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Compression versus Accuracy: A Hierarchy of Lifted Models

Factor graph

Parametric factor graph

> Introduction of 1IDEED as a practical tool for e-equivalence (¢3 =. ¢3 — ¢%)

» Consistency of e-equivalent groupings
» Hierarchical trade-off between compression (¢) and accuracy (& \)

» Enables preanalysis of guaranteed theoretical error bounds (pmax A)

» Novel framework for hierarchical lifting
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1. Motivation and Problem Setup 4. Hierarchical Advanced Colour Passing (HACP)

» Factor graphs compactly encode a probability distribution Algorithm 1: Determine ordered e-vector and nested list of factors
» Semantics of a factor graph G over a set of factors ®@: (i) Compute pairwise 1DEED for factors (upper triangular matrix)
Ps==T1 ¢ (i) Run agglomerative f:lu_stering algorith.m _based on 1DEED with
Z pea complete linkage within maximal deviation

o3 3 [ ¢3 1 ¢f > Choose level(s) of compression within e-vector (g; < £;,1)
HACP: Use ¢-ACP (generalisation of ACP) proceeding as follows:
(i) Pass groups of pairwise e-equivalent factors based on nested list
(i) Assign colours to factors according to the provided groups and
run the colour passing procedure from e-ACP
» Ensures identical potentials in resulting groups of factors
» Goal: Apply smallest possible change to potential tables
» Minimise sum of squared deviations between potentials:

laced b

> Represent groups of random G={p1,...,om} SR G' ={p%,...,¢"}

9 o g m

variables by logical variables (0 ¢} pairwise e-equivalent ¢ (re,...,rn) = %Z ¢i(r1,...,rn)
i=1
Problem Setup

Input: A factor graph G and level(s) of compression » Corollary: If e = 0, HACP is equivalent to ACP and e-ACP.
Output: A hierarchy of parametric factor graph(s) entailing > HACP preserves structural consistency and comparability

approximately equivalent semantics to G .
> With hierarchical grouping structure for 5. Compression versus Accuracy
different levels of compression Guaranteed bounds of change in query results
» With hierarchical order of error bounds » Theorem: The maximal absolute deviation between any initial

> With theoretical guarantees for query results probability p = Pw(r| e) of r given e in model M and the probability
. e . 3 p'=Pm(r|e)inthe modified model M’ resulting from running
2. Previous Work: e-Advanced Colour Passing (¢-ACP) AP e e Rt dlad By
> Factors ¢1,¢p € R are e-equivalent : < for all potentials o Ved-1 (1+2-1e)(1+¢) "
¢1(k), p2(k) € R-g in their potential tables it holds that Pmaxa := forrgr?;(rlelp-l) I N with d=1In —1+%E
¢1(k) € [pa(k)-(1-¢),¢a(k)- (1 +¢)] and
da(k) € [pa(k)-(1~¢),p1(k)- (L +e)] » Theorem: For any given p3 € (0,3], the output of HACP guarantees
» Assign colours to random variables according to their ranges forany € € (0,1), which is smaller or equal to
and evidence m-1_1m/ g m1_1m/ 42 m/
> Assign colours to factors according to their potential tables £1= 1+ m_T \/e_+\J ( 1+ m_’l" \/e_) 1 _m_\ie_
P Pass colours to detect e-equivalent symmetries in the graph 255 255 m
vin\2
with d=1In (‘Iﬁ;%) the bound pmaxa < pj.

» Graphical illustration of theorems controlling the bound
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» Limitations: No guaranteed consistency of e-equivalent zi 04f o
groupings for different € values 021 2o o2 mea o
> No.informed Chc.)ice Of £ o 9 g 00 0.2 HO‘A 0.6 0.8’ a, (lJ 01 02 03 04 0,55 00‘ “0.2 04 06 08 :lpZ
» Solution: Hierarchical groupings for increasing e . .
» Left: £=0.001; All: Dashed (blue) line: m =1000, solid (yellow)
3. One-dimensional-e-equivalence-distance (LDEED) line: m=100, loosely dashed (green) line: m=10

» Monotonic dependency of praxa,&, and m
» Bounds apply to arbitrary queries and factor graphs
oot R xRy = Rsg  doo(p1,#2):= max _9a(k) =k » Pre-specification of maximal permissible € or values
oo 50 >0 = o ? k=1...n min{|¢1(k)|v |¢2(k)“ p p PrmaxA

Properties: 6. Summary

» d., is non-negative and symmetric . Lf K for hi hical lifti d model iliati
> doo(¢1,62) = 0 < [pr(K) = pa(K) = O for k=1,...,n < ¢q = o Novel framework for hierarchical lifting and model reconciliation

One-dimensional e-equivalence distance (1DEED) is defined as:

> Triangle inequality does not hold in general » Introduction of 1DEED as a practical tool for e-equivalence
> Theorem: Two vectors ¢1,¢, € RY are e-equivalent if and » Hierarchical trade-off between compression and accuracy
P >
only if doo(¢p1,¢2) < € holds. > Enables preanalysis of theoretical error bounds
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