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Introduction 
In this worked example we model the invasion probability of an invasive plant species, 
giant hogweed (Heracleum mantegazzianum), based on field surveys of 20 study areas 
of 1 km² which were situated in areas of Germany most invaded by this species (see 
Thiele et al. 2008 for more details). The statistical analyses will be conducted in R (R 
Development Core Team 2011) using the packages lme4 (version 0.999375-41; Bates et 
al. 2011), gof (0.7-6; Holst 2011), glmmML (0.81-8; Broström and Holmberg 2011), 
lattice (0.19-17; Sarkar 2008), and MuMIn (1.0.0; Barton 2011). 

Field study and dataset 

Data collection 
The presence or absence of giant hogweed was recorded for a total of 343 patches of 
suitable habitat nested in the 20 study areas. However, the patches were not 
homogenous regarding habitat suitability and history. A patch could comprise both 
open, herbaceous habitat (optimal habitat) and tree-dominated habitat (suboptimal 
habitat). Further, an analysis of historical aerial images showed that habitat history, e.g. 
trajectories from agricultural grassland to fallow land, could vary within patches. Hence, 
the patches were divided into subpatches of homogenous habitat suitability and history. 
These subpatches were the entities of the data analysis, i.e. the rows in the data table.  

While the division of patches led to a nicely large sample size of 1559 
subpatches, we have to consider that observations made in subpatches that are grouped 
together in one contiguous patch will not be statistically independent. Further, the 
observations made in one study area may be more similar to each other than to 
observations made in other study areas. For instance, we could imagine that the level of 
giant hogweed invasion varied among study areas, e.g. due to longer or shorter 
residence times, so that patches or subpatches in one study area would have a higher 
probability of being invaded regardless of the environmental variables that we will use 
to predict invasion probability. Thus, we have two levels of (potential) spatial 
dependence: study areas and patches nested within study areas. This means that we 
should conduct a mixed effects model analysis that includes random effects of study 
areas and patches. 



We will use the presence or absence of giant hogweed in subpatches as the 
dependent variable. Further, there are 9 potential fixed predictor variables in our dataset 
(3 categorical, 6 continuous) and, finally, the random effect variables study area and 
patch (Table 1). 
 
Table 1 Variables used in data analysis. 
Variable name Description 
Dependent variable  
Hogweed Presence-absence of giant hogweed in subpatch 
Categorical predictors  
Habitat Habitat suitability (suboptimal, sub; optimal, opt) 
Landuse Land use of subpatch, either fallow ('fallow') or maintenance 

mowing, ca. once a year ('mowing')  
Terrain Type of terrain, 'valley', 'slope', 'hilltop' or 'plateau' 
Continuous predictors  
Proximity Proximity index of patch (McGarigal & Marks 1995) 
Roaddist Minimum distance between subpatch edge and the closest road 
Riverdist Minimum distance between subpatch edge and the closest brook 

or river 
Shapei Shape index of subpatch 
Neighbor Average cover of giant hogweed in adjacent subpatches 
Parea Subpatch area  
Random variables  
Starea Study area (n = 20) 
Patch Main habitat patch (n = 343), often comprising several 

subpatches  

Checking the dataset 
Before we start with the analysis, we load the data table into the R workspace and take a 
look at its structure 
 
> str(Heracleum) 
 
'data.frame':   1559 obs. of  12 variables: 
 $ starea   : Factor w/ 20 levels "att","aus","bre" ,..: 11 11 11 11 11 
11 
 $ patch    : Factor w/ 343 levels "attp1","attp10" ,..: 184 177 179 
193 193 
 $ hogweed  : int  0 0 1 1 0 0 1 0 0 1 ... 
 $ habitat  : Factor w/ 2 levels "opt","sub": 2 2 1  1 1 1 1 2 1 1 ... 
 $ landuse  : Factor w/ 2 levels "fallow","mowing":  1 1 1 1 1 1 1 1 1 
1 ... 
 $ terrain  : Factor w/ 4 levels "hilltop","plateau ",..: 3 3 4 4 4 4 3 
3 3 
 $ proximity: int  24 0 2 175 175 175 175 24 586 58 6 ... 
 $ roaddist : int  44 207 86 92 173 181 173 105 138  2 ... 
 $ riverdist: int  9 186 6 17 12 10 12 33 28 18 ...  
 $ shapei   : num  1.44 1.48 1.51 1.56 1.19 1.33 1. 13 1.26 1.21 1.26 
... 
 $ neighbor : num  0 0 0.73 0.8 0.67 0.21 1 0 0.2 0 .06 ... 
 $ parea    : int  656 3427 5623 2678 1699 3115 124 4 920 93 1540 ... 

 
The variable hogweed  is coded as 0 for absence and 1 for presence of giant 

hogweed. The categorical predictor variables habitat  and landuse  have two levels, 



while terrain  has four. Some of the continuous predictor variables are marked as 
integers ('int') because their values were rounded to zero decimal places. 

Categorical predictors 
We arrange the sequences of levels of the categorical variables so that the first level, 
which will not be included in the model as a dummy variable, would make a reasonable 
baseline that facilitates interpretation. Here, we make those levels the baseline which 
might be associated with lower invasion probability (suboptimal habitat, landuse 
mowing) or which are 'endpoints of a gradient' (hilltop in comparison to plateau, slope 
and valley). 
 
> Heracleum$habitat<- factor(Heracleum$habitat, lev els=c("sub", "opt") 
) 
> Heracleum$landuse<- factor(Heracleum$landuse, lev els=c("mowing", 
"fallow") ) 
> Heracleum$terrain<- factor(Heracleum$terrain, lev els=c("hilltop", 
"plateau", "slope", "valley") ) 

Continuous predictors 
The continuous variables are non-negative and have a right-skew distribution (Fig. 1). 
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Figure 1 Histograms of fixed continuous predictor variables used in GLMM analysis. 



The distribution of the variable riverdist  has got two peaks, one at zero and one at 
1000. A value of zero means that the patch is adjacent to a river or brook, while 1000 
was assigned to patches in study areas without any rivers or brooks. 

In principle, skewed and bimodal distributions of predictor variables are not 
problematic for linear modelling. But sometimes linearity and convergence of the model 
may be improved by transformations that make the distributions of the predictor 
variables more symmetric and that remove bimodalities. This turns out to be the case 
here. If we do an analysis with the original predictors, then a z-transformation is needed 
to make the GLMM converge. However, a plot of the cumulative residuals against 
neighbor  indicates that this variable presumably should be log-transformed to be used 
in the linear model. In order to simplify the following interpretation we prefer to log-
transform all the continuous predictor variables.  

The predictor variables are non-negative, but since the variables proximity , 
roaddist , riverdist  and neighbor  contain many zeros, the log-transformation can’t 
be applied directly on these variables. A solution to this problem is to add a positive 
number to the variables before taking the logarithm. We will use this for proximity , 
roaddist  and riverdist , i.e. we will use the variables log(1+proximity)  etc. in the 
analysis. Since the choice of the positive constant, here 1, is arbitrary, this solution is 
somewhat ad hoc.  

A zero for the variable neighbor  means that giant hogweed hasn’t been found in 
any of the adjacent subpatches, so it makes sense to give these observations special 
attention. One way to do this is to use a separate parameter for the observations with 
neighbor =0 and to use a linear slope against log(neighbor)  for the observations with 
neighbor >0. Mathematically this may be done using two variables zero.neighbor 

and log.neighbor defined such that zero.neighbor =0 and 
log.neighbor =log(neighbor)  if neighbor >0, and zero.neighbor =1 and 
log.neighbor =0 if neighbor =0. In this way the slope against zero.neighbor 

quantifies the effect when there is no giant hogweed in the adjacent patches, and the 
slope against log.neighbor quantifies the effect when there is giant hogweed in the 
adjacent patches. The same technique may be used to take care of the value '1000' for 
the variable riverdist . This value isn’t a distance, but means that there are no rivers or 
brooks in the study area. Thus, we define the following variables in R, 

 
> attach(Heracleum) 
> log.proximity   <- log(1+proximity) 
> log.roaddist    <- log(1+roaddist) 
> log.riverdist   <- log(1+riverdist)*(riverdist<10 00) 
> large.riverdist <- as.numeric(riverdist==1000) 
> log.shapei      <- log(shapei) 
> zero.neighbor   <- as.numeric(neighbor==0) 
> log.neighbor    <- log((neighbor==0)+neighbor) 
> log.parea       <- log(parea) 
> detach(Heracleum) 

Pre-analyses 
Next we would like to get a first impression of relationships between the predictor 
variables and hogweed  using box-and-whisker plots, in case of continuous variables, or 
contingency tables, in case of categorical predictors. For instance, let us look at the 
relationship between presence-absence of giant hogweed and the distance from the 
closest road by drawing a bwplot  
 
> library(lattice) 
 



> bwplot(hogweed ~ log10(1+roaddist)|starea, Heracl eum, scales= 
list(y=list(labels=c("absence", "presence"))) ) 

 
which is shown in Fig. 2. We have plotted one panel for each study area to get an 
impression of variation of this relationship among study areas. Invaded subpatches seem 
to have a tendency to be closer to roads than uninvaded ones, but the opposite pattern 
can be observed in a few study areas (e.g. 'eng').  
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Figure 2 Lattice box-and-whisker plot of giant hogweed presence-absence against distance of subpatches 
from the closest road. Note that distances were log10-transformed. 
 

To investigate the relationship of habitat (or other categorical predictors) with 
hogweed presence-absence we can cross-tabulate the two variables 
 
> with(Heracleum, table(hogweed, habitat) ) 
       habitat 
hogweed sub opt 
      0 915 311 
      1 194 139 

 



and see that optimal habitats are invaded at a higher rate than suboptimal ones. A chi-
square test  
 
> chisq.test(with(Heracleum, table(hogweed, habitat ) ) ) 
 
        Pearson's Chi-squared test with Yates' cont inuity correction 
 
data:  with(Heracleum, table(hogweed, habitat))  
X-squared = 33.4038, df = 1, p-value = 7.488e-09 

 
indicates that this simple relationship is significant. 

Choosing the model setup 
As our dependent variable is binary, we will use the binomial distribution for modelling. 
We will first use the logit link, but we will also try other link functions.  

Now we need to find a suitable method for estimating the model. Penalized 
Quasi-Likelihood (PQL) is fast, but not suitable for binary data. So we have to choose a 
somewhat more robust technique, at the cost of longer computation time, and decide to 
use Laplace approximation which is the fasted valid estimation method here. 

The significance of fixed effects can be tested with Wald chi² or with likelihood 
ratio (LR) chi² tests. Random effects should be tested with LR tests (although 
significance testing of random effects is not our main goal here). 

Model building 

Strategy 
As we have many predictor variables, we would like to see if we really need all of them 
for modelling hogweed invasion. A more parsimonious subset of variables would be 
desirable regarding both computation and interpretation of the model. Thus, we need to 
decide on a criterion for comparing different models. For our dataset – binary data (i.e. 
no over-/underdispersion), and large sample size – Akaike's Information Criterion (AIC) 
is a good measure for comparing models that are fit to the same dataset. Our strategy for 
finding the final model will be 'best subset' judged by AIC. 

Maximum model 
Finding the best model is a challenge with this dataset because it is not feasible to fit a 
full model that contains all fixed effects, interactions of fixed effects, random intercepts 
and random slopes. The algorithm would not converge. Thus, we need to define a 
'maximum model' which is a bit slimmer than the complete model, as starting point of 
the model building process.  

We decide to use a fairly simple structure of random effects: (1|starea/ patch), 
i.e. a random intercept for study areas and a random intercept for patches nested in 
study areas. Regarding fixed effects, we first include all main effects into the model and 
then add interactions of fixed effects, one at a time, and assess their significance using 
Wald tests reported in the 'summary' table provided by lmer . In this way, we find a 
maximum model that contains the 11 main effects (incl. terms modelling the '1000s' in 
riverdist  and the zeros in neighbor ), 5 interactions of the fixed predictors, and the 
random-effect structure mentioned above. 

We calculate the maximum model 
 

> library(lme4) 
 



> Her.max<- lmer(hogweed ~ habitat + landuse + terr ain + log.proximity 
+ log.roaddist + large.riverdist + log.riverdist + log.shapei + 
zero.neighbor + log.neighbor + log.parea + habitat: terrain + 
landuse:terrain + log.roaddist:terrain + log.shapei :landuse + 
zero.neighbor:landuse + (1|starea/patch), Heracleum , family=binomial ) 
 

and get the following results: 
 
> print(Her.max) 

 
Generalized linear mixed model fit by the Laplace a pproximation  
Formula: hogweed ~ habitat + landuse + terrain + lo g.proximity + 
log.roaddist +      large.riverdist + log.riverdist  + log.shapei + 
+zero.neighbor +      log.neighbor + log.parea + ha bitat:terrain + 
landuse:terrain +      log.roaddist:terrain + log.s hapei:landuse + 
zero.neighbor:landuse +      (1 | starea/patch)  
   Data: Heracleum  
 AIC  BIC logLik deviance 
 904 1049   -425      850 
Random effects: 
 Groups       Name        Variance Std.Dev. 
 patch:starea (Intercept) 0.016520 0.12853  
 starea       (Intercept) 0.060452 0.24587  
Number of obs: 1559, groups: patch:starea, 343; sta rea, 20 
 
Fixed effects: 
                             Estimate Std. Error z value Pr(>|z|)     
(Intercept)                   0.85739    1.13875   0.753 0.451495     
habitatopt                    0.19117    0.56539   0.338 0.735271     
landusefallow                -0.63136    0.82697  - 0.763 0.445185     
terrainplateau               -2.24366    1.39434  - 1.609 0.107589     
terrainslope                 -2.14160    0.80846  - 2.649 0.008073 **  
terrainvalley                -2.27919    0.80422  - 2.834 0.004596 **  
log.proximity                 0.10050    0.05936   1.693 0.090424 .   
log.roaddist                 -0.80990    0.23455  - 3.453 0.000554 *** 
large.riverdist              -2.55479    0.48845  - 5.230 1.69e-07 *** 
log.riverdist                -0.46783    0.10893  - 4.295 1.75e-05 *** 
log.shapei                   -0.05208    0.62560  - 0.083 0.933656     
zero.neighbor                -3.12774    0.53830  - 5.810 6.23e-09 *** 
log.neighbor                  0.56928    0.06057   9.399  < 2e-16 *** 
log.parea                     0.38186    0.08281   4.611 4.00e-06 *** 
habitatopt:terrainplateau    -0.18805    0.81440  - 0.231 0.817388     
habitatopt:terrainslope       1.76891    0.69117   2.559 0.010488 *   
habitatopt:terrainvalley      1.03474    0.63225   1.637 0.101716     
landusefallow:terrainplateau  1.91356    1.39040   1.376 0.168739     
landusefallow:terrainslope    0.31916    0.77037   0.414 0.678659     
landusefallow:terrainvalley   1.07691    0.72000   1.496 0.134731     
terrainplateau:log.roaddist   0.61624    0.29001   2.125 0.033598 *   
terrainslope:log.roaddist     0.60987    0.26005   2.345 0.019015 *   
terrainvalley:log.roaddist    0.63277    0.24391   2.594 0.009479 **  
landusefallow:log.shapei      0.61963    0.68751   0.901 0.367446     
landusefallow:zero.neighbor  -1.20376    0.62371  - 1.930 0.053606 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1  
 

[correlation matrix of fixed effects omitted] 
 

The logit link is a common standard for binary models, but other link functions 
might be more suitable for our dataset. So we calculate the maximum model with probit 
and complementary log-log link and check the residual deviance: 
 



> Her.max.probit<- update(Her.max, family=binomial( link = "probit") ) 
> Her.max.cloglog<- update(Her.max, family=binomial (link = "cloglog") 
) 

 
We find that the residual deviance is 849 (AIC 903) with probit and 862 (AIC 

916) with complementary log-log-link as compared to 850 (AIC 904) with logit link. 
Thus, the probit model performs slightly better than the logit, but as the difference is 
small we will keep the logit link for further analysis. 

Diagnostics of the maximum model 
We check linearity of the relationship between hogweed and fixed predictor variables 
using a GLM that includes all fixed effects of the maximum model and the cumres  
function of the gof  package which calculates cumulative residuals ordered after values 
of the predictors: 
 
> Her.glm <- glm(hogweed ~ habitat + landuse + terr ain + log.proximity 
+ log.roaddist + large.riverdist + log.riverdist + log.shapei + 
zero.neighbor + log.neighbor + log.parea + habitat: terrain + 
landuse:terrain + log.roaddist:terrain + log.shapei :landuse + 
zero.neighbor:landuse, Heracleum, family=binomial )  
>  
> library(gof) 
> g0 <- cumres(Her.glm) 
 
> x11(); par(mfrow=c(2,2)); plot(g0,idx=1:4) 

[..] 
 

The resulting Fig. 3 shows that the observed cumulative residuals in general are 
within the typical range of the theoretical cumulative residuals, i.e. that the model is 
valid. The only exceptions are the parameters log.riverdist and log.neighbor, where the 
Cramer-von-Mises goodness-of-fit tests indicate some problems. Comparing the 
cumulative residuals with Figure 2a and 2c in Lin et al. (2002), we see that a possible 
solution might be to apply an additional log-transformation on log.riverdist  and to 
add a cubic term in log.neighbor . But since the interpretation of such terms is 
difficult, we will not extend the model any further. 

Significance tests of random effects 
Next, we will test the significance of the random effects. This is not the most important 
issue here, because the random effects are nuisance variables that we include into the 
model to account for spatial independence in order to get valid estimates and p-values 
for the fixed effects. However, in case the random effects were far from being 
significant, we might consider dropping them from the analysis and conducting a GLM. 

We use a LR test to assess the significance of the random intercept of patch 
nested in study area. That is, we compare a reduced model without random intercept for 
patch 

 
> Her.red.patch<- lmer(hogweed ~ habitat + landuse + terrain + 
log.proximity + log.roaddist + large.riverdist + lo g.riverdist + 
log.shapei + zero.neighbor + log.neighbor + log.par ea + 
habitat:terrain + landuse:terrain + log.roaddist:te rrain + 
log.shapei:landuse + zero.neighbor:landuse + (1|sta rea), Heracleum, 
family=binomial )  

 



 

 



 
Figure 3 Cumulative residuals ordered after continuous predictor variables with cumres  in package gof. 
Calculations are based on a GLM with same fixed effects as the maximum GLMM. 
 
with the maximum model using the anova  function. 
 
> anova(Her.max, Her.red.patch) 

 
and the resulting analysis of deviance table 
 
[..] 
              Df    AIC    BIC  logLik Chisq Chi Df  Pr(>Chisq) 
Her.red.patch 26 902.04 1041.2 -425.02                         
Her.max       27 904.01 1048.5 -425.01 0.028      1      0.8672 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1  

 
shows that the random intercept of patch does not improve the model fit. Thus, we will 
continue the analysis without this random effect. 

The random intercept of study area cannot be tested with lmer  because the 
reduced model would not contain any random effects, i.e. it would be a GLM, which is 
not provided there. But we can use glmmML to calculate LR and parametric bootstrap test 
for starea :  
 
> library(glmmML) 

 
> Her.glmmML<- glmmML(hogweed ~ habitat + landuse +  terrain + 
log.proximity + log.roaddist + large.riverdist + lo g.riverdist + 
log.shapei + zero.neighbor + log.neighbor + log.par ea + 
habitat:terrain + landuse:terrain + log.roaddist:te rrain + 



log.shapei:landuse + zero.neighbor:landuse, family= binomial, 
Heracleum, cluster=starea, boot=2000 ) 

 
Computing this model, particularly the bootstrap, takes a while although we only 

use the recommended minimum of 2000 bootstrap samples. The result  
 
> summary(Her.glmmML) 

 
[..] 
        LR p-value for H_0: sigma = 0:  0.1118  
 
 Bootstrap p-value for H_0: sigma = 0:  0.715 ( 200 0 ) 

 
suggests that the random variation of intercepts among study areas is not significantly 
different from zero. Nevertheless, we will keep starea  in our model because its 
estimated standard deviation is not too low and it is part of our survey design.  

We recalculate the maximum model with simplified random effects structure 
 
> Her.max.2<- lmer(hogweed ~ habitat + landuse + te rrain + 
log.proximity + log.roaddist + large.riverdist + lo g.riverdist + 
log.shapei + zero.neighbor + log.neighbor + log.par ea + 
habitat:terrain + landuse:terrain + log.roaddist:te rrain + 
log.shapei:landuse + zero.neighbor:landuse 
+ (1|starea), Heracleum, family=binomial ) 

 
before model selection of fixed effects. 

Best subset of fixed effects 
For finding the best subset of fixed effects from our maximum model, we can use the 
dredge  function in the MuMIn package, which automatically fits all different 
combinations of fixed predictor variables to the data and calculates AIC values. 
However, there is one problem: given our 16 fixed effects (main effects and 
interactions) in the maximum model there would be 2^16 = 65,536 possible 
combinations and it would take approximately two weeks (!) to calculate all of them on 
an ordinary 5-year-old pc (AMD Athlon XP 2200+, 1800 MHz, 32 bits, 1 MB RAM, 
Kubuntu Linux (Ubuntu 10.04.3 LTS)). Thus, we have to reduce the number of 
candidate models. This can be done by 'fixing' some of the fixed effects and only 
allowing the remaining ones to be permuted. Here, we 'fix' all main effects of variables 
that had p-values < 0.05 in the summary table of the maximum model (Wald tests).  

Now we run dredge  with 7 effects being fixed, so that the number of candidate 
models is 2^9 = 512. 
 
> library(MuMIn) 

 
> best.subsets<- dredge(Her.max.2, rank="AIC", trac e=TRUE, fixed= ~ 
terrain + log.roaddist + large.riverdist + log.rive rdist + 
zero.neighbor + log.neighbor + log.parea ) 
 
> print(best.subsets, abbrev.names=FALSE) 

 
and get a list of candidate models ranked by AIC (Table 2). 
 
 
 



Table 2 Ranking of candidate models by AIC calculated with the dredge  function of the MuMIn 
package (R output modified). 
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k Dev. AIC delta weight
416 0.0824 + + 0.1001 0.4537 + + + -2.590 0.5708 0.3622 -0.4837 -0.8357 + -3.128 22 854.9 898.9 0.0000 0.077
408 0.3717 + + 0.1024 + + + -2.652 0.5641 0.3931 -0.5018 -0.8642 + -3.083 21 857.5 899.5 0.6005 0.057
278 0.7519 + 0.1022 + + -2.678 0.5722 0.4028 -0.5076 -0.8827 + -4.046 19 861.7 899.7 0.8576 0.050
412 1.0250 + + 0.4683 + + + -2.727 0.5555 0.3442 -0.5237 -0.7939 + -3.122 21 857.7 899.7 0.8855 0.049
286 0.5924 + 0.0983 0.3735 + + -2.644 0.5796 0.3843 -0.4984 -0.8542 + -4.064 20 859.7 899.7 0.8880 0.049
448 0.4343 + + 0.1019 -0.0647 + + + + -2.572 0.5707 0.3697 -0.4793 -0.8440 + -3.089 23 854.0 900.0 1.1470 0.043
288 0.2906 + + 0.1036 0.4763 + + -2.588 0.5768 0.3617 -0.4800 -0.8625 + -4.048 21 858.4 900.4 1.5240 0.036
404 1.3480 + + + + + -2.797 0.5479 0.3757 -0.5439 -0.8215 + -3.075 20 860.5 900.5 1.6520 0.034
282 1.4940 + 0.3989 + + -2.775 0.5650 0.3635 -0.5360 -0.8125 + -4.087 19 862.6 900.6 1.7320 0.032
274 1.7060 + + + -2.819 0.5560 0.3824 -0.5479 -0.8405 + -4.068 18 864.8 900.8 1.9770 0.029
480 0.5396 + + 0.0986 0.4525 + + + + -2.578 0.5704 0.3719 -0.4728 -0.7964 + -3.161 25 850.8 900.8 1.9790 0.029
444 1.3620 + + -0.0071 + + + + -2.713 0.5552 0.3508 -0.5202 -0.7992 + -3.086 22 857.0 901.0 2.1480 0.026
160 -0.5229 + + 0.0892 0.5124 + + -2.673 0.5710 0.3555 -0.5006 -0.2229 + -3.060 19 863.3 901.3 2.3970 0.023
280 0.6113 + + 0.1057 + + -2.653 0.5696 0.3930 -0.4987 -0.8920 + -4.035 20 861.3 901.3 2.3970 0.023
472 0.8100 + + 0.1009 + + + + -2.641 0.5640 0.4033 -0.4899 -0.8239 + -3.118 24 853.4 901.4 2.5480 0.022
156 0.3542 + + 0.5220 + + -2.794 0.5574 0.3403 -0.5356 -0.2157 + -3.066 18 865.5 901.5 2.6300 0.021
284 1.2700 + + 0.4907 + + -2.730 0.5614 0.3424 -0.5211 -0.8182 + -4.075 20 861.5 901.5 2.6660 0.020
476 1.4420 + + 0.4677 + + + + -2.714 0.5561 0.3540 -0.5126 -0.7579 + -3.158 24 853.7 901.7 2.8140 0.019
320 0.6078 + + 0.1051 0.0234 + + + -2.572 0.5758 0.3678 -0.4758 -0.8680 + -4.044 22 857.8 901.8 2.9600 0.018
512 0.8733 + + 0.1005 -0.0454 + + + + + -2.562 0.5704 0.3795 -0.4684 -0.8057 + -3.121 26 850.0 902.0 3.1860 0.016

 

Significance tests of fixed effects 
We see that models without the interactions landuse:log.shapei  and 
landuse:terrain  perform better than the maximum model. So we drop these 
interactions and calculate the final model 
 
> Her.final<- lmer(hogweed ~ habitat + landuse + te rrain + 
log.proximity + log.roaddist + large.riverdist + lo g.riverdist + 
log.shapei + zero.neighbor + log.neighbor + log.par ea + 
habitat:terrain + log.roaddist:terrain + zero.neigh bor:landuse + 
(1|starea), Heracleum, family=binomial )  
 
> print(Her.final) 
 
Generalized linear mixed model fit by the Laplace a pproximation  
Formula: hogweed ~ habitat + landuse + terrain + lo g.proximity + 
log.roaddist +      large.riverdist + log.riverdist  + log.shapei + 
+zero.neighbor +      log.neighbor + log.parea + ha bitat:terrain + 
log.roaddist:terrain +      zero.neighbor:landuse +  (1 | starea)  
   Data: Heracleum  
   AIC  BIC logLik deviance 
 898.9 1017 -427.4    854.9 
Random effects: 
 Groups Name        Variance Std.Dev. 
 starea (Intercept) 0.073522 0.27115  
Number of obs: 1559, groups: starea, 20 
 
Fixed effects: 
                             Estimate Std. Error z value Pr(>|z|)     
(Intercept)                   0.08249    1.04545   0.079 0.937111     
habitatopt                    0.41069    0.54298   0.756 0.449431     
landusefallow                 0.57339    0.32318   1.774 0.076032 .   
terrainplateau               -0.69046    0.76634  - 0.901 0.367597     
terrainslope                 -1.93154    0.56153  - 3.440 0.000582 *** 
terrainvalley                -1.41685    0.55976  - 2.531 0.011368 *   
log.proximity                 0.10009    0.05936   1.686 0.091745 .   
log.roaddist                 -0.83565    0.23968  - 3.487 0.000489 *** 



large.riverdist1             -2.58971    0.48817  - 5.305 1.13e-07 *** 
log.riverdist                -0.48375    0.10858  - 4.455 8.38e-06 *** 
log.shapei                    0.45366    0.28179   1.610 0.107411     
zero.neighbor1               -3.12839    0.52462  - 5.963 2.47e-09 *** 
log.neighbor                  0.57082    0.06018   9.486  < 2e-16 *** 
log.parea                     0.36221    0.08127   4.457 8.32e-06 *** 
habitatopt:terrainplateau    -0.40656    0.78636  - 0.517 0.605146     
habitatopt:terrainslope       1.62257    0.66022   2.458 0.013986 *   
habitatopt:terrainvalley      0.69669    0.59407   1.173 0.240900     
terrainplateau:log.roaddist   0.66772    0.28910   2.310 0.020907 *   
terrainslope:log.roaddist     0.61536    0.26389   2.332 0.019706 *   
terrainvalley:log.roaddist    0.66836    0.24836   2.691 0.007123 **  
landusefallow:zero.neighbor1 -1.18310    0.60968  - 1.941 0.052314 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1  

[correlation matrix of fixed effects omitted] 
 
which we will use for assessment of significance and interpretation of fixed effects. 

We test the significance of fixed effects and their interactions with LR tests 
using the anova  function. For this purpose, we calculate reduced models missing the 
effect that we want to test, e.g. log.parea  
 
> Her.red.log.parea<- lmer(hogweed ~ habitat + land use + terrain + 
log.proximity + log.roaddist + large.riverdist + lo g.riverdist + 
log.shapei + zero.neighbor + log.neighbor + habitat :terrain + 
log.roaddist:terrain + zero.neighbor:landuse + (1|s tarea), Heracleum, 
family=binomial ) 

 
and compare it to the final model, 
 
> anova(Her.red.log.parea, Her.final) 

 
[..] 
                  Df    AIC    BIC  logLik  Chisq C hi Df Pr(>Chisq)     
Her.red.log.parea 21 917.06 1029.5 -437.53                              
Her.final         22 898.86 1016.6 -427.43 20.204      1   6.96e-06 
*** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1  

 
that is, we are conducting a type III LR test.  

Interpreting the effects 
In binomial models with logit link, the linear combination of predictor variables models 
the logarithm of the odds of the dependent variable. In this example, the odds are the 
probability p of a subpatch being invaded divided by the probability of not being 
invaded, i.e. p/(1-p). The effect of a single predictor variable x can be assessed by its 
odds ratio (OR) which is the odds if x = 1 divided by the odds if x = 0. The OR is 
calculated by exponentiating the estimate b (regression coefficient) of x: 
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For instance, the odds ratio for habitat  is exp(0.41069) = 1.51. This means the 

odds of invasion probability in optimal habitat is roughly 1.5 times larger than in 
suboptimal habitat.  



Since the continuous predictors are on a logarithmic scale like the log odds, we 
get a power relation between OR and the continuous predictors. Suppose for instance 
that the distance from road is doubled from x to 2x. Then the OR is given by 
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The addition of 1 in the above equation comes from our ad hoc approach to 
handle the zeros in roaddist . For distance to roads we have b = -0.83565. Thus, if this 
distance is doubled from 20 m to 40 m, say, then the odds of invasion probability 
further from the road is 2-0.83565 = 0.5603 times the odds closer to the road.  
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