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I ntroduction

In this worked example, we present a two compoateralized Linear Mixed Model
(GLMM) modelling a counting response with exceetiingnany zeros. The emphasis
will be on model construction and validation. Tor dunowledge only ADMB (if the
likelihood functions are coded directly) and thelMIX procedure in SAS allows for

a flexible modelling of two-component GLMMs, so tsiatistical analysis will be done
in SAS V9.2. However, the analysis did not procasdmoothly as we hoped, and we
will comment on some of the problems we encountered

Data example

The evergreen tredex aquifolium reaches its north-eastern distribution border in
Denmark, where the natural population is preseruitend and Funen but not on the
eastern islands. However, recent field observatiomge revealed presence Ibéx
aquifoliumin most eastern parts of Denmark. This range esiparseems to be related
to climate change and land use. Skou et al. (28ifdied the interplay between the
range expansion and the insect herbiveingtomyza ilicigDiptera: Agromycidae) in a
transplant experiment, in particular the hypothesisenemy release during range
expansion oflex aquifolium.In that study several response variables wereaeld and
analysed, but in this example we will only discaosg of the counting responses, which
required special attention in the statistical asialylue to exceedingly many zeros. The
dataset that we analyse here contains the variabtesn in Table 1.

The transplants were of the genotypkie Angelor Madame Briotand were
planted at 1 and 10 meter distances from a hostitrehe studied populations with
natural genotype. Thus, the variablgenotypeanddistanceare connected in the sense
that genotype=naturalimplies distance=0and vice versa. The continuous variable
popstandards a proxy for the size of the 18 studied populatiovhich are labelled by
the variabldocation The populations are classified by the variatiéessaccording to
being a natural population in Jutlandafural)), an escape population in Jutland
(escape)] or an escape population on the eastern isladb#@e €scapeX Since the



proxy popstandards constant within each population, it is necessanyselocation as

a random effect, if we want to study the effecttlo¢ population size. From each
population several leaves from one host tree antb@0 transplants were collected,
and the number of feeding scars from the insediilv@re was counted. The individual
trees within the populations are identified by treiable label, which is a random
effect nested in the random efféatation In total 3503 leaves from 306 trees from 18
locations were investigated, out of which 420 lsafrem 50 trees from 17 locations
had feeding scars. The response varigblscontains the counts from the individual
leaves. The marginal distribution etars has exceedingly many zeros (Fig. 1), and
hence it is not possible to model this neither lwat transformation nor by a counting
distribution including a dispersion parameter like negative binomial.

Table 1 Names and characteristics of the variables ird#iaset.

Variable Levels Effect
genotype 3 (natural, Blue Angel, Madame Fixed

Briot)
distance 3(0, 1, 10) Fixed
class 3 (naturalJ, escapeld, escapeZ) Fixed
popstandard Continuous and positive Fixed
location 18 (Bjerringbro, ..., Stenholt) Random
label Up to 21 trees within each Nested random

location
scars Counts (0, 1, 2, ...) Response

80

60

3 404
20
O I e I I I T
0 25 50 75 100

Number of feeding scars
Figure 1 Histogram of the response variabtars

Two component GLMM

In Skou et al. (2011), the number of feeding se#s modelled by a two component
GLMM. The first component is a binomial GLMM thatoatels the number of leaves
with a strictly positive number of feeding scarsiagt the number of leaves without
feeding scars. The second component is a Lineaed/Model (LMM) that models the
logarithm of the number of feeding scars if scaerevpresent. These two GLMMs
make sense by themselves, one should just keepnid that the normal component
should be interpreted conditionally on the binomaamponent. However, if the link
functions for the two components are chosen sucit they have the same
interpretation, then it makes sense to test thethgsis that the two components share



the same parameters. If this hypothesis is nottege then the data is summarized by a
single set of parameters and the associated ietatfun. In our case, we will use a log
link for the binomial GLMM in conjunction with thelentity link for the LMM on the
log-transformed positive counts. In the affirmatoaese, the interpretation will be given
in terms of joint ratios of the risk of finding f@i&g scars and of the ratio between the
numbers of scars when present.

To specify the two components we make two new é#&tas-or the binomial
component the variablg counts the number of leaves wigbars>0and the variable
total counts the total number of leaves investigated dach tree. For the normal
component we only include the observations wstars>0 for which we define
y=log(scars) The initial models in both components are givgn am analysis of
covariance design including the factorial effectt genotype, distance, class,
genotype*distanceand the associated interactions with the continuoasariate
popstandard.

Validation of binomial component

The Pearson chi-square statistic for overdispersidhe conditional distribution given
the predicted random effects has a ratio of 0.35eadegrees of freedom. Thus, there is
no indication of non-modelled overdispersion. Imlearto validate the log link and
linearity against the continuous covarigepstandardwe investigate the cumulative
residuals as proposed by Lin et al. (2002). Thishoa is not implemented in PROC
GLIMMIX, but it is available in PROC GENMOD. Howeresince PROC GENMOD
didn’t converge when the interactigenotype*distance*popstandardas included in
the model, we were forced to exclude this termhim talidation step. Figure 2 shows
the observed cumulative residuals. If the modefaied, then the observed cumulative
residuals should be similar to the simulations ftbemodel.

Although the model fit could be better we will nowalidate the model. The
associated Kolmogorov-Smirnov goodness-of-fit temsed on 1000 simulations give
p=0.062 for the log link and p=0.140 for linearity.

To investigate the distribution of the random effewe fit the GLMM with
PROC GLIMMIX using the Laplace approximation. Doitigs we get predictions for
the random effects in terms of maximum a postemstimates. These estimates are
displayed in Fig. 3. Although we do not expect thetots to have precise diagnostic
power we see that the random effectiohtionare close to a normal distribution.

Validation of the normal component

Figure 4 shows diagnostic plots of the normal congmd of the model. Neither of these
plots gives raise to concern. In the residual plotslevels of the variabldistancehave
been coded (blue circles=0, green crosses=1, tesgee+10), and we see that there is no
indication of variance heterogeneity, say, agdimstvariable.

The normal quantile plot in Fig. 4 provides an epdm where the normal
distribution is rejected by the standard goodnédds-tests (Shapiro-Wilks p=0.0061,
Kolmogorov-Smirnov p<0.0100, Cramer-von-Mises p88®, Anderson-Darling
p<0.0050) despite our clear decision not to inaakdhe model.



Checking Link Function Checking Functional Form for Popstandard
Observed Path and First 20 Simulated Paths
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Figure 2 Cumulative residuals against the linear prediatat against the continuous covariate
popstandardogether with 20 simulations from the model.
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Figure 3 Normal quantile plots of a posteriori estimateshaf levels of the random effects of location
and label.

For the normal component the variance componenioication estimates to
zero. Since there is no random effeciafation, we only display the normal quantile
plot for the Best Linear Unbiased Predictions (B)W# label (Fig. 5).

There is a single outlier in this plot, namely tiast tree from the population in
Hornbysandsituated on Zealand. From this tree, 116 leave® we/estigated and 38
leaves had feeding scars. If this tree is removeth fthe dataset, then the variance
components for the normal component both estinateeto. In this worked example,
we have chosen to remove this particular tree ftloenstatistical analysis and proceed
with a normal component without random effects.



Residual plot

Studentized conditional residual plot
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Figure 4 Some diagnostic plots of the normal model compbmearginal residual plot, conditional residual
plot, studentized conditional residual plot, normaéntile plot of conditional residuals.
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Figure 5 Normal quantile plot of Best Linear Unbiased Pcédns for the random effect &tbel.




Building the two component model

To combine the binomial and the normal componenmtis @& joint model, we stack the two
datasets on top of each other and adjoin four renles(response, link, binomial, normal)
that take the valugdinomial, log, 1, O¥or the binomial component arfdormal, identity, O,
1) for the normal component (Table 2).

Table 2 Additional variables for the two component model.

Variable Levels Effect

response 2 (binomial, normal) Fixed + Selection of distribution
link 2 (log, identity) Selection of link function
binomial Continuous (0 or 1) Random

normal Continuous (0 or 1) Random

We have also added a new variable cafjddwvhich simply is the concatenation of the
variablesgenotypeanddistance.This variable is encoding the interactigenotype*distance,
and it has 5 levels. Below we show a print outhaf tlata from Stokkebro. Here 8 of the 47
leaves from the host plant had feeding scars (sseraation 29), and none of the leaves from
the 12 transplants had feeding scars (see obsamva@0 to 41). The logarithms of the 8
strictly positive counts of feeding scars are tsteobservation 21 to 28.
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21 1 natural Stokkebr escapeJ 0 76 14 natural*0 nornal identity 1 1 0 2.63906
22 1 natural Stokkebr escapel 0 76 10 natural*0 nornmal identity 1 1 0 2.30259
23 1 natural Stokkebr escapeJ 0 76 6 natural*0 normal identity 1 1 0 1.79176
24 1 natural Stokkebr escapeJ 0 76 5 natural *0 nornmal identity 1 1 0 1.60944
25 1 natural Stokkebr escapeJ 0 76 19 natural*0 nornal identity 1 1 0 2.94444
26 1 natural Stokkebr escapeJ 0 76 6 natural*0 normal identity 1 1 0 1.79176
27 1 natural Stokkebr escapeJ 0 76 10 natural*0 nornal identity 1 1 0 2.30259
28 1 natural Stokkebr escapeJ 0 76 18 natural*0 nornmal identity 1 1 0 2.89037
29 1 natural Stokkebr escapeJ 0 76 0 natural*0 binomal log 47 0 1 8.00000
30 2 nb St okkebr escapeJ 10 76 0 nb*10 bi nom al | og 9 0 1 0.00000
31 3 nb St okkebr escapeJ 10 76 0 nb*10 bi nom al | og 6 0 1 0.00000
32 4 nb St okkebr escapeJ 1 76 0 nb*1 bi nom al | og 4 0 1 0.00000
33 5 ba St okkebr escapeJ 1 76 0 ba*l bi nom al | og 4 0 1 0.00000
34 6 ba St okkebr escapeJ 10 76 0 ba*10 bi nom al | og 10 0 1 0.00000
35 7 ba St okkebr escapeJ 10 76 0 ba*10 bi nom al | og 4 0 1 0.00000
36 8 ba St okkebr escapeJ 1 76 0 ba*l bi nom al | og 6 0 1 0.00000
37 9 ba St okkebr escapeJ 1 76 0 ba*l bi nom al | og 7 0 1 0.00000
38 10 ba St okkebr escapeJ 1 76 0 ba*l bi nom al | og 4 0 1 0.00000
39 11 ba St okkebr escapeJ 10 76 0 ba*10 bi nom al | og 8 0 1 0.00000
40 12 ba St okkebr escapeJ 10 76 0 ba*10 bi nom al | og 2 0 1 0.00000
41 13 ba St okkebr escapeJ 10 76 0 ba*10 binom al 1og 7 0 1 0.00000

The fixed effects from the two components are ugetthe joint model together with
their interaction withresponseand together with the main effect relsponseDoing this, the
fixed effects vary freely in the two componentdhe initial model. In order to have separate
variance components on the binomial and the noresgonses, we use the dummy variables
binomial andnormal. For the binomial component we ulsdel nested inlocation For the
normal component we have no random effects sineg thariance components were
estimated at zero. PROC GLIMMIX allows us to selbet response distribution and the link



function separately for each observation. Thisasedusing the variablagsponseand link,
respectively. The syntax looks as follows:

proc glinmm x data=scars nethod=l apl ace
cl ass genotype distance class |ocation |abel response
nmodel y/total = response
cl ass genotype di stance genotype*di stance
popst andard cl ass*popst andard genot ype*popst andard
di st ance*popst andard genot ype*di st ance* popst andard
[**]
response*cl ass response*genot ype
response*di st ance response*genot ype*di st ance
response*popst andard response*cl ass*popst andar d
response*genot ype*popst andard response*di st ance* popst andard
response*genot ype*di st ance* popst andard
/ solution dist=byobs(response) |ink=byobs(!link);
random bi nonmi al / subject=location nofullz
random bi nonmi al / subject=l abel *I ocation nofullz
run;

If the initial model also included random effects the normal component, then we
would add corresponding RANDOM statements replatiregdummy variabldinomial by
the dummy variableaormal.

M ode reduction

The statistical analysis continues by backward cedn of the fixed effects. PROC
GLIMMIX provides Wald F-tests for the fixed effecsnd comparing the fitted likelihood we
may compute likelihood ratio tests manually. Alltbis is quite time consuming in SAS since
the backward model reduction is not automated.heamore, we also encountered severe
convergence problems. These problems were partBrcome tweaking the numerical
optimization via the NLOPTIONS statement, and biyngshe full-rank codinggd of the
interactiongenotype*distanc€Cheng et al. 2010). However, it was not posstbleestart
PROC GLIMMIX at the variance components found ia grevious iteration. Doing this in a
PARMS statement almost consistently resulted irether message:

ERROR: Val ues given in PARMS statenent are not feasible

Mathematically, this does not make sense sinckvays should be possible to restart
a numerical optimization at the present estimatee impossibility to restart the numerical
optimization is most unfortunate since it makes ¢benparison of the likelihoods prone to
instabilities due to the numerical optimization. eTlsteps in the model reduction are
summarized below:

Step Reducti on p(Wald F) -2logL df test df LR test p(LR)

1 Ful' | rodel 481. 52 27 . . .

2 response*cl ass*popst andard 0.1948 1484. 96 25 2 3.44619 0.17851
3 response*gd* popst andar d 0. 2852 1492. 03 22 3 7.07161 0. 06965
4 response*popst andard 0. 0783 1493. 74 20 2 1. 70535 0. 42627
5 response*cl ass 0.2120 1497. 48 19 1 3. 74561 0. 05295
6 response*genot ype*di st ance ?? 1500. 44 18 1 2.95072 0. 08584
7 response*genot ype 0. 7698 1500. 18 17 1 -0. 25571 1. 00000
8 genot ype*di st ance* popst andar d ?? 1501. 55 16 1 1. 36975 0.24186
9 genot ype* popst andar d 0. 3759 1503. 34 15 1 1. 78804 0.18116

The fixed effects in the final model are listeddwel



Effect Num Df Den Df WaldF p(WaldF)

response 370 471.49 <0.0001
class 370 4.53 0.0114
genotype 370 14.28 0.0002
distance 370 16.15 <0.0001

370 4.64 0.0318
370 18.83 <0.0001
370 36.98 <0.0001
370 14.23 <0.0001
370 3.77 <0.0001

genotype*distance
response*distance
popstandard
class*popstandard
distance*popstandard

NNRPNRRRNR

Since the scales of the binomial and the normal pmorants are incomparable
(probabilities against log counts), we a priori esjed that the main effect dfsponsevould
be significant. Beside this, it is interesting thlé variableresponseonly appears in the
interaction withdistance.This means that except for the main effectlistanceall the other
effects may be assumed to have the same influentieeoratio of the probabilities of finding
feeding scars and of numbers of feeding scars \Wiese are non-zero.

Variance components

The final model contains variance components onhinemial part that models the log-
probability for having some feeding scars. Theneates for the variance components are:

Effect Variance estimate Standard error

location 0.4670 0.2327
label 0.8527 0.2287

In particular, we see that the variation betweaedris almost twice as big as the
variation between locations.

Model predictions

As an example of the model predictions, the folloyviable displays the estimated ratios
between the three population types. These ratmdoand by exponentiation of the pairwise
differences of the least squares means.

Corrected for population size  Comparison Estimated ratio  95% confidenceinterval
Yes escapeJ vs. escaped.41 0.24 ; 0.69

escaped vs. naturalJL.34 1.01;1.77

escapeZ vs naturalJ3.26 1.93;5.50
No escapeJ vs. escapea.47 1.14;1.90

escaped vs. naturald).95 0.74;1.21

escapeZ vs naturalJ0.64 0.50;0.84

The ratios are markedly different depending on Wwhethe estimates are corrected for
the population sizes or not. This is due to a latiference between the population sizes in
the three population types.

Class N Mean population size  Min; Max
escapeZ 6 32 5.00; 114
escapel 5 61 5.00; 200
naturalJ 6 245 6.25 ; 500




If we ignore the random effects in the binomial gament, then it is also possible to
compute estimates for mean number of feeding sBasall that the strictly positive counts
are modelled by a normal distribution on the logpanic scale. If this distribution has mean p
and variances?, then the properties of the log-normal distribatigives that mean of the
strictly positive counts equalsxp(u+s*/2). Furthermore, suppose that the logarithm of the
probability for strictly positive counts equajsThen the logarithm of the meanXfwhereX
is the number of feeding scars, equals

log(mean(X)) = log(P(X>0)*mean(X|X>0)) = log(P(X>P)log(mean(X|X>0)) =t+u+ /2.

In this equationf and p are the linear predictors in the binomial #me normal
components, respectively, anflis the residual variance in the normal componEstimates
and standard error fdi+p and fore?/2 are easily assessable. If we ignore the correlation
between the two estimates, then Pythagoras themrayrbe invoked to compute the standard
error for&+p+o’/2. As an example, we find the following estimaaesl confidence intervals
for the mean number of feeding scars in a trangptaa atdistance=1mn a population with
popstandard=50

Class Mean number of feeding scars  95% confidence interval
escapeZ 0.51 0.25;1.04
escapeJ 0.56 0.26 ; 1.20
naturalJ 0.47 0.21;1.05

These means and the ratios reported above all gietvthe numbers of feeding scars
are not markedly different in the three populatigmes. Thus, there is no support in favour of
the hypothesis of enemy release. This conclusi@omsistent with the findings of Skou et al.
(2011), who as mentioned above also analysed dentbea responses.
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