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Abstract

Utilization of Generalized Linear Mixed Models (GIM) in invasion biology has
increased exponentially during the last 5-10 ye@&isMM are useful tools that can
handle data with various distributions as well jpatigl or temporal dependence which
are involved in many study designs. We review theent state-of-the-art of GLMM
with special focus on applications in invasion b@. This review covers all steps of
data analysis with GLMM. We address frequently emtered practical problems, such
as failure of convergence, and put some emphasialihation of model assumptions.
Further, we point towards possibilities of analgsirero-heavy data using combined
GLMM. More detailed insight into practical applicats of GLMM is provided in three
worked examples in the supplementary material. Riggg applications of GLMM in
invasion biology, a literature analysis showed tlatdom effects are mostly used to
account for non-independence of observations dustudy design, but rarely for
estimation of random variation. There may be somingial in using random-effect
estimation more consciously, like in some recemdists of genetic variation of invasive
species. Often, invasion biologists have to de#h wount data or proportions. In such
cases, several methods of parameter estimationawagable, but their suitability
depends on characteristics of the data at hand laenke, they should be chosen
carefully. Also repeated measures are common irasion biology. In GLMM
frameworks, the auto-correlation of such data eambdelled by structured co-variance
matrices. This opportunity, however, has seldommhesed.

Keywords. invasive species, convergence, mixed effects mpdeodel validation,
review, zero-heavy data

Introduction and Scope

Invasion biologists often study data that are natable for analysis with classical
statistical procedures such as Ordinary Least 8guU&®LS) regression and Analysis of
Variance (ANOVA) which require normal distributiohpmogeneity of variance and
independence of residuals. In many cases, the blesiaused to assess biological
phenomena are not normally distributed. Count datavell as binomial data are daily
fare for invasion biologists (cf. Supplement A).rfher, study designs that implicate



non-independence of the observations due to nesdetpling, spatial dependence,
(phylo-)genetic relatedness or repeated measuresc@mmon. Generalized Linear
Mixed Models (GLMM) are flexible tools for analygjrsuch data.

The fundamentals of GLMM have been establishechén 1980s and the first
software implementations occurred in the early $98D'Hara 2009), but only after
2000 they have become widely available in statistijgackages such as R (Ime4
package first uploaded in 2003), SAS (PROC GLIMMigcame standard procedure in
V9.2, 2008; first production version released i02)) and ADMB (example of Poisson
GLMM dated December 2006). Consequently, applicatiof GLMM in invasion
biology have increased exponentially during thet lésw years (Fig. 1). The
development of philosophies, sophisticated statiktiprocedures, and software
implementations of GLMM is still continuing, butelbasics are sufficiently mature for
wide application in invasion biology. We will, howar, not conceal that applying
GLMM can be somewhat more complicated than clak8m@ar modelling. There are
different methods for estimating parameters and tésting significance and their
suitability depends on the properties of the datdaather, it happens quite often that
models do not converge, particularly when therenaaay fixed and random effects.
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Figure 1 White bars show the number of peer-reviewed papspsrting applications of GLMM in
invasion biology (GLMM papers) published from 2002 2011 according to the literature search
documented in Supplement A. The figure for 2011 Wasearly extrapolated from data covering 1
January to 12 July. In total, 116 GLMM papers wienend in the literature searches. Black bars shmw t
number of all papers found in Web of Science ughey query "invasi* OR "non-native$" OR "non-
indigenous" OR exotic$ OR alien$ OR weed*"* andniefj the results by subject areas as specified in
Supplement A, ch. 1.1. The figure for 2011 wasdiheextrapolated from data covering 1 JanuaryZo 1
December 2011. Note that the number of all pamegivien in thousands. The increase of the number of
papers per year was modeled with GLM (quasi-Poidsgrlink).

In this review, we will try to elucidate applicati® of GLMM in the wide field
of invasion biology, including not only spread, l@iso ecology of non-native species
and impacts on native ecosystems. We will focusnoted models, i.e. those including
random effects, although some aspects, such asiclgosuitable distributions or model



building are largely the same for Generalized Lingadels (GLM) without random
effects.

The scope of this review is, first, to detect theshcommon issues that invasion
biologist deal with when applying GLMM, and to idéyn common problems and
possibly unused potentials, through analysing rexsearch articles. The results of this
literature analysis are reported in SupplementfAot in the main text. Second, we
review the methodology of GLMM. We intend this rewi to serve as a guide to
GLMM for invasion biologists. Hence, we will addsesll common issues of GLMM, if
only briefly at times, by revisiting the steps @ita analysis. Some emphasis is put on
modelling zero-heavy data and validation of modsluanptions. Third, we give worked
examples of data analyses with GLMM in SupplemerDBhat may help to clarify
some details of model setups and interpretaticesilts.

Review Methodology

For the review of studies that applied GLMM in isiw@n biology, we searched Web of
Science, Scopus and Google Scholar for articledighgda between 2002 and 2011
(effective July 12). We found 116 articles of whish were selected for analysis by
assigning random numbers and sorting in ascendidgroDetails of the literature

analysis are given in Supplement A.

What are GLMM?

GLMM are regression models that allow choosing agnaarious distributions and link
functions, just like GLM, in order to model a widenge of types of dependent variables
through linear combinations of one or multiple peeat variables (fixed effects).
Additionally, GLMM include random effects.

Random effects quantify the variation of regressidercept or slopes among
the levels of a grouping variable by a probabitligtribution instead of estimating a
fixed regression coefficient for each level. In GMMhis distribution is assumed to be
Gaussian with zero mean and some variance to beatstl. Even though a random
effect is described by a distribution, the valuést®levels still may be estimated by
maximum a posteriori estimation. In Linear Mixeddets Models (LMM), i.e. GLMM
with Gaussian response and identity link, this gitlee best linear unbiased prediction
(BLUP).

A grouping variable should be used as a randoncteffeits levels may be
conceived to be a random sample from a larger gr@iplara 2009), e.g. some
individuals drawn from a population, and if the iaion among levels is more
interesting than the effect of a single level. @ftbe levels of grouping variables are
biologically meaningless, e.g. in the case of expental blocks, but need to be taken
into account in order to obtain valid p-values astimates. Such ‘nuisance variables’
should be used as random effects when their vanias of interest. In all other cases
variables should generally be used as fixed eff@tbinson 1991). Thus, it would be
all right to use grouping or nuisance variablesfiasd effects, but particularly with
many levels, random effects have the practical midgge of using less degrees of
freedom.

For auto-correlated data, such as repeated measutkee same individuals or
spatially auto-correlated observations, it is some$ sufficient to model the
dependence by suitable random effects. However,sthength of correlation may
depend on co-variates or co-factors, e.g. temporadpatial distance. For instance,
observations made at time point 1 (t1) and t2 mayrmore similar than at t1 and t3.
GLMM can model complex temporal and spatial cotrefastructures (Dormann et al.



2007, Fieberg et al. 2010). Finally, also data whéne random effects have
heterogeneous variance can be analyzed with GLMM.

Choosing distribution and link function

The first step of the modelling process is to fnduitable distribution and link function
for the data at hand. The natural distributiongaint data are Poisson or, in case the
variance is larger than the mean (overdispersith®),negative binomial distribution.
Proportions and binary outcomes are naturally biabwariables. Depending on the

software package, also other distributions mayadable (Table 1).

Table 1 Some distributions used in GLM and GLMM, link ftioms and corresponding types of

variables.
Distribution Range of Common link Scale Biological
variable functions parameter variables
Gaussian Real axis Identity Yes Metric
Transformed to  Positive real axis Ldyg Yes Metric on
Gaussian logarithmic
scale
Transformed to  Positive real axis Box-Cdx Yes Metric
Gaussian
Beta Reals strictly Logit, Probit, Yes Proportion
between 0 and 1 complementary
log-logf
Gamma Positive real axis Log, Power Yes Rates
Poissofi 0,1,2,... Log, Identity No Counts; e.g.
abundances,
species
numbers
Negative 0,1,2,... Log, Identity Yes Counts with
binomial overdispersion
Binomiaf® 0,1,...,N where Logit, Probit, No Binary: e.qg.
N is an apriori complementary presence-
given number of log-log absence;
trials proportions:
e.g.
germination
percentage
Polytomous 1,2,..K Cumulative No Ordinal scale
logit, Ordered
probit

Transformation is applied on the data points ptimra statistical analysis using the identity link.
Although the transformation is not used as a luction, the interpretation will be the same astfar

link function.

%Inverse CDF for the log-Weibull distribution.
3A scale parameter may be introduced via the qiikeslifood approach.



The purpose of the link function is to transforntiues of the dependent variable
so that they match the scale of the linear predidte. [<o, «], and to linearise the
relationship with the predictor variables (Table Bpr each distribution, there is a
canonical (‘'natural’) link function, but there aso less commonly used alternatives
that may suit the data better in some cases. Btarine, binomial data may be modelled
with probit link, or count data with large meansyma some instances be modelled

with identity link (Table 1). It is advisable tot fmodels with different links to the
dataset and to use the link that yields the besteiitt and parameter interpretation.

Table 2 Some link functions used in GLM and GLMM and thieterpretations.

Range of Link function  Link function  Common Common

variable name formula interpretation interpretation
of predictions  of contrasts

Real axis Identity U Position Difference

Positive real Log log(p) Position Log ratio

axis Log rate

Positive real Box-Cox (U-1)/(xy")?®  Position Not available

axis

Positive real Power it Position Not available

axis

Reals strictly Logit log(u/(1-p)) Log odds Log odds ratio

between 0 and 1

Reals strictly Probit () Gaussian Difference in

between 0 and 1 distribution of  susceptibility
change point

Probability Cumulative log(/(1-))* Log odds Log odds

vector logit ratio,

independent of
cut-off point
Probability Ordered probit @*(x)* Vector of Difference in
vector (cumulative change points. susceptibility
probit)

'Regression coefficients of the levels (dummy vdesb of categorical predictor variables. Also

applicable to one-unit changes in continuous ptedizariables.

“The exponent. is a constant that is estimated from the datéhabthe data are as close as possible to
normal distribution and homogeneity of variancelmtransformed scale.
®*Here,y is the geometric mean of the data.
“*Heren is the cumulative probability.

Models for zero-heavy data

Non-negative observations with exceedingly manygere an often occurring data
situation that cannot be modeled by the probabilistributions listed in Table 1.
Lambert (1992) introduced a zero-inflated Poissardeh (ZIP) for zero-heavy count
data by increasing the probability of zeros in &8an distribution. If there is additional
overdispersion beside the inflated probabilityZero counts, then a possibility is to use
the zero-inflated Negative Binomial model (ZINB; W&fe et al. 1996). An alternative



description of the ZIP and the ZINB is to combinsegparate model for the zeros with
the conditional model for the non-zero counts, the truncated Poisson or Negative
Binomial distribution. These parameterizations lamewn as hurdle models (Cameron
and Trivedi 1998). The interpretation is that thexe hurdle to be surpassed to have
non-zero response. Zero-inflated and hurdle modelscribe the same probability
distributions, so the choice between these two inadlasses depends on the
interpretation of the model parameters. This chaieg be made considering the origin
for the additional zeros (Martin et al. 2005). Adigomically, hurdle models may be
analyzed using a bivariate model with a binary oese quantifying whether the
observation is zero or positive, and an additicc@inting response with the actual
count for the positive observations. For continumagponses we may also interpret the
hurdle as censoring, i.e. negative responses aso to zero and positive responses
are observed as they are. This model introduceddiyn (1958) is known as Tobit
regression and consists of a binary component avigtobit link quantifying whether
the observations are negative or positive, andnaitonal normal distribution with the
identity link for the positive responses. A specfahture of Tobit regression in
comparison with the ZIP and the ZINB is that theapaeters in the binary and the
conditional components are shared since the deimiobf the probit function fits
together with the censoring interpretation. In BaB| we have collected examples of
bivariate models that may be used to model zereyhdata. The last model is used in
the worked example in Supplement C.

Table 3 Examples of bivariate models for zero-heavy data.

Two- Range of Bivariate Model components
component variable recoding of
model responsey
Zero-inflated 0,1,2,.. a) 0 if y=0 a) Binary.
b) (1,y) if y>0 b) Binary, Poisson (or
Negative Binomial) truncated
in O.
Tobit Zero and a) 0 if y=0 a)Binary with probit link.

positive real )y ¢ iy it y>0 b)Binary with probit link,

axis Gaussian with identity link.
Conditional log Zero and a) 0if y=0 a) Binary with log link.
Gaussian positive real b) (1,log(y)) if y > b) Binary with log link,

axis 0 Gaussian with identity link.

Estimation methods

Before actually calculating the model we need tostter which estimation method we
can use. The choice depends on the dependent leasiath on the random effects that
are to be included in the model (cf. Bolker e28109).

If the dependent variable can be modelled with amab distribution, we will
conduct a LMM using Restricted Maximum LikelihoodREML) for parameter
estimation. For non-normal GLMM, exact integratiover the random effects is only
possible in special cases, and the practitiontarcisd with the choice among a wealth of



approximate methods that may give different resutiisre we only discuss the most
popular methods that are implemented in SAS and R.

Penalized Quasi-Likelihood (PQL) (Breslow and Cbeytl993) is widely used
since it is computationally fast. However, PQL msties are known to be biased and
should be avoided for Poisson variables when thannmoeunts within groups are less
than 5 and for binomial variables when the meanbemof either successes or failures
are less than 5. Further, GLMM can be approximdigd .MM using pseudo-data
(Wolfinger and O’Connell 1993). This method is knoas Pseudo-Likelihood and is
the default method in PROC GLIMMIX. Neither PQL naseudo-likelihood provides
an approximation to the actual likelihood of theagdand hence these methods cannot
be used to compare models by either likelihoodrasts or by information criteria.
The standard methods to attain such an approximdisted in increasing order of
accuracy, but also computational costs, are thdéacepapproximation, Gauss-Hermite
Quadrature (GHC), and Monte Carlo integration (&# al. 1996). In practice, GHC is
too slow when the number of random effects is largan three. Monte Carlo
integration is closely related to the Markov ChMonte Carlo (MCMC) techniques
extensively used in Bayesian statistics, and mamiants exist allowing for the analysis
of very complicated models. This, however, is algghe scope of this review.

Convergence problems

With many fixed predictor variables compared to gknsize, and with more than one
random grouping variable, GLMM computation algamith may fail to converge. This
IS a common problem in biological applications (s@lso worked examples in
Supplement B-D).

Among several recommendations, Cheng et al. (2@t®)ce that centering,
standardising and full-rank coding of the predicteariables and reduction of
collinearity, if present, is done in order to alke convergence problems. In non-
complete designs, full-rank coding means that tmeat combinations not used should
be removed from the design matrix (cf. Supplement=@rther, with caution, one may
try out, if manipulations of the data table, sushaggregation of levels of categorical
predictor variables, facilitate convergence. Onghnalso try to change the settings for
the algorithm, e.g. to increase the number of agosieps and/or the maximum number
of iterations, and to loosen the convergence @itelf these measures are not
successful, the reason for failing convergence wstnlikely a (too) complicated
random-effects structure (Cheng et al. 2010), asolation could be to simplify the
random and/or fixed effects model.

Analysis strategies

In the literature analysis (Supplement A), a grdsssification gives that the primary
modelling aim was inference in 66 % of the analysed prediction/forecasting in 29
%, while estimation of random variation accountedthe remaining 5 %. The purpose
of inference is to provide significance tests datienships between dependent and
predictor variables, i.e. to state p-values answethe questionls there an effect?
Thereafter, parameter estimates and confidencevalscare stated as answers to the
follow-up questionWhat is the effectBurther, one often calculates local group means
and their confidence intervals to assess the impadhe predictor variables on the
dependent variable. In prediction, the presentsgatia used for calculating the expected
(‘predicted’) mean values, whereas in forecastingva data set of the same predictor
variables is used. We speak of projection, if teev mataset represents a hypothetical
scenario rather than measured data. For predidboecasting and projection, we may



ask: Which model is be8tin all cases, model validation should be donevariag the
guestion:.Can the conclusions be trusted?

Is there an effect?

Computation of p-values for the significance ofefixeffects in a GLMM is often done
by either Wald or Likelihood Ratio (LR) tests.

Wald tests compare parameter estimates againststagidard error like t-tests
in classical regression analysis for the null hijests that a regression coefficient
equals zero. In the case of distributions withdixigspersion, e.g. Poisson and binomial,
we can use Wald Chi-square tests, while in the aaselistributions where the
dispersion or variance is estimated, e.g. normahsgPoisson or quasi-binomial, we
need to use Wald F tests which require the dendorindegrees of freedom (df).
Several methods for estimating df in GLMM have bg@eoposed (e.g. Satterthwaite
1941, Kenward-Roger 1997; cf. also Bolker et aD®0 but these do not always give
reliable p-values. In particular, caution shouldelzercised when the standard errors are
large. Large standard errors also may result ifated p-values in cases with less
identifiable parameters. The phenomenon e.g. odcurguasi-separated binary data,
where a regression parameter simply should be .ldigeever, the parameter will be
estimated at some value which can be outweighdtidgtandard error.

Likelihood Ratio tests compare nested models, aitth without the effect to be
tested, and test the null hypothesis of no diffeeein residual deviance. Like with Wald
tests, there are different variants of the LR téstglistributions where the variation of
the data needs to be estimated [R F test) and distributions with a priori defined
variation (~ LR Chi2 test). When conducting LR tests of fixed effectd MM, it is
recommended to use Maximum Likelihood (ML) for esting parameters (Bolker et
al. 2009, Cheng et al. 2010, Pinheiro and Bate®2d0ur et al. 2009). It is also
possible to use REML, but then the restricted iil@d should be defined using the
design under the reduced model (Welham and Thomp38n). This method, however,
Is not implemented in standard software.

Regarding random effects, significance can be desféh LR tests comparing
nested models which differ by one random intercgplope (Morrell 1998). This tests
the hypothesis that a variance component equats against the alternative that it is
positive. Hence, the hypothesis lies on the boundar the possible values of the
variance component, and the LR test should be ateduin a mixture of a point
distribution in zero and the chi-square distribati®@olker et al. 2009, Self and Liang
1987, Molenberghs and Verbeke 2007). For randostefiin LMM, it is recommended
that REML is used to define the LR statistic (Mdri€©98).

Also a single random effect can be tested with Ldtngaring the model
including the random effect with a model that daes include it (which is an LM or
GLM), but many GLMM software packages do not otfes option. It is possible to fit
the model without the random effect in another progand, then, to conduct the LR
test, but it is important to make sure that thelikglihoods are commensurate in both
programs (http://gimm.wikidot.com/random-effectstieg). Alternatively, the random
effect can be tested with parametric bootstrap Sapplement B). Although the
parametric bootstrap does not account for the b#itiaof the parameter estimates, it is
often more trustworthy than the LR test since ieslmot rely on the asymptotical
distribution of the test statistic.



What is the effect?

Once we have tested the significance of effectsmigit want to know how strong the
effects are. How much does the dependent varidid@ge given a unit change in a
predictor variable? We need to take into accouat ¥e did not model the dependent
variable itself, but its transformation by the lifknction (Table 2). Hence, if we want
to know the effects on the original scale, we nebacktransform the predictions, e.g.
if we conducted a Poisson-GLMM with log link we leato exponentiate the estimates
of fixed predictor variables (for an example ofikigz modelling see Supplement B).

The interpretation of the estimates may depend betlver random effects are
included or not. Suppose, for instance, that weshtaw observations from each subject,
where the subjects are representatives from sompelatmn, and that we estimate some
fixed effect. In the model with random intercepts fixed effect will then be subject-
specific. In the model without random intercepts fixed effect will be averaged over
the population.

Like all statistics calculated from a sample, mopleddictions are not the true
value of the population, but estimates that includeertainty. The range in which the
true value of the effect is likely to be found iven by confidence intervals that are
routinely provided by most GLMM standard software.

Only few studies in invasion biology aim at estimgtthe effect of random
variables on the dependent variable (see SuppledenBut the random variation
among subjects or groups may be interesting as(@&flara 2009). A random intercept
effect measures how much the group-specific infscevary around the global
intercept, and the strength of the random effegt beaassessed comparing its estimated
standard deviation to the size of the fixed effeet, the global intercept, in this case.
For instance, if the global intercept was 10 areldktimated standard deviation of the
random intercept was 2.5, then approximately 95f%raup-specific intercepts would
be in the range of #02*2.5, i.e. between 5 and 15. If there was a figkghe estimate
of 2 and the standard deviation of the random s&ffext was 0.5, then we would have
to expect group-specific slopes within the rangeygbroximately 1 and 3. A worked
example of how to interpret random effects is giwerDouglas Bates new book on
"mixed effects modeling in R" (Bates 2010, Ime4urge.r-project.org/book/front.pdf).

Which model is best?

According to our literature analysis, 34 % of GLMaplications in invasion biology
conducted model building before final parameteinestion and inference. In our view,
this is particularly appropriate whenever the psgpof the study is prediction,
forecasting or projection. Full models give unbésstimates, but may not be good for
prediction because they may contain insignificaredpctors (Whittingham et al. 2006)
or, more generally, be over-fit (Crawley 2002). kafierence, model selection is only
advisable, if the number of predictor variableslasge. Otherwise, the full model
containing all available predictor variables shooédused. Generally, we would tend to
keep biologically meaningful variables in the mqaelen if they are not significant (cf.
Cheng et al. 2010).

Strategies for model building are forward selectibackward elimination and
best subset (Bolker et al. 2009, Cheng et al. 200 stepwise procedures have been
repeatedly criticized because the order of paranegtey or deletion can influence the
selection result, multiple tests involved in theoqadures inflate type | errors, and
parameter estimates may be biased (Burnham & Aade?2902, Whittingham et al.
2006). For inference, we recommend that model mgldgs done by backward model
selection. Forward model selection should only Isedy if there are too many



predictors. For prediction and forecasting, we necend best subset modelling and
possibly model averaging (cf. e.g. Johnson and @dla004). In any case, the
candidate models must have the same random-effétisture when selecting fixed
effects, and vice versa if selecting random efféetg. Cheng et al. 2010).

With GLMM, best subset modelling may easily becomamputationally
expensive, when there are several fixed or randfiectts. Hence, it will often be
necessary to decide on a sensible maximum moeeg subset of all possible fixed and
random effects and interactions that can be cdkxdilen reasonable time (cf. Bolker et
al. 2009, Cheng et al. 2010).

In best subset modelling, Information Criteria (I&)e used for evaluating
candidate models. IC consider both model fit (des#g and complexity (df of the
model parameters), and they also can compare ni@ohesdels (contrary to stepwise
procedures). Aikaike's Information Criterion (AI@ the most widely used IC in
invasion biology and ecology. For small sample sizé is recommended to use
corrected AIC (AICc) which penalizes more stronfdly model complexity (Burnham
& Anderson 2002). For overdispersed data, quasi-K)@IC) can be used, although
this has been criticized (cf. Bolker et al. 200Bayes Information Criterion (BIC) is
very similar to AIC, but used less commonly. Bl@ds to favor less complex models
compared to AIC (Keselman et al. 1998). Both AIGI @IC require estimating the
degrees of freedom of the parameters in the motiehwnis problematic with random
effects (Vaida & Blanchard 2005). The choice ofisCargely subjective as no variant is
consistently superior to the others (Cheng et @02 An alternative is the Deviance
Information Criterion (DIC) which is calculated ngi MCMC sampling and takes the
effective number of model parameters into acco8piggelhalter et al. 2002, Miaou &
Song 2005). DIC has recently gained popularitycolegy (Bolker et al. 2009).

The aim of model building is often to find one ‘besodel' that is used for
parameter estimation and inference. However, skdédfarent models may fit the data
similarly well, so that model selection may be utme. Stepwise procedures and
selection of a single best model do not accounstmh uncertainty (Whittingham et al.
2006). With IC and best subset modelling it is gassto identify similarly good
models that are within a certain range of IC valeeg.A AIC < 4, and then, to average
parameter estimates among them using Akaike's teeighultimodel averaging has
increasingly been advocated and applied in ecabgtudies (Johnson & Omland
2004, Dormann et al. 2008, Bolker et al. 2009) mncecommendable particularly for
prediction and forecasting (Whittingham et al. 2006

Model building of random effects appears to beesklimportance in invasion
biology, because most studies use single randaenceyts or random-effects structures
that are predetermined by study design (cf. Suppternd). In principle, however,
model building is as sensible for random effectsfas fixed effects and can be
conducted in a similar way. If model building ohdom effects is desired, this should
be done before selection of fixed effects, i.engghe full or maximum model, because
the results of fixed-effects model building may €legp on the random-effects structure
(Zuur et al. 2009, Cheng et al. 2010).

Can the conclusions be trusted?

GLMM rely on assumptions that need to be met ireotd get valid estimates and p-
values. In case of backward model selection thiesald be validated for the initial and
the final model, and in case of best-subset seleatalidation should be done for the
selected model. The assumptions of GLMM are:

a) A response distribution.



b) A link function.
c) Linearity against the predictors on the scale eflthk function.
d) Gaussian distribution of the random effects.

Before describing possibilities to validate GLMMeWirst discuss the special
methods that are available for the validation of MMIn Gaussian models, the
specification of the link function is replaced byarisformations of the actual
observations of the response variable, if necessary hence the link is the identity
function. The standard validation methods for Gramssmodels investigate the
statistical properties of the residuals and of phedicted random effects. Basically,
there exist two sets of residuals for LMM. The (omditional) residuals are the
differences between the observations and the estimigxed effects, while for the
conditional residuals the predicted random effexig, the random intercepts and effects
of slopes of the group levels, also are subtracidte residuals, the conditional
residuals, and the predicted random effects aressumed to be Gaussian, and the
conditional residuals are approximately independ&st a consequence of this, the
model assumptions of LMM may be assessed by thenfmlg graphical diagnostics:

I. The Gaussian distribution is validated by a norquadntile plot of the conditional
residuals. Variance homogeneity is validated bgadter plot of the conditional
residuals against the predicted values. Indeperdeittie error terms may be
validated by an autocorrelation plot of the comatiéil residuals.

II. The appropriateness of the identity link is asskg@th scatter plot of the
residuals and of the conditional residuals agdahespredicted values.
lll. Linearity against the predictors is assessed widlttar plots of the residuals and
of the conditional residuals against the individcaariates.
IV. The Gaussian distribution of random effects isdatkd by a normal quantile plot
of the estimated random effects (BLUPS).

The normal quantile plots may be accompanied bylgess-of-fit tests based on
an adequate statistic, e.g. the Shapiro-Wilks, Kgjorov-Smirnov, Cramer-von-Mises,
or the Anderson-Darling statistic (see D’AgostinedaStephens 1986). These tests,
however, may have too large power in the sense tti@t may reject the normal
distribution for non-important deviations (see Seppent C). Furthermore, not even the
conditional residuals are strictly independent, bedce the type | error of the tests may
not be at the significance level. Ritz (2004) dedlisa goodness-of-fit test for the
distribution of the random effect taking the depmmzke between the predictions of the
random effects into account, but to our knowledge test is not readily available in the
standard software packages.

We are not aware of any standard methods for aleltassessment of the
response distribution in GLM(M). Instead, the cleoaf the distribution is often based
on qualitative properties of the experimental desigg. the Poisson and the negative
binomial distributions are the natural choices tmunt data (Table 1). However,
Pearson or deviance goodness-of-fit tests for asjeedsion in distributions with fixed
dispersion are often performed. There have beeeprakwattempts to define useful
residuals in framework of GLM (see Pierce and S&hab86). But the distributional
properties of such residuals are not explicitly wno So the interpretation of classical
residual plots for GLM is difficult, and for GLMIhings just get worse. For graphical
assessment of link function and linearity, cumulatiesiduals and associated goodness-
of-fit tests have been proposed for GLM (Lin eR@D2). It is possible to describe the
asymptotic distribution of the cumulative residuatsng simulations, and the method



extends to GLMM invoking the Generalized-Estimatibguations (GEE) approach
(Liang and Zeger 1986). Concerning the distributioih the random effects, the
goodness-of-fit test proposed by Ritz (2004) watemded to GLMM, but it has low
power for the logistic regression (Waagepeterse@6R0lt is still possible to make a
normal quantile plot of the predicted random eBebut due to unknown distributional
properties of the predicted random effects, theraa justification for alarm even for
less nice looking plots. In summary, GLMM may bédeted as follows:

a) Make a histogram of the raw observations to séeeithosen response
distribution is completely off. For distributiongttvfixed dispersion perform a
Pearson or deviance goodness-of-fit test.

b) To assess the appropriateness of the link functilart the cumulative residuals
against the linear predictor, possibly accompabied goodness-of-fit test.

c) To assess linearity against the predictor varialplked the cumulative residuals
against the individual continuous predictors, pagshccompanied by a
goodness-of-fit test.

d) Make a normal quantile plot of the predicted randafacts. This plot, however,
may only be used to find comfort and cannot be tiga@avalidate the
distributional assumption.

The cumulative residuals may be done in PROC GENMI©®BAS, which also
provides the Kolmogorov-Smirnov goodness-of-fitttaad allows for correlation via
the GEE-approach (see Supplement C). In R, curwelagsiduals and the associated
Kolmogorov-Smirnov and Cramer-von-Mises tests maydbne via the gof-package
(Holst 2011). This package, however, does not telthe GEE-approach and hence
only works for GLM. To use the R-package on GLMMe trandom effects should
either be removed or reused as fixed effects irv#tidation step (see Supplement B).

How to report the model?

In the literature analysis, we found that many pgamkd not report crucial aspects of
GLMM. For instance, 62 % did not report the metlodcparameter estimation (PQL,
Laplace etc.). Not a single paper reported alhefinformation necessary for evaluation
of the methods.

We suggest that the following list of informatiamosild be routinely provided in
papers (modified after Bolker et al. 2009, theipementary material): study design,
sample size, number of levels of random groupimipbées, software package, type of
dependent variable, distribution, over-/underdigpe(for Poisson data and proportions
modelled with binomial distribution), link functipmmethod of parameter estimation,
test methods of fixed and random effects, estimadiodf of the residuals (when using
Wald F tests) and of the random effects (when ugit@ or BIC or their variants),
model selection criteria and strategy; for Poisstata: mean and variance; for
proportions: minimum number of successes/ failumesults of model validation,
magnitude of random effects.

Conclusion/Summary

GLMM are important tools in invasion biology, besaustudy designs often involve
non-Gaussian dependent variables and independéralgservations due to spatial or
temporal grouping. Applications of GLMM have rapidincreased after standard
software had become available, and they are likelincrease further in future. It is
difficult to say, if invasion biologists manage GMVall right or if flawed applications



are common, because most papers do not reportcisatfidetails. GLMM are as
flexible and powerful as they are complicated ahdllenging. Users should be aware
of the different methods of significance testingl axf estimating parameters. PQL is
often not suitable for studies in invasion biolodgyaplace approximation is a good
compromise between precision and computationaldsped will be suitable for most
studies. Currently, MCMC techniques are becomingememmmonly available. They
may help to solve some of the difficulties in irfece and estimation (Bolker et al.
2009).

Model validation is hardly ever reported, but otical importance for valid
inference and estimation. Perhaps, users shouldnpag attention to validation of
model assumptions. Generally, we encourage regooinmethods more rigorously, if
not in the paper itself, then in online supplements

Structured co-variance matrices are good tools rfardelling temporally,
spatially or phylogenetically correlated data @fipplement D). Repeated measures are
common in invasion biology (32 % of reviewed GLMMadyses), but so far most such
studies have used unstructured co-variance matraddsough explicit modelling of
temporal auto-correlation would give more preciseajues. For some recent studies
that modelled auto-correlation of repeated measseesMcEachern (2009), Chun et al.
(2010), Tognetti et al. (2010). An application of.\®M to modelling spatial auto-
correlation of grid-based distribution data canfbend in Gasso et al. (2009). One
difficulty is that correlation structures currendye only widely implemented for LMM,
but rarely for GLMM. The exception appears to beCRRGLIMMIX in SAS, GEE
(Carl and Kihn 2007) and many of the Bayesian agpres. In view of the further
rapid software development, the potential for minaiglcorrelated data may increase in
future. Generally, we encourage using structuredac@nce matrices for modelling
correlated data whenever possible.

Usually invasion biologists are not interested @sting or interpreting the
random effects. This is obviously due to the faet random variables most often are
nuisance variables. However, there may be somengalten using random-effects
modelling more consciously. For instance, a speiieasion potential may not only
depend on mean traits of the population, but als@enetic variation at genotype or
population level that can be measured in GLMM asloan effects (see e.g. Buckley et
al. 2003, Brodersen et al. 2008, Xu et al. 2010).
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