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Abstract 

Utilization of Generalized Linear Mixed Models (GLMM) in invasion biology has 
increased exponentially during the last 5-10 years. GLMM are useful tools that can 
handle data with various distributions as well as spatial or temporal dependence which 
are involved in many study designs. We review the current state-of-the-art of GLMM 
with special focus on applications in invasion biology. This review covers all steps of 
data analysis with GLMM. We address frequently encountered practical problems, such 
as failure of convergence, and put some emphasis on validation of model assumptions. 
Further, we point towards possibilities of analysing zero-heavy data using combined 
GLMM. More detailed insight into practical applications of GLMM is provided in three 
worked examples in the supplementary material. Regarding applications of GLMM in 
invasion biology, a literature analysis showed that random effects are mostly used to 
account for non-independence of observations due to study design, but rarely for 
estimation of random variation. There may be some potential in using random-effect 
estimation more consciously, like in some recent studies of genetic variation of invasive 
species. Often, invasion biologists have to deal with count data or proportions. In such 
cases, several methods of parameter estimation are available, but their suitability 
depends on characteristics of the data at hand and, hence, they should be chosen 
carefully. Also repeated measures are common in invasion biology. In GLMM 
frameworks, the auto-correlation of such data can be modelled by structured co-variance 
matrices. This opportunity, however, has seldom been used. 
 
Keywords: invasive species, convergence, mixed effects models, model validation, 
review, zero-heavy data 

Introduction and Scope 

Invasion biologists often study data that are not suitable for analysis with classical 
statistical procedures such as Ordinary Least Squares (OLS) regression and Analysis of 
Variance (ANOVA) which require normal distribution, homogeneity of variance and 
independence of residuals. In many cases, the variables used to assess biological 
phenomena are not normally distributed. Count data as well as binomial data are daily 
fare for invasion biologists (cf. Supplement A). Further, study designs that implicate 



non-independence of the observations due to nested sampling, spatial dependence, 
(phylo-)genetic relatedness or repeated measures are common. Generalized Linear 
Mixed Models (GLMM) are flexible tools for analysing such data. 

The fundamentals of GLMM have been established in the 1980s and the first 
software implementations occurred in the early 1990s (O'Hara 2009), but only after 
2000 they have become widely available in statistical packages such as R (lme4 
package first uploaded in 2003), SAS (PROC GLIMMIX became standard procedure in 
V9.2, 2008; first production version released in 2005), and ADMB (example of Poisson 
GLMM dated December 2006). Consequently, applications of GLMM in invasion 
biology have increased exponentially during the last few years (Fig. 1). The 
development of philosophies, sophisticated statistical procedures, and software 
implementations of GLMM is still continuing, but the basics are sufficiently mature for 
wide application in invasion biology. We will, however, not conceal that applying 
GLMM can be somewhat more complicated than classical linear modelling. There are 
different methods for estimating parameters and for testing significance and their 
suitability depends on the properties of the dataset. Further, it happens quite often that 
models do not converge, particularly when there are many fixed and random effects. 
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Figure 1 White bars show the number of peer-reviewed papers reporting applications of GLMM in 
invasion biology (GLMM papers) published from 2002 to 2011 according to the literature search 
documented in Supplement A. The figure for 2011 was linearly extrapolated from data covering 1 
January to 12 July. In total, 116 GLMM papers were found in the literature searches. Black bars show the 
number of all papers found in Web of Science using the query "invasi* OR "non-native$" OR "non-
indigenous" OR exotic$ OR alien$ OR weed*" and refining the results by subject areas as specified in 
Supplement A, ch. 1.1. The figure for 2011 was linearly extrapolated from data covering 1 January to 12 
December 2011. Note that the number of all papers is given in thousands. The increase of the number of 
papers per year was modeled with GLM (quasi-Poisson, log-link).  

 
In this review, we will try to elucidate applications of GLMM in the wide field 

of invasion biology, including not only spread, but also ecology of non-native species 
and impacts on native ecosystems. We will focus on mixed models, i.e. those including 
random effects, although some aspects, such as choosing suitable distributions or model 



building are largely the same for Generalized Linear Models (GLM) without random 
effects. 

The scope of this review is, first, to detect the most common issues that invasion 
biologist deal with when applying GLMM, and to identify common problems and 
possibly unused potentials, through analysing recent research articles. The results of this 
literature analysis are reported in Supplement A, if not in the main text. Second, we 
review the methodology of GLMM. We intend this review to serve as a guide to 
GLMM for invasion biologists. Hence, we will address all common issues of GLMM, if 
only briefly at times, by revisiting the steps of data analysis. Some emphasis is put on 
modelling zero-heavy data and validation of model assumptions. Third, we give worked 
examples of data analyses with GLMM in Supplement B–D that may help to clarify 
some details of model setups and interpretation of results. 

Review Methodology 

For the review of studies that applied GLMM in invasion biology, we searched Web of 
Science, Scopus and Google Scholar for articles published between 2002 and 2011 
(effective July 12). We found 116 articles of which 50 were selected for analysis by 
assigning random numbers and sorting in ascending order. Details of the literature 
analysis are given in Supplement A. 

What are GLMM? 

GLMM are regression models that allow choosing among various distributions and link 
functions, just like GLM, in order to model a wide range of types of dependent variables 
through linear combinations of one or multiple predictor variables (fixed effects). 
Additionally, GLMM include random effects.  

Random effects quantify the variation of regression intercept or slopes among 
the levels of a grouping variable by a probability distribution instead of estimating a 
fixed regression coefficient for each level. In GLMM this distribution is assumed to be 
Gaussian with zero mean and some variance to be estimated. Even though a random 
effect is described by a distribution, the values of its levels still may be estimated by 
maximum a posteriori estimation. In Linear Mixed Effects Models (LMM), i.e. GLMM 
with Gaussian response and identity link, this gives the best linear unbiased prediction 
(BLUP).  

A grouping variable should be used as a random effect, if its levels may be 
conceived to be a random sample from a larger group (O'Hara 2009), e.g. some 
individuals drawn from a population, and if the variation among levels is more 
interesting than the effect of a single level. Often the levels of grouping variables are 
biologically meaningless, e.g. in the case of experimental blocks, but need to be taken 
into account in order to obtain valid p-values and estimates. Such ‘nuisance variables’ 
should be used as random effects when their variation is of interest. In all other cases 
variables should generally be used as fixed effects (Robinson 1991). Thus, it would be 
all right to use grouping or nuisance variables as fixed effects, but particularly with 
many levels, random effects have the practical advantage of using less degrees of 
freedom. 

For auto-correlated data, such as repeated measures of the same individuals or 
spatially auto-correlated observations, it is sometimes sufficient to model the 
dependence by suitable random effects. However, the strength of correlation may 
depend on co-variates or co-factors, e.g. temporal or spatial distance. For instance, 
observations made at time point 1 (t1) and t2 may be more similar than at t1 and t3. 
GLMM can model complex temporal and spatial correlation structures (Dormann et al. 



2007, Fieberg et al. 2010). Finally, also data where the random effects have 
heterogeneous variance can be analyzed with GLMM. 

Choosing distribution and link function 

The first step of the modelling process is to find a suitable distribution and link function 
for the data at hand. The natural distributions of count data are Poisson or, in case the 
variance is larger than the mean (overdispersion), the negative binomial distribution. 
Proportions and binary outcomes are naturally binomial variables. Depending on the 
software package, also other distributions may be available (Table 1).  

 
Table 1 Some distributions used in GLM and GLMM, link functions and corresponding types of 
variables. 
 

Distribution Range of 
variable 

Common link 
functions 

Scale 
parameter 

Biological 
variables 

Gaussian Real axis Identity Yes Metric 

Transformed to 
Gaussian 

Positive real axis Log1 Yes Metric on 
logarithmic 
scale 

Transformed to 
Gaussian 

Positive real axis Box-Cox1 Yes Metric 

Beta Reals strictly 
between 0 and 1 

Logit, Probit, 
complementary 
log-log2 

Yes Proportion 

Gamma Positive real axis Log, Power Yes Rates 

Poisson3 0,1,2,… Log, Identity No Counts; e.g. 
abundances, 
species 
numbers 

Negative 
binomial 

0,1,2,… Log, Identity Yes Counts with 
overdispersion 

Binomial3 0,1,…,N where 
N is an a priori 
given number of 
trials 

Logit, Probit, 
complementary 
log-log 

No Binary: e.g. 
presence-
absence; 
proportions: 
e.g. 
germination 
percentage 

Polytomous3 1,2,..,K Cumulative 
logit, Ordered 
probit 

No Ordinal scale 

1Transformation is applied on the data points prior to a statistical analysis using the identity link. 
Although the transformation is not used as a link function, the interpretation will be the same as for the 
link function. 
2Inverse CDF for the log-Weibull distribution. 
3A scale parameter may be introduced via the quasi-likelihood approach. 

 



The purpose of the link function is to transform values of the dependent variable 
so that they match the scale of the linear predictor, i.e. [-∞, ∞], and to linearise the 
relationship with the predictor variables (Table 2). For each distribution, there is a 
canonical ('natural') link function, but there are also less commonly used alternatives 
that may suit the data better in some cases. For instance, binomial data may be modelled 
with probit link, or count data with large means may in some instances be modelled 
with identity link (Table 1). It is advisable to fit models with different links to the 
dataset and to use the link that yields the best model fit and parameter interpretation.  

 
Table 2 Some link functions used in GLM and GLMM and their interpretations. 
 

Range of 
variable 

Link function 
name 

Link function 
formula 

Common 
interpretation 
of predictions 

Common 
interpretation 
of contrasts1 

Real axis Identity µ Position Difference 

Positive real 
axis 

Log log(µ) Position 

Log rate 

Log ratio 

Positive real 
axis 

Box-Cox (µλ-1)/(λ*γλ)2,3 Position Not available 

Positive real 
axis 

Power µλ Position Not available 

Reals strictly 
between 0 and 1 

Logit log(µ/(1-µ)) Log odds Log odds ratio 

Reals strictly 
between 0 and 1 

Probit Φ
-1(µ) Gaussian 

distribution of 
change point 

Difference in 
susceptibility 

Probability 
vector 

Cumulative 
logit 

log(π/(1-π))4 Log odds Log odds 
ratio, 
independent of 
cut-off point 

Probability 
vector 

Ordered probit 
(cumulative 
probit) 

Φ
-1(π)4 Vector of 

change points. 
Difference in 
susceptibility 

1Regression coefficients of the levels (dummy variables) of categorical predictor variables. Also 
applicable to one-unit changes in continuous predictor variables. 
2The exponent λ is a constant that is estimated from the data so that the data are as close as possible to 
normal distribution and homogeneity of variance on the transformed scale. 
3Here, γ is the geometric mean of the data. 
4Here π is the cumulative probability. 

 

Models for zero-heavy data 

Non-negative observations with exceedingly many zeros are an often occurring data 
situation that cannot be modeled by the probability distributions listed in Table 1. 
Lambert (1992) introduced a zero-inflated Poisson model (ZIP) for zero-heavy count 
data by increasing the probability of zeros in a Poisson distribution. If there is additional 
overdispersion beside the inflated probability for zero counts, then a possibility is to use 
the zero-inflated Negative Binomial model (ZINB; Welsh et al. 1996). An alternative 



description of the ZIP and the ZINB is to combine a separate model for the zeros with 
the conditional model for the non-zero counts, i.e. the truncated Poisson or Negative 
Binomial distribution. These parameterizations are known as hurdle models (Cameron 
and Trivedi 1998). The interpretation is that there is a hurdle to be surpassed to have 
non-zero response. Zero-inflated and hurdle models describe the same probability 
distributions, so the choice between these two model classes depends on the 
interpretation of the model parameters. This choice may be made considering the origin 
for the additional zeros (Martin et al. 2005). Algorithmically, hurdle models may be 
analyzed using a bivariate model with a binary response quantifying whether the 
observation is zero or positive, and an additional counting response with the actual 
count for the positive observations. For continuous responses we may also interpret the 
hurdle as censoring, i.e. negative responses are censored to zero and positive responses 
are observed as they are. This model introduced by Tobin (1958) is known as Tobit 
regression and consists of a binary component with a probit link quantifying whether 
the observations are negative or positive, and a conditional normal distribution with the 
identity link for the positive responses. A special feature of Tobit regression in 
comparison with the ZIP and the ZINB is that the parameters in the binary and the 
conditional components are shared since the definition of the probit function fits 
together with the censoring interpretation. In Table 3, we have collected examples of 
bivariate models that may be used to model zero-heavy data. The last model is used in 
the worked example in Supplement C. 

 
Table 3 Examples of bivariate models for zero-heavy data. 
 

Two-
component 
model 

Range of 
variable 

Bivariate 
recoding of 
response y 

Model components 

Zero-inflated  0,1,2,.. a) 0 if y=0 

b) (1,y) if y>0 

a) Binary. 

b) Binary, Poisson (or 
Negative Binomial) truncated 
in 0. 

Tobit Zero and 
positive real 
axis 

a) 0 if y=0 

b) (1,yλ) if y>0 

a)Binary with probit link. 

b)Binary with probit link, 
Gaussian with identity link. 

Conditional log 
Gaussian 

Zero and 
positive real 
axis 

a) 0 if y=0 

b) (1,log(y)) if y > 
0 

a) Binary with log link. 

b) Binary with log link, 
Gaussian with identity link. 

 

Estimation methods 

Before actually calculating the model we need to consider which estimation method we 
can use. The choice depends on the dependent variable and on the random effects that 
are to be included in the model (cf. Bolker et al. 2009).  

If the dependent variable can be modelled with a normal distribution, we will 
conduct a LMM using Restricted Maximum Likelihood (REML) for parameter 
estimation. For non-normal GLMM, exact integration over the random effects is only 
possible in special cases, and the practitioner is faced with the choice among a wealth of 



approximate methods that may give different results. Here we only discuss the most 
popular methods that are implemented in SAS and R.  

Penalized Quasi-Likelihood (PQL) (Breslow and Clayton 1993) is widely used 
since it is computationally fast. However, PQL estimates are known to be biased and 
should be avoided for Poisson variables when the mean counts within groups are less 
than 5 and for binomial variables when the mean number of either successes or failures 
are less than 5. Further, GLMM can be approximated by LMM using pseudo-data 
(Wolfinger and O’Connell 1993). This method is known as Pseudo-Likelihood and is 
the default method in PROC GLIMMIX. Neither PQL nor pseudo-likelihood provides 
an approximation to the actual likelihood of the data, and hence these methods cannot 
be used to compare models by either likelihood ratio tests or by information criteria. 
The standard methods to attain such an approximation listed in increasing order of 
accuracy, but also computational costs, are the Laplace approximation, Gauss-Hermite 
Quadrature (GHC), and Monte Carlo integration (Gilks et al. 1996). In practice, GHC is 
too slow when the number of random effects is larger than three. Monte Carlo 
integration is closely related to the Markov Chain Monte Carlo (MCMC) techniques 
extensively used in Bayesian statistics, and many variants exist allowing for the analysis 
of very complicated models. This, however, is outside the scope of this review.  

Convergence problems 

With many fixed predictor variables compared to sample size, and with more than one 
random grouping variable, GLMM computation algorithms may fail to converge. This 
is a common problem in biological applications (see also worked examples in 
Supplement B–D).  

Among several recommendations, Cheng et al. (2010) advice that centering, 
standardising and full-rank coding of the predictor variables and reduction of 
collinearity, if present, is done in order to alleviate convergence problems. In non-
complete designs, full-rank coding means that treatment combinations not used should 
be removed from the design matrix (cf. Supplement C). Further, with caution, one may 
try out, if manipulations of the data table, such as aggregation of levels of categorical 
predictor variables, facilitate convergence. One might also try to change the settings for 
the algorithm, e.g. to increase the number of scoring steps and/or the maximum number 
of iterations, and to loosen the convergence criteria. If these measures are not 
successful, the reason for failing convergence is most likely a (too) complicated 
random-effects structure (Cheng et al. 2010), and a solution could be to simplify the 
random and/or fixed effects model.  

Analysis strategies 

In the literature analysis (Supplement A), a gross classification gives that the primary 
modelling aim was inference in 66 % of the analyses and prediction/forecasting in 29 
%, while estimation of random variation accounted for the remaining 5 %. The purpose 
of inference is to provide significance tests of relationships between dependent and 
predictor variables, i.e. to state p-values answering the question: Is there an effect? 
Thereafter, parameter estimates and confidence intervals are stated as answers to the 
follow-up question: What is the effect? Further, one often calculates local group means 
and their confidence intervals to assess the impact of the predictor variables on the 
dependent variable. In prediction, the present dataset is used for calculating the expected 
('predicted') mean values, whereas in forecasting a new data set of the same predictor 
variables is used. We speak of projection, if the new dataset represents a hypothetical 
scenario rather than measured data. For prediction, forecasting and projection, we may 



ask: Which model is best? In all cases, model validation should be done answering the 
question: Can the conclusions be trusted?  

Is there an effect? 

Computation of p-values for the significance of fixed effects in a GLMM is often done 
by either Wald or Likelihood Ratio (LR) tests.  

Wald tests compare parameter estimates against their standard error like t-tests 
in classical regression analysis for the null hypothesis that a regression coefficient 
equals zero. In the case of distributions with fixed dispersion, e.g. Poisson and binomial, 
we can use Wald Chi-square tests, while in the case of distributions where the 
dispersion or variance is estimated, e.g. normal, quasi-Poisson or quasi-binomial, we 
need to use Wald F tests which require the denominator degrees of freedom (df). 
Several methods for estimating df in GLMM have been proposed (e.g. Satterthwaite 
1941, Kenward-Roger 1997; cf. also Bolker et al. 2009), but these do not always give 
reliable p-values. In particular, caution should be exercised when the standard errors are 
large. Large standard errors also may result in inflated p-values in cases with less 
identifiable parameters. The phenomenon e.g. occurs in quasi-separated binary data, 
where a regression parameter simply should be large. However, the parameter will be 
estimated at some value which can be outweighed by the standard error.  

Likelihood Ratio tests compare nested models, with and without the effect to be 
tested, and test the null hypothesis of no difference in residual deviance. Like with Wald 
tests, there are different variants of the LR tests for distributions where the variation of 
the data needs to be estimated (→ LR F test) and distributions with a priori defined 
variation (→ LR Chi² test). When conducting LR tests of fixed effects in LMM, it is 
recommended to use Maximum Likelihood (ML) for estimating parameters (Bolker et 
al. 2009, Cheng et al. 2010, Pinheiro and Bates 2000, Zuur et al. 2009). It is also 
possible to use REML, but then the restricted likelihood should be defined using the 
design under the reduced model (Welham and Thompson 1997). This method, however, 
is not implemented in standard software.  

Regarding random effects, significance can be tested with LR tests comparing 
nested models which differ by one random intercept or slope (Morrell 1998). This tests 
the hypothesis that a variance component equals zero against the alternative that it is 
positive. Hence, the hypothesis lies on the boundary for the possible values of the 
variance component, and the LR test should be evaluated in a mixture of a point 
distribution in zero and the chi-square distribution (Bolker et al. 2009, Self and Liang 
1987, Molenberghs and Verbeke 2007). For random effects in LMM, it is recommended 
that REML is used to define the LR statistic (Morrell 1998).  

Also a single random effect can be tested with LR comparing the model 
including the random effect with a model that does not include it (which is an LM or 
GLM), but many GLMM software packages do not offer this option. It is possible to fit 
the model without the random effect in another program and, then, to conduct the LR 
test, but it is important to make sure that the log-likelihoods are commensurate in both 
programs (http://glmm.wikidot.com/random-effects-testing). Alternatively, the random 
effect can be tested with parametric bootstrap (see Supplement B). Although the 
parametric bootstrap does not account for the variability of the parameter estimates, it is 
often more trustworthy than the LR test since it does not rely on the asymptotical 
distribution of the test statistic. 



What is the effect? 

Once we have tested the significance of effects, we might want to know how strong the 
effects are. How much does the dependent variable change given a unit change in a 
predictor variable? We need to take into account that we did not model the dependent 
variable itself, but its transformation by the link function (Table 2). Hence, if we want 
to know the effects on the original scale, we need to backtransform the predictions, e.g. 
if we conducted a Poisson-GLMM with log link we have to exponentiate the estimates 
of fixed predictor variables (for an example of logistic modelling see Supplement B). 

The interpretation of the estimates may depend on whether random effects are 
included or not. Suppose, for instance, that we have two observations from each subject, 
where the subjects are representatives from some population, and that we estimate some 
fixed effect. In the model with random intercepts the fixed effect will then be subject-
specific. In the model without random intercepts the fixed effect will be averaged over 
the population.  

Like all statistics calculated from a sample, model predictions are not the true 
value of the population, but estimates that include uncertainty. The range in which the 
true value of the effect is likely to be found is given by confidence intervals that are 
routinely provided by most GLMM standard software. 

Only few studies in invasion biology aim at estimating the effect of random 
variables on the dependent variable (see Supplement A). But the random variation 
among subjects or groups may be interesting as well (O'Hara 2009). A random intercept 
effect measures how much the group-specific intercepts vary around the global 
intercept, and the strength of the random effect may be assessed comparing its estimated 
standard deviation to the size of the fixed effect, i.e. the global intercept, in this case. 
For instance, if the global intercept was 10 and the estimated standard deviation of the 
random intercept was 2.5, then approximately 95 % of group-specific intercepts would 
be in the range of 10± 2*2.5, i.e. between 5 and 15. If there was a fixed slope estimate 
of 2 and the standard deviation of the random slope effect was 0.5, then we would have 
to expect group-specific slopes within the range of approximately 1 and 3. A worked 
example of how to interpret random effects is given in Douglas Bates new book on 
"mixed effects modeling in R" (Bates 2010, lme4.r-forge.r-project.org/book/front.pdf). 

Which model is best? 

According to our literature analysis, 34 % of GLMM applications in invasion biology 
conducted model building before final parameter estimation and inference. In our view, 
this is particularly appropriate whenever the purpose of the study is prediction, 
forecasting or projection. Full models give unbiased estimates, but may not be good for 
prediction because they may contain insignificant predictors (Whittingham et al. 2006) 
or, more generally, be over-fit (Crawley 2002). For inference, model selection is only 
advisable, if the number of predictor variables is large. Otherwise, the full model 
containing all available predictor variables should be used. Generally, we would tend to 
keep biologically meaningful variables in the model, even if they are not significant (cf. 
Cheng et al. 2010). 

Strategies for model building are forward selection, backward elimination and 
best subset (Bolker et al. 2009, Cheng et al. 2010). The stepwise procedures have been 
repeatedly criticized because the order of parameter entry or deletion can influence the 
selection result, multiple tests involved in the procedures inflate type I errors, and 
parameter estimates may be biased (Burnham & Anderson 2002, Whittingham et al. 
2006). For inference, we recommend that model building is done by backward model 
selection. Forward model selection should only be used, if there are too many 



predictors. For prediction and forecasting, we recommend best subset modelling and 
possibly model averaging (cf. e.g. Johnson and Omland 2004). In any case, the 
candidate models must have the same random-effects structure when selecting fixed 
effects, and vice versa if selecting random effects (e.g. Cheng et al. 2010). 

With GLMM, best subset modelling may easily become computationally 
expensive, when there are several fixed or random effects. Hence, it will often be 
necessary to decide on a sensible maximum model, i.e. a subset of all possible fixed and 
random effects and interactions that can be calculated in reasonable time (cf. Bolker et 
al. 2009, Cheng et al. 2010). 

In best subset modelling, Information Criteria (IC) are used for evaluating 
candidate models. IC consider both model fit (deviance) and complexity (df of the 
model parameters), and they also can compare nonnested models (contrary to stepwise 
procedures). Aikaike's Information Criterion (AIC) is the most widely used IC in 
invasion biology and ecology. For small sample sizes, it is recommended to use 
corrected AIC (AICc) which penalizes more strongly for model complexity (Burnham 
& Anderson 2002). For overdispersed data, quasi-AIC (QAIC) can be used, although 
this has been criticized (cf. Bolker et al. 2009). Bayes Information Criterion (BIC) is 
very similar to AIC, but used less commonly. BIC tends to favor less complex models 
compared to AIC (Keselman et al. 1998). Both AIC and BIC require estimating the 
degrees of freedom of the parameters in the model which is problematic with random 
effects (Vaida & Blanchard 2005). The choice of IC is largely subjective as no variant is 
consistently superior to the others (Cheng et al. 2010). An alternative is the Deviance 
Information Criterion (DIC) which is calculated using MCMC sampling and takes the 
effective number of model parameters into account (Spiegelhalter et al. 2002, Miaou & 
Song 2005). DIC has recently gained popularity in ecology (Bolker et al. 2009).  

The aim of model building is often to find one 'best model' that is used for 
parameter estimation and inference. However, several different models may fit the data 
similarly well, so that model selection may be uncertain. Stepwise procedures and 
selection of a single best model do not account for such uncertainty (Whittingham et al. 
2006). With IC and best subset modelling it is possible to identify similarly good 
models that are within a certain range of IC values, e.g. Δ AIC < 4, and then, to average 
parameter estimates among them using Akaike's weights. Multimodel averaging has 
increasingly been advocated and applied in ecological studies (Johnson & Omland 
2004, Dormann et al. 2008, Bolker et al. 2009) and is recommendable particularly for 
prediction and forecasting (Whittingham et al. 2006). 

Model building of random effects appears to be of less importance in invasion 
biology, because most studies use single random intercepts or random-effects structures 
that are predetermined by study design (cf. Supplement A). In principle, however, 
model building is as sensible for random effects as for fixed effects and can be 
conducted in a similar way. If model building of random effects is desired, this should 
be done before selection of fixed effects, i.e. using the full or maximum model, because 
the results of fixed-effects model building may depend on the random-effects structure 
(Zuur et al. 2009, Cheng et al. 2010). 

Can the conclusions be trusted? 

GLMM rely on assumptions that need to be met in order to get valid estimates and p-
values. In case of backward model selection these should be validated for the initial and 
the final model, and in case of best-subset selection validation should be done for the 
selected model. The assumptions of GLMM are: 

 
a) A response distribution. 



b) A link function. 
c) Linearity against the predictors on the scale of the link function. 
d) Gaussian distribution of the random effects. 

 
Before describing possibilities to validate GLMM, we first discuss the special 

methods that are available for the validation of LMM. In Gaussian models, the 
specification of the link function is replaced by transformations of the actual 
observations of the response variable, if necessary, and hence the link is the identity 
function. The standard validation methods for Gaussian models investigate the 
statistical properties of the residuals and of the predicted random effects. Basically, 
there exist two sets of residuals for LMM. The (unconditional) residuals are the 
differences between the observations and the estimated fixed effects, while for the 
conditional residuals the predicted random effects, e.g. the random intercepts and effects 
of slopes of the group levels, also are subtracted. The residuals, the conditional 
residuals, and the predicted random effects are all assumed to be Gaussian, and the 
conditional residuals are approximately independent. As a consequence of this, the 
model assumptions of LMM may be assessed by the following graphical diagnostics: 
 

I. The Gaussian distribution is validated by a normal quantile plot of the conditional 
residuals. Variance homogeneity is validated by a scatter plot of the conditional 
residuals against the predicted values. Independence of the error terms may be 
validated by an autocorrelation plot of the conditional residuals. 

II.  The appropriateness of the identity link is assessed with scatter plot of the 
residuals and of the conditional residuals against the predicted values. 

III.  Linearity against the predictors is assessed with scatter plots of the residuals and 
of the conditional residuals against the individual covariates. 

IV.  The Gaussian distribution of random effects is validated by a normal quantile plot 
of the estimated random effects (BLUPs). 

 
The normal quantile plots may be accompanied by goodness-of-fit tests based on 

an adequate statistic, e.g. the Shapiro-Wilks, Kolmogorov-Smirnov, Cramer-von-Mises, 
or the Anderson-Darling statistic (see D’Agostino and Stephens 1986). These tests, 
however, may have too large power in the sense that they may reject the normal 
distribution for non-important deviations (see Supplement C). Furthermore, not even the 
conditional residuals are strictly independent, and hence the type I error of the tests may 
not be at the significance level. Ritz (2004) devised a goodness-of-fit test for the 
distribution of the random effect taking the dependence between the predictions of the 
random effects into account, but to our knowledge this test is not readily available in the 
standard software packages.  

We are not aware of any standard methods for a detailed assessment of the 
response distribution in GLM(M). Instead, the choice of the distribution is often based 
on qualitative properties of the experimental design, e.g. the Poisson and the negative 
binomial distributions are the natural choices for count data (Table 1). However, 
Pearson or deviance goodness-of-fit tests for overdispersion in distributions with fixed 
dispersion are often performed. There have been several attempts to define useful 
residuals in framework of GLM (see Pierce and Schafer 1986). But the distributional 
properties of such residuals are not explicitly known. So the interpretation of classical 
residual plots for GLM is difficult, and for GLMM things just get worse. For graphical 
assessment of link function and linearity, cumulative residuals and associated goodness-
of-fit tests have been proposed for GLM (Lin et al 2002). It is possible to describe the 
asymptotic distribution of the cumulative residuals using simulations, and the method 



extends to GLMM invoking the Generalized-Estimating-Equations (GEE) approach 
(Liang and Zeger 1986). Concerning the distribution of the random effects, the 
goodness-of-fit test proposed by Ritz (2004) was extended to GLMM, but it has low 
power for the logistic regression (Waagepetersen 2006). It is still possible to make a 
normal quantile plot of the predicted random effects, but due to unknown distributional 
properties of the predicted random effects, there is no justification for alarm even for 
less nice looking plots. In summary, GLMM may be validated as follows: 
 

a) Make a histogram of the raw observations to see if the chosen response 
distribution is completely off. For distributions with fixed dispersion perform a 
Pearson or deviance goodness-of-fit test. 

b) To assess the appropriateness of the link function, plot the cumulative residuals 
against the linear predictor, possibly accompanied by a goodness-of-fit test. 

c) To assess linearity against the predictor variables, plot the cumulative residuals 
against the individual continuous predictors, possibly accompanied by a 
goodness-of-fit test. 

d) Make a normal quantile plot of the predicted random effects. This plot, however, 
may only be used to find comfort and cannot be used to invalidate the 
distributional assumption. 

 
The cumulative residuals may be done in PROC GENMOD in SAS, which also 

provides the Kolmogorov-Smirnov goodness-of-fit test and allows for correlation via 
the GEE-approach (see Supplement C). In R, cumulative residuals and the associated 
Kolmogorov-Smirnov and Cramer-von-Mises tests may be done via the gof-package 
(Holst 2011). This package, however, does not include the GEE-approach and hence 
only works for GLM. To use the R-package on GLMM, the random effects should 
either be removed or reused as fixed effects in the validation step (see Supplement B). 

How to report the model? 

In the literature analysis, we found that many papers did not report crucial aspects of 
GLMM. For instance, 62 % did not report the method of parameter estimation (PQL, 
Laplace etc.). Not a single paper reported all of the information necessary for evaluation 
of the methods. 

We suggest that the following list of information should be routinely provided in 
papers (modified after Bolker et al. 2009, their supplementary material): study design, 
sample size, number of levels of random grouping variables, software package, type of 
dependent variable, distribution, over-/underdisperion (for Poisson data and proportions 
modelled with binomial distribution), link function, method of parameter estimation, 
test methods of fixed and random effects, estimation of df of the residuals (when using 
Wald F tests) and of the random effects (when using AIC or BIC or their variants), 
model selection criteria and strategy; for Poisson data: mean and variance; for 
proportions: minimum number of successes/ failures, results of model validation, 
magnitude of random effects.  

Conclusion/Summary 

GLMM are important tools in invasion biology, because study designs often involve 
non-Gaussian dependent variables and independence of observations due to spatial or 
temporal grouping. Applications of GLMM have rapidly increased after standard 
software had become available, and they are likely to increase further in future. It is 
difficult to say, if invasion biologists manage GLMM all right or if flawed applications 



are common, because most papers do not report sufficient details. GLMM are as 
flexible and powerful as they are complicated and challenging. Users should be aware 
of the different methods of significance testing and of estimating parameters. PQL is 
often not suitable for studies in invasion biology. Laplace approximation is a good 
compromise between precision and computational speed and will be suitable for most 
studies. Currently, MCMC techniques are becoming more commonly available. They 
may help to solve some of the difficulties in inference and estimation (Bolker et al. 
2009). 

Model validation is hardly ever reported, but of crucial importance for valid 
inference and estimation. Perhaps, users should pay more attention to validation of 
model assumptions. Generally, we encourage reporting on methods more rigorously, if 
not in the paper itself, then in online supplements.  

Structured co-variance matrices are good tools for modelling temporally, 
spatially or phylogenetically correlated data (cf. Supplement D). Repeated measures are 
common in invasion biology (32 % of reviewed GLMM analyses), but so far most such 
studies have used unstructured co-variance matrices, although explicit modelling of 
temporal auto-correlation would give more precise p-values. For some recent studies 
that modelled auto-correlation of repeated measures see McEachern (2009), Chun et al. 
(2010), Tognetti et al. (2010). An application of GLMM to modelling spatial auto-
correlation of grid-based distribution data can be found in Gassó et al. (2009). One 
difficulty is that correlation structures currently are only widely implemented for LMM, 
but rarely for GLMM. The exception appears to be PROC GLIMMIX in SAS, GEE 
(Carl and Kühn 2007) and many of the Bayesian approaches. In view of the further 
rapid software development, the potential for modelling correlated data may increase in 
future. Generally, we encourage using structured co-variance matrices for modelling 
correlated data whenever possible. 

Usually invasion biologists are not interested in testing or interpreting the 
random effects. This is obviously due to the fact that random variables most often are 
nuisance variables. However, there may be some potential in using random-effects 
modelling more consciously. For instance, a species invasion potential may not only 
depend on mean traits of the population, but also on genetic variation at genotype or 
population level that can be measured in GLMM as random effects (see e.g. Buckley et 
al. 2003, Brodersen et al. 2008, Xu et al. 2010). 
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