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Relational Probabilistic Conditionals



Relational Background Theory

Definition (Function-free First-order Language)

L(Σ) is a function-free first-order language over a finite signature
Σ = (Pred,Const).

▶ Sentences in L(Σ) interpreted based on Herbrand semantics.

⇝ Interpretations =̂ truth assignment on ground atoms.

▶ Interpretations serve as possible worlds ω ∈ Ω(Σ).

▶ Controlling domain size k = |Const| crucial for tractable
reasoning.

L(Σ) =̂ relational language with quantifiers; quantifiers do not
extend expressivity but convey symmetries.
⇝ Proper handling essential, esp. for efficient model counting.
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Closed Conditionals

Definition (Closed Conditional)

(B|A)[ξ] is a closed conditional if A,B ∈ L(Σ) are sentences and
ξ ∈ [0, 1].

▶ Informal meaning:

“If A holds, then B follows with probability ξ.”

▶ Formal interpretation via conditional probabilities.

Definition (Probabilistic Model)

P : Ω(Σ) → [0, 1] is a probabilistic model of a closed conditional
(B|A)[ξ], written

P |= (B|A)[ξ] iff P(A) > 0 and P(B|A) = ξ.

(P(A) =
∑

ω|=A P(ω))
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Open Conditionals

Definition (Open Conditional)

(B|A)[ξ] is an (open) conditional if A,B ∈ L(Σ) are formulas and
ξ ∈ [0, 1].

Example

“Patients who show symptom s suffer from disease d with
probability 0.6.”

▶ s, d as nullary predicates: closed conditional (d |s)[0.6].
(no linkage to individuals)

▶ s, d as unary predicates: open conditional (d(X )|s(X ))[0.6].

Problem Open conditionals need richer semantics than
conditional probabilities provide.
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Grounding Semantics

Idea Understand open conditionals as schemata /
universally quantified.

Definition (Grounding Semantics)

P probability distribution, r = (B|A)[ξ] (open) conditional, and
grndConst(r) set of proper groundings of r . Then,

P |=gs r iff ∀r ′ ∈ grndConst(r) : P |= r ′.

Example

(d(X )|s(X ))[0.6] shortcut for {(d(p)|s(p))[0.6] | p ∈ Const}.

Problem Not compatible with atypical individuals
(e.g., if ∃p ∈ Const : (d(p)|(s(p)))[0.3]).

Marco W. | StaRAI – Exploiting Symmetries (in Conditional Knowledge Bases)
7



Averaging Semantics

Idea Understand probabilities as arithmetic mean.

Definition (Averaging Semantics [Kern-Isberner, Thimm 2010])

P, r , grndConst(r) as before. Then,

P |=as r iff

∑
(B′|A′)[ξ]∈grndConst(r) P(B ′|A′)

|grndConst(r)|
= ξ.

Example

P |=as ((d(X ))|s(X ))[0.6] iff

∑
p∈Const P(d(p)|s(p))

|Const|
= 0.6.

Problem In general, set of models not convex.
⇝ Maximum entropy model not unique.
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Aggregating Semantics (I/IV)

Idea Statistic probabilities from a subjective point of view.

Definition (Aggregating Semantics [Kern-Isberner, Thimm 2010])

P, r , grndConst(r) as before. Then,

P |= r iff

∑
(B′|A′)[ξ]∈grndConst(r) P(A′ ∧ B ′)∑

(B′|A′)[ξ]∈grndConst(r) P(A′)
= ξ.

Example

P |= ((d(X ))|s(X ))[0.6] iff

∑
p∈Const P(s(p) ∧ d(p))∑

p∈Const P(s(p))
= 0.6.

possible worlds included multiple times ⇝ double sums
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Aggregating Semantics (II/IV)

Definition (Aggregating Semantics [Kern-Isberner, Thimm 2010])

P, r , grndConst(r) as before. Then,

P |= r iff

∑
(B′|A′)[ξ]∈grndConst(r)

∑
ω|=A′∧B′ P(ω)∑

(B′|A′)[ξ]∈grndConst(r)
∑

ω|=A′ P(ω)
= ξ.

For each ground instance, WFOMC tasks with weights that have
to be calculated. (here, P will be inferred from a knowledge base)

Problem Can this be done efficiently?

⇝ Only if WFOMC tasks are symmetric.
(to some extent)
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Aggregating Semantics (III/IV)

Definition (Conditional Structure (I/II) [Kern-Isberner 2004])

r = (B|A)[ξ] conditional, ω possible world. Then,

verr (ω) = |{(B ′|A′)[ξ] ∈ grndConst(r) | ω |= A′ ∧ B ′}|,
falr (ω) = |{(B ′|A′)[ξ] ∈ grndConst(r) | ω |= A′ ∧ ¬B ′}|.

Definition (Aggregating Semantics [Kern-Isberner, Thimm 2010])

Let P, r , grndConst(r) as before. Then,

P |= r iff

∑
ω∈Ω(Σ) verr (ω) · P(ω)∑

ω∈Ω(Σ)(verr (ω) + falr (ω)) · P(ω)
= ξ.
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Aggregating Semantics (IV/IV)

Justification of Aggregating Semantics
Statistic probabilities in extreme cases,
otherwise statistics weighted by subjective beliefs.

Case 1 Reasoner is certain about model of real world
⇝ P(ω′) = 1 for a single possible world ω′. Then,

P |= r iff
verr (ω

′)

verr (ω′) + falr (ω′)
= ξ.

Case 2 Reasoner is maximally uncertain
⇝ P(ω) = 1

|Ω(Σ)| for ω ∈ Ω(Σ). Then,

P |= r iff

∑
ω∈Ω(Σ) verr (ω)∑

ω∈Ω(Σ)(verr (ω) + falr (ω))
= ξ.
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Probabilistic Inference Task

Definition (Knowledge Base)

R = (F ,B) is a knowledge base if F is finite set of sentences and
B finite set of non-deterministic conditionals (ξ /∈ {0, 1}).

▶ Sentences (=̂ facts) force specific possible worlds to have
probability zero / restrict probability space.
⇝ ΩF (Σ) = {ω ∈ Ω(Σ) | ω |= F}.

Definition (Probabilistic Inference Task)

R consistent knowledge base. Then,

1 Calculate model P of R. (model selection task)

2 a Given conditional r , decide R |=P r?
b Given formulas A, B, calculate ξ such that R |=P (B|A)[ξ].
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Principle of Maximum Entropy



Maximum Entropy Model (I/III)

Model selection =̂ from knowledge base to belief state.

In principal not necessary. E.g., also possible:

R |=P r if P |= r for all models P of R.

Problem Leads to few / uninformative inferences.

Idea Select model which infers conditionals with most
expected probability / which adds least information.

Definition (Maximum Entropy Model [cf. Paris 1994])

R consistent knowledge base. Then,

MER = arg max
P|=R

−
∑

ω∈ΩF (Σ)

P(ω) · logP(ω).
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Maximum Entropy Model (II/III)

Proposition

R consistent knowledge base. Then,

MER |= R. (i.e., MER |= r ∀r ∈ R)

▶ MER unique solution of convex optimization problem.

⇝ Dual optimization problem [cf. Boyd, Vandenberghe 2004].

Product Representation

R p-consistent∗, B = {r1, . . . , rn}. Then, there is α⃗ ∈ Rn
>0 s.t.

MER(ω) = α0 ·
∏n

i=1
α
verri (ω)−ξi ·(verri (ω)+falri (ω))

i , ω ∈ ΩF (Σ).

(α0 normalization constant)
∗) has positive model on ΩF (Σ), i.e., 0-1-probabilities forced by sentences only

ri = (Bi |Ai )[ξi ]
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Maximum Entropy Model (III/III)

MER(ω) = α0 ·
∏n

i=1
α
verri (ω)−ξi ·(verri (ω)+falri (ω))

i

▶ Optimize for α⃗ (n-many values; constant in k)
instead of MER. (|Ω(Σ)|-many values; exponential in k)

Definition (Conditional Structure (II/II) [Kern-Isberner 2004])

R knowledge base, ω, ω′ ∈ ΩF (Σ). Then,

σR(ω) = ((verri (ω), falri (ω)))
n
i=1, (conditional structure)

ω ∼σR ω′ iff σR(ω) = σR(ω). (conditional equivalence)

Principle of Conditional Indifference [Kern-Isberner 2004]

ω ∼σR ω′ =⇒ MER(ω) = MER(ω
′), ω, ω′ ∈ ΩF (Σ).
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Maximum Entropy Inference

Definition (Maximum Entropy Inference Relation)

R consistent knowledge base, r conditional. Then,

R |∼ME r iff MER |= r .

Task 1 Given R, approximate α⃗.

Task 2 Given approximation α⃗∗ and r , decide ME∗R |= r .

Evolution of Iterative Scaling Methods for Task 1

▶ Generalized iterative scaling (approx. MER) [Darroch, Ratcliff 1972]

▶ Improved iterative scaling (approx. α⃗)
[Berger, Della Pietra, Della Pietra 1996]

▶ Iterative scaling + conditional equivalence [Finthammer, Beierle 2014]

▶ Condensed iterative scaling [W, Kern-Isberner, Finthammer, Beierle 2019]
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Excursion: Maximum Entropy and MLNs

Definition (Markov Logic Network [Richardson, Domingos 2006])

N = {(Fi , νi ) | i = 1, . . . ,m} is a Markov logic network (MLN) if Fi ∈ L(Σ)
are formulas and νi ∈ R ∪{∞,−∞} are weights.
N specifies probability distribution

PN (ω) =
1

η
· exp(

m∑
i=1

νi · cnti (ω)), ω ∈ Ω(Σ),

with cnti (ω) = |{F ′
i ∈ grndConst(Fi ) | ω |= F ′

i }|. (η normalization constant)

Proposition [W, Kern-Isberner, Finthammer, Beierle 2019]

R = (F ,B) p-consistent knowledge base (with ri = (Bi |Ai )[ξ] ∈ B) and MLN

N =
⋃n

i=1
({(Ai ∧ Bi , (1− ξi ) · logαi )} ∪ {(Ai ∧ ¬Bi ,−ξi · logαi )})

∪ {(¬F ,−∞) | F ∈ F}.

Then, MER = PN .

for hard constraints
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Conditional Knowledge Compilation



Starting Point/Motivation: Condensed Iterative Scaling

Input: p-Consistent knowledge base R
Output: Approximation α⃗∗, normalization α∗

0

1 G =
∑n

i=1 |grndConst(ri )|
2 k = 0
3 FOR i = 1, . . . , n : αk

i = 1
4 UNTIL ⟨termination condition⟩ DO :
5 k ← k + 1

6 FOR i = 1, . . . , n : αk
i = αk−1

i ·
(
1 +

Φ
i,k−1
R

ξi ·|grndConst(ri )|·Φ
k−1
R

)−1/G

7 αk
0 = (Φk

R)−1

8 RETURN (αk
1 , . . . , α

k
n), α

k
0

▶ limk→∞(αk
1 , . . . , α

k
n) = α⃗, limk→∞ αk

0 = α0

▶ No expensive iterations (n = |B| constant in k)

Problem Oracle needed for

Φi,k
R =

∑
ω∈ΩF (Σ)

(verri (ω) + ξi · (verri (ω) + falri (ω))) · Π
k
R

Φk
R =

∑
ω∈ΩF (Σ)

Πk
R, Πk

R =
n∏

j=1

(αk
j )

verrj (ω) · ((αk
j )

−ξj )
(verrj (ω)+falrj (ω))

conditional knowledge
compilation is needed
to stay tractable
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Conditional Knowledge Compilation (I/III)

▶ In this tutorial: Focus on

Φk
R =

∑
ω∈ΩF (Σ)

n∏
j=1

(αk
j )

verrj (ω) · ((αk
j )
−ξj )(verrj (ω)+falrj (ω)).

=̂ normalization (the expensive task in probabilistic reasoning)

▶ Calculating Φi ,k
R and answering queries work analogously.

[W, Kern-Isberner, Finthammer, Beierle 2019]

Task: Calculate polynomial and factorize whenever possible:
(
∑∏

→
∏∑

)

ϕR(x⃗ , y⃗) =
∑

ω∈ΩF (Σ)

n∏
j=1

(xj)
verrj (ω) · (yj)(verrj (ω)+falrj (ω))
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Conditional Knowledge Compilation (II/III)

Example

R = (∅, {(d(X )|s(X ))[0.6]})

▶ Näıve approach:
For each ω ∈ Ω(Σ), calculate σR(ω). (4|Const|-many possible worlds)

▶ Combinatorial arguments:
j = #patients with symptom s, m = #patients with s and d :

ϕR =
∑|Const|

j=0

∑j
m=0

(|Const|
j

)( j
m

)
· xm1 · y j1 · 2|Const|−j

▶ Exploiting symmetries:
Impact of all patients the same (treat independently):

ϕR = (x1 · y1 + y1 + 2)|Const|
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Conditional Knowledge Compilation (III/III)

Proposition [W, Kern-Isberner, Ecke 2017]

R = (∅,B) where conditionals are built upon boolean combina-
tions of unary predicates (e.g., (d(X )|s1(X ) ∧ ¬s2(X )), c ∈ Const. Then,

R |∼ME (B|A)[ξ] iff R⟨c⟩ |∼ME (B⟨c⟩)|A⟨c⟩)[ξ]

independent of |Const| ! (A⟨c⟩ = A grounded by constant c)

Is there a general framework?

Idea: Translate knowledge base into structured sentence,

count typed models of structured sentence.
(types reflect conditional structures of models)

⇝ First-order typed model counting
[W, Finthammer, Kern-Isberner, Beierle 2017]
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Typed Model Counting (I/III)

Example

R = (∅, {(d(X )|s(X ))[0.6]})

ϕs
R = ∀X .[y1 ◦ s(X ) ∧ (x1 ◦ d(X ) ∨ ¬d(X )) ∨ ¬s(X )]

Typed first-order circuit

∀X
X∈Const

∨

∧ ∧

∨ s(X ) ¬s(X ) ∨

d(X ) ¬d(X ) d(X ) ¬d(X )

y1

x1

Algebraic circuit

(. . .)|Const|
(y1(x1 + 1) + 2)|Const|

+
y1(x1 + 1) + 2

×
y1(x1 + 1)

×
2

+

x1 + 1

1 1 +

2

1 1 1 1

y1

x1

structured
sdDNNF
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Typed Model Counting (II/III)

▶ Typed model counting works for arbitrary structured sentences
as long as no structure elements are in scope of negations. (1)

▶ Same model counting techniques as in WFOMC of sentences
in sdDNNF can be applied as long as (1) is guaranteed.

Example

ϕs = ∃X .x ◦m(X ) (m = millionaire)

Typed first-order circuit∨
Mil⊆Const,|Mil|≥1

∧

∀X
X∈Mil

∀X
X∈Const\Mil

m(X ) ¬m(X )
x

Algebraic circuit

∑|Const|
|Mil|=1

(|Const|
|Mil|

)
. . .

∑|Const|
|Mil|=1

(|Const|
|Mil|

)
x |Mil|

× x |Mil|

(. . .)|Mil|x |Mil| (. . .)|Const\Mil| 1

1 1

x
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Typed Model Counting (III/III)

Algebraic Model Counting [Kimmig, Van den Broeck, De Raedt 2017]

▶ (Symmetric) WFOMC of sentences.

▶ Ground atoms are interpreted by weights.

▶ Weights are elements of an algebraic semiring.

Typed Model Counting [W, Finthammer, Kern-Isberner, Beierle 2017]

▶ Elements of semiring are written directly into sentence.

▶ Ground atoms are interpreted by 1.

▶ Disadvantage: Structured background language necessary.

▶ Advantage: No external processing of weights.

⇝ Symmetry between weights easy to handle.

Proposition

Typed model counting problems can be transformed into algebraic
model counting problems.
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Closing Remarks



Summary of Focus Topic II

▶ (Only) open conditionals make full use of relational language.

▶ Aggregating semantics gives open conditionals a sophisticated
meaning. [Kern-Isberner, Thimm 2010; Thimm, Kern-Isberner 2012]

▶ Principle of maximum entropy provides a model of conditional
knowledge bases which is preferable from an information
theoretically point of view, [Jayes 1957; Shannon 1948]

and also from a commonsense point of view.
[Paris, Vencovská 1990; Paris 1994; Paris 1998]

▶ Concepts from symmetric WFOMC can be transferred to
conditional maximum entropy reasoning via typed model
counting / algebraic model counting.

[Van den Broeck 2013; Kimmig, Van den Broeck, De Raedt 2017; W,

Finthammer, Kern-Isberner, Beierle 2017]

⇝ In specific cases, drawing lifted inferences possible.
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▶ J. B. Paris, A. Vencovská (1990): A note on the inevitability of
maximum entropy. Int. J. Approx. Reason. 4(3)

▶ J. B. Paris (1994): The Uncertain Reasoner’s Companion: A
Mathematical Perspective. Cambridge University Press

▶ J. B. Paris (1998): Common Sense and Maximum Entropy. Synth.
117(1)

▶ M. Richardson, P. Domingos (2006): Markov Logic Networks. Machine
Learning 62(1-2)

▶ C. E. Shannon (1948): A Mathematical Theory of Communication. Bell
System Technical Journal 27(3) + 27(4)

Marco W. | StaRAI – Exploiting Symmetries (in Conditional Knowledge Bases)
31



Bibliography (III/III)

▶ M. Thimm, G. Kern-Isberner (2012): On probabilistic inference in
relational conditional logics. Log. J. IGPL 20(5)

▶ M. Wilhelm, M. Finthammer, G. Kern-Isberner, C. Beierle (2017):
First-Order Typed Model Counting for Probabilistic Connditional
Reasoning at Maximum Entropy. Proceedings of SUM2017

▶ M. Wilhelm, G. Kern-Isberner, A. Ecke (2017): Basic Independence
Results for Maximum Entropy Reasoning Based on Relational
Conditionals. Proceedings of GCAI 2017

▶ M. Wilhelm, G. Kern-Isberner, M. Finthammer, C. Beierle (2019):
Integrating Typed Model Counting into First-Order Maximum Entropy
Computations and the Connection to Markov Logic Networks.
Proceedings of FLAIRS 2019

Marco W. | StaRAI – Exploiting Symmetries (in Conditional Knowledge Bases)
32



Agenda

Statistical Relational AI – Exploiting Symmetries
Tanya Braun, Marcel Gehrke, Marco Wilhelm

▶ Introduction [Tanya]

▶ Exploiting Symmetries
— in Probabilistic Graphical Models [Marcel]

▶ Exploiting Symmetries
— in Conditional Knowledge Bases [Marco]

▶ Discussion [all]

▶ Summary [Tanya]

Marco W. | StaRAI – Exploiting Symmetries (in Conditional Knowledge Bases)
33


