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Introduction 
In this example, we analyse repeated phenotypic measurements of perennial ryegrass 
(Lolium perenne) from a greenhouse experiment. We hypothesize that there is a trade-
off between sexual reproduction (flower stems) and vegetative propagation (tillers) 
within polycormons of this species. This is not directly a study of biological invasions, 
however, we want to find out, if less flowering plants (cultivars, in this case) would be 
more competitive and could invade seminatural grasslands. Similar repeated measures 
designs are quite often used in invasion biology. We acknowledge that we adopted 
some ideas from an example presented by Fox (2002) for this analysis. 

Sexual reproduction or, more precisely, the degree of flowering of the plants, 
was modified by cold treatments (vernalisation). Cold temperature (< 6° C) are a 
prerequisite for flowering of perennial ryegrass. The shorter the cold period, the lower 
the number of flowering stems that emerge afterwards. In this way, plants 
(polycormons) of perennial ryegrass with varying numbers of flowering stems were 
produced. 

The plants were grown from seeds that were collected from six populations and, 
when they had produced several tillers, they were split into four ‘clones’ of three tillers 
in order to replicate each individual genotype in four cold treatments. Two clones from 
different populations were planted together in a pot in order to create a competitive 
situation among plants. The same genotype combinations were repeated in the four cold 
treatments. The experiment comprised 640 pots, because there were 8 combinations of 
populations of the competing clones, and the population combinations were repeated 20 
times (with different genotype combinations) in each of 4 cold treatments. As the pots 
contained two clones which were investigated at three time points, the whole dataset has 
got a sample size of 3840, but the effective sample size is 3777 because of some 
missing data. 

At each of the three time points, the diameter of clones (i.e. polycormon 
diameter) was measured and the number of flowering stems was counted. The latter will 
be used as a predictor variable, because it was manipulated, and the clone diameter will 
be used as the response (dependent variable). The diameter of the other plant in the pot 
will be used as a covariate that represents the amount of competition. More details on 
the experimental setup can be found in Thiele et al. (2009). 



For this analysis we will use the packages nlme (version 3.1-98; Pinheiro et al. 
2011) and lattice (0.19-17; Sarkar 2008) in R (R Development Core Team 2011). 

The dataset 
We take a look at the structure of the dataset 
 
> str(Lolium) 

 
'data.frame':   3777 obs. of  9 variables: 
 $ plantid : Factor w/ 1280 levels "p1","p10","p100 ",..: 1 393 504 615 
726. 
 $ pot     : Factor w/ 640 levels "pot1","pot10",.. : 1 112 223 334 445 
556 
 $ gentyp  : Factor w/ 315 levels "Baca1","Baca10", ..: 1 34 12 17 21 
32 30 
 $ pop     : Factor w/ 6 levels "Baca","Bile",..: 1  1 1 1 1 1 1 1 1 1 
... 
 $ time    : Factor w/ 3 levels "t1","t2","t3": 1 1  1 1 1 1 1 1 1 1 
... 
 $ vern    : Factor w/ 4 levels "a","b","c","d": 1 1 1 1 1 1 1 1 1 1 
... 
 $ flowers : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ diam    : num  4 3 4 4 4 3 4 5 4 5.5 ... 
 $ codiam  : num  4 4.5 4 4 3 3.5 3.5 3.5 2.5 3 ...  

 
and see that there are 1280 plant individuals (plantid ) grown in 640 pots (pot ). The 
plants originate from 315 genotypes (gentyp ) from 6 different populations (pop ). We 
are most interested in the relationship between the diameter of clones (diam ) and the 
number of flowers that they produced (flowers ). We also need to take into account that 
the plants were measured at three time points. Here, we code time  as a categorical 
variable with three levels. Finally, there is the diameter of the other clone in the pot 
(codiam ), the competition co-variate. 

The plants were kept at cold temperatures for different length of time to induce 
different degrees of flowering. This vernalisation treatment (vern ) is likely to have 
affected the vegetative growth, too. We take a look at this using box-and-whisker plots 
 
> library(lattice) 

 
> bwplot(diam ~ vern|time, data= Lolium, layout=c(3 ,1), 
xlab="Vernalisation treatment", ylab="Clone diamete r" ) 

 
and see that clones in the longer vernalisation treatments (c, d) indeed have somewhat 
lower medians of diameter (Fig. 1). One way to tackle this would be to include vern  
into the model as another co-factor. However, as we are not interested in the 
vernalisation treatment itself, but only in the varying degree of flowering that it 
produced, we decide to center clone diameter (i.e. subtract the mean) within 
vernalisation treatment and year and to use these centered values cdiam  and ccodiam  in 
further analysis. 

Pre-analyses 
Before starting with Linear Mixed Modelling (LMM), we want to inspect the growth of 
the clones over the three time points graphically and see, if there are differences 
between flowering and non-flowering clones and between populations. As there are too 
many plants (1280) to display all of them in one graph, we draw a random sample of 



plants stratified according to population and flowering status at the first time point. For 
this purpose, we create a subset of the Lolium  data table that includes only data from 
the first time point 
 
> Lolium.t1<- subset(Lolium, time=="t1" ) 

 
then we classify the plants into three classes of flowering (none, medium, many 
flowers) 
 
> Lolium.t1$flclass<- cut(Lolium.t1$flowers, c(-1, 0, 20, 200), labels 
= c("none", "medium", "many") ) 
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Figure 1 Diameter of clones (polycormons) vs. vernalisation treatment, i.e. different length of exposure 
to cold temperatures, for three time points of measurement (t1-3). 
 
and create a grouping variable based on population and flowering class 
 
> Lolium.t1$pop.flclass<- factor(Lolium.t1$pop:Loli um.t1$flclass) 

 
that we will use for stratification. 



Then, we randomly draw 10 plants from each combination of population and the 
flowering classes 'none' and 'many' (we omit medium flowering plants, to have a 
stronger contrast) 
 
> attach(Lolium.t1) 

 
> bolu.nofl.sample<- sample(unique(plantid[subset= 
pop.flclass=="Bolu:none"]), 10) 
> bolu.manyfl.sample<- sample(unique(plantid[subset = 
pop.flclass=="Bolu:many"]), 10) 
> sisu.nofl.sample<- sample(unique(plantid[subset= 
pop.flclass=="Sisu:none"]), 10) 
> sisu.manyfl.sample<- sample(unique(plantid[subset = 
pop.flclass=="Sisu:many"]), 10) 
> baca.nofl.sample<- sample(unique(plantid[subset= 
pop.flclass=="Baca:none"]), 10) 
> baca.manyfl.sample<- sample(unique(plantid[subset = 
pop.flclass=="Baca:many"]), 10) 
> bile.nofl.sample<- sample(unique(plantid[subset= 
pop.flclass=="Bile:none"]), 10) 
> bile.manyfl.sample<- sample(unique(plantid[subset = 
pop.flclass=="Bile:many"]), 10) 
> deru.nofl.sample<- sample(unique(plantid[subset= 
pop.flclass=="Deru:none"]), 10) 
> deru.manyfl.sample<- sample(unique(plantid[subset = 
pop.flclass=="Deru:many"]), 10) 
> veyo.nofl.sample<- sample(unique(plantid[subset= 
pop.flclass=="Veyo:none"]), 10) 
> veyo.manyfl.sample<- sample(unique(plantid[subset = 
pop.flclass=="Veyo:many"]), 10) 
 
> detach(Lolium.t1) 

 
and combine the 12 strata (6 populations * 2 flowering classes) into one vector 
containing the plantid  
 
> whole.sample<- append(as.vector(bolu.nofl.sample) , 
as.vector(bolu.manyfl.sample) ) 
whole.sample<- append(as.vector(whole.sample), 
as.vector(sisu.nofl.sample) ) 
> whole.sample<- append(as.vector(whole.sample), 
as.vector(sisu.manyfl.sample) ) 
whole.sample<- append(as.vector(whole.sample), 
as.vector(baca.nofl.sample) ) 
> whole.sample<- append(as.vector(whole.sample), 
as.vector(baca.manyfl.sample) ) 
whole.sample<- append(as.vector(whole.sample), 
as.vector(bile.nofl.sample) ) 
> whole.sample<- append(as.vector(whole.sample), 
as.vector(bile.manyfl.sample) ) 
whole.sample<- append(as.vector(whole.sample), 
as.vector(deru.nofl.sample) ) 
> whole.sample<- append(as.vector(whole.sample), 
as.vector(deru.manyfl.sample) ) 
whole.sample<- append(as.vector(whole.sample), 
as.vector(veyo.nofl.sample) ) 
> whole.sample<- append(as.vector(whole.sample), 
as.vector(veyo.manyfl.sample) ) 

 



which we use to create a subset of the data table Lolium  that contains only the plants in 
the sample 
 
> Lolium.sample<- Lolium[is.element(Lolium$plantid,  whole.sample),] 

 
Then, we add the flowering class to the subset data table as a categorical variable by 
first creating a vector containing all sampled plants with many flowers 
 
> manyfl.sample<- append(as.vector(bolu.manyfl.samp le), 
as.vector(sisu.manyfl.sample) ) 
> manyfl.sample<- append(as.vector(manyfl.sample), 
as.vector(baca.manyfl.sample) ) 
> manyfl.sample<- append(as.vector(manyfl.sample), 
as.vector(bile.manyfl.sample) ) 
> manyfl.sample<- append(as.vector(manyfl.sample), 
as.vector(deru.manyfl.sample) ) 
> manyfl.sample<- append(as.vector(manyfl.sample), 
as.vector(veyo.manyfl.sample) ) 

 
and then applying factor  with ifelse  
 
> Lolium.sample$flclass<- 
factor(ifelse(is.element(Lolium.sample$plantid, man yfl.sample), 
"manyfl", "nofl") ) 

 
It is convenient to create a grouped data table 
 
> library(nlme) 

 
> Lolium.sample<- groupedData(cdiam ~ as.numeric(ti me) | plantid, 
outer=~pop*flclass, data= Lolium.sample ) 

 
which describes the relationship that we want to investigate (cdiam ~ time) and the 
levels of grouping (plant, population, flowering class).  

The last step of data preparation is to arrange the levels of population in a 
sensible sequence,  
 
> Lolium.sample$pop<- factor(Lolium.sample$pop, lev els=c("Bolu", 
"Sisu", "Baca", "Bile", "Deru", "Veyo") ) 

 
with the northern populations (Bolu, Sisu) first, then the central European ones (Baca, 
Bile), and then the mediterranean ones (Deru, Veyo). 

Now we can create the plot 
 
> trellis.device(color=F) 

 
> plot(Lolium.sample, key=NULL, xlab="", ylab="Adju sted clone diameter 
[cm]", outer=TRUE, aspect=1.5, ylim=c(-8,8), betwee n= list(x= 
c(0.5),y= c(0.5)), scales=list(alternating=F, tck= c(1,0), 
y=list(at=c(-4, 0, 4)), x=list(tick.number=3)) ) 

 
that is shown in Fig. 2. 

Next we want to explore the relationship between clone diameter and the 
number of flowering stems, and to see if this differs among populations and genotypes. 



We can do that by calculating the regression of cdiam ~ flowers  for each genotype 
and time point. First we create subsets of Lolium  for each time point 
 
> Lolium.t1<- subset(Lolium, time=="t1" ) 
> Lolium.t2<- subset(Lolium, time=="t2" ) 
> Lolium.t3<- subset(Lolium, time=="t3" ) 

 
and then we use the function lmList  of the nlme package for calculating the 
regressions: 
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Figure 2 Development of clone diameter (centered within vernalisation treatments) over three time points 
for random samples of ten plants per population (Bolu, Sisu, ...) and per flowering class (nofl, no 
flowering stems; manyfl, many (>20) flowering stems at the first time point). The measurements made on 
the same plant are connected by lines. 
 
> Bolu.list.t1<- lmList(cdiam~flowers|gentyp, data= Lolium.t1, 
subset=pop=="Bolu" ) 
> Sisu.list.t1<- lmList(cdiam~flowers|gentyp, data= Lolium.t1, 
subset=pop=="Sisu" ) 
> Baca.list.t1<- lmList(cdiam~flowers|gentyp, data= Lolium.t1, 
subset=pop=="Baca" ) 
> Bile.list.t1<- lmList(cdiam~flowers|gentyp, data= Lolium.t1, 
subset=pop=="Bile" ) 
> Deru.list.t1<- lmList(cdiam~flowers|gentyp, data= Lolium.t1, 
subset=pop=="Deru" ) 
> Vejo.list.t1<- lmList(cdiam~flowers|gentyp, data= Lolium.t1, 
subset=pop=="Veyo" ) 
> Bolu.list.t2<- lmList(cdiam~flowers|gentyp, data= Lolium.t2, 
subset=pop=="Bolu" ) 
> Sisu.list.t2<- lmList(cdiam~flowers|gentyp, data= Lolium.t2, 
subset=pop=="Sisu" ) 
> Baca.list.t2<- lmList(cdiam~flowers|gentyp, data= Lolium.t2, 
subset=pop=="Baca" ) 
> Bile.list.t2<- lmList(cdiam~flowers|gentyp, data= Lolium.t2, 
subset=pop=="Bile" ) 
> Deru.list.t2<- lmList(cdiam~flowers|gentyp, data= Lolium.t2, 
subset=pop=="Deru" ) 



> Vejo.list.t2<- lmList(cdiam~flowers|gentyp, data= Lolium.t2, 
subset=pop=="Veyo" ) 
> Bolu.list.t3<- lmList(cdiam~flowers|gentyp, data= Lolium.t3, 
subset=pop=="Bolu" ) 
> Sisu.list.t3<- lmList(cdiam~flowers|gentyp, data= Lolium.t3, 
subset=pop=="Sisu" ) 
> Baca.list.t3<- lmList(cdiam~flowers|gentyp, data= Lolium.t3, 
subset=pop=="Baca" ) 
> Bile.list.t3<- lmList(cdiam~flowers|gentyp, data= Lolium.t3, 
subset=pop=="Bile" ) 
> Deru.list.t3<- lmList(cdiam~flowers|gentyp, data= Lolium.t3, 
subset=pop=="Deru" ) 
> Vejo.list.t3<- lmList(cdiam~flowers|gentyp, data= Lolium.t3, 
subset=pop=="Veyo" ) 

 
Then we extract the slope estimates from the lmList objects 
 
> Bolu.coef.t1<- coef(Bolu.list.t1) 
> Sisu.coef.t1<- coef(Sisu.list.t1) 
> Baca.coef.t1<- coef(Baca.list.t1) 
> Bile.coef.t1<- coef(Bile.list.t1) 
> Deru.coef.t1<- coef(Deru.list.t1) 
> Vejo.coef.t1<- coef(Vejo.list.t1) 
> Bolu.coef.t2<- coef(Bolu.list.t2) 
> Sisu.coef.t2<- coef(Sisu.list.t2) 
> Baca.coef.t2<- coef(Baca.list.t2) 
> Bile.coef.t2<- coef(Bile.list.t2) 
> Deru.coef.t2<- coef(Deru.list.t2) 
> Vejo.coef.t2<- coef(Vejo.list.t2) 
> Bolu.coef.t3<- coef(Bolu.list.t3) 
> Sisu.coef.t3<- coef(Sisu.list.t3) 
> Baca.coef.t3<- coef(Baca.list.t3) 
> Bile.coef.t3<- coef(Bile.list.t3) 
> Deru.coef.t3<- coef(Deru.list.t3) 
> Vejo.coef.t3<- coef(Vejo.list.t3) 

 
and create boxplots of the estimates for each time point and population. 
 
> par(mfrow=c(1,3) ) 
>  
> boxplot(Bolu.coef.t1[,2], Sisu.coef.t1[,2], Baca. coef.t1[,2], 
Bile.coef.t1[,2], Deru.coef.t1[,2], Vejo.coef.t1[,2 ], main="t1", 
las=2, names=c("Bolu", "Sisu", "Baca", "Bile", "Der u", "Veyo"), 
ylim=c(-0.5, 0.5) ) 
> boxplot(Bolu.coef.t2[,2], Sisu.coef.t2[,2], Baca. coef.t2[,2], 
Bile.coef.t2[,2], Deru.coef.t2[,2], Vejo.coef.t2[,2 ], main="t2", 
las=2, names=c("Bolu", "Sisu", "Baca", "Bile", "Der u", "Veyo"), 
ylim=c(-0.5, 0.5) ) 
> boxplot(Bolu.coef.t3[,2], Sisu.coef.t3[,2], Baca. coef.t3[,2], 
Bile.coef.t3[,2], Deru.coef.t3[,2], Vejo.coef.t3[,2 ], main="t3", 
las=2, names=c("Bolu", "Sisu", "Baca", "Bile", "Der u", "Veyo"), 
ylim=c(-0.7, 0.7)) 

 
that are shown in Fig. 3. 

Choosing the model setup 
What kind of model should we use for this dataset? The dependent variable cdiam  is 
continuous metric, so there is some hope that it might be normally distributed. A look at 
histograms of cdiam  for the three time points of measurement shows that the 



distribution of values is unimodal, but somewhat skewed (Fig. 4). The variance of 
cdiam  appears to increase over time. Boxplots of cdiam  vs. time  confirm this 
impression (Fig. 5). 
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Figure 3 Boxplots of slope estimates of the model "centered clone diameter ~ number of flower stems" 
calculated for each of 315 genotypes and for three time points. Boxes are drawn for each of six 
populations. 
 

We could calculate three separate models, one for each time point. Then, the 
data might fulfill the assumptions of homogeneity of variance. As the design is almost 
balanced and the potential random grouping variables (population, genotype) are nested, 
a classical ANOVA setup might be appropriate, then. However, it is more powerful to 
use the whole dataset in one model. In that case, we have to deal with heterogeneity of 
variance and with the fact that the data are repeated measures of the same plants that are 
likely to be auto-correlated. Hence, we will have to use an LMM that can cope with 
these issues. 

Linear mixed effects model with nlme 
We will use the lme function of the R package nlme for this analysis. The basic form of 
the model that we will use to analyse the relationship between number of flowering 



stems and diameter of the clones reflects the growth of plants over time: cdiam ~ b0 + 
b1*time. 
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Figure 4 Histograms of centered clone diameter (cdiam) for three time points of measurement (t1-3). 
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Figure 5 Boxplots of centered clone diameter (cdiam) for three time points of measurement (t1-3).  
We hypothesize that the clone diameter at t1 (i.e. b0) and the growth of the 

clones after t1 (i.e. b1) depend on the number of flower stems that the clone produced, 
the diameter of the competing clone and population. Substituting the coefficients of the 



basic model (b0, b1) with flowers + ccodiam + pop  leads to the following model 
formula: 
 
cdiam ~ flowers + ccodiam + pop + (flowers + ccodia m + pop)*time 

 
The main effects of time should be included, too, so the model formula for fixed 

effects in standard notation can be written as: 
 
cdiam ~ flowers*time + ccodiam*time + pop*time 

 
Populations are a sample of all possible populations and, thus, might also be 

treated as a random variable, but in this case, they represent a gradient of vernalisation 
requirement (northern populations: high; southern populations: low) and there might be 
meaningful differences among populations. That is why we decided to include 
population as fixed effect.  

Genotype, however, will be included as a random variable because the seeds 
from which they were grown represent a random sample of all possible seeds within the 
populations and we are rather interested in the variation among genotypes than in 
effects of single genotypes. We also include plant (plantid ) as a random effect nested 
in genotype (gentyp ) to account for non-independence of the repeated measures. Fig. 3 
suggests that the relationship (the slope) between clone diameter and flowers varies 
considerably among genotypes. Therefore, we also include a random slope of flowers. 
In lme notation the random effects structure of the model is:  
 
random= ~flowers|gentyp/plantid 

 
Now we calculate the model outlined above 
 
> m1<- lme(cdiam ~ flowers*time + ccodiam*time + po p*time, random= 
~flowers|gentyp/plantid, data= Lolium ) 

 
and have a first look at the results: 
 
> summary(m1) 
Linear mixed-effects model fit by REML 
 Data: Lolium  
       AIC      BIC    logLik 
  13834.99 14028.13 -6886.496 
 
Random effects: 
 Formula: ~flowers | gentyp 
 Structure: General positive-definite, Log-Cholesky  parametrization 
            StdDev     Corr   
(Intercept) 0.88581455 (Intr) 
flowers     0.01727687 -0.685 
 
 Formula: ~flowers | plantid %in% gentyp 
 Structure: General positive-definite, Log-Cholesky  parametrization 
            StdDev       Corr   
(Intercept) 5.180336e-01 (Intr) 
flowers     1.608239e-06 0      
Residual    1.302583e+00        
 
Fixed effects: cdiam ~ flowers * time + ccodiam * t ime + pop * time  
                   Value  Std.Error   DF    t-value  p-value 
(Intercept)     0.128701 0.12369650 2479   1.040455   0.2982 



flowers         0.009461 0.00316406 2479   2.990303   0.0028 
timet2          0.404978 0.10620213 2479   3.813278   0.0001 
timet3          0.746519 0.10820030 2479   6.899418   0.0000 
ccodiam         0.103919 0.04879531 2479   2.129693   0.0333 
popSisu        -0.114216 0.16984848  309  -0.672456   0.5018 
popBaca        -0.074247 0.20479563  309  -0.362540   0.7172 
popBile        -0.077055 0.20432414  309  -0.377124   0.7063 
popDeru        -0.574110 0.20614248  309  -2.785015   0.0057 
popVeyo        -0.726351 0.20717091  309  -3.506045   0.0005 
flowers:timet2  0.002178 0.00386608 2479   0.563440   0.5732 
flowers:timet3  0.024772 0.00420767 2479   5.887286   0.0000 
timet2:ccodiam -0.254712 0.05145968 2479  -4.949740   0.0000 
timet3:ccodiam -0.243609 0.04908139 2479  -4.963361   0.0000 
timet2:popSisu -0.253620 0.14786507 2479  -1.715212   0.0864 
timet3:popSisu -0.077136 0.14915546 2479  -0.517151   0.6051 
timet2:popBaca  0.028110 0.18095525 2479   0.155343   0.8766 
timet3:popBaca  0.425247 0.18253032 2479   2.329731   0.0199 
timet2:popBile -0.710697 0.18559068 2479  -3.829380   0.0001 
timet3:popBile -2.252353 0.18262202 2479 -12.333414   0.0000 
timet2:popDeru -1.551962 0.19058545 2479  -8.143129   0.0000 
timet3:popDeru -3.298713 0.19398776 2479 -17.004746   0.0000 
timet2:popVeyo -0.706769 0.18526363 2479  -3.814937   0.0001 
timet3:popVeyo -1.841335 0.19059766 2479  -9.660848   0.0000 

 
We plot some diagnostic graphs to evaluate, if the assumptions of normality and 

homogeneity of variances of the residuals are fulfilled. We create a plot of standardized 
residuals vs. fitted values, a qqnorm plot, and a plot of standardized residuals vs. time 
 
> rf1<- plot(m1) 
> qq1<- qqnorm(m1) 
> rt1<- plot(m1, resid(.) ~ as.numeric(time)|pop ) 

 
and, for convenience, we plot the three figures onto one page of a trellis graph 
 
> trellis.device(color=F) 
> print(rf1, position=c(0,0.5,0.5,1), more=T ) 
> print(qq1, position=c(0.5,0.5,1,1), more=T ) 
> print(rt1, position=c(0,0,1,0.5) ) 

 
The plots shown in Fig. 6 suggest that the distribution of the residuals is not that 

far away from normality, but indeed the scatter of residuals increases with time. 
Therefore, we will try to solve this problem by including a variance structure 

into the model using the weights  argument with a varIdent  forumla that allows for 
separate variance estimates for each time point. For convenience, we use update  
 
> m2<- update(m1, weights= varIdent(form= ~1|time) ) 

 
but get an error message saying that the model did not converge. We try some simpler 
random effects structures and find out that a model with random effects of plantid , but 
without gentyp , converges. This random effect structure is not the perfect choice, but 
we suppose that it should capture much of the variation among genotypes, too, and it 
allows accounting for correlation of the measurements. So we continue the analysis with 
the simpler random structure and calculate the model with separate variance estimates 
for each time point 
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Figure 6 Diagnostic plots of model m1. 
 
> m2<- lme(cdiam ~ flowers*time + ccodiam*time + po p*time, random= 
~flowers|plantid, data= Lolium, weights= varIdent(f orm= ~1|time) ) 

 
Then, we draw the diagnostic plots again 
 
> trellis.device(color=F)  
> rf2<- plot(m2) 
> qq2<- qqnorm(m2) 
> rt2<- plot(m2, resid(., type="p") ~ as.numeric(ti me)|pop ) 
> print(rf2, position=c(0,0.5,0.5,1), more=T ) 
> print(qq2, position=c(0.5,0.5,1,1), more=T ) 
> print(rt2, position=c(0,0,1,0.5) ) 

 
and see that the qqnorm plot suggests improved normality of residuals and that the 
variation of residuals does not increase with time anymore (Fig. 7). 
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Figure 7 Diagnostic plots of model m2. 
 
The last step towards a valid model structure will be to implement an auto-correlation 
structure of measurements made on the same plants. Until now we have included a 
random intercept and slope for plantid , but we have not taken into account that 
measurements made at consecutive time points may be more correlated than 
measurements further apart. 

To do so, we will define a first-order auto-correlation structure using the corAR1  
argument 
 
> m3<- update(m2, correlation= corAR1(form= ~1|plan tid) ) 

 
and test whether this model (m3) fits better than the model with unstructured correlation 
of residuals within plant individuals (m1 and m2). We can test this with anova  that 
performs a likelihood ratio tests comparing m2 and m3 
 
> anova(m2, m3) 
   Model df      AIC      BIC    logLik   Test  L.R atio p-value 
m2     1 30 12175.49 12362.40 -6057.746                         
m3     2 31 12037.02 12230.16 -5987.509 1 vs 2 140. 4734  <.0001 

 



and we see that the auto-correlation structure significantly improved the model fit. 
Now that we have built a random effects structure that suits the data, we can go 

ahead with testing the fixed effects. As REML estimates are not appropriate for fixed 
effects, we recalculate m3 using ML. 
 
> m3ML<- update(m3, method = "ML" ) 

 
and then we conduct Wald F tests of the fixed effects (when used on single lme  objects, 
anova  produces Wald F tests) 
 
> anova(m3ML) 
             numDF denDF  F-value p-value 
(Intercept)      1  2479   2.3222  0.1277 
flowers          1  2479 112.6673  <.0001 
time             2  2479   0.3921  0.6757 
ccodiam          1  2479 364.0616  <.0001 
pop              5  1274  29.2452  <.0001 
flowers:time     2  2479  14.0307  <.0001 
time:ccodiam     2  2479  35.8031  <.0001 
time:pop        10  2479  51.9991  <.0001 

 
and see that there is a significant relationship between clone diameter and number of 
flower stems. But in the summary table 
 
Linear mixed-effects model fit by maximum likelihoo d 
 Data: Lolium  
       AIC      BIC    logLik 
  11931.15 12124.48 -5934.574 
 
Random effects: 
 Formula: ~flowers | plantid 
 Structure: General positive-definite, Log-Cholesky  parametrization 
            StdDev     Corr   
(Intercept) 0.68560889 (Intr) 
flowers     0.01638808 -0.924 
Residual    0.54497651        
 
Correlation Structure: AR(1) 
 Formula: ~1 | plantid  
 Parameter estimate(s): 
      Phi  
0.4101318  
Variance function: 
 Structure: Different standard deviations per strat um 
 Formula: ~1 | time  
 Parameter estimates: 
      t1       t2       t3  
1.000000 1.840848 4.234451  
Fixed effects: cdiam ~ flowers * time + ccodiam * t ime + pop * time  
                   Value  Std.Error   DF    t-value  p-value 
(Intercept)     0.133666 0.04718863 2479   2.832596   0.0047 
flowers         0.011189 0.00133687 2479   8.369552   0.0000 
timet2          0.408767 0.05385807 2479   7.589713   0.0000 
timet3          0.799756 0.13454029 2479   5.944364   0.0000 
ccodiam        -0.121047 0.02246991 2479  -5.387053   0.0000 
popSisu        -0.168501 0.06441466 1274  -2.615874   0.0090 
popBaca        -0.178257 0.07849019 1274  -2.271074   0.0233 
popBile        -0.098700 0.07735102 1274  -1.276002   0.2022 
popDeru        -0.493595 0.07657919 1274  -6.445550   0.0000 
popVeyo        -0.775559 0.07781317 1274  -9.966940   0.0000 



flowers:timet2  0.001864 0.00193511 2479   0.963024   0.3356 
flowers:timet3  0.020360 0.00466267 2479   4.366502   0.0000 
timet2:ccodiam -0.083359 0.02324034 2479  -3.586823   0.0003 
timet3:ccodiam -0.022484 0.03061635 2479  -0.734371   0.4628 
timet2:popSisu -0.226873 0.07524390 2479  -3.015171   0.0026 
timet3:popSisu -0.040378 0.18504946 2479  -0.218203   0.8273 
timet2:popBaca  0.040763 0.09204452 2479   0.442856   0.6579 
timet3:popBaca  0.429529 0.22690483 2479   1.892990   0.0585 
timet2:popBile -0.697108 0.09545838 2479  -7.302747   0.0000 
timet3:popBile -2.219989 0.22682941 2479  -9.787043   0.0000 
timet2:popDeru -1.581617 0.09756315 2479 -16.211212   0.0000 
timet3:popDeru -3.453770 0.23771008 2479 -14.529338   0.0000 
timet2:popVeyo -0.716729 0.09465597 2479  -7.571938   0.0000 
timet3:popVeyo -1.928666 0.23984115 2479  -8.041431   0.0000 

 
the estimates for flowers  and flowers:time  show that this relationship is positive. 
Thus, we conclude that there is co-occurrence of the two reproduction strategies instead 
of trade-off as hypothesized. 
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