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I ntroduction

In this worked example we model the invasion prdighof an invasive plant species,
giant hogweedHeracleum mantegazzianum), based on field surveys of 20 study areas
of 1 km2 which were situated in areas of Germanygtmiovaded by this species (see
Thiele et al. 2008 for more details). The statadt@nalyses will be conducted in R (R
Development Core Team 2011) using the packbages (version 0.999375-41; Bates et
al. 2011),gof (0.7-6; Holst 2011)glmmML (0.81-8; Brostrom and Holmberg 2011),
lattice (0.19-17; Sarkar 2008), amduMIn (1.0.0; Barton 2011).

Field study and dataset

Data collection

The presence or absence of giant hogweed was eztdod a total of 343 patches of
suitable habitat nested in the 20 study areas. Memyethe patches were not
homogenous regarding habitat suitability and hystéx patch could comprise both
open, herbaceous habitat (optimal habitat) and-domeinated habitat (suboptimal
habitat). Further, an analysis of historical aen@ges showed that habitat history, e.g.
trajectories from agricultural grassland to fallamd, could vary within patches. Hence,
the patches were divided into subpatches of honmgehabitat suitability and history.
These subpatches were the entities of the datgsasale. the rows in the data table.

While the division of patches led to a nicely largample size of 1559
subpatches, we have to consider that observatiaae nim subpatches that are grouped
together in one contiguous patch will not be stigadly independent. Further, the
observations made in one study area may be mor#asito each other than to
observations made in other study areas. For instame could imagine that the level of
giant hogweed invasion varied among study areas, @due to longer or shorter
residence times, so that patches or subpatcheserstody area would have a higher
probability of being invaded regardless of the emvnental variables that we will use
to predict invasion probability. Thus, we have tievels of (potential) spatial
dependence: study areas and patches nested witltp areas. This means that we
should conduct a mixed effects model analysis ithetides random effects of study
areas and patches.



We will use the presence or absence of giant hogweesubpatches as the
dependent variable. Further, there are 9 poteimtiad predictor variables in our dataset
(3 categorical, 6 continuous) and, finally, thedam effect variables study area and
patch (Table 1).

Table 1 Variables used in data analysis.

Variable name Description

Dependent variable

Hogweed Presence-absence of giant hogweed in shbpat

Categorical predictors

Habitat Habitat suitability (suboptimal, sub; opéinopt)

Landuse Land use of subpatch, either fallow (‘fel@r maintenance
mowing, ca. once a year (‘'mowing’)

Terrain Type of terrain, 'valley', 'slope’, 'hilltemr ‘plateau’

Continuous predictors

Proximity Proximity index of patch (McGarigal & Mies 1995)

Roaddist Minimum distance between subpatch edgehendosest road

Riverdist Minimum distance between subpatch edgetlae closest brook
or river

Shapei Shape index of subpatch

Neighbor Average cover of giant hogweed in adjasebpatches

Parea Subpatch area

Random variables

Starea Study area (n = 20)

Patch Main habitat patch (n = 343), often compgsaveral
subpatches

Checking the dataset

Before we start with the analysis, we load the datée into the R workspace and take a
look at its structure

> str(Heracleum)

‘data.frame”: 1559 obs. of 12 variables:

$ starea : Factor w/ 20 levels "att","aus","bre" 1111111111
11

$ patch : Factor w/ 343 levels "attpl","attp10" 0 184 177 179
193 193

$ hogweed :int 0011001001...

$ habitat : Factor w/ 2 levels "opt","sub™: 22 1 1111211..
$ landuse : Factor w/ 2 levels "fallow","mowing": 111111111
1..

$ terrain : Factor w/ 4 levels "hilltop","plateau "..3344443
33

$ proximity: int 2402 175 175 175 175 24 586 58 6 ...

$ roaddist : int 44 207 86 92 173 181 173 105 138 2.

$ riverdist: int 9186 6 17 12 10 12 33 28 18 ...

$shapei :num 1.441.48 1.51 1.56 1.19 1.33 1. 131.261.211.26
'$ neighbor : num 000.730.80.670.21100.2 0 06 ...

$ parea :int 656 3427 5623 2678 1699 3115 124 4920 93 1540 ...

The variablehogweed is coded as O for absence and 1 for presenceaot gi
hogweed. The categorical predictor varialiesitat andlanduse have two levels,



while terrain  has four. Some of the continuous predictor vagsldre marked as
integers ('int’) because their values were rouridexro decimal places.

Categorical predictors

We arrange the sequences of levels of the catefjariziables so that the first level,

which will not be included in the model as a dumvayiable, would make a reasonable
baseline that facilitates interpretation. Here, mwake those levels the baseline which
might be associated with lower invasion probabil{suboptimal habitat, landuse

mowing) or which are 'endpoints of a gradient'l{tyl in comparison to plateau, slope
and valley).

> Heracleum$habitat<- factor(Heracleum$habitat, lev els=c("sub", "opt")
> Heracleum$landuse<- factor(Heracleum$landuse, lev els=c("mowing",
"fallow") )

> Heracleum$terrain<- factor(Heracleum$terrain, lev els=c("hilltop",

"plateau”, "slope", "valley") )

Continuous predictors
The continuous variables are non-negative and aaight-skew distribution (Fig. 1).
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Figure 1 Histograms of fixed continuous predictor variahlesd in GLMM analysis.



The distribution of the variabl&verdist has got two peaks, one at zero and one at
1000. A value of zero means that the patch is adjao a river or brook, while 1000
was assigned to patches in study areas withoutiaeng or brooks.

In principle, skewed and bimodal distributions oggictor variables are not
problematic for linear modelling. But sometimesehmity and convergence of the model
may be improved by transformations that make tharidutions of the predictor
variables more symmetric and that remove bimoeslitirhis turns out to be the case
here. If we do an analysis with the original préalis, then a z-transformation is needed
to make the GLMM converge. However, a plot of thenalative residuals against
neighbor indicates that this variable presumably shoulddggetfansformed to be used
in the linear model. In order to simplify the faNmg interpretation we prefer to log-
transform all the continuous predictor variables.

The predictor variables are non-negative, but sithee variablesproximity
roaddist , riverdist andneighbor contain many zeros, the log-transformation can'’t
be applied directly on these variables. A solutiorthis problem is to add a positive
number to the variables before taking the logarithvie will use this forproximity
roaddist ~andriverdist , i.e. we will use the variablesy(1+proximity) etc. in the
analysis. Since the choice of the positive congtiagete 1, is arbitrary, this solution is
somewhat ad hoc.

A zero for the variableeighbor means that giant hogweed hasn’t been found in
any of the adjacent subpatches, so it makes sengesé¢ these observations special
attention. One way to do this is to use a sepgratameter for the observations with
neighbor =0 and to use a linear slope againgtheighbor) for the observations with
neighbor >0. Mathematically this may be done using two variakideo.neighbor
and log.neighbor defined such that zero.neighbor =0 and
log.neighbor  =log(neighbor) if neighbor >0, and zero.neighbor =1 and
log.neighbor =0 if neighbor =0. In this way the slope againsiero.neighbor
quantifies the effect when there is no giant hogiveethe adjacent patches, and the
slope againskg.neighbor quantifies the effect when there is giant hogweethe
adjacent patches. The same techniqgue may be udellet@are of the value '1000' for
the variablaiverdist . This value isn’t a distance, but means that theeeno rivers or
brooks in the study area. Thus, we define the Wohg variables in R,

> attach(Heracleum)

> log.proximity <- log(1+proximity)

> log.roaddist <- log(1+roaddist)

> log.riverdist <- log(1+riverdist)*(riverdist<10 00)
> large.riverdist <- as.numeric(riverdist==1000)

> log.shapei  <- log(shapei)

> zero.neighbor <- as.numeric(neighbor==0)

> log.neighbor  <- log((neighbor==0)+neighbor)

> log.parea <- log(parea)

> detach(Heracleum)

Pre-analyses

Next we would like to get a first impression of awbnships between the predictor
variables andhogweed using box-and-whisker plots, in case of continueaisables, or
contingency tables, in case of categorical predsctéor instance, let us look at the
relationship between presence-absence of giant éedvand the distance from the
closest road by drawingoavplot

> library(lattice)



> bwplot(hogweed ~ log10(1+roaddist)|starea, Heracl eum, scales=

list(y=list(labels=c("absence", "presence"))) )
which is shown in Fig. 2. We have plotted one pdbeleach study area to get an
impression of variation of this relationship amatgdy areas. Invaded subpatches seem

to have a tendency to be closer to roads than adew ones, but the opposite pattern
can be observed in a few study areas (e.g. 'eng’).
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Figure 2 Lattice box-and-whisker plot of giant hogweed prese-absence against distance of subpatches
from the closest road. Note that distances wergdegansformed.

To investigate the relationship of habitat (or othategorical predictors) with
hogweed presence-absence we can cross-tabuldtectvariables

> with(Heracleum, table(hogweed, habitat) )
habitat

hogweed sub opt
0915 311
1194 139



and see that optimal habitats are invaded at aehigite than suboptimal ones. A chi-
square test

> chisg.test(with(Heracleum, table(hogweed, habitat )))
Pearson's Chi-squared test with Yates' cont inuity correction

data: with(Heracleum, table(hogweed, habitat))
X-squared = 33.4038, df = 1, p-value = 7.488e-09

indicates that this simple relationship is sigrafit

Choosing the model setup

As our dependent variable is binary, we will use bimomial distribution for modelling.
We will first use the logit link, but we will alstoy other link functions.

Now we need to find a suitable method for estintatine model. Penalized
Quasi-Likelihood (PQL) is fast, but not suitable bonary data. So we have to choose a
somewhat more robust technique, at the cost ofedlongmputation time, and decide to
use Laplace approximation which is the fasted veditimation method here.

The significance of fixed effects can be testechWitald chi? or with likelihood
ratio (LR) chi?2 tests. Random effects should betetbswith LR tests (although
significance testing of random effects is not oaimygoal here).

Model building

Strategy

As we have many predictor variables, we would tikesee if we really need all of them
for modelling hogweed invasion. A more parsimonicubset of variables would be
desirable regarding both computation and interpmetaf the model. Thus, we need to
decide on a criterion for comparing different madéior our dataset — binary data (i.e.
no over-/underdispersion), and large sample sixkaike's Information Criterion (AIC)

is a good measure for comparing models that ate flie same dataset. Our strategy for
finding the final model will be 'best subset' juddey AIC.

M aximum model

Finding the best model is a challenge with thisaget because it is not feasible to fit a
full model that contains all fixed effects, intetiaas of fixed effects, random intercepts
and random slopes. The algorithm would not conveidais, we need to define a
'maximum model' which is a bit slimmer than the ptete model, as starting point of
the model building process.

We decide to use a fairly simple structure of randeffects: (1|starea/ patch),
i.e. a random intercept for study areas and a manohbercept for patches nested in
study areas. Regarding fixed effects, we firstudel all main effects into the model and
then add interactions of fixed effects, one aiaetiand assess their significance using
Wald tests reported in the 'summary' table providgdmer . In this way, we find a
maximum model that contains the 11 main effectsl.(i@rms modelling the '1000s' in
riverdist and the zeros ineighbor ), 5 interactions of the fixed predictors, and the
random-effect structure mentioned above.

We calculate the maximum model

> library(Ime4)



> Her.max<- Imer(hogweed ~ habitat + landuse + terr
+ log.roaddist + large.riverdist + log.riverdist +
zero.neighbor + log.neighbor + log.parea + habitat:
landuse:terrain + log.roaddist:terrain + log.shapei
zero.neighbor:landuse + (1|starea/patch), Heracleum

and get the following results:
> print(Her.max)

Generalized linear mixed model fit by the Laplace a
Formula: hogweed ~ habitat + landuse + terrain + lo
log.roaddist +  large.riverdist + log.riverdist
+zero.neighbor +  log.neighbor + log.parea + ha
landuse:terrain +  log.roaddist:terrain + log.s
zero.neighbor:landuse + (1 | starea/patch)

Data: Heracleum
AIC BIC logLik deviance
904 1049 -425 850
Random effects:
Groups Name Variance Std.Dev.
patch:starea (Intercept) 0.016520 0.12853
starea (Intercept) 0.060452 0.24587
Number of obs: 1559, groups: patch:starea, 343; sta

Fixed effects:
Estimate Std. Error z

(Intercept) 0.85739 1.13875
habitatopt 0.19117 0.56539
landusefallow -0.63136 0.82697 -
terrainplateau -2.24366 1.39434 -
terrainslope -2.14160 0.80846 -
terrainvalley -2.27919 0.80422 -
log.proximity 0.10050 0.05936
log.roaddist -0.80990 0.23455 -
large.riverdist -2.55479 0.48845 -
log.riverdist -0.46783 0.10893 -
log.shapei -0.05208 0.62560 -
zero.neighbor -3.12774 0.53830 -
log.neighbor 0.56928 0.06057
log.parea 0.38186 0.08281

habitatopt:terrainplateau -0.18805 0.81440 -
habitatopt:terrainslope 1.76891 0.69117
habitatopt:terrainvalley = 1.03474 0.63225
landusefallow:terrainplateau 1.91356 1.39040
landusefallow:terrainslope 0.31916 0.77037
landusefallow:terrainvalley 1.07691 0.72000
terrainplateau:log.roaddist 0.61624 0.29001
terrainslope:log.roaddist  0.60987 0.26005
terrainvalley:log.roaddist 0.63277 0.24391
landusefallow:log.shapei  0.61963 0.68751
landusefallow:zero.neighbor -1.20376 0.62371 -

Signif. codes: 0 ***' 0.001 ** 0.01 *" 0.05 ‘.

[correlation matrix of fixed effects omitted]

ain + log.proximity
log.shapei +
terrain +

:landuse +

, family=binomial )

pproximation
g.proximity +

+ log.shapei +
bitat:terrain +
hapei:landuse +

rea, 20

value Pr(>|z|)
0.753 0.451495
0.338 0.735271
0.763 0.445185
1.609 0.107589
2.649 0.008073 **
2.834 0.004596 **
1.693 0.090424 .
3.453 0.000554 ***
5.230 1.69e-07 ***
4.295 1.75e-05 ***
0.083 0.933656
5.810 6.23e-09 ***
9.399 < 2e-16 ***
4.611 4.00e-06 ***
0.231 0.817388
2.559 0.010488 *
1.637 0.101716
1.376 0.168739
0.414 0.678659
1.496 0.134731
2.125 0.033598 *
2.345 0.019015 *
2.594 0.009479 **
0.901 0.367446
1.930 0.053606 .

0171

The logit link is a common standard for binary misdéut other link functions
might be more suitable for our dataset. So we tatieuhe maximum model with probit
and complementary log-log link and check the redidigviance:



> Her.max.probit<- update(Her.max, family=binomial( link = "probit") )
> Her.max.cloglog<- update(Her.max, family=binomial (link = "cloglog™)

)

We find that the residual deviance is 849 (AIC 9G&h probit and 862 (AIC
916) with complementary log-log-link as compared3& (AIC 904) with logit link.
Thus, the probit model performs slightly betternthibe logit, but as the difference is
small we will keep the logit link for further analg.

Diagnostics of the maximum model

We check linearity of the relationship between hegd/ and fixed predictor variables
using a GLM that includes all fixed effects of theximum model and theumres
function of thegof package which calculates cumulative residualsrediafter values
of the predictors:

> Her.glm <- gim(hogweed ~ habitat + landuse + terr ain + log.proximity
+ log.roaddist + large.riverdist + log.riverdist + log.shapei +
zero.neighbor + log.neighbor + log.parea + habitat: terrain +
landuse:terrain + log.roaddist:terrain + log.shapei :landuse +

zero.neighbor:landuse, Heracleum, family=binomial )
>

> library(gof)
> g0 <- cumres(Her.glm)

> x11(); par(mfrow=c(2,2)); plot(g0,idx=1:4)

[]

The resulting Fig. 3 shows that the observed cutivelaesiduals in general are
within the typical range of the theoretical cumiatresiduals, i.e. that the model is
valid. The only exceptions are the parametersilagdist and log.neighbor, where the
Cramer-von-Mises goodness-of-fit tests indicate esoproblems. Comparing the
cumulative residuals with Figure 2a and 2c in Lirak (2002), we see that a possible
solution might be to apply an additional log-trawsfation onlog.riverdist and to
add a cubic term inog.neighbor . But since the interpretation of such terms is
difficult, we will not extend the model any further

Significance tests of random effects

Next, we will test the significance of the randoffeets. This is not the most important
iIssue here, because the random effects are nuisanedbles that we include into the
model to account for spatial independence in otdeaget valid estimates and p-values
for the fixed effects. However, in case the randeffects were far from being
significant, we might consider dropping them frdme analysis and conducting a GLM.

We use a LR test to assess the significance ofahdom intercept of patch
nested in study area. That is, we compare a reduoel@! without random intercept for
patch

> Her.red.patch<- Imer(hogweed ~ habitat + landuse + terrain +
log.proximity + log.roaddist + large.riverdist + lo g.riverdist +
log.shapei + zero.neighbor + log.neighbor + log.par ea+
habitat:terrain + landuse:terrain + log.roaddist:te rrain +
log.shapei:landuse + zero.neighbor:landuse + (1|sta rea), Heracleum,

family=binomial )
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Figure 3 Cumulative residuals ordered after continuous iptedvariables wittcumres in packagegof.
Calculations are based on a GLM with same fixedat$f as the maximum GLMM.

with the maximum model using theova function.
> anova(Her.max, Her.red.patch)
and the resulting analysis of deviance table

[]

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
Her.red.patch 26 902.04 1041.2 -425.02
Her.max 27 904.01 1048.5 -425.010.028 1 0.8672
Signif. codes: 0 ***' 0.001 ** 0.01 *" 0.05 *. 011

shows that the random intercept of patch doesmptave the model fit. Thus, we will
continue the analysis without this random effect.

The random intercept of study area cannot be tesidd imer because the
reduced model would not contain any random effe@sjt would be a GLM, which is
not provided there. But we can ugemmMLto calculate LR and parametric bootstrap test
for starea

> library(gimmML)

> Her.gimmML<- gimmML(hogweed ~ habitat + landuse + terrain +
log.proximity + log.roaddist + large.riverdist + lo g.riverdist +
log.shapei + zero.neighbor + log.neighbor + log.par ea+

habitat:terrain + landuse:terrain + log.roaddist:te rrain +



log.shapei:landuse + zero.neighbor:landuse, family= binomial,
Heracleum, cluster=starea, boot=2000 )

Computing this model, particularly the bootstrakets a while although we only
use the recommended minimum of 2000 bootstrap samphe result

> summary(Her.glmmML)

(-]
LR p-value for H_0: sigma = 0: 0.1118

Bootstrap p-value for H_0: sigma = 0: 0.715 (200 0)

suggests that the random variation of interceptsranstudy areas is not significantly
different from zero. Nevertheless, we will keefarea in our model because its
estimated standard deviation is not too low arglart of our survey design.

We recalculate the maximum model with simplifieddam effects structure

> Her.max.2<- Imer(hogweed ~ habitat + landuse + te rrain +
log.proximity + log.roaddist + large.riverdist + lo g.riverdist +
log.shapei + zero.neighbor + log.neighbor + log.par ea+
habitat:terrain + landuse:terrain + log.roaddist:te rrain +

log.shapei:landuse + zero.neighbor:landuse
+ (1|starea), Heracleum, family=binomial )

before model selection of fixed effects.

Best subset of fixed effects

For finding the best subset of fixed effects froor maximum model, we can use the
dredge function in the MuMIn package, which automatically fits all different
combinations of fixed predictor variables to thetadand calculates AIC values.
However, there is one problem: given our 16 fixeffleas (main effects and
interactions) in the maximum model there would b&l& = 65,536 possible
combinations and it would take approximately tweelg (!) to calculate all of them on
an ordinary 5-year-old pc (AMD Athlon XP 2200+, I8MHz, 32 bits, 1 MB RAM,
Kubuntu Linux (Ubuntu 10.04.3 LTS)). Thus, we hatee reduce the number of
candidate models. This can be done by ‘fixing' sah¢he fixed effects and only
allowing the remaining ones to be permuted. Heee;fiw' all main effects of variables
that had p-values < 0.05 in the summary table @htlaximum model (Wald tests).

Now we rundredge with 7 effects being fixed, so that the numbecandidate
models is 279 = 512,

> library(MuMIn)

> best.subsets<- dredge(Her.max.2, rank="AIC", trac e=TRUE, fixed= ~
terrain + log.roaddist + large.riverdist + log.rive rdist +
zero.neighbor + log.neighbor + log.parea )

> print(best.subsets, abbrev.names=FALSE)

and get a list of candidate models ranked by Alab(& 2).



Table 2 Ranking of candidate models by AIC calculated wliadredge

package (R output modified).
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+ o+ o+ o+ 4+

habitat
landuse

log.proximity

© oo
bbb
o oo
NEcE=]
[N RN

0.0983
0.1019
0.1036

0.0986

0.0892
0.1057
0.1009

0.1051
0.1005

4 log.shapei
habitat:terrain

0.4537 +
+
+
0.4683 +
0.3735 +
-0.0647 +  +
0.4763 +

+
0.3989 +

+
0.4525 +
-0.0071 +  +
0.5124 +

+

+
0.5220 +
0.4907 +
0.4677 +
0.0234 + +
-0.0454 +  +

landuse:log.shapei

+
+
+

landuse:terrain
landuse:zero.neighbor
log.roaddist:terrain

N
a . .
8 large.riverdist

+ +

-2.652
-2.678
-2.727
-2.644
-2.572
-2.588
-2.797
-2.775
-2.819
-2.578
-2.713
+ -2.673
-2.653
-2.641
+ -2.794
-2.730
-2.714
-2.572
-2.562

o+ o+ o+ o+ o+ o+ o+ +

+

+ o+ o+ o+

Significance tests of fixed effects

We see
landuse:terrain

that

models without

log.neighbor

o
o1
~
=]
&

0.5641
0.5722
0.5555
0.5796
0.5707
0.5768
0.5479
0.5650
0.5560
0.5704
0.5552
0.5710
0.5696
0.5640
0.5574
0.5614
0.5561
0.5758
0.5704

the

log.riverdist

oo
a >
o
B ®
© N

-0.5076
-0.5237
-0.4984
-0.4793
-0.4800
-0.5439
-0.5360
-0.5479
-0.4728
-0.5202
-0.5006
-0.4987
-0.4899
-0.5356
-0.5211
-0.5126
-0.4758
-0.4684

log.roaddist

-0.8357 +
-0.8642 +
-0.8827 +
-0.7939 +
-0.8542 +
-0.8440 +
-0.8625 +
-0.8215 +
-0.8125 +
-0.8405 +
-0.7964 +
-0.7992 +
-0.2229 +
-0.8920 +
-0.8239 +
-0.2157 +
-0.8182 +
-0.7579 +
-0.8680 +
-0.8057 +

terrain

k  Dev.

w
= .
® zero.neighbor

-3.083 21
-4.046 19
-3.122 21
-4.064 20
-3.089 23
-4.048 21
-3.075 20
-4.087 19
-4.068 18
-3.161 25
-3.086 22
-3.060 19
-4.035 20
-3.118 24
-3.066 18
-4.075 20
-3.158 24
-4.044 22
-3.121 26

interactionanduse:log.shapei

22 854.9
857.5
861.7
857.7
859.7
854.0
858.4
860.5
862.6
864.8
850.8
857.0
863.3
861.3
853.4
865.5
861.5
853.7
857.8
850.0

function of theMuMIn

AIC
898.9
899.5
899.7
899.7
899.7
900.0
900.4
900.5
900.6
900.8
900.8
901.0
901.3
901.3
901.4
901.5
901.5
901.7
901.8
902.0

delta
0.0000
0.6005
0.8576
0.8855
0.8880
1.1470
1.5240
1.6520
1.7320
1.9770
1.9790
2.1480
2.3970
2.3970
2.5480
2.6300
2.6660
2.8140
2.9600
3.1860

and

weight
0.077
0.057
0.050
0.049
0.049
0.043
0.036
0.034
0.032
0.029
0.029
0.026
0.023
0.023
0.022
0.021
0.020
0.019
0.018
0.016

perform better than the maximum model. So we dthese
interactions and calculate the final model

> Her.final<- Imer(hogweed ~ habitat + landuse + te

log.proximity + log.roaddist + large.riverdist + lo

log.shapei + zero.neighbor + log.neighbor + log.par
habitat:terrain + log.roaddist:terrain + zero.neigh
(1|starea), Heracleum, family=binomial )

> print(Her.final)

Generalized linear mixed model fit by the Laplace a
Formula: hogweed ~ habitat + landuse + terrain + lo
large.riverdist + log.riverdist

log.roaddist +

+zero.neighbor +
log.roaddist:terrain +
Data: Heracleum
AIC BIC logLik deviance
898.9 1017 -427.4 854.9

Random effects:

Groups Name

Fixed effects:

(Intercept)
habitatopt
landusefallow
terrainplateau
terrainslope
terrainvalley
log.proximity
log.roaddist

log.neighbor + log.parea + ha

zero.neighbor:landuse +

Variance Std.Dev.
starea (Intercept) 0.073522 0.27115
Number of obs: 1559, groups: starea, 20

Estimate Std. Error z
0.08249 1.04545
0.41069 0.54298
0.57339 0.32318
-0.69046 0.76634 -

-1.93154
-1.41685

0.10009
-0.83565

0.56153 -
0.55976 -
0.05936

0.23968 -

rrain +
g.riverdist +
ea+
bor:landuse +

pproximation
g.proximity +
+ log.shapei
bitat:terrain +
(1 | starea)

+

value Pr(>|z|)

0.079 0.937111
0.756 0.449431

1.774 0.076032 .

0.901 0.367597

3.440 0.000582 ***
2.531 0.011368 *
1.686 0.091745 .
3.487 0.000489 ***



large.riverdistl -2.58971 0.48817 - 5.305 1.13e-07 ***

log.riverdist -0.48375 0.10858 - 4.455 8.38e-06 ***
log.shapei 0.45366 0.28179 1.610 0.107411
zero.neighborl -3.12839 0.52462 - 5.963 2.47e-09 ***
log.neighbor 0.57082 0.06018 9.486 < 2e-16 ***
log.parea 0.36221 0.08127 4.457 8.32e-06 ***
habitatopt:terrainplateau -0.40656 0.78636 - 0.517 0.605146
habitatopt:terrainslope 1.62257 0.66022 2.458 0.013986 *
habitatopt:terrainvalley = 0.69669 0.59407 1.173 0.240900
terrainplateau:log.roaddist 0.66772 0.28910 2.310 0.020907 *
terrainslope:log.roaddist  0.61536 0.26389 2.332 0.019706 *
terrainvalley:log.roaddist 0.66836 0.24836 2.691 0.007123 **
landusefallow:zero.neighborl -1.18310 0.60968 - 1.941 0.052314 .
Signif. codes: 0 ***' 0.001 “** 0.01 *’ 0.05 *. 0171

[correlation matrix of fixed effects omitted]

which we will use for assessment of significance ewterpretation of fixed effects.

We test the significance of fixed effects and thateractions with LR tests
using theanova function. For this purpose, we calculate reducextieirs missing the
effect that we want to test, elgg.parea

> Her.red.log.parea<- Imer(hogweed ~ habitat + land use + terrain +
log.proximity + log.roaddist + large.riverdist + lo g.riverdist +
log.shapei + zero.neighbor + log.neighbor + habitat ‘terrain +
log.roaddist:terrain + zero.neighbor:landuse + (1|s tarea), Heracleum,

family=binomial )
and compare it to the final model,

> anova(Her.red.log.parea, Her.final)

(]

Df AIC BIC logLik Chisq C hi Df Pr(>Chisq)
Her.red.log.parea 21 917.06 1029.5 -437.53
Her final 22 898.86 1016.6 -427.43 20.204 1 6.96e-06
*%k%
Signif. codes: 0 “*** 0.001 **' 0.01 *' 0.05 ". 0171

that is, we are conducting a type Il LR test.

Interpreting the effects

In binomial models with logit link, the linear comlation of predictor variables models
the logarithm of the odds of the dependent variallghis example, the odds are the
probability p of a subpatch being invaded divided by the prdigbof not being
invaded, i.ep/(1-p). The effect of a single predictor variableean be assessed by its
odds ratio (OR) which is the oddsxf= 1 divided by the odds i = 0. The OR is
calculated by exponentiating the estimaigegression coefficient) of

oro P loPe) & _

Px=o /(1= Pxzo)  €°

For instance, the odds ratio faabitat is exp(0.41069) = 1.51. This means the
odds of invasion probability in optimal habitat igughly 1.5 times larger than in
suboptimal habitat.



Since the continuous predictors are on a logarithsnale like the log odds, we
get a power relation between OR and the contingoedictors. Suppose for instance
that the distance from road is doubled froto 2. Then the OR is given by

OR= eb*|09(1+><) - 1+ x

&2 (1+ 2x)b .

The addition of 1 in the above equation comes faum ad hoc approach to
handle the zeros imaddist . For distance to roads we have b = -0.83565. Tihtlss
distance is doubled from 20 m to 40 m, say, then dbdds of invasion probability
further from the road is %*****= 0.5603 times the odds closer to the road.
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