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▶ Introduction of 1DEED as a practical tool for ε-equivalence
(
ϕ1

3 =ε ϕ2
3 −→ ϕ∗

3
)

▶ Consistency of ε-equivalent groupings
▶ Hierarchical trade-off between compression (ε →) and accuracy (ε→ )

▶ Enables preanalysis of guaranteed theoretical error bounds (pmax ∆)
▶ Novel framework for hierarchical lifting
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1. Motivation and Problem Setup
Ï Factor graphs compactly encode a probability distribution
Ï Semantics of a factor graph G over a set of factors Φ:
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Ï Enable lifted inference
Ï Represent groups of random

variables by logical variables
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Problem Setup
Input: A factor graph G and level(s) of compression
Output: A hierarchy of parametric factor graph(s) entailing

approximately equivalent semantics to G
Ï With hierarchical grouping structure for

different levels of compression
Ï With hierarchical order of error bounds
Ï With theoretical guarantees for query results

2. Previous Work: ε-Advanced Colour Passing(ε-ACP)
Ï Factors φ1,φ2 ∈Rn

>0 are ε-equivalent :⇔ for all potentials
φ1(k),φ2(k) ∈R>0 in their potential tables it holds that

φ1(k) ∈
[
φ2(k) · (1−ε),φ2(k) · (1+ε)] and

φ2(k) ∈
[
φ1(k) · (1−ε),φ1(k) · (1+ε)]

Ï Assign colours to random variables according to their ranges
and evidence

Ï Assign colours to factors according to their potential tables
Ï Pass colours to detect ε-equivalent symmetries in the graph
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Ï Limitations: No guaranteed consistency of ε-equivalent
groupings for different ε values
Ï No informed choice of ε

Ï Solution: Hierarchical groupings for increasing ε

3. One-dimensional-ε-equivalence-distance(1DEED)
One-dimensional ε-equivalence distance (1DEED) is defined as:

d∞ : Rn
>0×Rn

>0 →R≥0 d∞(φ1,φ2) := max
k=1,...,n

{
|φ1(k)−φ2(k)|

min{|φ1(k)|, |φ2(k)|}

}
Properties:
Ï d∞ is non-negative and symmetric
Ï d∞(φ1,φ2)=0 ⇔ |φ1(k)−φ2(k)| =0 for k =1, . . . ,n ⇔ φ1 =φ2Ï Triangle inequality does not hold in general
Ï Theorem: Two vectors φ1,φ2 ∈Rn

>0 are ε-equivalent if and
only if d∞(φ1,φ2)≤ ε holds.

4. Hierarchical Advanced Colour Passing (HACP)
Algorithm 1: Determine ordered ε-vector and nested list of factors
(i) Compute pairwise 1DEED for factors (upper triangular matrix)

(ii) Run agglomerative clustering algorithm based on 1DEED with
complete linkage within maximal deviation

Ï Choose level(s) of compression within ε-vector (εi < εi+1)
HACP: Use ε-ACP (generalisation of ACP) proceeding as follows:
(i) Pass groups of pairwise ε-equivalent factors based on nested list

(ii) Assign colours to factors according to the provided groups and
run the colour passing procedure from ε-ACP
Ï Ensures identical potentials in resulting groups of factors
Ï Goal: Apply smallest possible change to potential tables
Ï Minimise sum of squared deviations between potentials:

G= {φ1, . . . ,φm}
replaced by=⇒ G∗= {φ∗, . . . ,φ∗}

pairwise ε-equivalent φ∗(r1, . . . ,rn)= 1
m

m∑
i=1

φi(r1, . . . ,rn)

Ï Corollary: If ε=0, HACP is equivalent to ACP and ε-ACP.
Ï HACP preserves structural consistency and comparability

5. Compression versus Accuracy
Guaranteed bounds of change in query results
Ï Theorem: The maximal absolute deviation between any initial

probability p=PM(r | e) of r given e in model M and the probability
p′=PM′(r | e) in the modified model M′ resulting from running
HACP can be bounded by

pmax∆ := max
for any r|e

|p−p′| ≤
√

ed−1√
ed+1

with d= ln
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Ï Theorem: For any given p∗
∆ ∈ (0, 1

2], the output of HACP guarantees
for any ε ∈ (0,1), which is smaller or equal to
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the bound pmax∆≤p∗

∆.

Ï Graphical illustration of theorems controlling the bound
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Ï Left: ε=0.001; All: Dashed (blue) line: m=1000, solid (yellow)
line: m=100, loosely dashed (green) line: m=10

Ï Monotonic dependency of pmax∆,ε, and m
Ï Bounds apply to arbitrary queries and factor graphs
Ï Pre-specification of maximal permissible ε or pmax∆ values

6. Summary
Ï Novel framework for hierarchical lifting and model reconciliation
Ï Introduction of 1DEED as a practical tool for ε-equivalence
Ï Hierarchical trade-off between compression and accuracy
Ï Enables preanalysis of theoretical error bounds
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