Research

Sagad Hamid

Context

- Exact probabilistic inference using Variable Elimination
- Focus on asymmetrical graphical models
 - Factor graphs with discrete (currently boolean) RVs

Research Interests

Incorporate
Lifting Ideas
into Exact
Inference in
Asymmetrical
Models

Increase Gap
between
Lifted Model
and Grounded
Model

Model
Transformation:
Approach
Probabilistic
Inference From
Different
Perspectives

Lifting in this context: Compact representation + calculations (i.e., currently not necessarily within relational context)

- Expand the model to introduce more structure
 - Add artificial random variables to the model
 - Preserve full joint distribution

A	B	ϕ_1	A	B	
1	1	a	1	1	
1	0	b	1	1	
0	1	С	1	0	
0	0	d	1	0	(
			0	1	-
			0	1	(
			0	0	

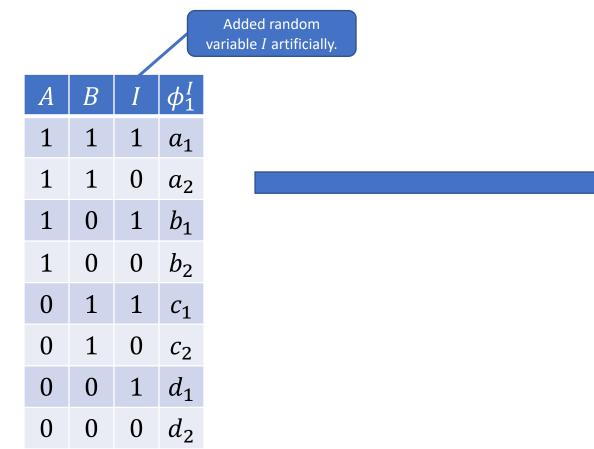
- 1. Added random variable I artificially
- 2. Summing out I yields the original factor ϕ_1

$$a_1 + a_2 = a$$

 $b_1 + b_2 = b$
 $c_1 + c_2 = c$
 $d_1 + d_2 = d$

Introduce new factorisation

Α	В	ϕ_1
1	1	а
1	0	b
0	1	С
0	0	d



- 1. Replace B with new variable I
- 2. Introduce new Factor with B and I as arguments

	$ \phi_{11}^I $
1	x_1
0	x_2
1	x_3
0	x_4
	0

В	I	ϕ_{12}^{I}
1	1	λ_1
1	0	λ_2
0	1	λ_3
0	0	λ_4

$$x_1 \cdot \lambda_1 + x_2 \cdot \lambda_2 = a$$

$$x_1 \cdot \lambda_3 + x_2 \cdot \lambda_4 = b$$

$$x_3 \cdot \lambda_1 + x_4 \cdot \lambda_2 = c$$

$$x_3 \cdot \lambda_3 + x_4 \cdot \lambda_4 = \bar{d}$$

Introduce new factorisation using artificially added random variables

- $\phi \rightarrow \phi^I$: "Replace" A and B by A_1 and B_1
- Introduce new factors ϕ^{A_1} , ϕ^{B_1} for "replacement"
- $x_1, ..., x_4$ determined by $\lambda_1, ..., \lambda_4$ (don't have to be the same for ϕ^{A_1}, ϕ^{B_1})

A	В	ϕ	A_1	B_1	ϕ^I	В	B_1	ϕ^{B_1}	A	A_1	
1	1	a	1	1	x_1	1	1	λ_1	1	1	
1	0	b	1	0	x_2	1	0	λ_2	1	0	
0	1	С	0	1	x_3	0	1	λ_3	0	1	
0	0	d	0	0	x_4	0	0	λ_4	0	0	

Introduce new factorisation using artificially added random variables

A	В	$ \phi $	A_1	B_1	ϕ^I	В	B_1	ϕ
1	1	а	1	1	x_1	1	1	λ_1
1	0	b	1	0	x_2	1	0	λ_2
0	1	С	0	1	x_3	0	1	λ_3
0	0	d	0	0	x_4	0	0	λ_4

$$x_1 = \frac{b - \frac{\lambda_4}{\lambda_2} \cdot a}{\lambda_3 - \frac{\lambda_4}{\lambda_2} \cdot \lambda_1}, \qquad x_2 = \frac{b - \frac{\lambda_3}{\lambda_1} \cdot a}{\lambda_4 - \frac{\lambda_3}{\lambda_1} \cdot \lambda_2}, \qquad x_3 = \frac{d - \frac{\lambda_4}{\lambda_2} \cdot c}{\lambda_3 - \frac{\lambda_4}{\lambda_2} \cdot \lambda_1}, \qquad x_4 = \frac{d - \frac{\lambda_3}{\lambda_1} \cdot c}{\lambda_4 - \frac{\lambda_3}{\lambda_1} \cdot \lambda_2}$$

- Allows for choosing $\lambda_1, \dots, \lambda_4$ arbitrarily as long as division by zero is avoided
 - $x_1, \dots, x_4, \lambda_1, \dots, \lambda_4 \in \mathbb{C}$
- As long as we sum out A_1 , B_1 (which will happen since artificially added RVs do not appear in query nor evidence) the full joint over A, B is preserved

A different view on what we achieve by this procedure: Representing the potentials of ϕ as a Matrix-Vector-Multiplication, i.e.,

a b	λ_5' λ_0'	$\lambda_6' \lambda_7'$	λ_8'	$\begin{vmatrix} x_2 \\ x \end{vmatrix} =$	=
b	λ_0'	2 / 2 /	2 /	1 1/2	
	9	λ_{10} λ_{11}	λ_{12}	<i>x</i> ₃	
С	$L\lambda_{13}{}'$	$\lambda_{14}' \lambda_{15}'$	λ_{16}'	[14]	
d		II			
		d			

A different view on what we achieve by this procedure: Representing the potentials of ϕ as a Matrix-Vector-Multiplication, i.e.,

$$\begin{bmatrix} \lambda_{1}' & \lambda_{2}' & \lambda_{3}' & \lambda_{4}' \\ \lambda_{5}' & \lambda_{6}' & \lambda_{7}' & \lambda_{8}' \\ \lambda_{9}' & \lambda_{10}' & \lambda_{11}' & \lambda_{12}' \\ \lambda_{13}' & \lambda_{14}' & \lambda_{15}' & \lambda_{16}' \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$\vdots$$

$$\vdots$$

$$\begin{bmatrix} \lambda_{1} & \lambda_{2} \\ \lambda_{3} & \lambda_{4} \end{bmatrix} \otimes \begin{bmatrix} \lambda_{1} & \lambda_{2} \\ \lambda_{3} & \lambda_{4} \end{bmatrix}$$
...instead of this representation

Work with this representation...

A different view on what we achieve by this procedure: Representing the potentials of ϕ as a Matrix-Vector-Multiplication, i.e.,

$$\begin{bmatrix} \lambda_{1}' & \lambda_{2}' & \lambda_{3}' & \lambda_{4}' \\ \lambda_{5}' & \lambda_{6}' & \lambda_{7}' & \lambda_{8}' \\ \lambda_{9}' & \lambda_{10}' & \lambda_{11}' & \lambda_{12}' \\ \lambda_{13}' & \lambda_{14}' & \lambda_{15}' & \lambda_{16}' \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$\parallel$$

$$\begin{bmatrix} \lambda_{1} & \lambda_{2} \\ \lambda_{3} & \lambda_{4} \end{bmatrix} \otimes \begin{bmatrix} \lambda_{1} & \lambda_{2} \\ \lambda_{3} & \lambda_{4} \end{bmatrix}$$

- 1. Allows for introducing new structure into a factor
 - Structured Matrix
 - Sparse Vector
- 2. Allows for approaching probabilistic inference differently
- 3. Allows for exploiting existing structure differently

A First Naive Approach – Overview Introducing Artificial RVs

A	В	ϕ
1	1	а
1	0	b
0	1	С
0	0	d

A_1	B_1	ϕ^I
1	1	x_1
1	0	x_2
0	1	x_3
0	0	x_4

В	B_1	ϕ^{B_1}
1	1	λ_1
1	0	λ_2
0	1	λ_3
0	0	λ_4

A	A_1	ϕ^{A_1}
1	1	λ_1
1	0	λ_2
0	1	λ_3
0	0	λ_4

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$\begin{bmatrix} \lambda_{1}' & \lambda_{2}' & \lambda_{3}' & \lambda_{4}' \\ \lambda_{5}' & \lambda_{6}' & \lambda_{7}' & \lambda_{8}' \\ \lambda_{9}' & \lambda_{10}' & \lambda_{11}' & \lambda_{12}' \\ \lambda_{13}' & \lambda_{14}' & \lambda_{15}' & \lambda_{16}' \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}$$

Ш

$$\begin{bmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_4 \end{bmatrix} \otimes \begin{bmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_4 \end{bmatrix}$$

Α	В	ϕ_1
1	1	a_1
1	0	b_1
0	1	c_1
0	0	d_1

A	С	ϕ_2
1	1	a_2
1	0	b_2
0	1	c_2
0	0	d_2

B	С	ϕ_3
1	1	a_3
1	0	b_3
0	1	c_3
0	0	d_3

A_1	B_1	ϕ_1^I
1	1	<i>x</i> ₁₁
1	0	<i>x</i> ₁₂
0	1	<i>x</i> ₁₃
0	0	x_{14}

A_2	\mathcal{C}_1	ϕ_2^I
1	1	<i>x</i> ₂₁
1	0	x_{22}
0	1	x_{23}
0	0	x_{24}

B_2	C_2	ϕ_3^I
1	1	<i>x</i> ₃₁
1	0	x_{32}
0	1	x_{33}
0	0	x_{34}

A	A_1	ϕ^{A_1}
1	1	λ_1
1	0	λ_2
0	1	λ_3
0	0	λ_4

λ_1
λ_2
λ_3
λ_4

В	B_1	ϕ^{B_1}
1	1	λ_1
1	0	λ_2
0	1	λ_3
0	0	λ_4

U	U	Λ4
В	B_2	ϕ^{B_2}
1	1	λ_1
1	0	λ_2
0	1	λ_3
0	0	λ_4

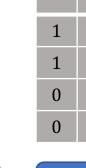
L	L_1	ϕ^{c_1}
1	1	λ_1
1	0	λ_2
0	1	λ_3
0	0	λ_4
С	C_2	ϕ^{c_2}
<i>C</i>	C2 1	$\left[egin{array}{c} \phi^{ C_2} \ \hline \lambda_1 \end{array} ight]$
1	1	λ_1

A_1	B_1	ϕ_1^I
1	1	<i>x</i> ₁₁
1	0	<i>x</i> ₁₂
0	1	<i>x</i> ₁₃
0	0	<i>x</i> ₁₄

A_2	C_1	ϕ_2^I
1	1	<i>x</i> ₂₁
1	0	x_{22}
0	1	x_{23}
0	0	<i>x</i> ₂₄

B_2	C_2	ϕ_3^I
1	1	<i>x</i> ₃₁
1	0	<i>x</i> ₃₂
0	1	x_{33}
0	0	<i>x</i> ₃₄

A	A_1	ϕ^{A_1}
1	1	λ_1
1	0	λ_2
0	1	λ_3
0	0	λ_4
A	A_2	ϕ^{A_2}
1	1	ϕ^{A_2} λ_1
1	1	λ_1



0

С	C_1	ϕ^{c_1}
1	1	λ_1
1	0	λ_2
0	1	λ_3
0	0	λ_4
С	C_2	ϕ^{c_2}
<i>C</i>	C2 1	ϕ^{c_2} λ_1
1	1	λ_1
1	1 0	λ_1 λ_2

Sum Out A

Sum Out B

Sum Out *C*

A_1	B_1	ϕ_1^I
1	1	<i>x</i> ₁₁
1	0	<i>x</i> ₁₂
0	1	<i>x</i> ₁₃
0	0	<i>x</i> ₁₄

A_2	C_1	ϕ_2^I
1	1	x_{21}
1	0	x_{22}
0	1	x_{23}
0	0	x_{24}

B_2	C_2	ϕ_3^I
1	1	<i>x</i> ₃₁
1	0	x_{32}
0	1	x_{33}
0	0	<i>x</i> ₃₄

A_1	A_2	$\phi^{A_{12}}$
1	1	λ_1^*
1	0	λ_2^*
0	1	λ_3^*
0	0	λ_4^*

B_1	B_2	$\phi^{B_{12}}$
1	1	λ_1^*
1	0	λ_2^*
0	1	λ_3^*
0	0	λ_4^*

C_1	C_2	$\phi^{C_{12}}$
1	1	λ_1^*
1	0	λ_2^*
0	1	λ_3^*
0	0	λ_4^*

- 1. Each random variable appears in exactly 2 factors
- 2. Factors on the left / right do not share any random variable
- 3. Sum out of arbitrary RV requires single multiplication -> factor multiplication + sum out combined

Represents a "2-sided-model"

A_1	B_1	ϕ_1^I
1	1	<i>x</i> ₁₁
1	0	<i>x</i> ₁₂
0	1	<i>x</i> ₁₃
0	0	<i>x</i> ₁₄

A_2	C_1	ϕ_2^I
1	1	<i>x</i> ₂₁
1	0	x_{22}
0	1	x_{23}
0	0	x_{24}

B_2	C_2	ϕ_3^I
1	1	<i>x</i> ₃₁
1	0	x_{32}
0	1	x_{33}
0	0	x_{34}

A_1	A_2	$\phi^{A_{12}}$
1	1	λ_1^*
1	0	λ_2^*
0	1	λ_3^*
0	0	λ_4^*

B_1	B_2	$\phi^{B_{12}}$
1	1	λ_1^*
1	0	λ_2^*
0	1	λ_3^*
0	0	λ_4^*

C_1	C_2	$\phi^{c_{12}}$
1	1	λ_1^*
1	0	λ_2^*
0	1	λ_3^*
0	0	λ_4^*

A_1	A_2	B_1	B_2	C_1	C_2	φ
1	1	1	1	1	1	•••
•••	•••	•••	•••	•••	•••	•••

Represents a "2-sided-model"

A_1	B_1	ϕ_1^I	A_2	C_1	ϕ_2^I	B_2	C_2	ϕ_3^I
1	1	<i>x</i> ₁₁	1	1	<i>x</i> ₂₁	1	1	x_{31}
1	0	<i>x</i> ₁₂	1	0	x_{22}	1	0	x_{32}
0	1	<i>x</i> ₁₃	0	1	x_{23}	0	1	x_{33}
0	0	x_{14}	0	0	x_{24}	0	0	x_{34}

- Inference (VE) does not primarily focus on summing out RVs one by one
- Structure / Symmetries on one side sufficient for
 - nly
- an

	efficient probabilistic inference
	 Interesting for handling evidence (evidence on
	affects one side)
3.	Potentials of both sides can be affected since we ca
	choose $\lambda_1, \dots, \lambda_4$ arbitrarily.
4.	Parallelisation / efficient implementation of tensor
	operations (GPU/CPU)

A_1	A_2	$\phi^{A_{12}}$	B_1	B_2	$\phi^{B_{12}}$	C_1	C_2	$\phi^{c_{12}}$
1	1	λ_1^*	1	1	λ_1^*	1	1	λ_1^*
1	0	λ_2^*	1	0	λ_2^*	1	0	λ_2^*
0	1	λ_3^*	0	1	λ_3^*	0	1	λ_3^*
0	0	λ_4^*	0	0	λ_4^*	0	0	λ_4^*

A_1	A_2	B_1	B_2	C_1	C_2	ϕ
1	1	1	1	1	1	•••
•••	•••	•••	•••	•••	•••	

Represents a "2-sided-model"

A_1	B_1	ϕ_1^I
1	1	<i>x</i> ₁₁
1	0	<i>x</i> ₁₂
0	1	<i>x</i> ₁₃
0	0	<i>x</i> ₁₄

A_2	C_1	ϕ_2^I
1	1	<i>x</i> ₂₁
1	0	<i>x</i> ₂₂
0	1	<i>x</i> ₂₃
0	0	<i>x</i> ₂₄

B_2	C_2	ϕ_3^I
1	1	<i>x</i> ₃₁
1	0	x_{32}
0	1	x_{33}
0	0	x_{34}

A_1	A_2	B_1	B_2	C_1	C_2	ϕ
1	1	1	1	1	1	•••
•••	•••	•••	•••	•••	•••	•••

Example

_	_	ϕ_1
1	1	5
1	0	6
0	1	7
0	0	8

Sum out all RVs in ϕ_1 $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 6+7 \\ 8 \end{pmatrix}$

Introducing Structure – Simple Example

Α	В	С	D	φ
1	1	1	1	x_1
1	1	1	0	x_2
1	1	0	1	x_3
1	1	0	0	x_4
1	0	1	1	x_5
1	0	1	0	x_6
1	0	0	1	x_7
1	0	0	0	x_8
0	1	1	1	<i>x</i> ₉
0	1	1	0	<i>x</i> ₁₀
0	1	0	1	<i>x</i> ₁₁
0	1	0	0	<i>x</i> ₁₂
0	0	1	1	<i>x</i> ₁₃
0	0	1	0	<i>x</i> ₁₄
0	0	0	1	<i>x</i> ₁₅
0	0	0	0	<i>x</i> ₁₆

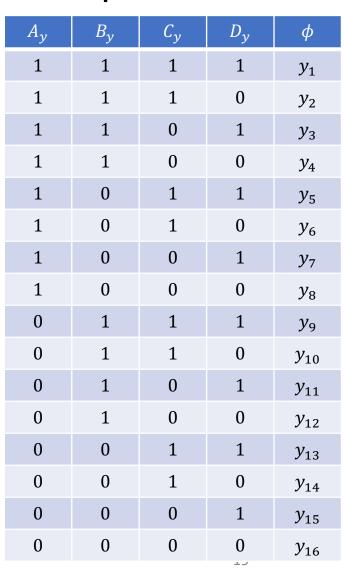
A_1	B_1	C_1	D_1	ϕ
1	1	1	1	x_1^*
1	1	1	0	x_2^*
1	1	0	1	x_3^*
1	1	0	0	0
1	0	1	1	χ_4^*
1	0	1	0	0
1	0	0	1	0
1	0	0	0	0
0	1	1	1	x_5^*
0	1	1	0	0
0	1	0	1	0
0	1	0	0	0
0	0	1	1	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	0

- *M* Walsh-Matrix
 - Recursive Matrix-Definition
 - $M_1 = (1)$
 - $\bullet \quad M_k = \begin{pmatrix} M_k & M_k \\ M_k & -M_k \end{pmatrix}$
 - Special case of discrete Fourier-Transformation
- There are factor structures which can be captured by a Walsh-Matrix and a vector consisting of only $(|rv(\phi)|+1)$ non-zero values
 - Same reduction as counting symmetry for boolean RVs
 - Linear instead of exponential
- Factor does not require
 - Decomposability / Independence
 - State-Space Symmetry

Introducing Structure – Simple Example

A_{x}	B_{χ}	C_x	D_{x}	ϕ
1	1	1	1	x_1
1	1	1	0	x_2
1	1	0	1	x_3
1	1	0	0	x_4
1	0	1	1	x_5
1	0	1	0	x_6
1	0	0	1	x_7
1	0	0	0	x_8
0	1	1	1	x_9
0	1	1	0	<i>x</i> ₁₀
0	1	0	1	<i>x</i> ₁₁
0	1	0	0	<i>x</i> ₁₂
0	0	1	1	<i>x</i> ₁₃
0	0	1	0	<i>x</i> ₁₄
0	0	0	1	<i>x</i> ₁₅
0	0	0	0	<i>x</i> ₁₆

	A_1	B_1	C_1	D_1	φ
Anothe	x_1^*				
		y differe			x_2^*
		ture are		l*	x_3^*
		ormatio			0
• *(differ in s	a single	potentia		x_4^*
	1	0	1	0	0
	1	0	0	1	0
	1	0	0	0	0
	0	1	1	1	x_5^*
	0	1	1	0	0
	0	1	0	1	0
	0	1	0	0	0
	0	0	1	1	0
	0	0	1	0	0
	0	0	0	1	0
	0	0	0	0	*



Introducing Structure – New Operator

We introduce a new factor operation to work more efficiently with this representation (by adding more structure): factor addition

A	В	ϕ
1	1	a
1	0	b
0	1	С
0	0	d

A	В	φ
1	1	a_1
1	0	b_1
0	1	c_1
0	0	d_1

A	В	$ \phi $
1	1	a_2
1	0	b_2
0	1	c_2
0	0	d_2

- If full joint given by $\phi_1 \cdot \phi_2 \cdot \phi_3$ we have, e.g., $\phi_1 \cdot \phi_2 \cdot (\phi_{31} + \phi_{32})$
 - i.e., $(\phi_1 \cdot \phi_2 \cdot \phi_{31}) + (\phi_1 \cdot \phi_2 \cdot \phi_{32})$
 - Can be understood as splitting a factor graph into two factor graphs
 - Inference: Calculate result for each factor graph, add up results

Summary

- Model transformation
 - Artificial Random Variables
 - Factor Graph -> Tensor Network
 - "2-sided-model"
- Probabilistic inference by means of tensor operations
- Structure exploitation in Tensor Networks
- Extending structure exploitation by matrix-vector-representation
- New operator: factor addition
- Incorporating lifting ideas in asymmetrical models