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Introduction

In this example, we analyse repeated phenotypicsanements of perennial ryegrass
(Lolium perenne) from a greenhouse experiment. We hypothesizethigae is a trade-
off between sexual reproduction (flower stems) aedetative propagation (tillers)
within polycormons of this species. This is notedity a study of biological invasions,
however, we want to find out, if less flowering s (cultivars, in this case) would be
more competitive and could invade seminatural dmasgls. Similar repeated measures
designs are quite often used in invasion biologye #¢knowledge that we adopted
some ideas from an example presented by Fox (Z00#)is analysis.

Sexual reproduction or, more precisely, the degfefowering of the plants,
was modified by cold treatments (vernalisation).ldCtemperature (< 6° C) are a
prerequisite for flowering of perennial ryegrasteTshorter the cold period, the lower
the number of flowering stems that emerge aftersarth this way, plants
(polycormons) of perennial ryegrass with varyingmiers of flowering stems were
produced.

The plants were grown from seeds that were colfiefttam six populations and,
when they had produced several tillers, they wplig isto four ‘clones’ of three tillers
in order to replicate each individual genotypeanrfcold treatments. Two clones from
different populations were planted together in & ipoorder to create a competitive
situation among plants. The same genotype combimativere repeated in the four cold
treatments. The experiment comprised 640 pots,usecthere were 8 combinations of
populations of the competing clones, and the pamaombinations were repeated 20
times (with different genotype combinations) inlea 4 cold treatments. As the pots
contained two clones which were investigated adhmme points, the whole dataset has
got a sample size of 3840, but the effective sanspte is 3777 because of some
missing data.

At each of the three time points, the diameter loines (i.e. polycormon
diameter) was measured and the number of flowestegs was counted. The latter will
be used as a predictor variable, because it wagpolated, and the clone diameter will
be used as the response (dependent variable).idimetér of the other plant in the pot
will be used as a covariate that represents theuatraf competition. More details on
the experimental setup can be found in Thiele.ga09).



For this analysis we will use the packagése (version 3.1-98; Pinheiro et al.
2011) andattice (0.19-17; Sarkar 2008) in R (R Development Corant011).

The dataset
We take a look at the structure of the dataset

> str(Lolium)

'data.frame’. 3777 obs. of 9 variables:

$ plantid : Factor w/ 1280 levels "p1","p10","p100 "...1393504 615
?Sbt : Factor w/ 640 levels "pot1","pot10”,.. :1112 223 334 445
5$58entyp : Factor w/ 315 levels "Bacal","Bacal0", ..134121721
3$2p300p : Factor w/ 6 levels "Baca","Bile",..: 1 111111111

$ time : Factor w/ 3 levels "t1","t2","t3": 1 1 11111111

$ vern : Factor w/ 4 levels "a","b","c","d": 1 111111111

.éflowers:num 0000000000...
$diam :num 43444345455..
$ codiam :num 445443353535253..

and see that there are 1280 plant individugiksit(d ) grown in 640 potsppt ). The
plants originate from 315 genotypegrtyp ) from 6 different populationsggp). We
are most interested in the relationship betweendthmeter of clonesdiam) and the
number of flowers that they produceidvers ). We also need to take into account that
the plants were measured at three time points.,Hegecodetime as a categorical
variable with three levels. Finally, there is thamndeter of the other clone in the pot
(codiam ), the competition co-variate.

The plants were kept at cold temperatures for diffelength of time to induce
different degrees of flowering. This vernalisatiobeatment {ern ) is likely to have
affected the vegetative growth, too. We take a latothis using box-and-whisker plots

> library(lattice)

> bwplot(diam ~ vern|time, data= Lolium, layout=c(3 1),
xlab="Vernalisation treatment", ylab="Clone diamete ")

and see that clones in the longer vernalisaticairrents (c, d) indeed have somewhat
lower medians of diameter (Fig. 1). One way to kadkis would be to includeern

into the model as another co-factor. However, as ame not interested in the
vernalisation treatment itself, but only in the wiag degree of flowering that it
produced, we decide to center clone diameter @Gubtract the mean) within
vernalisation treatment and year and to use thesteied valuesdiam andccodiam in
further analysis.

Pre-analyses

Before starting with Linear Mixed Modelling (LMMjye want to inspect the growth of
the clones over the three time points graphicalig see, if there are differences
between flowering and non-flowering clones and leevpopulations. As there are too
many plants (1280) to display all of them in onepyr, we draw a random sample of



plants stratified according to population and flowwe status at the first time point. For
this purpose, we create a subset ofliiam data table that includes only data from
the first time point

> Lolium.t1<- subset(Lolium, time=="t1")

then we classify the plants into three classesl@ivdring (none, medium, many
flowers)

> Lolium.t1$flclass<- cut(Lolium.t1$flowers, c(-1, 0, 20, 200), labels

= c("none",

medium", "many") )
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Figure 1 Diameter of clones (polycormons) vs. vernalisatieatment, i.e. different length of exposure
to cold temperatures, for three time points of mearment (t1-3).

and create a grouping variable based on populandrflowering class

> Lolium.t1$pop.flclass<- factor(Lolium.t1$pop:Loli um.t1$flclass)

that we will use for stratification.



Then, we randomly draw 10 plants from each comhmnaif population and the
flowering classes 'none' and 'many' (we omit medilowering plants, to have a
stronger contrast)

> attach(Lolium.t1)

> bolu.nofl.sample<- sample(unique(plantid[subset=
pop.flclass=="Bolu:none"]), 10)

> bolu.manyfl.sample<- sample(unique(plantid[subset =
pop.flclass=="Bolu:many"]), 10)

> sisu.nofl.sample<- sample(unique(plantid[subset=
pop.flclass=="Sisu:none"]), 10)

> sisu.manyfl.sample<- sample(unique(plantid[subset =
pop.flclass=="Sisu:many"]), 10)

> baca.nofl.sample<- sample(unique(plantid[subset=
pop.flclass=="Baca:none"]), 10)

> baca.manyfl.sample<- sample(unique(plantid[subset =
pop.flclass=="Baca:many"]), 10)

> bile.nofl.sample<- sample(unique(plantid[subset=
pop.flclass=="Bile:none"]), 10)

> bile.manyfl.sample<- sample(unique(plantid[subset =
pop.flclass=="Bile:many"]), 10)

> deru.nofl.sample<- sample(unique(plantid[subset=
pop.flclass=="Deru:none"]), 10)

> deru.manyfl.sample<- sample(unique(plantid[subset =
pop.flclass=="Deru:many"]), 10)

> veyo.nofl.sample<- sample(unique(plantid[subset=
pop.flclass=="Veyo:none"]), 10)

> veyo.manyfl.sample<- sample(unique(plantid[subset =
pop.flclass=="Veyo:many"]), 10)

> detach(Lolium.t1)

and combine the 12 strata (6 populations * 2 flomgerclasses) into one vector
containing theplantid

> whole.sample<- append(as.vector(bolu.nofl.sample) ,
as.vector(bolu.manyfl.sample) )

whole.sample<- append(as.vector(whole.sample),
as.vector(sisu.nofl.sample) )

> whole.sample<- append(as.vector(whole.sample),
as.vector(sisu.manyfl.sample) )

whole.sample<- append(as.vector(whole.sample),
as.vector(baca.nofl.sample) )

> whole.sample<- append(as.vector(whole.sample),
as.vector(baca.manyfl.sample) )

whole.sample<- append(as.vector(whole.sample),
as.vector(bile.nofl.sample) )

> whole.sample<- append(as.vector(whole.sample),
as.vector(bile.manyfl.sample) )

whole.sample<- append(as.vector(whole.sample),
as.vector(deru.nofl.sample) )

> whole.sample<- append(as.vector(whole.sample),
as.vector(deru.manyfl.sample) )

whole.sample<- append(as.vector(whole.sample),
as.vector(veyo.nofl.sample) )

> whole.sample<- append(as.vector(whole.sample),
as.vector(veyo.manyfl.sample) )



which we use to create a subset of the data tablen that contains only the plants in
the sample

> Lolium.sample<- Lolium[is.element(Lolium$plantid, whole.sample),]

Then, we add the flowering class to the subset tdii® as a categorical variable by
first creating a vector containing all sampled pdamith many flowers

> manyfl.sample<- append(as.vector(bolu.manyfl.samp le),
as.vector(sisu.manyfl.sample) )

> manyfl.sample<- append(as.vector(manyfl.sample),
as.vector(baca.manyfl.sample) )

> manyfl.sample<- append(as.vector(manyfl.sample),
as.vector(bile.manyfl.sample) )

> manyfl.sample<- append(as.vector(manyfl.sample),
as.vector(deru.manyfl.sample) )

> manyfl.sample<- append(as.vector(manyfl.sample),
as.vector(veyo.manyfl.sample) )

and then applyingactor  with ifelse

> Lolium.sample$flclass<-
factor(ifelse(is.element(Lolium.sample$plantid, man yfl.sample),
"manyfl", "nofl") )

It is convenient to create a grouped data table
> library(nime)

> Lolium.sample<- groupedData(cdiam ~ as.numeric(ti me) | plantid,
outer=~pop*ficlass, data= Lolium.sample )

which describes the relationship that we want teestigate (cdiam ~ time) and the
levels of grouping (plant, population, flowerin@ss).

The last step of data preparation is to arrangeldtiels of population in a
sensible sequence,

> Lolium.sample$pop<- factor(Lolium.sample$pop, lev els=c("Bolu",
"Sisu", "Baca", "Bile", "Deru", "Veyo") )

with the northern populations (Bolu, Sisu) firdteh the central European ones (Baca,
Bile), and then the mediterranean ones (Deru, V.eyo)
Now we can create the plot

> trellis.device(color=F)

> plot(Lolium.sample, key=NULL, xlab="", ylab="Adju sted clone diameter
[em]", outer=TRUE, aspect=1.5, ylim=c(-8,8), betwee n= list(x=
¢(0.5),y= ¢(0.5)), scales=list(alternating=F, tck= c(1,0),

y=list(at=c(-4, 0, 4)), x=list(tick.number=3)) )

that is shown in Fig. 2.
Next we want to explore the relationship betweeonel diameter and the
number of flowering stems, and to see if this ddfamong populations and genotypes.



We can do that by calculating the regressiordafm ~ flowers for each genotype
and time point. First we create subsetsatitm for each time point

> Lolium.t1<- subset(Lolium, time=="t1")
> Lolium.t2<- subset(Lolium, time=="t2" )
> Lolium.t3<- subset(Lolium, time=="t3")

and then we use the functiamList of the nlme package for calculating the
regressions:
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Figure 2 Development of clone diameter (centered withimaéisation treatments) over three time points
for random samples of ten plants per populatiodyB®isu, ...) and per flowering class (nofl, no
flowering stems; manyfl, many (>20) flowering steatghe first time point). The measurements made on
the same plant are connected by lines.

> Bolu.list.t1<- ImList(cdiam~flowers|gentyp, data= Lolium.t1,
subset=pop=="Bolu" )

> Sisu.list.t1<- ImList(cdiam~flowers|gentyp, data= Lolium.t1,
subset=pop=="Sisu" )

> Baca.list.t1<- ImList(cdiam~flowers|gentyp, data= Lolium.t1,
subset=pop=="Baca" )

> Bile.list.t1<- ImList(cdiam~flowers|gentyp, data= Lolium.t1,
subset=pop=="Bile" )

> Deru.list.t1<- ImList(cdiam~flowers|gentyp, data= Lolium.t1,
subset=pop=="Deru")

> Vejo.list.t1<- ImList(cdiam~flowers|gentyp, data= Lolium.t1,
subset=pop=="Veyo")

> Bolu.list.t2<- ImList(cdiam~flowers|gentyp, data= Lolium.t2,
subset=pop=="Bolu" )

> Sisu.list.t2<- ImList(cdiam~flowers|gentyp, data= Lolium.t2,
subset=pop=="Sisu" )

> Bacaw.list.t2<- ImList(cdiam~flowers|gentyp, data= Lolium.t2,
subset=pop=="Baca" )

> Bile.list.t2<- ImList(cdiam~flowers|gentyp, data= Lolium.t2,
subset=pop=="Bile" )

> Deru.list.t2<- ImList(cdiam~flowers|gentyp, data= Lolium.t2,

subset=pop=="Deru")



> Vejo.list.t2<- ImList(cdiam~flowers|gentyp, data= Lolium.t2,
subset=pop=="Veyo")

> Bolu.list.t3<- ImList(cdiam~flowers|gentyp, data= Lolium.t3,
subset=pop=="Bolu" )

> Sisu.list.t3<- ImList(cdiam~flowers|gentyp, data= Lolium.t3,
subset=pop=="Sisu" )

> Baca.list.t3<- ImList(cdiam~flowers|gentyp, data= Lolium.t3,
subset=pop=="Baca" )

> Bile.list.t3<- ImList(cdiam~flowers|gentyp, data= Lolium.t3,
subset=pop=="Bile" )

> Deru.list.t3<- ImList(cdiam~flowers|gentyp, data= Lolium.t3,
subset=pop=="Deru" )

> Vejo.list.t3<- ImList(cdiam~flowers|gentyp, data= Lolium.t3,

subset=pop=="Veyo")
Then we extract the slope estimates from the Inlgects

> Bolu.coef.t1<- coef(Bolu.list.t1)
> Sisu.coef.tl<- coef(Sisu.list.t1)
> Baca.coef.t1<- coef(Baca.list.t1)
> Bile.coef.t1<- coef(Bile.list.t1)

> Deru.coef.t1<- coef(Deru.list.t1)
> Vejo.coef.t1<- coef(Vejo.list.t1)
> Bolu.coef.t2<- coef(Bolu.list.t2)
> Sisu.coef.t2<- coef(Sisu.list.t2)
> Baca.coef.t2<- coef(Baca.list.t2)
> Bile.coef.t2<- coef(Bile.list.t2)

> Deru.coef.t2<- coef(Deru.list.t2)
> Vejo.coef.t2<- coef(Vejo.list.t2)
> Bolu.coef.t3<- coef(Bolu.list.t3)
> Sisu.coef.t3<- coef(Sisu.list.t3)
> Baca.coef.t3<- coef(Baca.list.t3)
> Bile.coef.t3<- coef(Bile.list.t3)

> Deru.coef.t3<- coef(Deru.list.t3)
> Vejo.coef.t3<- coef(Vejo.list.t3)

and create boxplots of the estimates for each pionet and population.

> par(mfrow=c(1,3) )

>

> boxplot(Bolu.coef.t1[,2], Sisu.coef.t1[,2], Baca. coef.t1],2],
Bile.coef.t1[,2], Deru.coef.t1],2], Vejo.coef.t1],2 ], main="t1",
las=2, names=c("Bolu", "Sisu", "Baca", "Bile", "Der u", "Veyo"),
ylim=c(-0.5, 0.5) )

> boxplot(Bolu.coef.t2[,2], Sisu.coef.t2[,2], Baca. coef.t2[,2],
Bile.coef.t2[,2], Deru.coef.t2[,2], Vejo.coef.t2[,2 ], main="t2",
las=2, names=c("Bolu", "Sisu", "Baca", "Bile", "Der u", "Veyo"),
ylim=c(-0.5, 0.5) )

> boxplot(Bolu.coef.t3[,2], Sisu.coef.t3[,2], Baca. coef.t3[,2],
Bile.coef.t3[,2], Deru.coef.t3[,2], Vejo.coef.t3[,2 ], main="t3",
las=2, names=c("Bolu", "Sisu", "Baca", "Bile", "Der u", "Veyo"),

ylim=c(-0.7, 0.7))
that are shown in Fig. 3.

Choosing the model setup

What kind of model should we use for this datagéi®@ dependent variablgliam is
continuous metric, so there is some hope thatghtbe normally distributed. A look at
histograms ofcdiam for the three time points of measurement showd the



distribution of values is unimodal, but somewhaéew&d (Fig. 4). The variance of
cdiam appears to increase over time. Boxplots cabm vs. time confirm this
impression (Fig. 5).
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Figure 3 Boxplots of slope estimates of the model "centetede diameter ~ number of flower stems"
calculated for each of 315 genotypes and for ttiree points. Boxes are drawn for each of six
populations.

We could calculate three separate models, oneddn &me point. Then, the
data might fulfill the assumptions of homogeneityariance. As the design is almost
balanced and the potential random grouping varsafgepulation, genotype) are nested,
a classical ANOVA setup might be appropriate, tHéowever, it is more powerful to
use the whole dataset in one model. In that casdjave to deal with heterogeneity of
variance and with the fact that the data are reyleaeasures of the same plants that are
likely to be auto-correlated. Hence, we will hageuse an LMM that can cope with
these issues.

Linear mixed effects model withnlme

We will use tha nme function of the R packag@#me for this analysis. The basic form of
the model that we will use to analyse the relatigmdetween number of flowering



stems and diameter of the clones reflects the ¢raivplants over time: cdiam - b
b, *time.
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Figure 4 Histograms of centered clone diameter (cdiamjHoge time points of measurement (t1-3).
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Figure 5 Boxplots of centered clone diameter (cdiam) foe¢htime points of measurement (t1-3).

We hypothesize that the clone diameter at t1 fge.and the growth of the
clones after t1 (i.e.1p depend on the number of flower stems that thaeclaroduced,
the diameter of the competing clone and populatBurbstituting the coefficients of the



basic model (§ b;) with flowers + ccodiam + pop leads to the following model
formula:

cdiam ~ flowers + ccodiam + pop + (flowers + ccodia m + pop)*time

The main effects of time should be included, taoth® model formula for fixed
effects in standard notation can be written as:

cdiam ~ flowers*time + ccodiam*time + pop*time

Populations are a sample of all possible populatiand, thus, might also be
treated as a random variable, but in this casg, rdygresent a gradient of vernalisation
requirement (northern populations: high; southespypations: low) and there might be
meaningful differences among populations. That iy wve decided to include
population as fixed effect.

Genotype, however, will be included as a randomab#e because the seeds
from which they were grown represent a random saropéll possible seeds within the
populations and we are rather interested in théattan among genotypes than in
effects of single genotypes. We also include p{piattid ) as a random effect nested
in genotype dentyp ) to account for non-independence of the repeatealsnores. Fig. 3
suggests that the relationship (the slope) betwseme diameter and flowers varies
considerably among genotypes. Therefore, we aldade a random slope of flowers.
In Ime notation the random effects structure of the masdel

random= ~flowers|gentyp/plantid

Now we calculate the model outlined above

> ml<- Ime(cdiam ~ flowers*time + ccodiam*time + po p*time, random=
~flowers|gentyp/plantid, data= Lolium )

and have a first look at the results:

> summary(m1l)
Linear mixed-effects model fit by REML
Data: Lolium
AIC  BIC logLik
13834.99 14028.13 -6886.496

Random effects:

Formula: ~flowers | gentyp

Structure: General positive-definite, Log-Cholesky parametrization
StdDev  Corr

(Intercept) 0.88581455 (Intr)

flowers  0.01727687 -0.685

Formula: ~flowers | plantid %in% gentyp

Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr

(Intercept) 5.180336e-01 (Intr)

flowers  1.608239e-06 0

Residual 1.302583e+00

Fixed effects: cdiam ~ flowers * time + ccodiam * t ime + pop * time
Value Std.Error DF t-value p-value
(Intercept) 0.128701 0.12369650 2479 1.040455 0.2982



flowers 0.009461 0.00316406 2479 2.990303 0.0028

timet2 0.404978 0.10620213 2479 3.813278 0.0001
timet3 0.746519 0.10820030 2479 6.899418 0.0000
ccodiam 0.103919 0.04879531 2479 2.129693 0.0333
popSisu -0.114216 0.16984848 309 -0.672456 0.5018
popBaca -0.074247 0.20479563 309 -0.362540 0.7172
popBile -0.077055 0.20432414 309 -0.377124 0.7063
popDeru -0.574110 0.20614248 309 -2.785015 0.0057
popVeyo -0.726351 0.20717091 309 -3.506045 0.0005
flowers:timet2 0.002178 0.00386608 2479 0.563440 0.5732
flowers:timet3 0.024772 0.00420767 2479 5.887286 0.0000
timet2:ccodiam -0.254712 0.05145968 2479 -4.949740 0.0000
timet3:ccodiam -0.243609 0.04908139 2479 -4.963361 0.0000
timet2:popSisu -0.253620 0.14786507 2479 -1.715212 0.0864
timet3:popSisu -0.077136 0.14915546 2479 -0.517151 0.6051
timet2:popBaca 0.028110 0.18095525 2479 0.155343 0.8766
timet3:popBaca 0.425247 0.18253032 2479 2.329731 0.0199
timet2:popBile -0.710697 0.18559068 2479 -3.829380 0.0001
timet3:popBile -2.252353 0.18262202 2479 -12.333414 0.0000
timet2:popDeru -1.551962 0.19058545 2479 -8.143129 0.0000
timet3:popDeru -3.298713 0.19398776 2479 -17.004746 0.0000
timet2:popVeyo -0.706769 0.18526363 2479 -3.814937 0.0001
timet3:popVeyo -1.841335 0.19059766 2479 -9.660848 0.0000

We plot some diagnostic graphs to evaluate, ifagsumptions of normality and
homogeneity of variances of the residuals arelliedfi We create a plot of standardized
residuals vs. fitted values, a ggnorm plot, antbagf standardized residuals vs. time

> rf1<- plot(m1)
> ggl<- qgqnorm(m1l)
> rtl<- plot(m1, resid(.) ~ as.numeric(time)|pop )

and, for convenience, we plot the three figure® ame page of a trellis graph

> trellis.device(color=F)

> print(rfl, position=c(0,0.5,0.5,1), more=T )
> print(qql, position=c(0.5,0.5,1,1), more=T )
> print(rtl, position=c(0,0,1,0.5) )

The plots shown in Fig. 6 suggest that the distitimuof the residuals is not that
far away from normality, but indeed the scatteresiduals increases with time.

Therefore, we will try to solve this problem by lmding a variance structure
into the model using theeights argument with avarident forumla that allows for
separate variance estimates for each time pointcéio/enience, we us@date

> m2<- update(ml, weights= varldent(form= ~1|time) )

but get an error message saying that the modehatidonverge. We try some simpler
random effects structures and find out that a madlél random effects gflantid  , but
without gentyp , converges. This random effect structure is netgérfect choice, but
we suppose that it should capture much of the traniaamong genotypes, too, and it
allows accounting for correlation of the measuretsi¢Bo we continue the analysis with
the simpler random structure and calculate the ok separate variance estimates
for each time point
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Figure 6 Diagnostic plots of modehl

> m2<- Ime(cdiam ~ flowers*time + ccodiam*time + po p*time, random=
~flowers|plantid, data= Lolium, weights= varldent(f orm= ~1jtime) )

Then, we draw the diagnostic plots again

> trellis.device(color=F)

> rf2<- plot(m2)

> gQg2<- qqnorm(m2)

> rt2<- plot(m2, resid(., type="p") ~ as.numeric(ti me)|pop )
> print(rf2, position=c(0,0.5,0.5,1), more=T )

> print(qg2, position=c(0.5,0.5,1,1), more=T )

> print(rt2, position=c(0,0,1,0.5) )

and see that the ggnorm plot suggests improved aldynof residuals and that the
variation of residuals does not increase with tangmore (Fig. 7).



<
0 £
© o
> [y 2 - |
.'g ©
<
¢ 2
©
I _ L
N % ©
'?U S
2e) 3
[ 4_: -2 —
8 c
" <
o) 8 o
-4 =
[ [ [ [ [ [ [ [ [ [ [
6 4 2 0 2 4 6 -4 2 0 2
Fitted values Standardized residuals
1.0 15 20 25 30
| | | | | | | | | | | | | | |
Deru
c—"’d =1 -2
3 . -0
'Q 18 .,
o n ~ -4
()
N
©
T 27 = B
2 o0 i
(U <
B -2 S —

as.numeric(time)

Figure 7 Diagnostic plots of modeh2

The last step towards a valid model structure ballto implement an auto-correlation
structure of measurements made on the same plantd.now we have included a
random intercept and slope fepfantid , but we have not taken into account that
measurements made at consecutive time points maymbee correlated than
measurements further apart.

To do so, we will define a first-order auto-cortala structure using theorArR1
argument

> m3<- update(m2, correlation= corAR1(form= ~1|plan tid) )

and test whether this modetd fits better than the model with unstructured etation
of residuals within plant individualan@ and m2). We can test this witlhnova that
performs a likelihood ratio tests comparingandm3

> anova(m2, m3)

Model df AIC  BIC logLik Test L.R atio p-value
m2 130 12175.49 12362.40 -6057.746
m3 231 12037.02 12230.16 -5987.509 1 vs 2 140. 4734 <.0001



and we see that the auto-correlation structurafgigntly improved the model fit.

Now that we have built a random effects structhieg suits the data, we can go
ahead with testing the fixed effects. As REML esti@s are not appropriate for fixed
effects, we recalculate3 using ML.

> m3ML<- update(m3, method = "ML")

and then we conduct Wald F tests of the fixed ¢&féwhen used on singiee objects,
anova produces Wald F tests)

> anova(m3ML)
numDF denDF F-value p-value
(Intercept) 1 2479 2.3222 0.1277

flowers 1 2479 112.6673 <.0001
time 2 2479 0.3921 0.6757
ccodiam 1 2479 364.0616 <.0001
pop 5 1274 29.2452 <.0001

flowers:time 2 2479 14.0307 <.0001
time:ccodiam 2 2479 35.8031 <.0001
time:pop 10 2479 51.9991 <.0001

and see that there is a significant relationshigpvéen clone diameter and number of
flower stems. But in the summary table

Linear mixed-effects model fit by maximum likelihoo d
Data: Lolium
AIC  BIC logLik
11931.15 12124.48 -5934.574

Random effects:

Formula: ~flowers | plantid

Structure: General positive-definite, Log-Cholesky parametrization
StdDev  Corr

(Intercept) 0.68560889 (Intr)

flowers 0.01638808 -0.924

Residual 0.54497651

Correlation Structure: AR(1)
Formula: ~1 | plantid
Parameter estimate(s):
Phi
0.4101318
Variance function:
Structure: Different standard deviations per strat um
Formula: ~1 | time
Parameter estimates:

tl t2 t3
1.000000 1.840848 4.234451
Fixed effects: cdiam ~ flowers * time + ccodiam * t ime + pop * time
Value Std.Error DF t-value p-value
(Intercept) 0.133666 0.04718863 2479 2.832596 0.0047
flowers 0.011189 0.00133687 2479 8.369552 0.0000
timet2 0.408767 0.05385807 2479 7.589713 0.0000
timet3 0.799756 0.13454029 2479 5.944364 0.0000
ccodiam -0.121047 0.02246991 2479 -5.387053 0.0000
popSisu -0.168501 0.06441466 1274 -2.615874 0.0090
popBaca -0.178257 0.07849019 1274 -2.271074 0.0233
popBile -0.098700 0.07735102 1274 -1.276002 0.2022
popDeru -0.493595 0.07657919 1274 -6.445550 0.0000

popVeyo  -0.775559 0.07781317 1274 -9.966940 0.0000



flowers:timet2 0.001864 0.00193511 2479 0.963024 0.3356

flowers:timet3 0.020360 0.00466267 2479 4.366502 0.0000
timet2:ccodiam -0.083359 0.02324034 2479 -3.586823 0.0003
timet3:ccodiam -0.022484 0.03061635 2479 -0.734371 0.4628
timet2:popSisu -0.226873 0.07524390 2479 -3.015171 0.0026
timet3:popSisu -0.040378 0.18504946 2479 -0.218203 0.8273
timet2:popBaca 0.040763 0.09204452 2479 0.442856 0.6579
timet3:popBaca 0.429529 0.22690483 2479 1.892990 0.0585
timet2:popBile -0.697108 0.09545838 2479 -7.302747 0.0000
timet3:popBile -2.219989 0.22682941 2479 -9.787043 0.0000
timet2:popDeru -1.581617 0.09756315 2479 -16.211212 0.0000
timet3:popDeru -3.453770 0.23771008 2479 -14.529338 0.0000
timet2:popVeyo -0.716729 0.09465597 2479 -7.571938 0.0000
timet3:popVeyo -1.928666 0.23984115 2479 -8.041431 0.0000

the estimates foflowers  and flowers:time show that this relationship is positive.
Thus, we conclude that there is co-occurrenceetilo reproduction strategies instead
of trade-off as hypothesized.
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