

WESTFÄLISCHE
WILHELMUS-UNIVERSITÄT
MÜNSTER

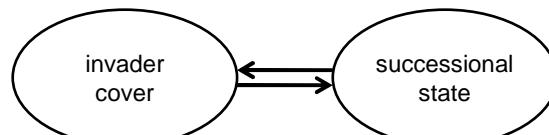
Are invasive species drivers or passengers of succession?

¹Jan Thiele & ²Maike Isermann

IAVS Symposium, 20.06.2011

¹ University of Münster, Institute of Landscape Ecology, Robert-Koch-Str. 28, 48149 Münster, Jan.Thiele@uni-muenster.de

² University of Bremen, Vegetation Ecology and Conservation Biology, Leobener Str., NW 2, 28359 Bremen, Maike.Isermann@uni-bremen.de



WESTFÄLISCHE
WILHELMUS-UNIVERSITÄT
MÜNSTER

Are invasive species drivers or passengers of succession?

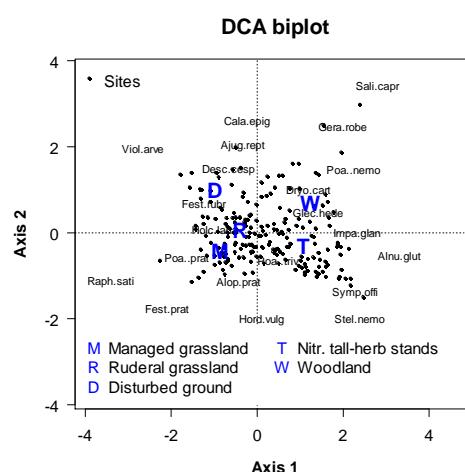
Research questions

- Does successional state control invader cover?
- Do invaders affect successional states or trajectories?

Study species (invaders)

Scientific name	<i>Heracleum mantegazzianum</i>	<i>Rosa rugosa</i>
Engl. name	Giant Hogweed	Japanese Rose
Life form	Monocarpic tall-herb	Polycormic shrub
Invaded habitats	Mesic grassland, disturbed ground, nitrophilous tall-herb communities	Yellow and grey dunes, dune heath, also inland habitats

Data sets

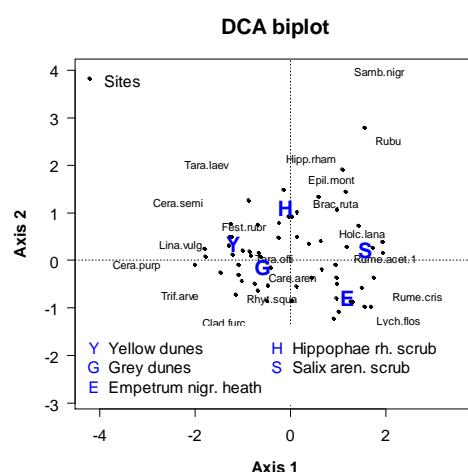

	<i>Heracleum mantegazzianum</i>	<i>Rosa rugosa</i>
No. of plots	202	63
Plot size (m ²)	25	16
Study regions	Western, central and southern Germany	East Frisian Islands (Spiekeroog, Norderney, Juist)

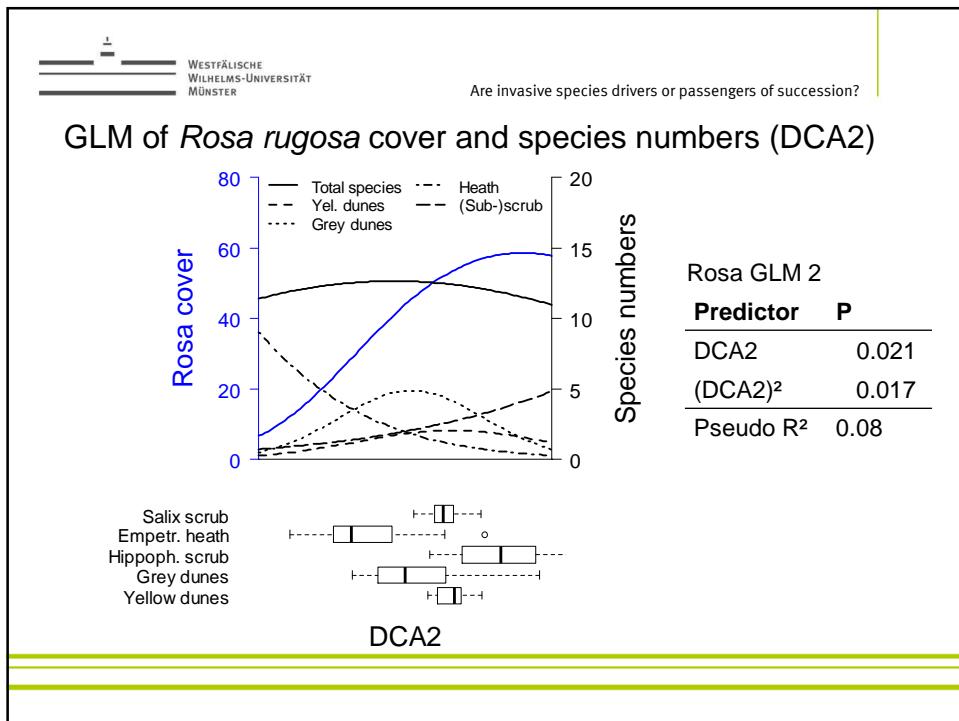
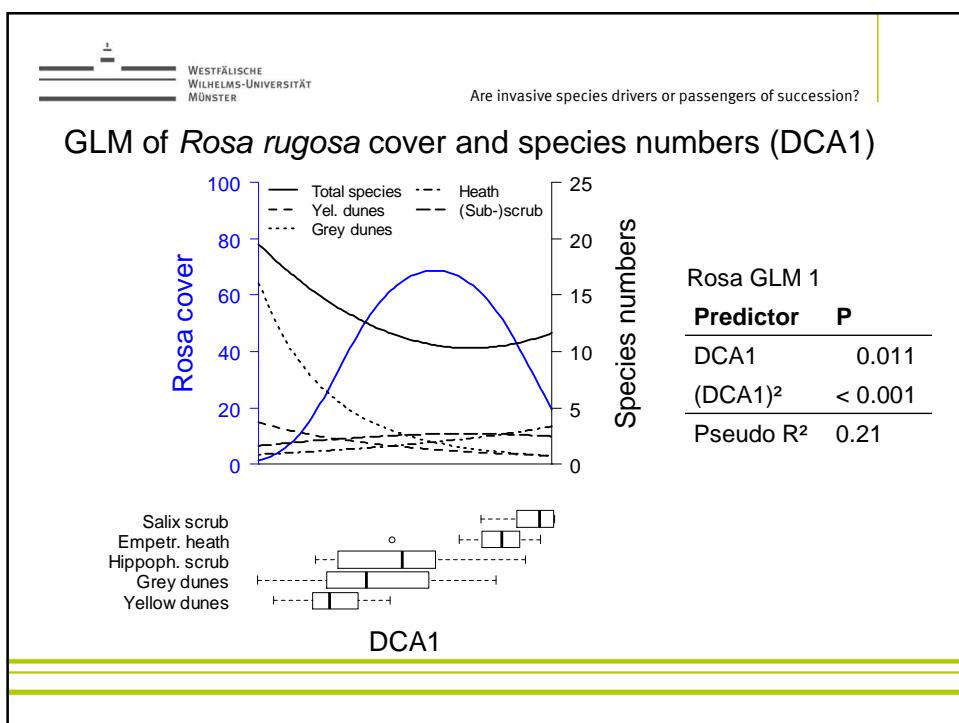
- Invader cover percentage
- Lists of vascular plant species (+ cryptogams with *R. rugosa*)
→ species numbers of different plant groups (~ syntaxon. orders or classes)
- Habitat type

Statistical methods

- Detrended Correspondence Analysis (DCA)
- Generalized Linear Models (GLM):
 $\text{invader cover} \sim \text{DCA score} + (\text{DCA score})^2$
 $[\text{species number} \sim \text{DCA score} + (\text{DCA score})^2]$
- Canonical Correspondence Analysis (CCA):
 $\text{CCA axes} \sim \text{habitat type} + \text{invader cover}$

DCA of *Heracleum mantegazzianum* relevés



Possible interpretations for *Heracleum mantegazzianum*

	Passenger	Likely	Driver
Cover of <i>H. mantegazzianum</i>	Controlled by environment (management, competition)		Cover increases by time
Succession of vegetation	Later-successional species (tall herbs, trees) establish; Succession proceeds normally		Later-successional species repelled or displaced; Succession shifts away from normal trajectory

DCA of *Rosa rugosa* relevés

CCA of *Rosa rugosa* relevés

	Df	Chi ²	F	Perm.	P
Habitat	4	1.34	3.60	999	0.001
<i>R. rugosa</i> cover	1	0.21	2.31	999	0.001
Residual	57	5.23			

Possible interpretations for *Rosa rugosa*

	Passenger	Driver	Likely
Cover of <i>R. rugosa</i>	Controlled by site conditions	Cover increases by time	
Succession of vegetation	Later-successional species (dune-heath species) establish; Succession proceeds normally to brown dunes and, only later, to Rhamno-Prunetea scrub or woodland	Later-successional species (dune-heath species) repelled or displaced; Dune grasslands and dune heath transformed to dominant Rosa stands Successional trajectory prematurely shifts towards Rhamno-Prunetea scrub	

Conclusions

- *Heracleum mantegazzianum* is likely to be a passenger of secondary successions
- *Rosa rugosa* is likely to accelerate primary succession to scrub, but to block further succession to woodland
- Long-term observations needed for proof

