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Privacy Challenges of Clustering

Clustering: Find groups of data points Bridge Point: A single data point functions Privacy: Extract centroids without leaking
and determine their centroids. as connection between to clusters. sensitive information about single data points.
Use centroids to determine
correlations/similarities or perform data Q A | B -
synthesis. 1 x|y \V/
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Differentially-private (DP) clustering algorithms
Outlier: Single data point with a large reduce the impact of single data points. However,
¢ distance from the mass of points. satisfying privacy necessarily reduces utility.
. o - 0 & State-of-the-art approaches [1] partition the data
Challenge: Single data points can have o0 art app > 141 P
a huge impact on the resulting clusters set by applying random splits.
and their centroids. ¢ > DPM achieves higher utility based on carefully
® o ® selected splits while preserving privacy.

Clustering through Separation

DPM Approach Split Score
1. Split data points recursively into disjoint subsets: Window size:
a. Generate a set of split candidates in every dimension. Large areas without data points
b. Assign a score to each split and select one with a high Indicate gaps between clusters. Small o
score. areas without data points can also N,
occur inside a cluster. /
® e e . : A gap is defined as an area with no or

S ] > ' just a few data points.

Splits close to the centre of the

2. Halt if the number of points in each subset falls below a data points are preferred over

given threshold and obtain centroids by averaging. splits that are close to the \
boundaries.
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Ensure Privacy of DPM Steps Results

Selection via Exponential Mechanism Utility Analysis Privacy-Utility Trade-Off
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close to max score with high | — LsH-spits
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Inertia: Sum of squared distances between data
'Y points and their closest centroid.
- Low Inertia £ High Utility

Find noisy average that is with

Perturb the number of data high probability close to the KMeans++: Non-DP clustering
points In a subset. actual average. LSH-Splits: State-of-the-art DP clustering [1]
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