne is finite, and
ii. Cz \ p is finite.
There is a 7 as given by 4.6 with 7 € ran(7) and C, =" C, therefore Oz Cfi" C,.

Let M be the liftup of M7 via 7, where i < oo is the least such that K ||7 " () IMZ.
As C' is Prikry-generic over K, for all but finitely many £ < £’ € C:

s Eu{pm}) — & ene u{pn}),
where n is such that p,4 1 (M) < 71 (1) < pn(M). Therefore if Cx Ny is unbounded

)
in p then C'\ Cx cannot be infinite. Thus if ran(7) NOR ¢ K then Cz =" C. And
for all K cardinals x,

(k) = G (7 (pn1(M3) U C U {p}) N7 (k) € K[C].

O(Lemma 5.7)
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