
Lifted Decision Making
Statistical Relational Artificial Intelligence
(StaRAI)

Tanya Braun

!"#$%&'$ ()

*$&+)

,&'- ()

.%/0"+ ()

12&3)

.%"/$ (,5)
67) 68)

69)

:;$"%<"%";'" ()
6=)

* ()
>)

6?@A
)

,&'- ()B9

12&3)B9
6C)B9,)

*D

Contents
1. Introduction
• Artificial intelligence

• Agent framework

• StaRAI: context, motivation

2. Foundations
• Logic

• Probability theory

• Probabilistic graphical models (PGMs)

3. Probabilistic Relational Models (PRMs)
• Parfactor models, Markov logic networks

• Semantics, inference tasks

4. Lifted Inference
• Exact inference

• Approximate inference, specifically sampling

5. Lifted Learning
• Overview propositional learning

• Relation learning

• Approximating symmetries

6. Lifted Sequential Models and Inference
• Parameterised models

• Semantics, inference tasks, algorithm

7. Lifted Decision Making
• Preferences, utility

• Decision-theoretic models, tasks, algorithm

8. Continuous Space and Lifting
• Lifted Gaussian Bayesian networks (BNs)

• Probabilistic soft logic (PSL)

Lifted Decisions

T. Braun - StaRAI 2

Contents in this Lecture Related to Utility-based Agents

• Further topics
3. (Episodic) PRMs
4. Lifted inference (in episodic PRMs)
5. Lifted learning (of episodic PRMs)
6. Lifted sequential PRMs and inference
7. Lifted decision making
8. Continuous space and lifting

Lifted Decisions

T. Braun - StaRAI 3

E
n
v
i
r
o
n
m
e
n
tAgent

Sensors

Actuators

What the world
is like now

What it will be like
if I do action !

How happy I will be
in such a state

What action I
should do now

State

How the world evolves

What my actions do

Utility

Setting
• Agent can perform actions in an

environment
• Episodic, i.e., not sequential, environment
• Next episode does not depend on the

previous episode
Or sequential environment

• Non-deterministic environment
• Outcomes of actions not unique
• Associated with probabilities
➝ probabilistic model

• Partially observable
• Latent, i.e., not observable, random

variables

• Agent has preferences over states / action
outcomes
• Encoded in utility or utility function ➝

Utility theory
• “Decision theory

= Utility theory + Probability theory”
• Model the world with a probabilistic model
• Model preferences with a utility (function)
• Find action that leads to the maximum

expected utility, also called decision making

4

Lifted Decisions

T. Braun - StaRAI

Outline: 7. Lifted Decision Making
A. Utility theory
• Preferences, maximum expected utility (MEU) principle

• Utility function, multi-attribute utility theory

B. Static decision making
• Modelling, semantics, inference tasks

• Inference algorithm: LVE for MEU as an example

C. Sequential decision making
• Modelling, semantics, sequential MEU problem

• Inference algorithm: LDJT for MEU as an example

• Acting

5

Lifted Decisions

T. Braun - StaRAI

Preferences
• An agent chooses among prizes (!, ", etc.) and lotteries, i.e., situations with uncertain

prizes
• Outcome of a nondeterministic action is a lottery

• Lottery # = %, !; 1 − % , "
• ! and " can be lotteries again
• Prizes are special lotteries: 1, *; 0, not *
• More than two outcomes:
• # = %/, 0/; %1, 01; ⋯ ; %3, 03 , ∑56/3 %5 = 1

• Notation
• ! ≻ " ! preferred to "
• ! ∼ " indifference between ! and "
• ! ≿ " " not preferred to !

6

Lifted Decisions

T. Braun - StaRAI

Rational Preferences
• Idea: preferences of a rational agent must obey constraints
• As prerequisite for reasonable preference relations

• Rational preferences ➝ behaviour describable as maximisation of expected utility
• Violating constraints leads to self-evident irrationality
• Example
• An agent with intransitive preferences can be

induced to give away all its money
• If ! ≻ #, then an agent who has #

would pay (say) 1 cent to get !
• If $ ≻ !, then an agent who has !

would pay (say) 1 cent to get $
• If # ≻ $, then an agent who has $

would pay (say) 1 cent to get #

7

Lifted Decisions

T. Braun - StaRAI

B

A

C

1c
t1ct

1ct

Axioms of Utility Theory
1. Orderability
• ! ≻ # ∨ ! ≺ # ∨ ! ∼ #
• ≺,≻, ~ jointly exhaustive, pairwise disjoint

2. Transitivity
• ! ≻ # ∧ # ≻ * Þ ! ≻ *

3. Continuity
• ! ≻ # ≻ * ⇒ ∃- -, !; 1 − -, * ∼ #

4. Substitutability
• ! ∼ # ⇒ -, !; 1 − -, * ∼ -, #; 1 − -, *
• Also holds if replacing ∼ with ≻

5. Monotonicity
• ! ≻ # ⇒ (- ≥ 3 ⇔ -, !; 1 − -, # ≿ 3, !; 1 − 3, #)

6. Decomposability
• -, !; 1 − -, 3, #; 1 − 3, * ∼ -, !; 1 − - 3, #; 1 − - 1 − 3 , *

8

Decomposability:
There is no fun in gambling.

Equivalent lotteries:

!
#

*

-

1 − -
3

1 − 3

!
#
*

-

1 − - 3
1 − - 1 − 3

Lifted Decisions

T. Braun - StaRAI

And Then There Was Utility
• Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):

• Given preferences satisfying the constraints, there exists a real-valued function ! such that

! " ≥ ! $ ⇔ " ≿ $
• Existence of a utility function

• Expected utility of a lottery:

! '(, *(;… ; '-, *- = /
01(

-
'0! *0

• MEU principle

• Choose the action that maximises expected utility

9

Lifted Decisions

T. Braun - StaRAI

Utilities
• Utilities map states to real numbers.

Which numbers?

• Standard approach to assessment of human utilities:
• Compare a given state ! to a standard lottery "# that has
• “best possible outcome” ⊤ with probability %
• ”worst possible catastrophe” ⊥ with probability 1 − %

• Adjust lottery probability % until ! ∼ "#

10

∼ "
continue as before

instant death

pay-$30-and-
continue-as-
before

0.999999

0.000001

Lifted Decisions

T. Braun - StaRAI

Utility Scales
• Normalised utilities: !" = 1.0, !(= 0.0
• Utility of lottery) ∼ (pay-$30-and-continue-as-before): +) = !" , 0.999999 + !(,
0.000001 = 0.999999

• Micromorts: one-millionth chance of death
• Useful for Russian roulette, paying to reduce product risks, etc.
• Example for low risk
• Drive a car for 370km ≈ 1 micromort ➝ lifespan of a car: 150,000km ≈ 400 micromorts
• Studies showed that many people appear to be willing to pay US$10,000 for a safer car that halves the

risk of death ➝ US$50/micromort
• QALYs: quality-adjusted life years
• Useful for medical decisions involving substantial risk

• In planning: task becomes minimisation of cost instead of maximisation of utility

11

Lifted Decisions

T. Braun - StaRAI

Utility Scales
• Behaviour is invariant w.r.t. positive linear transformation

!" # = %&! # + %(
• No unique utility function; !" # and ! # yield same behaviour

• With deterministic prizes only (no lottery choices), only ordinal utility can be determined,
i.e., total order on prizes
• Ordinal utility function also called value function
• Provides a ranking of alternatives (states), but not a meaningful metric scale (numbers do not

matter)
• Note:

An agent can be entirely rational (consistent with MEU) without ever representing or
manipulating utilities and probabilities
• E.g., a lookup table for perfect tic-tac-toe

12

Lifted Decisions

T. Braun - StaRAI

Multi-attribute Utility Theory
• A given state may have multiple utilities
• ...because of multiple evaluation criteria
• ...because of multiple agents (interested parties) with different utility functions

• There are:
• Cases in which decisions can be made without combining the attribute values into a single utility

value
• Strict dominance
• Not this lecture

• Cases in which the utilities of attribute combinations can be specified very concisely
• This lecture!

13

Lifted Decisions

T. Braun - StaRAI

Preference Structure
• To specify the complete utility function ! "#,… , "& , we need '& values in the worst case
• (attributes
• each attribute with ' distinct possible values
• Worst case meaning: Agent’s preferences have no regularity at all

• Supposition in multi-attribute utility theory
• Preferences of typical agents have much more structure

• Approach
• Identify regularities in the preference behaviour
• Use so-called representation theorems to show that an agent with a certain kind of preference

structure has a utility function
! "#, … , "& = * +# "# , … , +& "&

• where * is hopefully a simple function such as addition

14

Lifted Decisions

T. Braun - StaRAI

Preference Independence
• !" and !# preferentially independent (PI) of !$ iff
• Preference between %", %#, %$ and %"', %#', %$ does not depend on %$
• E.g., ()*+,, -)+., /01,.2
• 20,000 +511,%, $4.6 :*;;*)<, 0.06 =,0.ℎ+/@)<.ℎ
• 70,000 +511,%, $4.2 :*;;*)<, 0.06 =,0.ℎ+/@)<.ℎ

• Theorem (Leontief, 1947)
• If every pair of attributes is PI of its complement, then every subset of attributes is PI of its

complement
• Called mutual PI (MPI)

15

Lifted Decisions

T. Braun - StaRAI

Preference Independence
• Theorem (Debreu, 1960):
• MPI ⇒ ∃ additive value function

$%, … , $(=*
+,%

(
#+ $+

• Hence assess - single-attribute functions
• Decomposition of # into a set of summands (additive semantics)
similar to
• Decomposition of ./ into a set of factors (multiplicative semantics)

• Often a good approximation
• Example:

01234, 5136, 7486ℎ3 = −01234 ; 10> − 5136 − 7486ℎ3 ; 10%?

16

Lifted Decisions

T. Braun - StaRAI

Interim Summary
• Preferences
• Preferences of a rational agent must obey constraints

• Utilities
• Rational preferences = describable as maximisation of expected utility
• Utility axioms
• MEU principle

• Multi-attribute utility theory
• Preference structure
• (Mutual) preferential independence

17

Lifted Decisions

T. Braun - StaRAI

Outline: 7. Lifted Decision Making
A. Utility theory
• Preferences, maximum expected utility (MEU) principle

• Utility function, multi-attribute utility theory

B. Static decision making
• Modelling, semantics, inference tasks

• Inference algorithm: LVE for MEU as an example

C. Sequential decision making
• Modelling, semantics, sequential MEU problem

• Inference algorithm: LDJT for MEU as an example

• Acting

18

Lifted Decisions

T. Braun - StaRAI

Decision Networks/Models
• Extend a PGM to handle actions and utilities
• Decision variables
• Utility variables

• Also called influence diagrams
• Given a decision model, use an inference method of one’s choosing to find actions that

lead to the highest expected utility

• Also allows to perform so-called
Value of Information calculations
• Is it worth it to spend resources on getting more information (in the form of evidence)?

19

Lifted Decisions

T. Braun - StaRAI Ronald A. Howard: Information Value Theory. In: IEEE Transactions on Systems Science and Cybernetics, 1966.
Ronald A. Howard, James E. Matheson: Influence Diagrams. In: Readings on the Principles and Applications of Decision Analysis, 1984.

Decision PRVs
• Decision PRV !
• Range ran ! = &' '()* set of possible actions
• Actions &' mutually exclusive (consistent with range definition)
• Always have to get a value assigned
• Cannot not make a decision!

• Depicted by a rectangle in a graphical representation
• E.g., travel restrictions for people +: ,-./012/ +
• Range values: 345, 70--

• Set of decision PRVs 8 in a model, i.e., 9 = 8 ∪ ;
• 8 can occur as arguments to any parfactor
• Example:
• <) ,-./012/ + , =04>-? + , <@ ,-./012/ + , A5/-07-0-52-

20

Lifted Decisions

T. Braun - StaRAI

, + =? + <)
70-- 74?.- 1
70-- /0C- 1

345 74?.- 1
345 /0C- 0

EF
,-./012/ + G/1?

H12I +

=04>-? +

JK1&

=0-4/ +,LEM EN

EOE)

A5/-07-0-52-E@

, + A <@
70-- 74?.- 1
70-- /0C- 0
345 74?.- 0

345 /0C- 1

Utility PRVs & Utility Parfactors
• Utility PRV !
• Range ran ! = ℝ

• Output variable, i.e., gets assigned a value by utility function
• Depicted by a diamond in a graphical representation

• Utility parfactor '() |+

• Arguments) a sequence of (decision) PRVs
• ! a utility PRV
• Function '(:×./0

1 ran 2. ↦ ran !
• Tabular representation, additive function, …
• Tabular example '(4.1 56789:8986;8, =>?@
• Example from slide 18 additive:

A B, C, D = −BF?G8 H 10K − CFG7 − D8L7ℎG H 100N

Lifted Decisions

T. Braun - StaRAI 21

5 = !7?O

:LOG8 :LOG8 −10

:LOG8 79P8 −10

79P8 :LOG8 −20

79P8 79P8 −02

R(
28G79?;7 S !7?O

T?;U S

V9LW8O S

=>?@

V98L7 S,X
RN RY

RZR0

56789:8986;8
RK

Parfactor-based Decision Model
• Decision model = Parfactor model that allows decision PRVs in the arguments of its

parfactors as well as utility parfactors
• For ease of exposition, we start with models with a utility factor mapping to a utility variable
• Formally,

! = #$ $%&' ∪ #)
• #$ parfactors with (decision) PRVs as arguments
• #) utility factor mapping to a utility variable *
• rv #) = ∅ for now

• E.g.,
• ! = #., #&, #0, #1, #2, #)
• ⊤ constraints

22

Lifted Decisions

T. Braun - StaRAI

#)
456789:7 ; *79<

=9:> ;

?8@A5< ;

BC9D

?85@7 ;,E#0 #1

#.#&

FG758H585G:5#2

Decision Model: Action Assignments
• Let ! = #$,… , #' |) be the set of decision PRVs in * with a constraint + for the logical

variables in !
• Then, , is a compound event for ! that assigns each decision PRV #- a range value .-
• Refer to , as an action assignment

• E.g., without evidence in * (/ = ∅, ⊤ constraints)
• Action 23456785 9 with range :;<, =633
• ,$ = :;<
• ,> = =633

• Given another action # with range .?, .??, .???
• ,$ = :;<, .?

• ,> = :;<, .??

• ,@ = :;<, .???

23

Lifted Decisions

T. Braun - StaRAI

• ,A = =633, .?

• ,B = =633, .??

• ,C = =633, .???

DE
23456785 9 F57G

H78I 9

J6;K3G 9

LM7.

J63;5 9,ND> D@

DOD$

P<536=363<83DA

Decision Model: Setting Decisions
• Given a decision model ! and an action assignment "
• Let ! " refer to ! with " set, i.e.,

! " = absorb !, "
• In each * with decision PRV +,,
• Drop the lines where +, ≠ ., and the column of +,

• E.g., set "/ = 012 in ! = *3, */, *4, *5, *6, *7
• 8 = ∅
• Absorb "/ in */
• ! "/ = *3, */: , *4, *5, *6: , *7
• */: = ;/: <=1>?@ A
• *6: = ;6: B2C?=D?=?2E?

24

Lifted Decisions

T. Braun - StaRAI

F A <@ A ;/
D=?? D1@G? 1
D=?? C=I? 1
012 D1@G? 1
012 C=I? 0

F A B ;6
D=?? D1@G? 1
D=?? C=I? 0
012 D1@G? 0
012 C=I? 1

*7
F?GC=KEC A LCK@

MKEN A

<=1>?@ A

OPK.

<=?1C A,Q*4 *5

3/

B2C?=D?=?2E?*6

Decision Model: Semantics
• Semantics of decision model ! = #$ $%&' ∪ #)
• Given an action assignment * for the grounded set of decision PRVs + = ,&,… , ,/ |1 occurring

in !
• Then, the semantics is given by grounding and building a full joint distribution for the non-utility

parfactors

• Utility parfactors irrelevant for probabilistic behaviour

25

23 * = 1
5 6
7∈9: 3 * ∖ <=

>

5 = ?
@A∈:BC(EA)

… ?
@G∈:BC(EG)

6
7∈9: 3 * ∖ <=

>

Semantics multiplicative with
an inner product and outer
sum: Multiply parfactors,
then sum out PRVs.
➝ Sum-product algorithms

Lifted Decisions

T. Braun - StaRAI

Decision Model: Example
• Decision model

! = #$, #&, #', #(, #), #*
• ⊤ constraints

• ! with ,& = -./ set
! ,& = #$, #&0 , #', #(, #)0 , #*

• #&0 = 1&0 23.456 7
• #)0 = 1)0 8/953:535/;5

• Model relevant for probabilistic query answering:
! ,& ∖ #* = #$, #&0 , #', #(, #)0

26

Lifted Decisions

T. Braun - StaRAI

#*
=5>93?;9 7 @9?6

A?;B 7

23.456 7

CD?E

235.9 7,F#' #(

#$#&

8/953:535/;5#)

#*
@9?6

A?;B 7

23.456 7

CD?E

235.9 7,F#' #(

#$#&0

8/953:535/;5#)0

A?;B 7

23.456 7

CD?E

235.9 7,F#' #(

#$#&0

8/953:535/;5#)0

Expected Utility Queries
• Given a decision model ! = #$ $%&' ∪ #)
• One can ask queries for (conditional) marginal distributions or events as before given an action

assignment * based on the semantics, +, *
• New query type: query for an expected utility (EU)
• What is the expected utility of making decisions * in !?

-. /, * = 1
2∈456 74 48 9: ∖<∖=

+ 2 /, * > ?) 2, /, *

• + 2 /, * means that the PRVs not occurring in this expression need to be eliminated accordingly
• I.e., @ = rv ! ∖ = ∖ < ∖ rv #)

27

Lifted Decisions

T. Braun - StaRAI

EU Query: Example
• Expected utility of !" = $%& in ' = (), (", (+, (,, (-, (.

/0 !" = 1
2∈456 789:;<:;:8=:

1
:∈456 >?2@

A /, B !" C D. /, B

• With E = ∅
• Compute A GHBI, J&K/LM/L/&N/ !" in '
• By computing A GHBI, J&K/LM/L/&N/ in ' !"
• E.g., using LVE with model ' !" ∖ (. = (), ("

P , (+, (,, (-
P

• ' !" depicted on the right

Lifted Decisions

T. Braun - StaRAI 28

(.
QKBR

SBNT U

VL%W/R U

GHBI

VL/%K U,X
(+ (,

()("P

J&K/LM/L/&N/
(-
P

EU Query: Example
• Compute ! "#$%, '()*+,*+*(-*

in . /0 = 23, 204 , 25, 26, 274 , 28
• Using LVE, eliminate all other PRVs in . /0 :

1. Eliminate 9+*:) ;,<
2. Eliminate 9+:=*> ;
3. Eliminate ?$-@ ;
4. Multiply all factors and normalise result
• Result: ! "#$%, '()*+,*+*(-* in . /0 : A "#$%, '()*+,*+*(-*
• Corresponds to ! "#$%, '()*+,*+*(-* /0 in .

29

9> ; A04
,:>B* 1
)+D* 0

Parfactors 204 and 274 would look
differently, had we set /5 = ,+** .

Lifted Decisions

T. Braun - StaRAI

28
F)$>

?$-@ ;

9+:=*> ;

"#$%

9+*:) ;,<25 26

23204

'()*+,*+*(-*274

' A74
,:>B* 0
)+D* 1

EU Query: Example
• Calculations with dom $ = 2, dom (= 3:

1. Sum out *+,-. (,$, exponentiate result for $

30

/ 0 (*. (,$ 12
3-45, 3-45, 3-45, 9

3-45, 3-45, .+7, 1

3-45, .+7, 3-45, 5

3-45, .+7, .+7, 6

.+7, 3-45, 3-45, 3

.+7, 3-45, .+7, 4

.+7, .+7, 3-45, 4

.+7, .+7, .+7, 5

/ 0 (12
<

3-45, 3-45, 9 + 1 > = 100

3-45, .+7, 5 + 6 > = 121

.+7, 3-45, 3 + 4 > = 049

.+7, .+7, 4 + 5 > = 081

Lifted Decisions

T. Braun - StaRAI

AB
C.D4

0DEF (

*+-G,4 (

/HDI

*+,-. (,$
A> A2

AJAK
<

LM.,+3,+,ME,
AN
<

EU Query: Example
• Calculations with dom $ = 2, dom (= 3:

2. Multiply *+, , *-, sum out ./0123 (

31

4 5 (.3 (6- 7 6+
,

80392 80392 80392 10 7 1 = 10

80392 80392 </=2 09 7 0 = 00

80392 </=2 80392 04 7 1 = 04

80392 </=2 </=2 02 7 0 = 00

</=2 80392 80392 08 7 1 = 08

</=2 80392 </=2 03 7 0 = 00

</=2 </=2 80392 05 7 1 = 05

</=2 </=2 </=2 01 7 0 = 00

4 5 (6+-
,

80392 80392 10 + 0 = 10

80392 </=2 04 + 0 = 04

</=2 80392 08 + 0 = 08

</=2 </=2 05 + 0 = 05

./0123(() 6+
,

80392 1

</=2 0

Lifted Decisions

T. Braun - StaRAI

*E
F<G3

5GHI (

./0123 (

4JGK

*- *L
,

M+
,

NO<2/82/2OH2
*P
,

EU Query: Example
• Calculations with dom $ = 2, dom (= 3:

3. Multiply *+,- , *.- , sum out /012 (, exponentiate for (

32

3 4+,.
-

56789 1000 + 484 . = 3,268,147,904

BCD9 392 + 405 . = 0,506,261,573

Lifted Decisions

T. Braun - StaRAI

*F
GB07

/012 (

3H0I

*+,
- *.

-

*J

KLB9C59C9L19
*M
-

3 / (4+,
-

56789 56789 10

56789 BCD9 04

BCD9 56789 08

BCD9 BCD9 05

3 / (4+,
- N 4.

-

56789 56789 10 N 100 = 1000

56789 BCD9 4 N 121 = 0484

BCD9 56789 8 N 049 = 0392

BCD9 BCD9 5 N 081 = 0405

3 / (4.
-

56789 56789 100

56789 BCD9 121

BCD9 56789 049

BCD9 BCD9 081

EU Query: Example
• Calculations with dom $ = 2, dom (= 3:

3. Multiply *+,-. , */, *0. , normalise

33

1
0.000
0.000
0.984
0.016

Result after normalising:
* = 1 9:;<=><=<:?<, @ABC

Lifted Decisions

T. Braun - StaRAI

@ 1/
>DEF< 10

;=G< 01

*H
I;BE

@ABC

*+,-.

*/

9:;<=><=<:?<*0.

9 10.

>DEF< 0

;=G< 1

9 @ 1+,-. J 1/ J 10.

>DEF< >DEF< 3,268,147,904 J 10 J 0 = 30,268,147,900
>DEF< ;=G< 0,506,261,573 J 01 J 0 = 30,268,147,900
;=G< >DEF< 3,268,147,904 J 10 J 1 = 30,268,147,904
;=G< ;=G< 0,506,261,573 J 01 J 1 = 00,506,261,573

*H
I;BE

@ABC

9:;<=><=<:?<

*

@ 1+,-.

>DEF< 1000 + 484 - = 3,268,147,904

;=G< 392 + 405 - = 0,506,261,573

EU Query: Example
• Result ! "#$%, '()*+,*+*(-* for . *, $ /0 in 1
• Expected utility of /0 = 34(in
1 = 56, 50, 57, 58, 59, 5:

34

*; /0 = <
=∈?@A BCDEFGEFECHE

<
E∈?@A IJ=K

. *, $ /0 L !: *, $

= <
=∈?@A BCDEFGEFECHE

<
E∈?@A IJ=K

! *, $ L !:
M *, $

= <
=∈?@A BCDEFGEFECHE

<
E∈?@A IJ=K

!:
MM "#$% = *

= !:
MMM .

Lifted Decisions

T. Braun - StaRAI

5:
MMM O)$P

. O)$P

. 0 + 0 − 19.680 + 0.032 = −19.360

5:
O)$P

"#$%

'()*+,*+*(-*

5

' "

,4PZ* ,4PZ*

,4PZ*)+;*

)+;* ,4PZ*

)+;*)+;*

!

0.000

0.000

0.984

0.016

O)$P

−10

−10

−20

−02

5:
MM O)$P

"#$%

'()*+,*+*(-*

' "

,4PZ* ,4PZ*

,4PZ*)+;*

)+;* ,4PZ*

)+;*)+;*

O)$P

0.000 L −10 = −00.000

0.000 L −10 = −00.000

0.984 L −20 = −19.680

0.016 L −02 = −00.032

Answering EU-Queries (with LVE)
• Given a decision model ! = #$ $%&' ∪ #) , evidence *,

and an action assignment + (*)

• Absorb * and + in !
• Calculate the posterior, , - *, + , of the Markov blanket of the utility node
• I.e., - = rv #) ∖ rv + ∖ rv * (remaining PRVs in #) after previous step)

• Using LVE: With - as the query terms, eliminate all non-query terms in !, i.e., call LVE ! ∖ #) , -, ∅
• Evidence already absorbed, decisions made ➝ * = ∅ in the call

• Calculate the expected utility by summing over the range values of -:

67 *, + = 8
9∈;<= -

, 9 *, + > ?) 9

• Using LVE: Eliminate remaining PRVs in !
• Result: parfactor mapping empty argument to a single value (@)

35

(*) We need to talk about evidence

and action assignments later.

Lifted Decisions

T. Braun - StaRAI

MEU Problem
• Given a decision model ! and evidence ", maximum Expected Utility (MEU) problem:
• Find the action assignment that yields the highest expected utility in !
• Formally,

• For an exact solution, meu !|" requires an algorithm to go through all ' ∈ ran ,
• Size of ran , exponential in gr ,

Lifted Decisions

T. Braun - StaRAI 36

Alternative specification
meu !|" = arg max

'∈012 ,
34 ", ' , max

'∈012 ,
34 ", '

meu !|" = '∗, 34 ", '∗

'∗ = arg max
'∈012 ,

34 ", '
Additive semantics with inner
sum and outer max: Sum up
utilities, then pick maximum
➝ Max-sum algorithms

MEU Problem: Example
• Problem instance with ! = #$, #&, #', #(, #) , * = ∅ :

meu ! = /∗, 12 /∗ /∗ = arg max
/∈ /8,/9

12 /

• /& = :;< , /' = =>11
• Expected utility of /& = :;< : 12 /& = −19.36
• Expected utility of /' = =>11 : 12 /' = −19.88

• Solution
• /∗ = argmax

/∈ /8,/9
12 / = /'

• meu ! = /', 9.88
• Decision that leads to maximum EU:

No travel restrictions

37

Lifted Decisions

T. Braun - StaRAI

#)
F1GH>IJH K LHIM

NIJO K

P>;Q1M K

RSIT

P>1;H K,U#' #(

#$#&

V<H1>=1>1<J1#W

Lifted MEU
• In terms of semantics, ! ∈ ran & means
• Grounding & and going through all possible combinations of assignments to '(&

• But: grounding is bad!
• Combinatorial explosion: number of action assignments to test exponential in size of '(&
• Grounds any parfactor in G containing a logvar of &

• Also: Grounding to full extent often unnecessary
• Within groups of indistinguishable constants, the same decision will lead to its maximum

influence in the MEU solution
• Only need to test each assignment for complete group

• Thus: Test out all possible combinations of assignments w.r.t. the groups occurring in)
• No longer exponential in the size of '(& !

38

Lifted Decisions

T. Braun - StaRAI

meu)|. = !∗, 23 ., !∗
!∗ = arg max

!∈678 &
23 ., !

Lifted MEU: Groups
• In parameterised models without evidence

(or evidence for complete domains), ! ∈ ran & means
• Going through all possible combinations of assignments to &
• One group per logical variable

• In models with evidence affecting parfactors
containing decision PRVs, ! ∈ ran & means
• Going through all possible combinations of

assignments for each group of constants after
evidence handling
• Specifically, after shattering

• Effect: size exponential in number of groups

39

(*) Now is later.

Lifted Decisions

T. Braun - StaRAI

meu *|, = !∗, 01 ,, !∗

!∗ = arg max
!∈456 &

01 ,, !

78
90:;<=>; ? @;=A

B=>C ?

D<EF0A ?

GH=I

D<0E; ?,J
7K 7L

7M7N

OP;0<Q0<0P>0
7R

Lifted MEU: Groups – Example
• Decision model ! = #$, #&, #', #(, #), #*
• Decision PRV +,-./01. 2 with range 345, 6/,,
• Evidence 7 = 8019 2: = ./;, , dom 2: = ?&, … , ?&$
• Overlap in domain of 2, 2:➝ Shattering duplicates #&, #', #(, #)
• For dom 2: = ?&, … , ?&$, dom 2:: = ?&$, … , ?A
• Alternative: Duplicate + restrict constraints

• Action assignments
• + ≜ +,-./01., 3 ≜ 345, 6 ≜ 6/,,

• C& = + 2′′ = 3, + 2: = 3

• C' = + 2′′ = 3, + 2: = 6

• C(= + 2′′ = 6, + 2: = 3

• C) = + 2′′ = 6, + 2: = 6

Lifted Decisions

T. Braun - StaRAI 40

meu !|7 = C∗, ,; 7, C∗

C∗ = arg max
C∈NOP Q

,; 7, C

#*
+,-./01. 2 R.0S

8019 2

T/4U,S 2

VW0X

T/,4. 2,Y
#' #(

#$#&

Z5.,/6,/,51,
#)

Answering EU-Queries for MEU
• Given a decision model ! = #$ $%&' ∪ #) , evidence *, and an action assignment + for

groups in ! after shattering
1. Calculate the posterior, , - *, + , of the Markov blanket of the utility node
• I.e., - = /0 #) ∖ /0 2 ∖ /0 3 (remaining PRVs in #4’s after previous step)
• Using LVE: With - as the query terms and *, + as evidence, eliminate all non-query terms in !, i.e., call

LVE ! ∖ #) , -, * ∪ +
2. Calculate the expected utility by summing over the range values of -:

89 *, + = :
;∈=>? -

, ; *, + @ A) ;

• Using LVE: Eliminate remaining PRVs in # ∪ #) , # = LVE ! ∖ #) , -, * ∪ + , i.e., call
LVE # ∪ #) , -, * ∪ +

• *, + not yet handled in #); alternatively: absorb *, + at beginning in !
• Result: parfactor mapping empty argument to a single value (B)

41

Lifted Decisions

T. Braun - StaRAI

LVE for MEU Problems

function MEU−LVE ' =)* *+,- ∪)/ , 1
Absorb 1 in '
2∗ ← ∅
6789: ← −∞
for each action assignment 2 in ' do

) ← LVE ' ∖)/ , =>)/ , 2 ▹) normalised
67 ← LVE)/,) , ∅, 2
if 67 > 6789: then

2∗ ← 2
6789: ← 67

return 2∗

• Modify to save all assignments that lie within @-margin

42

LVE-MEU

Lifted Decisions

T. Braun - StaRAI

Structure in Multi-attribute Settings
• So far: Set of attributes without structure
• Single utility functions mapping to one utility
• Example: !" #$%&'(&'&$)&, +,-.

• Cases with structure:
1. Set of (distinguishable) attributes with structure
• Set of utility functions, mapping to interim utilities,

combined into one overall utility
2. Set of indistinguishable attributes
• Utility parfactor mapping to an interim utility PRV, which is combined into one utility

3. Sets of distinguishable and indistinguishable attributes
• Set of utility parfactors and utility factors, combined into one utility

• Considering structure requires a combination function /

43

Lifted Decisions

T. Braun - StaRAI

0"
1&2%'-)% 3 4%-5

6-)7 3

8'9:&5 3

+,-.

8'&9% 3,;0< 0=

0>0?

#$%&'(&'&$)&0@

1. Set of Attributes with Structure
• Set of attributes that show MPI ➝ Utility function ”factorises” into sets of functions over

attributes, combined with a combination function !, i.e.,
" #$, … , #' = !)$ #$, … ,)' #'

• I.e., each)* #* maps to its own interim utility, "*, combined into an overall utility " through !
• More general: Each +* has a set of random variables ,* as input with , = #$, … , #' = ⋃*.$

/ ,*
• Extended syntax: Decision model

0 = 1* *.$2 ∪ 14 4.$/ ∪ !
• Refer to submodel of potential parfactors by 05 and to submodel of utility factors by 06

• 1* =)* 7* |9: parfactors with (decision) PRVs as arguments
• 14 =)6; ℛ4 utility factors, each mapping to a utility variable "4
• ! a combination function, combining all "4 into one ", i.e.,

)6 #$, … , #' = !)6= >ℛ= #$, … , #' ,… ,)6? >ℛ? #$, … , #'

Lifted Decisions

T. Braun - StaRAI 44

1. Set of Attributes with Structure: Example
• Example:
• !"#$ %&'()*()(&+(, -./0

utility factor over %&'()*()(&+(, -./0
• !"$1 -&*2)+(. 456

utility factor over -&*2)+(. 456
• (Effort it takes to enforce travel restriction on busses)

• 7 a combination function, combining 89, 8: into 8'/;
• Could rewrite model using 7 into a model containing only

one utility factor <" (shown above)
• !" %&'()*()(&+(, -./0, -&*2)+(. 456
= 7 !"#$ %&'()*()(&+(, -./0 , !"$1 -&*2)+(. 456

Lifted Decisions

T. Braun - StaRAI 45

<"#$
>(6')/+' ?

8'/;

@/+A ?

B)CD(; ?

-./0

B)(C' ?,E
<: <F

<G<9

%&'()*()(&+(<H

<"$1
-&*2)+(. 456

8IJ

8KI

<L

7

>(6')/+' ?

8'/;

@/+A ?

B)CD(; ?

-./0

B)(C' ?,E
<: <F

<G<9

%&'()*()(&+(<H

-&*2)+(. 456<L

<"

1. Set of Attributes with Structure: EU Query & MEU Problem
• Given a decision model ! = !# ∪ !% ∪ & = '(()*

+ ∪ ', ,)*
- ∪ &

• Query for an expected utility (EU): change in sum over rv !% instead of rv '%
01 2, 4 = 5

6∈89: 8; <= ∖?∖@

A 6 2, 4 B & C%D EℛD 6, 2, 4 , … , C%H EℛH 6, 2, 4

• If & addition, then
01 2, 4 = 5

6∈89: I8 8; <= ∖?∖@

A 6 2, 4 B 5
JK∈<=

C%K EℛK 6, 2, 4

• Works like MULTIPLY, i.e., like a join, but with summing of utilities
instead of multiplying of potentials

• MEU problem: no changes
meu !|2 = 4∗, 01 2, 4∗

4∗ = argmax
4∈89: @

01 2, 4

Lifted Decisions

T. Braun - StaRAI 46

'%TU
V0WXYZ[X \

]XZ^

_Z[` \

aYbc0^ \

deZf

aY0bX \,g
'h 'i

'j'*

klX0Ym0Y0l[0
'n

'%Uo
dlmpY[0. r1W

]st

]us

'v

&

1. Set of Attributes with Structure: Additive Join
• Operator:

• Example

Lifted Decisions

T. Braun - StaRAI 47

On the Relationship of Maximum Expected Utility and Lifting 17

Operator 1 Additive join of utility factors
Operator add
Inputs:

(1) Utility factor fu0 = �u0 (Ru0)

(2) Utility factor fu00 = �u00 (Ru00)

Output: Utility factor �u(Ru) such that

(1) Ru = Ru0 on Ru00 and

(2) for each valuation r 2 ran(Ru) with ru0 = ⇡Ru0 (r) and ru00 = ⇡Ru00 (r)

�u(r) = �u0 (ru0) + �u00 (ru00)

Postcondition: GU ⌘ GU \ {fu0 , fu00} [add(fu0 , fu00)

base case. Tractability of the EU query w.r.t. domain sizes follows again only if
the utility function does not depend on any domain sizes. Before we consider the
next expansion of our setting with symmetries in the structure, we again do an
excursion for solving an MEU problem based on LVE.

3.3.4 Excursion 2: Solving the Problem

We consider two cases, the general case where we keep the probability query as is
and a specialised case where we consider the factorisation of the query. We consider
summation as the combination function. If we use anything else but summation
as the combination function 'U , then that function needs to be implemented.

For the general case, computing an EU query involves computing a probability
query over rv(GU), for which we can use LVE. Then, we multiply the result with
the full combination of the utility factors given the combination function 'U and
eliminate the remaining variables to get the result. In case of addition, we need an
operator in the vein of multiply to combine two utility factors but with summation
as the arithmetic operation combining the utilities of the two factors. Operator 1
shows such an operator, which has the signature add(fu0 , fu00), with two utility
factors fu0 , fu00 as input and one utility factor fu as output that is the combination
of both input factors using addition for combining utilities. The calculation in
Eq. (9) follows this operator. Solving an MEU problem instance can follow one of
Algs. 1 and 2 after combining the utility factors using Operator 1.

For the specialised case, we need to answer probability queries and then
eliminate the remaining random variables in the utility model together with the
query answers. We can use LVE to automatically find the necessary query answers
without knowing the independences in advance. Algorithm 3 shows how to calcu-
late an EU query, which replaces Lines 5 and 6 in Alg. 1 and returns an eu value
to compare against eumax. Specifically, we call LVE on GP with rv(GU) as query
terms and an action assignment d but end the call before LVE normalises the re-
sult. The normalisation would multiply the remaining factors after elimination to
normalise the result. Instead, we take this set of factors {gi}◆i=1. If we forego to cal-
culate probability distributions as answers and only rank action assignments, we
can continue with this set of factors. If we need probability distributions, we need
to form fitting probability distributions over these factors. To do so, we multiply
those factors that share random variables until we have a set of factors {pi}

0

i=1

whose arguments do not overlap, which is a step further than described above as
we multiply factors until arguments no longer overlap and then normalise each

!" #$%&'(&'&$)&, +,-., +$(/')&. 123
= 5 !"67 #$%&'(&'&$)&, +,-. , !"78 +$(/')&. 123
= !"67 #$%&'(&'&$)&, +,-. + !"78 +$(/')&. 123
= add <"67, <"78

+ =>?
(@A3& (@A3& −10

(@A3& %'2& −10

%'2& (@A3& −20

%'2& %'2& −02

+1 =?F
(@A3& −00

%'2& −10

<"67
G&3%'-)% H

=%-A

I-)J H

K'@L&A H

+,-.

K'&@% H,M
<N <O

<P<Q

#$%&'(&'&$)&<R

<"78
+$(/')&. 123

=?F

=>?

<S

5

+ +1 =>?
(@A3& (@A3& (@A3& −10 + 00 = −10

(@A3& (@A3& %'2& −10 − 10 = −00

(@A3& %'2& (@A3& −10 + 00 = −10

(@A3& %'2& %'2& −10 − 10 = −20

%'2& (@A3& (@A3& −20 + 00 = −20

%'2& (@A3& %'2& −20 − 10 = −30

%'2& %'2& (@A3& −02 + 00 = −02

%'2& %'2& %'2& −02 − 10 = −08

1. Set of Attributes with Structure: MEU-LVE
• Implement ADD operator
• LVE with ADD operator referred to as LVEADD

• Changes in MEU-LVE
• Input: decision model ! = !# ∪ !% = &' '()* ∪ &+ +()

,

• In for-loop:

• If - not addition, need to implement (change LVE122 call)
• Combines !% into one &% before multiplying with & and

summing out the remaining variables

Lifted Decisions

T. Braun - StaRAI 48

& ← LVE 4 ∖ !%, rv !% , 9 ▹& normalised
:; ← LVE122 !% ∪ & , ∅, 9

Splitting a single utility function into set of
utility factors has upside of needing to
learn / specify fewer entries BUT:

Complexity still exponential in 4 as
combined into &

&%=>
?:@ABCDA E

FACG

HCDI E

JBKL:G E

MNCO

JB:KA E,4
&P &Q

&R&)

STA:BU:B:TD:&V

&%>W
MTUXBD:. Z;@

F[\

F][

&^

-

1. Set of Attributes with Structure: Simplification
• Assume (conditional) independence between the different
rv #$ given %, ', i.e., () %, ' = ∏$,-.

/ (0$, %, '
12 %, ' = 3

)∈567 8

() %, ' 9 : ;<= 0. , … , ;<? 0/

= 3
)∈567 8

() %, ' 9 3
$-.

/

;$ 0$

= 3
$-.

/

3
0@∈567 5A B@

(0$ %, ' 9 ;$ 0$

Lifted Decisions

T. Braun - StaRAI 49

Query on rv #$ for each utility factor
➝ Use multi-query algorithm like LJT

Only yields correct result under
stochastic independence
• Idea similar to Boyen-Koller algorithm
• Preferential and stochastic independence

do not follow from each other!

C<DE
F1GHIJKH L

MHJN

OJKP L

QIRS1N L

TUJV

QI1RH L,W
CX CY

CZC.

[\H1I#1I1\K1
C]

C<E^
T\#_IK1. a2G

Mbc

Mdb

Ce

:

Derivation
Lifted Decisions

T. Braun - StaRAI 50

!" #, % = '
(∈*+, -

. (#, % / '
012

3
40 50 = '

(∈*+, -
'
012

3
. (#, % / 40 50 = '

012

3
'

(∈*+, -
. (#, % / 40 50

= '
012

3
'

(∈*+, -
6
0712

3
. 507 #, % / 40 50

= '
012

3
'

58∈*+, 98
… '

5;∈*+, 9;
. 52 #, % / ⋯ / . 53 #, % / 40 50

= '
012

3
'

58∈*+, 98
. 52 #, % / ⋯ / '

5;∈*+, 9;
. 53 #, % / 40 50

= '
012

3
'

5=∈*+, 9=
. 50 #, % / 40 50 / '

0712,07>0

3
. 507 #, %

= '
012

3
'

5=∈*+, 9=
. 50 #, % / 40 50 = 1

(probability distributions
➝ sums to 1)

1. Set of Attributes with Structure: Simplification – Example
• Example: !" = $%&
• ' (, *, ($! = ' (! + ' * ! + ' ($!

,- !"

= .
/0∈234 50

.
6∈234 7

.
/∈234 5

' ,$, 8, , ! + .
9:"

;

<9 =9

= .
/0∈234 50

.
6∈234 7

.
/∈234 5

' ,$! + ' 8 ! + ' , ! +.
9:"

;

<9 =9

= .
/0∈234 50

' ,$! + <50 ,$

+ .
6∈234 7

' 8 ! + .
/∈234 5

' , ! + <75 8, ,

Lifted Decisions

T. Braun - StaRAI 51

?@AB
CD8E

F8GH I

JK%L,E I

(M8N

JK,%D I,O
?; ?P

?Q?"R

*&D,KS,K,&G,?TR

?@BU
(&SVKG,. $-X

C50

C75

?YR

Z

If adding (M8N as an input to ?@BU,
' (, *, ($! ≠ ' (, ($! + ' (, * !

Structure in Multi-attribute Settings
• So far: Set of attributes without structure
• Single utility functions mapping to one utility
• Example: !" #$%&'(&'&$)&, +,-.

• Cases with structure:
1. Set of (distinguishable) attributes with structure
• Set of utility functions, mapping to interim utilities,

combined into one overall utility
2. Set of indistinguishable attributes
• Utility parfactor mapping to an interim utility PRV, which is combined into one utility

3. Sets of distinguishable and indistinguishable attributes
• Set of utility parfactors and utility factors, combined into one utility

• Considering structure requires a combination function /

52

Lifted Decisions

T. Braun - StaRAI

0"
1&2%'-)% 3 4%-5

6-)7 3

8'9:&5 3

+,-.

8'&9% 3,;0< 0=

0>0?

#$%&'(&'&$)&0@

2. Set of Indistinguishable Attributes
• Indistinguishable attributes !",… , !% that show MPI ➝ Utility function ”factorises” into a

set of indistinguishable functions &' over indistinguishable attributes
• Utility function:

()", … ,)% = + ,")" , … , ,%)% = + ,-)" , … , ,-)%
• All ,' are ,-, mapping to an interim utility variable ('
• If + addition, then ()", … ,)% = . / ,-)-

• Precondition: For the &' to be indistinguishable,
the !' need to be indistinguishable
• Encode indistinguishable attributes

as PRV ! 0 , dom 0 = .
• Then, encode interim utilities (' as utility PRV (0
• Logical variables of utility PRV always follow

logical variables in PRVs of utility function

Lifted Decisions

T. Braun - StaRAI 53

!456)786. 6):7; <

(67=

>78? <

@):A4= <

BC7D

@)4:6 <,.
EF EG

EHE"

EIJK
B;&L)84. MN5

(OP

EQ

+EIJR

B;&L)84. 6):7;

(OS

EQ
!456)786. MN5 <

E"

2. Set of Indistinguishable Attributes
• Extended syntax: Decision model

! = #$ $%&
' ∪ #) ∪ *

• #$ = +$,$ |./ parfactors with (decision) PRVs as arguments
• #) = +) ℒ , a utility parfactor and 1 ℒ a utility PRV
• ℒ = lv , holds
• gr #) = 6&, … , 69 , all 6$ with utility function +)

• * a combination function, combining 1 ℒ
into one 1 in lifted way (for liftability)
• Addition yields a multiplication
• Compare multiplication leading to an

exponentiation in multiplicative semantics

Lifted Decisions

T. Braun - StaRAI 54

As of now, logical variables in utility model possible!

:;<=>?@=. =>B?C D

1=?E

F?@G D

H>BI;E D

JK?L

H>;B= D,M
#N #O

#P#&

#)QR
JC6S>@;. TU<

1VW

#X

*#)QY

JC6S>@;. =>B?C

1VZ

#X
:;<=>?@=. TU< D

#&

:;<=>?@= D, :

1=?E

F?@G D

H>BI;E D

JK?L

H>;B= D,M
#N #O

#P#&

*

JC6S>@; : 1 :#X #)QQ

2. Set of Indistinguishable Attributes: Example
• Example:
• Assume that effort for enforcing travel

restrictions on busses and trains is identical
• Ground:
• Utility factor !"#$ %&'(, %*+,-./. 123
• Utility factor !"#4 %&'(, %*+,-./. 5-6'*

• Lifted:
• Utility parfactor !" 7 %&'(, %*+,-./ 8
• ⊤ constraint with dom 8 = 5-6'*, 123

• Combination function: addition
• Lifted: multiplication with dom 8

Lifted Decisions

T. Braun - StaRAI 55

8/35-'.5. 5-6'* >

?5'@

A'.B >

C-6D/@ >

%&'(

C-/65 >,E
FG FH

FIFJ

F"#$
%*+,-./. 123

?KL

FM

NF"#4

%*+,-./. 5-6'*

?KO

FM
8/35-'.5. 123 >

FJ

8/35-'.5 >, 8

?5'@

A'.B >

C-6D/@ >

%&'(

C-/65 >,E
FG FH

FIFJ

N

%*+,-./ 8 ? 8
FM F"##

2. Set of Indistinguishable Attributes: EU Query & MEU Problem
• Given a decision model ! = !# ∪ !% ∪ & = '(()*

+ ∪ '% ∪ &

• Query for an expected utility (EU): sum over gr rv '%
/0 1, 3 = 4

5∈789 :7 7; <= ∖?∖@

A 5 1, 3 B & C%D EℛD 5, 1, 3 , … , C%H EℛH 5, 1, 3

• MEU problem: no changes
meu !|1 = 3∗, /0 1, 3∗

3∗ = argmax
3∈789 @

/0 1, 3

• But: Given semantics, EU query calculation not lifted!
➝ Can we avoid grounding?

Lifted Decisions

T. Braun - StaRAI 56

P/QRSTUR V, P

WRTX

YTUZ V

[S\]/X V

^_T`

[S/\R V,a
'b 'c

'd'*

&

^efgSU/ P W P
'h '%ii

2. Set of Indistinguishable Attributes: Liftability
• Given a decision model ! = !# ∪ !% ∪ & = '(()*

+ ∪ '% ∪ &
• Query for an expected utility (EU): sum over gr rv '%

/0 1, 3 = 4

5∈789 :7 7; <= ∖?∖@

A 5 1, 3 B & C%D EℛD 5, 1, 3 , … , C%H EℛH 5, 1, 3

• Changes in calculations for /0 1, 3 with rv !% now containing logical variables
➝ A 5 1, 3 a parameterised query with I = rv !%
➝ If query liftable, then I as CRVs in answer ➝ liftable
• But: logical variables in '% not counted
➝ If & addition: additive count-conversion for utility parfactors
➝ Sum then over range of CRVs (include J0K ℎ !)
➝ Lifted calculations: Sum polynomial in domain sizes

Lifted Decisions

T. Braun - StaRAI 57

M/NOPQRO S, M

TOQK

UQRV S

WPXY/K S

Z[Q\

WP/XO S,J
'] '^

'_'*

&

Z`abPR/ M T M
'c '%dd

2. Set of Indistinguishable Attributes: Additive Count-Conversion
• Operator:

Lifted Decisions

T. Braun - StaRAI 58

24 Tanya Braun, Marcel Gehrke

example above, P (Rate(R), Cost(V)) returns a result with R, V counted while gu

in Fig. 6 contains R and V uncounted, thus requiring counting as well.
As counting turns a set of indistinguishable instances into histograms, utili-

ties that the instances map to need to be combined according to U . Considering
 U to be addition, the count conversion operator that turns a PRV into a CRV
needs to be adapted for addition of utilities instead of multiplication of potentials.
Apart from this di↵erence, the operator remains the same, allowing for trans-
ferring liftability results. Operator 2 shows an additive count conversion with a
utility parfactor g and a logical variable X as inputs and a parfactor, in which
X is counted, as output. The preconditions state that X may occur only in one
argument of g (apart from U(X)), that X may not be in an inequality constraint
with any other counted logical variable, and that X is count-normalised w.r.t. the
remaining logical variables of g, meaning that for each grounding of the other log-
ical variables X refers to the same number of constants . The preconditions ensure
correctness (i.e., make sure that the same histograms can be used) and do not
further a↵ect decision making (see Taghipour et al., 2013c, for more details about
the preconditions). Then, the result is a parfactor g0 where the PRV Ai containing
X is replaced by a CRV, in which X is counted, i.e., having a range of histograms
h. The mappings in g

0 are determined as follows:

�
0
U(X)(. . . , ai�1, h, ai+1, . . .) =

X

a2ran(Ai)

h(ai)�U(X)(. . . , ai�1, ai, ai+1, . . .) (14)

with h(ai) returning for the range value ai the number in the histogram h, e.g.,
h(true) = 1 in a histogram [1, 2] where the first position refers to range value true

and the second position to false.
If we consider the example again, we would need to count the R and the

V in gU assuming that U is addition. The result is a utility parfactor g
#
u =

�#R,V [U(R,V)](#R[Rate(R)],#V [Cost(V)]). Let gu have the following mappings for
Rate(R) = low: ((low, low), 1), ((low,middle), 2), ((low, high), 3). Counting V first

Operator 2 Count-conversion for utility parfactors
Operator count-convert
Inputs:

(1) Utility parfactor gu = �U(X)(A)|C
(2) logical variable X 2 lv(A) and X 2 X, to count in gu

Preconditions:

(1) There is exactly one atom Ai 2 A with X 2 lv(Ai).

(2) X is count-normalised w.r.t. Z = lv(A) \ {X} in C.

(3) For all counted logical variables X
#

in g: ⇡X,X# (C) = ⇡X(⇡X(C))⇥ ⇡X# (⇡X(C)).

Output: utility parfactor �
0
U0 (A0

)|C such that

(1) U
0
= #X [U(X)],

(2) A0
= (A1, . . . , Ai�1) �A

0
i � (Ai+1, . . . , An), A

0
i = #X [Ai], and

(3) for each valuation a0
to A0

with a
0
i = h,

�
0
U(X)(. . . , ai�1, h, ai+1, . . .) =

X

a2ran(Ai)

h(ai)�U(X)(. . . , ai�1, ai, ai+1, . . .)

where h is a histogram {(ai, ni)}mi=1 with m = |ran(Ai)|, ai 2 ran(Ai), ni 2 N, andP
ai2R(Ai)

h(ai) = ncountX|Z(C), and h(ai) = ni.

Postcondition: GU ⌘ GU \ {gu} [count-convert(gu, X)

Compare multiplicate count-conversion:
!" … , %&'(, ℎ, %&*(, …

= ,
-.∈0-1 2.

! … , %&'(, %&, %&*(, … 3 -.

456789:7 ;, 4

<79=

>9:? ;

@8%A5= ;

BC9D

@85%7 ;,E
FG FH

FIF(

J

BKLM8:5 4 < 4
FN FOPP

Lifted Decisions

T. Braun - StaRAI 59

! ## ! $ %#& ' #
(

)*+,- 0,2 0 1 0 + 2 1 5 = 10

)*+,- 1,1 1 1 0 + 1 1 5 = 05

)*+,- 2,0 2 1 0 + 0 1 5 = 0

678- 0,2 0 1 −10 + 2 1 −5 = −10

678- 1,1 1 1 −10 + 1 1 −5 = −15

678- 2,0 2 1 −10 + 0 1 −5 = −20

! ! $ %' #

)*+,-)*+,- 5

)*+,- 678- 0

678-)*+,- −5

678- 678- −10

! ! $ %

)*+,-)*+,- 10

)*+,- 678- 4

678-)*+,- 8

678- 678- 5

! ## ! $ %# %<

)*+,- 0,2 4= 1 10> = 100 0.263

)*+,- 1,1 4B 1 10B = 040 0.105

)*+,- 2,0 4> 1 10= = 016 0.042

678- 0,2 5= 1 08> = 064 0.168

678- 1,1 5B 1 08B = 040 0.105

678- 2,0 5> 1 08= = 040 0.105

Sum of %# potentials = 1 1 100 + 2 1 40 + 1 1 16 + 1 1 64 + 2 1 40 + 1 1 40 = 380

%# 1 %#& ' #
(

0.263 1 10 = 2.630

0.105 1 05 = 0.525

0.042 1 00 = 0.000

0.168 1 −10 = −1.680

0.105 1 −15 = −1.575

0.105 1 −20 = −2.100

$-,67DE6 F, $

G6D+

HDEI F

J7*K-+ F

!LDM

J7-*6 F,N
O> OP

O=OB

Q

!R)S7E- $ G $
OT O'UU

-8 = 1 1 2.630 + 2 1 0.525 + 1 1 0 + 1 1 −1.68 + 2 1 −1.575 + 1 1 −2.1 = −3.25

2. Set of Indistinguishable Attributes: Simplification
• Assume all groundings are independent
• ∀ℛ # ,ℛ % ∈ gr rv *+ ∶ ℛ # ⊥ ℛ % ., /

• Then,

01 ., / = 3
456

7

3
89∈:;< := >?

@ 84 ., / A B4 84

= C A 3
89∈:;< := >?

@ 84 ., / A B4 84

• @ 84 ., / a representative query, i.e., a query over D4 =
rv *+ with a representative grounding # of its logical
variables E = lv D4

• C = gr *+

Lifted Decisions

T. Braun - StaRAI 60

Lifted calculation:
• Sum independent of domain sizes C
• Multiplication with domain size in G logC

I0JKLMNK O, I

PKMQ

RMNS O

TLUV0Q O

WXMY

TL0UK O,Z
*[*\

*]*6

^

W_`aLN0 I P I
*b *+cc

Here, groundings are not independent because
of WXMY; without WXMY, the groundings would
be independent (of each other and anything
else in the model)

We will see an example later.

2. Set of Indistinguishable Attributes: MEU-LVE
• Implement ADD-COUNT-CONVERT operator
• LVE with ADD operator and

ADD-COUNT-CONVERT operator referred to as LVEaddCC

• Changes in MEU-LVE
• Input: decision model ! = !# ∪ !% = &' '()

* ∪ &%
• In for-loop:

• If + not addition, need to implement (change LVE/0011 call)
• Count-converts the PRVs in &% before multiplying with & and

summing out the remaining variables
• If PRVs in &% not count-convertible ➝ Ground logical variable and

join partially grounded utility parfactors using ADD operator

Lifted Decisions

T. Braun - StaRAI 61

& ← LVE ! ∖ !%, rv !% , 7 ▹& normalised
89 ← LVE/0011 !% ∪ & , ∅, 7

If parameterised query liftable, then:
Complexity polynomial in ;

<8=>?@A> B, <

C>@D

E@AF B

G?HI8D B

JK@L

G?8H> B,;
&M &N

&O&)

+

JPQR?A8 < C <
&S &%TT

2. Set of Indistinguishable Attributes: Logical Variables in Utility PRVs
• Definition says ℒ = lv % holds for a utility parfactor &' ℒ % a utility parfactor and
(ℒ a utility PRV

• What about ℒ ⊂ lv % ?
✗Given grounding semantics, not valid as combination not defined
• Example: &'*+, -./01230 4 , 6728
• Groundings: &'*+, -./01230 9:23. , 6728 , &'*+, -./01230 .;. , 6728 , &'*+, -./01230 <=< , 6728

• What about ℒ ⊃ lv % ?
ü Given grounding semantics, valid as only more utility factors occur
• Example: &' ?,@ 6AB=13. - , 6728 , dom F = 3
• Groundings: &' H,IJ 6AB=13. < , 6728 , &' H,IK 6AB=13. < , 6728 , &' H,IL 6AB=13. < , 6728 ,

&' *,IJ 6AB=13. 0 , 6728 , &' *,IK 6AB=13. 0 , 6728 , &' *,IL 6AB=13. 0 , 6728 ,

Lifted Decisions

T. Braun - StaRAI 62

2. Set of Indistinguishable Attributes: Eliminating Logical Variables
• Grounding a utility parfactor with additional logical variables in its utility PRV leads to

copies of utility factors over the same inputs that can be combined based on !
• Eliminate beforehand as a first step to simplify a model

• Operator for eliminating additional logical variables in a utility PRV of a utility parfactor

Lifted Decisions

T. Braun - StaRAI 63

26 Tanya Braun, Marcel Gehrke

Operator 4 Logical variable elimination in utility PRVs
Operator elim-log-vars
Inputs:

(1) Utility parfactor gu = �U(X)(A)|C
(2) Logical variables Y ✓ X
Preconditions:

(1) Y do not occur in A, i.e., Y \ lv(A) = ;.
(2) Y are count-normalised w.r.t. lv(A) in C.

Output: utility parfactor �
0
U(Z)(A)|C0 such that

(1) Z = X \ Y ,

(2) C
0
= C \ Y (remove Y and its constants from C), and

(3) for each valuation a to A,

�
0
U(Z)(a) = ncountY |Z(C) · �U(X)(a)

Postcondition: GU ⌘ GU \ {gu} [elim-log-vars(gu,Y)

number of instances the excess logical variables represent w.r.t. each instance of the
remaining logical variables, basically as an additive version of exponentiation, with
which LVE handles additional logical variables in a standard parfactor. Operator 4
formalises the operation given a utility parfactor gu and a set of logical variables Y
occurring in the utility PRV but not gU ’s arguments. As a precondition, the excess
logical variables Y are count-normalised w.r.t. the remaining logical variables Z.
That is for each grounding of Z, Y has the same number of constants in the
constraint C of gu, a number which we refer to with ncountY |Z(C) (Taghipour,
2013). If ncountY |Z(C) does not exist, the instances are not indistinguishable and
we cannot handle them at once. We would need to split the parfactor, until the
instances are indistinguishable. Iif Y is count-normalised w.r.t. Z, then the utilities
can be multiplied with ncountY |Z(C) to eliminate Y .

Solving the Problem with LVE Solving the MEU problem in a parameterised de-
cision model follows the same idea as for structured decision models. If asking a
parameterised probability query and then multiplying the answer with the com-
bined utility parfactors, one can (i) use LVE for the probability query, (ii) use
Operator 4 to eliminate extra logical variables, (iii) count-convert PRVs in utility
parfactors for all PRVs that occur as CRVs in the query answer using Operator 2
and ground the rest, (iv) combine all utility parfactors using Operator 3, and then
(v) multiply the joined utility parfactor and sum-out the remaining CRVs and
variables. If providing LVE with the operators, then we can use Algs. 1 and 2
for solving an MEU problem instance and let LVE handle the transformations. If
asking a factorised parameterised query, then the procedure would follow Alg. 3
extended with count-conversions or groundings of logical variables in the utility
parfactors if necessary. The rest of the function follows the same idea, with slowly
eliminating CRVs and random variables, keeping the interim sizes as small as
possible at the expense of more multiplications.

This ends our analysis of the utility part, having gone from a structureless deci-
sion model with random variables in the utility function to parameterised decision
models with a set of utility parfactors allowing for tractable EU queries. With
that, we come back to the parameterised decisions and argue why iterating over
the possible action assignments no longer depends on domain sizes exponentially.

"#$%&'(%), "
+%',

-'(.)

/&01#,)

23'4

/�%),567 68

696:

!

2;<=&(# " + "6> 6?@@

2. Set of Indistinguishable Attributes: Eliminating Logical Variables
• Example: !" #,% &'()*+, - , &./0 , dom 4 = 3
• New utility parfactor: !" # &'()*+, - , &./0
• For all ,' ∈ ran &'()*+, - , ,. ∈ ran &./0 :

!" # ,', ,. = 3 ⋅ !" #,% ,', ,.
• Ground comparison:
• For all ,' ∈ ran &'()*+, < , ,. ∈ ran &./0 :
!" =,>? ,', ,. + !" =,>A ,', ,. + !" =,>B ,', ,.
= 3 ⋅ !" #,% ,', ,.

• For all ,' ∈ ran &'()*+, C , ,. ∈ ran &./0 :
!" D,>? ,', ,. + !" D,>A ,', ,. + !" D,>B ,', ,.
= 3 ⋅ !" #,% ,', ,.

Lifted Decisions

T. Braun - StaRAI 64

Combine into:
!" # &'()*+, - , &./0

-,EC*/+C F, -

GC/H

I/+J F

K*LM,H F

&./0

K*,LC F,N
OP OQ

OROS

T

&'()*+, - G -
OU O"VV

-,EC*/+C F, -

GC/H

I/+J F

K*LM,H F

&./0

K*,LC F,N
OP OQ

OROS

T

&'()*+, - G -, 4
OU O"VV

Structure in Multi-attribute Settings
• So far: Set of attributes without structure
• Single utility functions mapping to one utility
• Example: !" #$%&'(&'&$)&, +,-.

• Cases with structure:
1. Set of (distinguishable) attributes with structure
• Set of utility functions, mapping to interim utilities,

combined into one overall utility
2. Set of indistinguishable attributes
• Utility parfactor mapping to an interim utility PRV, which is combined into one utility

3. Sets of distinguishable and indistinguishable attributes
• Set of utility parfactors and utility factors, combined into one utility

• Considering structure requires a combination function /

65

Lifted Decisions

T. Braun - StaRAI

0"
1&2%'-)% 3 4%-5

6-)7 3

8'9:&5 3

+,-.

8'&9% 3,;0< 0=

0>0?

#$%&'(&'&$)&0@

3. Sets of Distinguishable & Indistinguishable Attributes
• Full expressiveness in terms of syntax: Allows for a set of utility parfactors as utility model
• Full decision model:
• Syntax

! = #$ $%&
' ∪ #))%&

* ∪ +
• #$ = ,$ -$ |/0 parfactor with (decision) PRVs as arguments
• #) = ,12 ℒ2 -) |/2 utility parfactor, mapping to a utility PRV 4) ℒ) with ℒ) = lv -)

• + a combination function, combining all 4) ℒ) into one 4
• Semantics: grounding semantics
• Given an action assignment 7, full joint 89: 7 over grounding, multiplying, and normalising
• EU queries sum over gr rv !1 ➝ Liftable parameterised query or simplification for liftability
• MEU problem: With = the decision PRVs in !

meu !|A = 7∗, DE A, 7∗ 7∗ = argmax
7∈IJK =

DE A, 7

Lifted Decisions

T. Braun - StaRAI 66

3. Sets of Distinguishable & Indistinguishable Attributes: Example
• Decision model ! = !# ∪ !% ∪ &

• !# = '(()*
+

• '* = ,* -./0

• '1 = ,1 23456/75 8, 2 , :6;<3= 8

• '> = ,> -./0, ?/7@ 8 , :6;<3= 8

• 'A = ,A -./0, ?/7@ 8 , :63;5 8,B

• 'C = ,C 23456/75 8, 2 , -DEF673 2

• '+ = ,+ 23456/75 8, 2 , GD536E. 8

• !% = 'I I)*
+

• '%JJ = ,% K -DEF673 2

• '%LJ = ,% M GD536E363D73 8 , -./0

• & addition with additive operators for LVE

• In EU query
• Independences given 23456/75 8, 2
• Between utility parfactor PRVs ✓
• Between groundings of -DEF673 2 ✓

Lifted Decisions

T. Braun - StaRAI 67

23456/75 8, 2

N5/=

?/7@ 8

:6;<3= 8

-./0

:63;5 8,B
'> 'A

'*'1

GD536E363D73 8
'C

-DEF673 2

N 2

N 8

'+

&

'%JJ

'%LJ

MEU Problems: Alternative Solution Approach
• Solving an MEU problem in decision model ! with " # as short form for utility model:

meu !|(= *∗, -. (, *∗ , *∗ = argmax
*∈456 7

-. (, * = argmax
*∈456 7

8
#∈456 94 4: ;< ∖>∖7

? # (, * @ " #

• So far: for each *, set *, eliminate all PRVs not in !A, eliminate remaining PRVs
• Advantage: Reduced model by setting * (possible independences)
• Disadvantage: possibly large ? # (, * has to be computed

• Alternative: Compute a maximum-a-posteriori (MAP) assignment for the decision PRVs
• Eliminate all non-decision PRVs in !B by summing out, eliminate the decision PRVs by maxing

out (replace sum operation by max-out operation)
• Max-out: for each remaining world, pick the assignment with maximum value and store

• Advantage: Does not require computing ? # (, * , easier to exploit factorisation
• Disadvantage: Only a ranking (no true expected utility), no further independences through *

Lifted Decisions

T. Braun - StaRAI 68

Some References
• MEU in parfactor-based decision models
• Warning: not as detailed as in these slides

• Markov logic decision networks (MLDNs)
• MLN + parameterised decisions + utility weights
• Probability + utility weights per first-order formula

• Use weighted model counting to solve MEU problem

• Decision-theoretic Probabilistic Prolog (DTProbLog)
• Utilities of DTProbLog programs combined into EU over theory defined by programs

69

Version using an early version of LVE, mashing early parfactor graphs and MLNs:
Udi Apsel and Ronan I. Brafman. Extended LiNed Inference with Joint Formulas. In: UAI-11 Proceedings of the 27th Conference on Uncertainty in Ar9ficial Intelligence, 2011.

MEU-LVE: Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann, and Jost Steinhäuser. Towards LiNed Maximum Expected UYlity. In: Proceedings of the First Joint Workshop on
Ar9ficial Intelligence in Health in Conjunc9on with the 27th IJCAI, the 23rd ECAI, the 17th AAMAS, and the 35th ICML, 2018.
Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann, and Jost Steinhäuser. LiNed Maximum Expected UYlity. In: Ar9ficial Intelligence in Health, 2019.

MLDNs: Aniruddh Nath and Pedro Domingos. A Language for Relational Decision Theory. In: Proceedings of the International Workshop on Statistical Relational Learning, 2009.
MLDNs + WMC: Udi Apsel and Ronan I. Brafman. Lifted MEU by Weighted Model Counting. In: AAAI-12 Proceedings of the 26th AAAI Conference on Artificial Intelligence, 2012.

DTProbLog: Guy Van den Broeck, Ingo Thon, Martijn van Otterlo, and Luc De Raedt. DTProbLog: A Decision-Theoretic Probabilistic Prolog. In: AAAI-10 Proceedings of the 24th AAAI Conference on Artificial
Intelligence, 2010.

Lifted Decisions

T. Braun - StaRAI

Interim Summary
• Decision models
• Probabilistic graphical model extended with decision and utility variables

• Parfactor-based version
• Decision PRVs, utility PRVs, utility parfactors, combination function
• Collective decisions for groups of indistinguishable constants

• EU queries, MEU problem
• Find set of actions (decisions) that lead to maximum expect utility
• MEU-LVE using calls to LVE and LVE operators to answer EU queries
• Combination function addition ➝ additive join + count-conversion

70

Li0ed Decisions

T. Braun - StaRAI

Outline: 7. Lifted Decision Making
A. Utility theory
• Preferences, maximum expected utility (MEU) principle

• Utility function, multi-attribute utility theory

B. Static decision making
• Modelling, semantics, inference tasks

• Inference algorithm: LVE for MEU as an example

C. Sequential decision making
• Modelling, semantics, sequential MEU problem

• Inference algorithm: LDJT for MEU as an example

• Acting

71

Lifted Decisions

T. Braun - StaRAI

Decision Making over Time
So far:

• Calculate the expected u2lity of a decision and its effect on the (current) state

With 2me

• Decisions need to be made at each 2me step

• Each 2me step yields a u2lity

• Decisions/ac2ons have an effect not only on the current state/u2lity but also on the future

and therefore, future decisions

➝Need to consider a temporal sequence of decisions and project its effect into the future

➝ Requires calcula2ng the expected u2lity over a sequence

72

Lifted Decisions

T. Braun - StaRAI

Sequential Parfactor-based Model
• Sequential parfactor-based model !", !→ with
• !" = &'

"

'()

*+
, &'

"
= ,'

"
-)
"
, … , -/0

"

• !→ a 2-slice model, i.e., !→ = &'
1

'()

*
∪ &3

14),1

3()

5

• Example: !" = &6
"
, &7

"
∪ &"

" , !→ = &6
1
, &7

1
∪ &8

14),1

• No assumptions about observability

Lifted Decisions

T. Braun - StaRAI 73

Semantics: Unroll model 9 for
: steps, ground, build full joint.

9 ":< = 9" ∪=

>()

<

9→|1(>

@A
< =

1

C
D

E∈GH A +∶J

K

:LMNOP Q 1 :LOMR Q,9 1

STUV 1

WUXY Q 1WUXY Q 14)

STUV 14)
&8
14),1

&6
1

&7
1

:LMNOP Q " :LOMR Q,9 "

STUV "

WUXY Q "

&"
"

&6
"

&7
"

Query Answering Problem & Query Types

• Formally, query on a dynamic model !
over template random variables ":

$ % & '∶)

• where * the current step, $ ⊆ " query terms,
, ⊆ " evidence terms, and usually $ ∩ , = ∅

• Filtering: 0 = *
• Prediction: 0 > *
• Hindsight: 0 < *

• Two FO jtrees 3', 3→ with interfaces for
separation between past and present

• LJT as a subroutine for query answering
• Forward/backward messages to move in

time

Inference Tasks Inference Algorithm: LDJT

Lifted Decisions

T. Braun - StaRAI 74

Rest of
!) 6) ∪ "8 Rest of

!)9:
;)

6) ∪ "88

Decision Making over Time
• Basis: a sequen+al model !", !→
• Describe behaviour over +me using interslice parfactors
• Within a slice, describe intra-slice (episodic) behaviour

➝ Extend intra-slice parts with decision + u+lity PRVs
• Intra-slice behaviour described using a decision model
• Inter-slice behaviour allows for predic+ng effect of decision on next step

75

Lifted Decisions

T. Braun - StaRAI

%&'()*+(, -

.(*/ -

0*+1 , -

2)34&/ , -

56*7 -

2)&3(,,8 -
9:- 9;-

9<-

=>(&)?&)&>+& , -
9@-

. , -
A -

9BCD
-

9E-F<,-

%&'()*+(, -F<

.(*/ -F<

0*+1 , -F<

2)34&/ , -F<

56*7 -F<

2)&3(,,8 -F<
9:-F< 9;-F<

9<-F<

=>(&)?&)&>+& , -F<
9@-F<

. , -F<
A -F<9BCD

-F<

A First Version of a Sequential Decision Model
• ! = !#, !→ is a sequential model where !#, !→ are decision models, i.e.,
• !# is a decision model describing the intra-time slice behaviour for & = 0

!# = ()
#

)*+

,-
∪ (/

#

/*+

0-
∪ 1 #

• !→ is a decision model describing the intra- and inter-slice behaviour for & > 0

!→ = ()
3

)*+

,
∪ (/

3

/*+

0
∪ (4

35+,3

4*+

6
∪ 1 3

• with
• ()

7 , (4
35+,3 (potential) parfactors

• (/
7 utility parfactors

• 1 7 a combination function
• & ∈ 0, 9

Lifted Decisions

T. Braun - StaRAI 76

:;<&=>?& @ 3

A&>B 3

C>?D @ 3

E=FG;B @ 3

HI>J 3

E=;F& @,K 3

(L
3 (M

3

(+
3

NO&;=P;=;O?; @ 3

(Q
3

A @ 3

1 3
(RST
3

C>?D @ 35+

HI>J 35+

(U
35+,3

Assumptions about Actions
• Assump&ons in terms of &me / sequen&al behaviour…
• Discrete steps
• Markov-1
• Sta&onary process

• … lead to assump&ons/ constraints on decisions
• Ac&ons can be carried out from one step to the next (no dura&on)
• Effect/outcome of ac&ons immediately captured in the next step
• Ac&ons do not affect the sta&onary process

77

Lifted Decisions

T. Braun - StaRAI

Actions over Time
• Given a set of decision PRVs
• ! " = $%" , … , $("

• Sequential sequence of decisions = sequential action assignment
• Compound event for a sequence of steps from)% to)*, written as + ,-∶,/ , i.e.,

+ ,-∶,/ = + ,- , + ,-0% , … , + ,/1% , + ,/

• + ,2 = $%
,2 = 3%

,2 , … , $(,2 = 3(,2 ,)4 ∈)%, … ,)*
• Decision making over time usually involves calculating the best sequence starting at

current step), making decisions for 6 steps, given evidence up until) and previous
decisions
• I.e., finding the best + ,∶,07 given 8 %∶, and + %∶,1%

78

So far, we used utilities to
determine “the best”. How
can we use them with time?

Li1ed Decisions

T. Braun - StaRAI

Utilities over Time
• One has to iterate over sequential action assignments and pick the one that yields the

maximum expected utility
• Each individual slice has a utility (or reward) ➝ Multi-attribute utility theory
• All individual utilities need to be combined into one utility of the complete sequence using a

sequential combination function !
" # $, # & , # ' , … = ! " # $, " # & , " # ' , …

• Assumption: Preference of one sequence over the other does not depend on time
➝ Preferences are stationary
• Formally, if two state sequences # $, # & , # ' , … and * $, * & , * ' , … have the same starting

state (# $ = * $), then the two sequences # & , # ' , … and * & , * ' , … should be preference-
ordered in the same way as # $, # & , # ' , … and * $, * & , * ' , …
➝ Preference independence between the different slices
➝ Use additive combination function (Υ)

79

Lifted Decisions

T. Braun - StaRAI

Sequential Combination Functions
• General sequen+al combina+on func+on !

" # $, # & , # ' , … = ! " # $, " # & , " # ' , …
• Addi+ve
• Sum over individual u+li+es

" # $, # & , # ' , … = " # $ + " # & + " # ' +⋯
• Discounted
• Using a discount factor , ∈ 0,1
• Reward now may be more important than one in 0 steps
• If , = 1: addi+ve

• U+lity of a sequence = sum over discounted individual u+li+es

" # $, # & , # ' , … = ,$ 1 " # $ + ,& 1 " # & + ,' 1 " # ' +⋯ =2
34$

,3" # 3

80

Lifted Decisions

T. Braun - StaRAI

Sequential Decision Model
• Sequential decision model ! = !#, !→, & is given by
• Decision model !# describing the intra-time slice behaviour for ' = 0 (as before)
• Decision model !→ describing the intra- and inter-slice behaviour for ' > 0 (as before)
• Sequential combination function & such as (discounted) addition

• Semantics given by unrolling !
for * steps to form an episodic
decision model as defined before
• Ground to get a propositional model

Lifted Decisions

T. Braun - StaRAI 81

+,-'./0' 1 2

3'/4 2

5/06 1 2

*.78,4 1 2

9:/; 2

*.,7' 1,< 2

=>
2 =?

2

=@
2

AB',.C,.,B0, 1 2

=D
2

3 1 2

E 2
=FGH
2

5/06 1 2I@

9:/; 2I@

=J
2I@,2

3&

Sequential EU Query
• Sequential EU query at a current step ! with a horizon " in a sequential decision model #

$% & '∶) , + '∶),' , +)∶)-.

= 0

1 2∶234 ∈678 9: ;<
2∶234

= 1)∶)-. & '∶) , + '∶),' , +)∶)-. 0
>?@

.

A>B)-> #C
)->

• Additive/discounted combination (D)
• In terms of semantics, unroll # for
! + " steps and answer an “episodic”
EU query over “future” decisions
+)∶)-. given observations & '∶) and
“past” decisions + '∶),' as evidence
• Observation: #C

'∶),' irrelevant at !

82

Lifted Decisions

T. Braun - StaRAI

F$G!HIJ! K L

M!IN L

OIJP K L

QHRS$N K L

TUIV L

QH$R! K,W L

XY
L XZ

L

X'
L

[\!$H]$H\J K L

X^
L

M K L

B L
XC_`
L

OIJP K L,'

TUIV L,'

Xa
L,',L

MD

EU Query over Time: Exact

83

• Problem with answering an EU
query exactly: Query terms from
all slices ! ∶ ! + $ involved
• Unlikely that query terms are

independent
• Even assuming current model % &

independent from the past with
' (∶&)(, + (∶&)(set, still need to
unroll model for $ steps

Realistically not computable!

Li7ed Decisions

T. Braun - StaRAI

,
-

./01 &2(

,!03 &2(

./01 &

,!03 &

./01 &24

,!03 &24

./01 &25

,!03 &25

Rest of %

…

6 7 &2(6 7 & 6 7 &24 6 7 &25

, 7 &2(, 7 & , 7 &24 , 7 &25

8 &2(8 & 8 &24 8 &25

9:
&2(

9:
&

9:
&24

9:
&25

;< ' (∶& , + (∶&)(, + &∶&25 = >

? @∶@AB ∈DEF GH IJ
@∶@AB

K ? &∶&25 ' (∶& , + (∶&)(, + &∶&25 >

LMN

5

OL8 &2L %:
&2L

EU Query over Time: Approximate
• In episodic model, assume independence between PRVs of u7lity parfactors given !, # to

factorise query

• Set of smaller queries instead of one large

• Exact answer if independences hold

• Does that help with sequen7al models?
– Yes and no.

• Assuming independence allows for factorising query into queries for each slice

• BUT: Query answer will be approximate as independence between slices not reasonable in a
sequen7al model just given ! $∶& , # $∶&'$

• Otherwise, a set of episodic models suffice

Lifted Decisions

T. Braun - StaRAI 84

EU Query over Time: Approximate

• !" # $∶& , ($∶&)$, (&∶&*+ when assuming the inter-slice independence:

Lifted Decisions

T. Braun - StaRAI 85

!" # $∶& , ($∶&)$, (&∶&*+

= -

. /∶/01 ∈345 67 89
/∶/01

: . &∶&*+ # $∶& , ($∶&)$, (&∶&*+ -
;<=

+

>; ? @ &*; ABC
&*; D$

&*; , … , ABF
&*; DG

&*;

= -

. /∶/01 ∈345 67 89
/∶/01

H
;I<=

+

: . &*;I # $∶& , ($∶&)$, (&∶&*;I -
;<=

+

>; ? @ &*; ABC
&*; D$

&*; , … , ABF
&*; DG

&*;

= -
;<=

+

>; -

. /0J ∈345 67 89
/0J

: . &*; # $∶& , ($∶&)$, (&∶&*; ? @ ABC
&*; D$

&*; , … , ABF
&*; DG

&*;

= -
;<=

+

>; ? !" # $∶& , ($∶&*;)$, (&*; One EU query per step

DK
&*; = LMN . &∶&*+

EU Query over Time: Approximate
• Solving a sequential EU query reduces to solving individual EU queries per step

!" # $∶& , ($∶&)$, (&∶&*+ = -
./0

+
1. 2 !" # $∶& , ($∶&*.)$, (&*.

• Solve individual EU queries based on intra-slice assumptions
• E.g., assuming additive combination function or independence between intra-slice utility parfactors

Lifted Decisions

T. Braun - StaRAI 86

!" # $∶& , ($∶&)$, (&∶&*+

= -
./0

+
1. -

3 456 ∈89: ;< =>
456

? 3 &*. # $∶& , ($∶&)$, (&∶&*+ -
@/$

A
B@&*. C@&*.

= -
./0

+
1. -

@/$

A
-

CD
456 ∈89: 8E FD

456
B@&*. C@&*. ? C@&*. # $∶& , ($∶&)$, (&∶&*+

Sequential MEU Problem

• Given a sequential decision model !, evidence " #∶% , previous decisions & #∶%'(, and a
horizon (integer))

• Sequential MEU problem
• Find the sequential action assignment that yields the highest expected utility in !
• Formally,

*+, " #∶% , & #∶%'(,) = &∗, 01 " #∶% , & #∶%'(, &∗

&∗ = arg max
& 7∶789 ∈;<= > 7∶78?

01 " #∶% , & #∶%'(, & %∶%@A

• Size of ran > %:%@A exponential in number of groups (as with episodic decision making) and)

87

Lifted Decisions

T. Braun - StaRAI

Solving a Sequen-al MEU Problem: MEU-LDJT

• Given a sequential decision model !, evidence " #∶% , previous decisions & #∶%'(, a
horizon (integer)), and incoming filtering, prediction, hindsight queries *

• Procedure:
• Construct FO jtrees +#, +→
• For . = 0,… ,
• Instantiate + % , add 2 %'(, enter " % ,

pass messages, answer *
• MEU loop: For each possible sequential action assignment & %∶%34
• 56 ← Calculate EU query, exactly or approximately

• if 56 > 56∗, then store & %∶%34 in &∗, setting 56∗ ← 56
• Output &∗ or act out &∗: Set & % (and send & % to an execution platform)

• Calculate 2 %

88

Lifted Decisions

T. Braun - StaRAI

Calculates MEU problem
anew in each step; adapt
such that &∗ is acted out
for) steps, or until
following &∗ no longer
appears safe
• Store &∗ and, instead

of going into the MEU
loop, set the next & %

from &∗

Solving a Sequential MEU Problem: MEU-LDJT

• Calculating a sequential EU query for ! "∶"$% in a sequential FO jtree
• Exact:
• Unroll FO jtree for & steps, set ! "∶"$% , compute probability query over rv)*"∶"$% , calculate

expected utility
• Approximate:
• Overall expected utility + ← 0
• For . = 0,… , &
• Instantiate FO jtree 2 "$3 , add 4 "$356 (if not already done)

• Set ! "$3 , pass (or update) messages, compute probability query over rv)*"$3 , calculate expected utility
for 7 + . (set of EU queries if assuming intra-slice independence), add result to +

• Calculate 4 "$3

89

Lifted Decisions

T. Braun - StaRAI

Sequential MEU Problem: Example
• Given no evidence, current time step ! = 2, and $ = 2

%∗ = arg max
,∈ .,…,1

23 %,
4∶6

• Test eight sequential action assignments
• For each %,

4∶6

• Set %,
4∶6 in unrolled FO jtree 7 4∶6

and answer EU query 23 %,
4∶6 or

• Set %,
4∶6 incrementally in 7 89:

and add up EU queries 23 %,
89:

• Output argmax %,
4∶6

• Or act out %,
4

90

Lifted Decisions

T. Braun - StaRAI

;2<!=>?! @ A

B!>C A

D>?E @ A

F=GH2C @ A

IJ>K A

F=2G! @,L A

M4
A MN

A

M.
A

OP!2=Q2=2P?2 @ A

M6
A

B @ A

R A
MSTU
A

D>?E @ AV.

IJ>K AV.

MW
AV.,A

BX

K 4 K N K 6

%.
4∶6 YGP YGP YGP

%4
4∶6 YGP YGP Q=22

%N
4∶6 YGP Q=22 YGP

%6
4∶6 YGP Q=22 Q=22

%Z
4∶6 Q=22 YGP YGP

%[
4∶6 Q=22 YGP Q=22

%\
4∶6 Q=22 Q=22 YGP

%1
4∶6 Q=22 Q=22 Q=22

Acting
• After computing a sequential action assignment, assignment is acted out, including:

• Actuators get commands to carry out the action behind a current assignment,

• Internal state is updated: Decision PRVs are set, (messages are passed,) and then time moves on

• Agent can then continue to act according to the sequential assignment or recalculate as
new evidence comes in

• Recalculate once every ! ≤ # steps

91Next three slides adapted from material provided by Dana Nau,

http://www.laas.fr/planning

Li*ed Decisions

T. Braun - StaRAI

http://www.laas.fr/planning

Using Decision Making in Acting
• Receding horizon:
• Call meu, obtain a sequential action assignment $, perform

1st action, call meu again …
• meu refers to an implementation solving an MEU problem

• Like game-tree search (chess, checkers, etc.)
• Useful when unpredictable things are likely to happen
• Re-plans immediately

• Potential problem:
• May pause repeatedly while

waiting for meu to return

92

Run-MEU(G,%)
while e ← new evidence do

absorb e in G
$ ← meu(G,%)
d ← pop-first($)
perform d
update G with d

Lifted Decisions

T. Braun - StaRAI

Planning stage
AcNng stage

Using Decision Making in Acting
• Lazy look-ahead:
• Call meu, execute the sequential action

assignment as far as possible, do not call meu
again unless necessary

• Simulate tests whether the assignment will
execute correctly
• Lower-level refinement, physics-based simulation,

prediction accuracy < some threshold
• Potential problems
• May might miss opportunities to

replace) with a better assignment
• Without Simulate, may not detect

problems until it is too late

93

Run-Lazy-MEU(G,*)
while e ← new evidence do

absorb e in G
) ← meu(G,*)
while) ≠ () and

Simulate(G,)) ≠ failure do
d ← pop-first())
perform d
update G with d

Lifted Decisions

T. Braun - StaRAI

Planning stage
Acting stage

Using Decision Making in Ac/ng
• May detect opportunities earlier than Run-

Lazy-MEU
• But may miss some that Run-MEU would find

• Without Simulate, may fail to detect
problems until it is too late
• Not as bad at this as Run-Lazy-MEU

94

Run-Concurrent-MEU(G,))
* ← ⟨⟩
// thread 1 + 2 run concurrently

thread 1:
while e ← new evidence do

absorb e in G
* ← meu(G,))

thread 2:
while e ← new evidence do

absorb e in G
if * ≠ () and

Simulate(G,*) ≠ failure then
d ← pop-first(*)
perform d
update G with d

Lifted Decisions

T. Braun - StaRAI

Offline vs. Online Decision Making
• Online decision making: Depends on how far one looks into the future
• Can extend the look-ahead further and further, propagating future effects back to present to see

if the current best decision still holds
• Extending the look-ahead to infinity, one will eventually reach a fix point: offline decision making

• Offline decision making
• Solving a partially observable Markov decision process (POMDP) – Ch. 17 in Russell/Norvig’s

AIMA3
• Basically find the steady state in terms of actions that leads to the maximum expected utility
• Look-up table, fast during acting, huge overhead beforehand
• Reacting to extreme situations/evidence no possible

• In basic form, no longer factorised model but a transition function over complete state space
• Part of the lecture: Automated Planning and Acting (next winter term)

95

Lifted Decisions

T. Braun - StaRAI

Interim Summary
• Sequential decision models as a combination of

• Sequential models for temporal / sequential aspect

• Decision models for decision making

• Sequential expected utilities

• Additive or discounted utilities

• Exact solution virtually impossible to compute

• Approximation by summing over EU query result for each step

• Inference based on LDJT

• Proceed in time to answer EU queries part of a sequential EU query

• Acting

• Immediate look-ahead, lazy run until failed simulation or sequence acted out, both concurrently

96

Lifted Decisions

T. Braun - StaRAI

Contents in this Lecture Related to U"lity-based Agents

• Further topics
3. (Episodic) PRMs
4. Lifted inference (in episodic PRMs)
5. Lifted learning (of episodic PRMs)
6. Lifted sequential PRMs and inference
7. Lifted decision making
8. Continuous space and lifting

Lifted Decisions

T. Braun - StaRAI 97

E
n
v
i
r
o
n
m
e
n
tAgent

Sensors

Actuators

What the world
is like now

What it will be like
if I do action !

How happy I will be
in such a state

What action I
should do now

State

How the world evolves

What my actions do

URlity
Sequential Decision Models
• Uncertainty modelled by probabilities
• Relational aspect using logical variables
• Temporal aspect by time indexing
• Decisions and effects by actions &

utilities in a sequential model

Outline: 7. Lifted Decision Making
A. Utility theory
• Preferences, maximum expected utility (MEU) principle
• Utility function, multi-attribute utility theory

B. Static decision making
• Modelling, semantics, inference tasks
• Inference algorithm: LVE for MEU as an example

C. Sequential decision making
• Modelling, semantics, sequential MEU problem
• Inference algorithm: LDJT for MEU as an example
• Acting

⟹ Next: Continuous Space

98

Lifted Decisions

T. Braun - StaRAI

