

UNIVERSITÄT ZU LÜBECK INSTITUTE FOR IT SECURITY

DPM: Clustering Sensitive Data through Separation

Yara Schütt* & Johannes Liebenow*,

Marcel Gehrke, Tanya Braun, Florian Thaeter, Esfandiar Mohammadi

y.schuett@uni-luebeck.de, j.liebenow@uni-luebeck.de

*The first two authors equally contributed to this work.

Privacy Challenges of Clustering

Clustering: Find groups of data points and determine their centroids. Use centroids to determine

correlations/similarities or perform data synthesis.

Bridge Point: A single data point functions as connection between to clusters.

Privacy: Extract centroids without leaking sensitive information about single data points.

Outlier: Single data point with a large distance from the mass of points.

Differentially-private (DP) clustering algorithms reduce the impact of single data points. However, satisfying privacy necessarily reduces utility.

State-of-the-art approaches [1] partition the data set by applying random splits.

→ DPM achieves higher utility based on carefully selected splits while preserving privacy.

Clustering through Separation

DPM Approach

Split Score

- 1. Split data points recursively into disjoint subsets:
 - a. Generate a set of split <u>candidates</u> in every dimension.
 - b. Assign a score to each split and select one with a high

Window size:

Large areas without data points indicate gaps between clusters. Small

2. Halt if the number of points in each subset falls below a given threshold and obtain centroids by averaging.

areas without data points can also occur inside a cluster.

Emptiness:

A gap is defined as an area with no or just a few data points.

Centreness:

Splits close to the centre of the data points are preferred over splits that are close to the boundaries.

Score = Window size + Emptiness + Centreness

Ensure Privacy of DPM Steps

Selection via Exponential Mechanism

Select candidate with score close to max score with high

Noisy Number of Points in Subset

Perturb the number of data points in a subset.

Noisy Averaging

Find noisy average that is with high probability close to the actual average.

Inertia: Sum of squared distances between data points and their closest centroid. \rightarrow Low Inertia \triangleq High Utility

KMeans++: Non-DP clustering LSH-Splits: State-of-the-art DP clustering [1]

IM FOCUS DAS LEBEN

[1] Alisa Chang, Badih Ghazi, Ravi Kumar, Pasin Manurangs: Locally Private k-Means in One Round (2021)