
GAN based Network Traffic
Generation

for Communication Protocols used in
SCADA Architectures

Masterthesis

by Gerrit Seifert

Matriculation number: 408329

Course of Studies: Computer Science (Master of Science)

Supervised by:

Prof. Dr. Anne Remke

Westfälische Wilhelms-Universität Münster
Department of Mathematics and Computer Science

Group of Safety-Critical Systems

Münster, March 20, 2023

GAN basierte Generierung von
Netzwerkdatenverkehr

für Kommunikationsprotokolle
zur Anwendung in SCADA

Architekturen

Masterarbeit

von Gerrit Seifert

Matrikelnummer: 408329

Studiengang: Informatik (Master of Science)

Arbeit betreut durch:

Prof. Dr. Anne Remke

Westfälische Wilhelms-Universität Münster
Fachbereich Mathematik und Informatik

Arbeitsgruppe Sicherheitskritische Systeme

Münster, 19. Januar 2023

ii

Abstract

To decrease emissions of greenhouse gases, energy production is shifting to-
wards renewable energy sources. Increasingly, new buildings are equipped with
solar panels, which results in power generation on the consumer side. Thus,
today, there is a shift of electricity production from a centralized process to a
decentralized one. Renewable energies, however, underlie fluctuations in their
production yield. These fluctuations in conjunction with an overall increase in
energy demand lead to new requirements for the energy grid.
Means to monitor and control the decentralized energy production through

renewable energy sources and the distribution are now required. Smart grids
present a solution to this. These are electrical grids, utilizing digital technolo-
gies to enable communication between energy production and consumption
sites. Smart grids apply the SCADA communication framework, which is spe-
cialized towards processes taking place in wide geographical areas.
To provide means for the cyber resilience of smart grids, researchers require

access to network traffic of SCADA systems. However, obtaining traffic has
proven to be challenging. Moreover, the few publicly available datasets sel-
domly contain large quantities of malicious traffic. Thus, being able to utilize
a software solution to create arbitrary amounts of synthetic network traffic
samples would be desirable.
Generative adversarial networks are means to generate arbitrary amounts

of synthetic data. However, there are not many published approaches in the
research field of generating network traffic via GANs and especially none which
try to generate traffic of communication protocols of SCADA systems. As a
starting point, this thesis is therefore concerned with an investigation whether
GANs would be suitable to generate datagrams stemming from SCADA sys-
tems at all.
It is examined whether a particular GAN architecture would be able to cap-

ture and reproduce the structure of two specific SCADA protocols. Since the
training data consists of byte sequences of datagrams, a generative adversar-
ial network which is specialized for processing sequential data is utilized. A
number of experiments are conducted to evaluate whether the GAN is able to
generate datagrams that obey a certain protocol definition. Generated net-
work packets are considered correct, if they are recognized by the widely used
protocol analyzer Wireshark.

iii

Contents

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1

2 Application Area 5
2.1 Industrial Control Systems . 5
2.2 SCADA . 6
2.3 Security Aspects . 7
2.4 Communication Protocols . 8

2.4.1 Modbus/TCP . 8
2.4.2 IEC 60870-5-104 . 10

2.5 Related Work . 12
2.6 Conclusion . 14

3 Methodology 17
3.1 Neural Network Basics . 17

3.1.1 Machine Learning . 18
3.1.2 Feedforward Neural Networks 19
3.1.3 Convolutional Neural Networks 23
3.1.4 Recurrent Neural Networks 27

3.2 Generative Adversarial Networks 34
3.2.1 Deep Generative Models 34
3.2.2 Adversarial Learning . 35
3.2.3 GAN Properties . 37

3.3 Reinforcement Learning Basics 39
3.3.1 Reinforcement Learning Definition 39
3.3.2 Policy Gradient Methods 42

3.4 Related Work . 44
3.5 Conclusion . 45

4 Application of ML Techniques 47
4.1 Adversarial Learning via Policy Gradient 47

4.1.1 Basic Structure . 48
4.1.2 Monte Carlo Tree Search 48

v

Contents

4.1.3 Action-Value Function 50
4.1.4 Generator and Discriminator Update 50

4.2 SeqGAN Implementation . 51
4.2.1 Generator Model . 51
4.2.2 Discriminator Model . 52

4.3 Training Algorithm . 54
4.4 Input Data and Processing . 56

4.4.1 Training Data Capture Files 56
4.4.2 Data Processing . 57

4.5 Experiments . 59
4.6 Conclusion . 62

5 Discussion and Results 63
5.1 Results . 63

5.1.1 Quantitative Analysis . 63
5.1.2 Assessment of Address Information 64

5.2 Interpretation . 66
5.3 Discussion . 72

5.3.1 Training Instability . 73
5.3.2 Considerations . 74

6 Conclusion 79

vi

List of Figures

1.1 Early and modern electrical Grids. Taken from: [58] 1
1.2 Smart Grid SCADA System. Taken from: [58] 2

2.1 General layout of a SCADA system. Taken from: [53] 7
2.2 Heterogeneous Modbus Architecture. Taken from: [50] 9
2.3 Modbus/TCP Application Data Unit. Taken from: [50] 9
2.4 IEC 60870-5-104 Message Format 11

3.1 General schematic of a neuron and FNN Model 21
3.2 Sparse Connectivity, Receptive Field and the Convolution Op-

eration . 25
3.3 Hierarchical Feature learning in a DL Model. Taken from: [26] . 25
3.4 Typical CNN Architecture (”AlexNet”). Taken from: [41] 26
3.5 Recurrent Neural Network. Taken from: [52] 29
3.6 Unfolded Recurrent Neural Network. Taken from: [26] 30
3.7 LSTM Cell. Taken from: [26] 32
3.8 Generative Adversarial Network for 2D Image Data. Based on:

[3] . 35
3.9 Interaction between Agent and Environment in MDP. Taken

from: [70] . 40

4.1 Monte Carlo Tree Search. Taken from: [70] 49
4.2 Generator LSTM Model . 52
4.3 Discriminator CNN Model . 53
4.4 Two stage training algorithm of SeqGAN. Taken from: [77] . . . 56
4.5 Processing Steps: Training Capture File to Evaluation 57

5.1 Wireshark Output - Test 8 . 67
5.2 Wireshark Output - filtered - Test 8 68
5.3 Wireshark Output - Mode Collapse - Test 12 70
5.4 Wireshark Output - Test 11 . 71
5.5 Wireshark Output - filtered - Test 11 72

vii

List of Tables

2.1 MBAP Header. Taken from: [50] 10
2.2 ASDU Type ID. Taken from: [47] 12

4.1 Discriminator CNN Hyperparameters 53
4.2 Processed Training Data per respective Test 60
4.3 Hyperparameters per respective Test 61

5.1 Results: Number of syntactically correct frames 64
5.2 Address Reproduction: Baseline Generators (Modbus/TCP) . . 65
5.3 Address Reproduction: Baseline Generators (IEC-104) 65
5.4 Address Reproduction: SeqGAN Generators (Modbus/TCP) . . 66
5.5 Address Reproduction: SeqGAN Generators (IEC-104) 66

ix

List of Abbreviations

ADU Application Data Unit.

AI Artificial Intelligence.

ANN Artificial Neural Network.

APCI Application Protocol Control Information.

APDU Application Protocol Data Unit.

API Application Programming Interface.

ASDU Application Service Data Unit.

DCS Distributed Control System.

EM Earth Mover Distance.

EPIC Electrical Power and Intelligent Control.

FNN Feedforward Neural Network.

GAN Generative Adversarial Network.

HMI Human-Machine-Interface.

ICS Industrial Control System.

IDS Intrusion Detection System.

IED Intelligent Electronic Device.

IOA Information Object Address.

IP Internet Protocol.

LSTM Long Short-Term Memory.

MBAP Modbus Application Protocol Header.

MCTS Monte Carlo Tree Search.

xi

List of Abbreviations

MDP Markov Decision Process.

MTU Master Terminal Unit.

PLC Programmable Logic Controller.

ReLU Rectified Linear Unit Activation Function.

RL Reinforcement Learning.

RNN Recurrent Neural Network.

RTU Remote Terminal Unit.

SCADA Supervisory Control and Data Acquisition.

SWaT Secure Water Treatment Testbed.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

WGAN Wasserstein Generative Adversarial Network.

xii

1 Introduction

Due to the pressing dangers of global warming, societies are starting to utilize
more climate friendly technologies to produce energy or residential heating.
Previously, fossil fuels were the main pillar of electricity and heat generation.
Now there is a shift towards renewable energy sources to replace fossil fuels
so that a reduction in greenhouse gas emissions is achieved. These energy
sources, however, differ from fossil fuels in one key point: They are highly
dependent on environmental conditions and as such less responsive to changes
in demand [34]. There are not only changes on the production side, due to
of the rising costs for gasoline and natural gas, but there is also a shift in
consumer behaviour. Consumers are starting to substitute these fossil fuels
by electricity, for example by using electric vehicles or heat pumps for their
residential heating, often combined with photovoltaic panels [34].
All in all, this leads to three main differences in the utilization of the elec-

trical grid: There is a large variability in electricity production yield, due to
changing weather conditions. Production is decentralized, in contrast to the
traditional more monolithic infrastructure (Figure 1.1(a)), as electricity is now
also produced on the consumer side (Figure 1.1(b)). And demand for electric-
ity has increased due to the utilization for heating and transportation.

(a) Early electrical Grid (b) Modern electrical Grid

Figure 1.1: Early and modern electrical Grids. Taken from: [58]

Production and consumption in the electrical grid have to remain in balance
all the time. Thus to be able to utilize the existing electrical grid despite
these challenges, a network for observation, collection of measurements and
transmission of control messages of the electrical grid has been proposed. This
smart grid infrastructure is able to detect problems during operation and to
react accordingly, either remotely or automatically [34].

1

1 Introduction

Smart grids are a modern type of electrical grid and use digital technologies
to monitor and control the distribution of electricity. They are supposed to
help in coordinating all participants involved in electricity production and
consumption. Smart grids allow for communication between all sources of
electricity generation as well as consumers, thus providing a more efficient,
reliable and resilient distribution of electricity. In addition to conventional
power plants, smart grids can incorporate renewable energy sources [39].
The smart grid falls under the category of industrial control system (ICS).

These are computerized systems targeted at monitoring and controlling indus-
trial processes. These processes include electricity production and distribution,
but also any other production of goods. Monitoring and control is achieved
through several electrical and mechanical components, such as sensors, actua-
tors, measuring instruments and communication devices. ICS are often applied
to critical infrastructures [53].
The supervisory control and data acquisition (SCADA) communication frame-

work is a subcategory of industrial control systems. SCADA systems are able
to gather and process data over long distances. The challenges of transmitting
data over long distances consist of delays and degradation of data integrity.
SCADA was designed to cope with these challenges and is able to incorporate
transmission via various physical media. Thus it is predestined for application
in electricity distribution and smart grids [53]. Figure 1.2 depicts the appli-
cation of SCADA in a smart grid. Status information of grid components is
gathered and transmitted to a centralized monitoring facility. This facility is
then able to execute control actions of grid components.

Figure 1.2: Smart Grid SCADA System. Taken from: [58]

A SCADA network controlling the electrical grid is to be considered a critical
infrastructure whose malfunction could cause consequences with high proba-
bility. It therefore presents a high value target for cyber attacks. The term
cyber resilience describes the capability of a system to withstand and recover

2

from disruptions, such as cyber attacks, while delivering the desired outcome
at any time [14].

In the last few years several attacks on electrical grids were observed. Espe-
cially noteworthy are those on the Ukrainian infrastructure due to the context
of military conflicts. In 2015 and 2016, multiple attacks on industrial control
systems of the Ukrainian power distribution were conducted, causing large
blackouts [36]. In April 2022, new attacks targeted the power grid during the
Russian invasion, but blackouts were mostly averted this time [8]. Attackers
attempted to deploy a new version of the malware used in 2016 against high-
voltage electrical substations. This malware was targeted towards SCADA
systems utilizing the IEC 60870-5-104 communication protocol [18].

SCADA networks are not inherently secure [56]. They need to be secured
by proven security concepts as well as novel intrusion detection systems (IDS).
This is due to their fundamentally different characteristics compared to tradi-
tional computer networks such as the internet. The development of novel IDS,
however, requires a good understanding of specific characteristics of SCADA
systems and data to test them. Since control systems for energy production
and distribution are part of critical infrastructure, research on live systems,
however, poses a risk, due to their continuous availability requirement. More-
over, captures of network traffic of critical infrastructures are rare, since real
network traffic would always leak information about their composition.

Thus obtaining real SCADA traffic of such infrastructures poses a challeng-
ing task. While there are publicly available datasets, they often contain no
more than small amounts of SCADA traffic. A conventional approach to ob-
tain more traffic is to build testbeds and capture their communication [43]
[4].

While various machine learning based solutions towards intrusion detection
in industrial control systems have been proposed [49], often large datasets of
SCADA network traffic are required to evaluate those, especially with regard
to deep learning based techniques. Evaluating them on freely available SCADA
datasets, therefore poses a problem. On top of that, the collection of training
data containing novel attacks is not unproblematic due to the aforementioned
reasons.

But not only the obtainment of the required data poses a problem. The
labeling of training data, for example the decision whether a packet contains
benign rather than malicious traffic, is not feasible. A possibility to counter
these problems would be to generate synthetic traffic, technically very close to
real traffic. This would create the ability to create datasets of arbitrary size,
containing as much benign and malicious traffic as needed.

Generative adversarial networks (GAN) are often used to mimic pixel im-
ages and generate highly convincing lookalikes [27]. They basically learn a
non-linear function to convert the probability distribution of a set of arbitrary
continuous data into the distribution of the training data. Doing so allows
GANs to generate various kinds of data, aside from images. However, gener-

3

1 Introduction

ating network traffic may pose a problem.
A GAN in its basic form is well suited to generate continuous values, for

example measurements, that become incorporated into a SCADA packet. Net-
work packets, however, also require categorical data, such as IP addresses, or
discrete values. Those kinds of data have to somehow be represented using
continuous values. Since a conversion is already required, one could abstract
from single values contained inside a packet and instead consider only the se-
quential packet bytes. This has the advantage that less domain knowledge of
a specific protocol and pre-processing is required, therefore the technique can
be transferred to other protocols without much adaptation.
Before being able to utilize generative adversarial networks to generate be-

nign and malicious network traffic, this thesis is intended to be a starting
point for further research in the context of generating SCADA network traffic.
Therefore, the goal of this thesis will be to examine whether GANs can be
used to generate syntactically correct packets obeying a respective protocol
definition at all. As case studies, Modbus/TCP and IEC 60870-5-104 will be
used, two common protocols used in SCADA applications.
A packet is considered syntactically correct, if it complies with the corre-

sponding protocol definition. This will be evaluated using the widely used
packet analyzer Wireshark. Thus for the conducted experiments a packet is
considered syntactically correct, if it gets recognized as correct by Wireshark.
The presented approach will interpret network packets as sequences of bytes in
hexadecimal notation and try to generate new, similar sequences. To achieve
this, a combination of adversarial and reinforcement learning is used.
In Chapter 2 the application area of the research subject will be outlined.

Industrial control and SCADA systems will be defined in detail as well as the
communication protocols which will be used as a case study. In Chapter 3, the
individual building blocks of the proposed architecture will be formally defined,
including basic generative adversarial networks. Additionally, their downsides
in the context of generating network datagrams as well as possible solutions
will be described. Chapter 4 outlines the application of the previously defined
techniques and their evaluation. In Chapter 5 the results of the conducted
experiments will be interpreted and discussed. Finally, Chapter 6 concludes
the findings of this thesis.

4

2 Application Area

The intended application area for the proposed generation of network traffic
are processes in critical infrastructure. The distribution and production of
electrical energy and therefore smart grids will mainly be used as examples in
this chapter. Firstly, because there were already documented severe attacks
on this infrastructure [36][18] and secondly, because failures in these processes
are very likely to have catastrophic consequences and thus especially require
cyber-resilience.

The electrical grid today most often utilizes the principles of industrial con-
trol systems (ICS) and supervisory control and data acquisition (SCADA)
architectures. In this chapter, these terms will be outlined in detail and two
of the most common communication protocols used in such architectures are
described.

Firstly, Section 2.1 gives an overview over industrial control systems. Sec-
ondly, in Section 2.2 SCADA systems and their structure are defined. Later
on, in Section 2.3 the security aspects of SCADA systems that have to be con-
sidered will be outlined. Afterwards, in Section 2.4, the two communication
protocols that will serve as training data later on will be presented. Lastly,
in Section 2.5 other approaches for obtaining traffic will be presented. Ad-
ditionally, the utilized software for analyzing and creating datagrams will be
described.

2.1 Industrial Control Systems

The term industrial control systems (ICS) is a general term for a system which
utilizes and combines electrical and mechanical components. Such systems
enable computers to interact with the real world to aid in manufacturing pro-
cesses or transportation and control the process output or performance. An
ICS is a replacement for conventional physical and analog control mechanisms
through the capabilities of information technology [53]. This provides the
ability to not only control a process locally, but also to remotely control a
whole production chain. A computerized ICS makes it possible, for exam-
ple, to control the power generation locally, while also remotely managing the
transmission of fuel for the process [57].

Processes controlled by an ICS may operate automatically or incorporate
humans, who may interact with the system using components such as human-
machine-interfaces (HMI), remote diagnostic and maintenance tools. The pro-

5

2 Application Area

cess is monitored via sensors, which provide measurements to the system, and
actuators, which provide the ability to interfere in a process. The communi-
cation between each component can be implemented by a variety of different
communication protocols. Industrial control systems are to be found in almost
every modern industry and especially critical infrastructures such as power
generation, water treatment, fuel production or the food industry. Industrial
control systems applied in critical infrastructure are highly interconnected and
their processes often influence one another. The interconnection between com-
ponents and utilization of IT principles leads to a higher necessity of safety
and especially security [53].

Two primary realizations of ICS are the so called distributed control systems
(DCS) and supervisory control and data acquisition systems (SCADA) [53].
While the first one is commonly used within a single process in a rather small
area, such as a production plant, the latter one is typically targeted at much
larger-scale operations utilizing distributed components [57].

2.2 SCADA

A supervisory control and data acquisition (SCADA) system is a computerized
system targeted at the gathering and processing of data, as well as control of
processes, over long distances [53]. In the context of electric power generation
and distribution, a SCADA system is typically used for the distribution in a
region or larger area, while the generation process is controlled by a distributed
control system [57].

The two main paradigms of SCADA systems are their ability to control
processes over long distances in wide areas and their centralized structure. A
SCADA system consists of components that acquire field information, such as
sensors, and components which allow for state changes in a remote system,
such as actuators. Both types of components are then combined with data
transmission systems. These convey measurements and control information to
and from a centralized monitoring station, in which a human-machine-interface
displays it to an operator, thus providing the ability for centralized monitoring
and control. The grade of autonomy depends on the system. A third important
characteristic of SCADA systems is their commonly redundant design, which
aims to achieve a certain degree of fault-tolerance [53].

A general layout of a SCADA system (Figure 2.1) typically includes the
following components. A centralized control server, the master terminal unit
(MTU), is placed in a control center. It collects and processes information
of one or more distributed field sites via various means of data transmission.
The typical control center also houses a data historian, used for the logging
of system states, engineering workstations and HMIs. The field sites may
house at least one remote terminal unit (RTU) or programmable logic controller
(PLC). These are responsible for the actual collection of sensor values or the

6

2.3 Security Aspects

Figure 2.1: General layout of a SCADA system. Taken from: [53]

controlling of actuators. The field sites can also contain an intelligent electronic
device (IED). IEDs are also able to control and monitor components, but they
typically have a programming which allows them to operate without the direct
instruction by the MTU.

2.3 Security Aspects

In terms of security, SCADA systems underlie different risks than conventional
IT systems. The risk assessment of IT systems is usually concerned with pro-
tecting information. Thus as far as the three pillars of security are concerned,
security in the context of IT mostly has to deal with confidentiality. However,
SCADA systems are mostly targeted towards controlling processes which have
to be running continuously and do not allow for any downtime. Therefore risk
assessment for SCADA networks, mainly has to consider the availability of the
system [72].

The nature of SCADA systems, high interconnectivity and mutual depend-
ability, bears the risk of cascading effects. A security breach or other form of
failure would not only affect directly connected equipment and could lead to
catastrophic consequences [57]. One example for this would be the process of
electrical power generation, which is one of the most sensitive infrastructures.
A failure in the communication of a SCADA system could lead to the loss of
control and monitoring capabilities. This may afterwards result in the failure
of a power generator, which would cause an imbalance in the distribution grid
that could finally lead to a power outage in a whole geographical region [53].

Ensuring the availability of SCADA systems is associated with various dif-
ficulties, one being that historically these networks were built in a different
era, and thus were conceptualized without considering today’s risks of cyber-
attacks. This problem is especially amplified due the utilization of standard-
ized software and communication protocols. Instead of proprietary equipment
and serial communication protocols, today conventional means of communica-
tion are utilized. TCP/IP and the internet are commonly used for the inter-

7

2 Application Area

connect of the control center and the field sites. Additionally, many commonly
used SCADA protocols make use of TCP/IP communication without special-
ized protection measures [72]. This entails that these protocols often underlie
known vulnerabilities which, as well as the connectivity to potentially unse-
cured networks, has to be considered [57].

Mitigations against such vulnerabilities among others include the regular
application of updates, which is especially challenging, due to requirement
of high availability [72]. Security by obscurity is also often used, though it
underlies the same fundamental problems as in IT systems, since a lot of
information about critical infrastructures is already publicly available [57].

Suggested effective mitigations include the introduction of secure networks
zones and as such decoupling the SCADA system from insecure networks. Ad-
ditionally access control rules are implemented, as well as well-defined firewall
rules. Encryption of SCADA traffic would also be possible, but is rarely used.
A lot of traffic is therefore transmitted as plain text [72]. To mitigate multi-
ple types of vulnerabilities, the application of intrusion detection is considered
mandatory [72].

The development of intrusion detection systems, however, poses a problem.
Since security by obscurity is usually practiced, acquiring network traffic of
real SCADA systems is not a trivial issue [43]. Because of that, there are
several approaches towards obtaining traffic captures by constructing testbeds
and recording the communication [43][4][23].

2.4 Communication Protocols

A large variety of communication protocols is used for the implementation of
SCADA systems. For the purpose of this thesis, two widely used protocols will
be used as a case study. Both use standard TCP/IP as transport, while being
located at the application layer.

2.4.1 Modbus/TCP

Modbus/TCP is one variant of the Modbus standard [51] and viewed as de-
facto standard [24]. Every variant of Modbus is defined as an application
layer protocol that can be built upon various protocol stacks with different
physical layers. It is often used in conjunction with TIA-232, -422 or -485
(often referred to as RS-232, and -422 or -485 respectively). Modbus/TCP
on the other hand is built upon the TCP/IP stack, thus allowing Ethernet to
be used as the physical layer[51][50]. It defines a standard that embeds the
Modbus messages into the TCP payload.

Modbus presents a solely synchronous request/response based protocol, its
communication takes place in a master-slave manner only. Each transaction,
referred to as query by the standard [51], is initiated by the master device and is

8

2.4 Communication Protocols

assigned a unique transaction identifier. The slave devices respond accordingly
with the requested data or perform a requested action. The protocol demands
that only one device assumes the role of the master device. Commonly an
HMI acts as the master device, while the other slave devices are often PLCs
[24].

Figure 2.2: Heterogeneous Modbus Architecture. Taken from: [50]

A slave device is normally addressed by its IP address. But the Modbus
standard also allows for heterogeneous architectures which use multiple vari-
ants of Modbus. In this case multiple Modbus slaves can be chained together
and connected to an IP network via a serial connection to a gateway (see Fig-
ure 2.2), which is then addressed by its IP address [24]. Modbus/TCP devices
use the reserved well-known TCP port 502 [50].

Figure 2.3: Modbus/TCP Application Data Unit. Taken from: [50]

Figure 2.3 shows the application data unit (ADU) and Table 2.1 breaks down
theModbus application protocol header (MBAP). The MBAP header allows for
addressing slaves, which are connected to a gateway, in a sub-network via the
unit identifier. The MBAP header also contains the transaction identifier, that
is used to match the response to a particular request. Unit ID and transaction
ID are copied from the request upon response [50]. The protocol data unit
(PDU) contains the function code, which allows for the implementation of
127 possible functions. However, only 19 different read or write functions are
defined by the Modbus standard [51].

The Modbus/TCP standard itself does not provide any measures of authen-
tication, encryption or other mitigations against man-in-the-middle attacks

9

2 Application Area

Field Length Description

Transaction Identifier 2 Bytes Request/Response Transaction ID
Protocol Identifier 2 Bytes Always 0 for Modbus/TCP

Length 2 Bytes Number of Bytes of PDU
Unit Identifier 1 Byte ID of Slave Device on Bus

Table 2.1: MBAP Header. Taken from: [50]

and packet injections. Additionally, due to the simple request/response com-
munication mode, Modbus/TCP does not provide any long-term session man-
agement. However, the findings of [24] suggest, that communication of many
devices mostly takes place in single long-lived TCP connections. Packet injec-
tion attacks would therefore require hijacking the TCP session or a connection
reset.

2.4.2 IEC 60870-5-104

IEC 60870-5-104 [38] is a communication protocol, defined by the IEC 60870
collection of open standards. The IEC 60870 standard consists of six main
parts, all of which are concerned with the communication within SCADA sys-
tems. IEC 60870-5, part 5 of the standard, is concerned with the definition
of the transmission protocols. It mainly covers IEC 60870-5-101 [37] and IEC
60870-5-104 [38], often simply referred to as IEC-104. Both are application
layer protocols. While the first one defines the transmission over a serial con-
nection, the latter one presents a variant which is built upon the TCP/IP
stack, similarly to Modbus/TCP. It is widely used in critical infrastructures,
especially in Europe [48].

In contrast to Modbus/TCP, IEC 60870-5 not only supports synchronous re-
quest/response communication, but also asynchronous communication, which
is implemented in the form of so called spontaneous events that become sent
by a field device without a prior request from the master. These are com-
monly invoked by an RTU in the case of a monitored parameter or state which
leaves a certain value range [44]. IEC 60870-5 also allows for heterogeneous
architectures which involve Ethernet and serial communication [47].

There is a distinction between control and monitor directions. IEC-104
is targeted more specifically towards SCADA systems, therefore it assumes
a hierarchical structure with centralized control. As far as IEC 60870-5 is
concerned, every communicating component can act as either a controlling or
a controlled station. The hierarchical structure is represented by the way the
communication takes place, it does always take place between a controlling
and a controlled station.

The distinction between control and monitor directions presents itself in

10

2.4 Communication Protocols

(a) IEC-104 APDU. Taken from: [48] (b) IEC-104 ASDU. Taken from: [47]

Figure 2.4: IEC 60870-5-104 Message Format

the definition of communication modes: The monitor direction describes a
transmission from a controlled, to a controlling station. The control direction
is a transmission from the controlling, to the controlled station. Reversed
direction transmissions are also allowed, in the case of a controlled station
sending commands to the controlling station or a controlling station sending
data to the controlled station [47].

Figure 2.4 shows the two parts of the IEC-104 frame format. The protocol
defines the whole frame as an application protocol data unit (APDU), while
the header is called application protocol control information (APCI). An APCI
header contains the length of the APDU, four 8-bit control fields and must start
with the character 68 in hexadecimal notation. An APDU has a maximum size
of 253 bytes. The control fields may contain sequence numbers and describe
the type of frame-format that is used. There are three defined frame-formats,
namely I-format, S-format and U-format [76].

The unnumbered U-format is used for testing purposes and to initiate and
stop the communication, while the S-format is used for numbered supervisory
functions. S-format and U-format APDUs only consist of the APCI header.
The I-format is used for the transmission of monitoring and control informa-
tion. An I-format APDU contains the APCI as well as the application service
data unit (ASDU), which contains the application data payload [44]. Figure
2.4(a) depicts an I-format APDU.

Since heterogeneous architectures that combine Ethernet and serial commu-

11

2 Application Area

nication are common, addressing in IEC 60870-5 is implemented similarly to
Modbus/TCP. The transmissions from the centralized control server to the
field sites are addressed via the network and transport layer, thus via IP ad-
dresses and TCP ports. Inside a field station the ASDU addresses a partic-
ular component using the ASDU address field, which is referred to as ASDU
common address [47]. Application data is contained inside the so called infor-
mation objects, which are addressed by the information object address (IOA).
These refer to a specific data object inside a component. The information
itself, such as a measurement, is contained in the information element. An
APDU may contain up to 127 information objects. In combination, the IOA
and the device common address uniquely define a particular data object [47].
The ASDU type id refers to the particular data type of the information ele-

ment and applies to all information objects contained in an ASDU. The type
ids are divided into certain groups depending on the transmission direction
(see Table 2.2). Process information in monitoring direction refers to mea-
surements, for example. While process information in control direction may
refer to commands, such as writing a certain value, system information covers
initiation or reset commands.

Type ID Group

1-40 Process Information in Monitor Direction
45-51 Process Information in Control Direction
70 System Information in Monitor Direction

100-106 System Information in Control Direction
110-113 Parameter Information in Control Direction
120-126 File Transfer

Table 2.2: ASDU Type ID. Taken from: [47]

IEC-104 possesses the same inherent security flaws as Modbus/TCP. It pro-
vides no authentication or encryption mechanisms and is vulnerable to man-
in-the-middle and injection attacks [48][76].

2.5 Related Work

The most common approach towards creating SCADA network traffic captures
has been to construct testbeds and capture the traffic [43]. While this approach
is rather complex and cost-intensive depending on how realistic the model is,
it has additional benefits. Access to live SCADA systems is normally very
restricted due to the potential security risks and traffic samples of such systems
are rare. Constructing a model that consists of the same components used
in SCADA systems, then makes it possible to experiment on real hardware.

12

2.5 Related Work

Many researchers have used SCADA testbeds for experimental investigations
of vulnerabilities and for validation of security solutions [24].

There are a number of testbeds, and they can mainly be categorized by the
way they are implemented. There are software-based testbeds, which emulate a
real SCADA environment and hardware, and physically replicated ones, which
are a model of the real infrastructure and consist of real hardware. Addition-
ally, there are also hybrids, which implement parts of the system in software
[54].

Two of the most famous testbeds are the Secure Water Treatment testbed
(SWaT) [23] and Electrical Power and Intelligent Control (EPIC) [2]. Both
were constructed by the iTrust Center for Research in Cyber Security and are
intended to be cyber security research and testing platforms.

SWaT is a physically realistic, operational model of a water treatment facil-
ity, while EPIC represents a power grid. SWaT is a hybrid model, consisting of
real and simulated components. These include pumps, actuators, sensors, and
control systems. It is equipped with common cyber security technologies, such
as firewalls, intrusion detection systems, and access control systems [23]. The
EPIC testbed is comprised of a generator, power distribution lines and smart
home devices [2]. Both testbeds are designed to enable researchers to study
and test the cyber security vulnerabilities and defenses of industrial control
systems and critical infrastructure.

Analysis of SCADA traffic does not necessarily require specialized software.
The widely used packet dissector Wireshark allows for analyzing contents of
various SCADA network protocols, including Modbus/TCP and IEC-104.

Wireshark is a powerful open-source tool for analyzing and dissecting net-
work traffic. It allows users to capture, view, and analyze datagrams traveling
over a network, providing detailed information about their contents and other
characteristics. It is commonly used to monitor network traffic in real-time or
to analyze previously captured traffic from a file. It is able to dissect a wide
variety of network protocols [20].

One of the key features of Wireshark is the ability to display packets in a
human-readable format, allowing users to view the contents of each packet and
identify potential transmission issues. Wireshark can decode and display the
contents of TCP transmissions, for example. Moreover, it is able to analyze
the sequence and acknowledgement number and flags potential retransmissions
or missing packets. Wireshark also provides a range of filtering tools, allow-
ing researchers to quickly analyze packets of a particular protocol they are
interested in. Users can filter packets based on their source or destination ad-
dress or based on their protocol. In addition to its core packet-capturing and
analysis functionality, Wireshark also includes a range of additional tools and
features. It is able to calculate network statistics such as the number of packets
and bytes transmitted. Based on this information, it can generate graphs and
other visualizations to examine network traffic.

The features of Wireshark can also be utilized through a command-line

13

2 Application Area

application called Tshark. Like Wireshark, Tshark is also capable of capturing,
dissecting, and analyzing network traffic. The main feature of Tshark is its
ability to be integrated into scripts, thus allowing for automatic capture and
analysis tasks [19]. Tshark can also be integrated well into Python code.
Wireshark and Tshark both allow the user to read capture files and export the
included frames in a raw hexadecimal format.

Crafting custom datagrams in Python code can be done using the Scapy
library. Scapy is a Python-based library that allows users to craft and decode
network packets. Scapy includes support for a wide range of protocols, in-
cluding Ethernet, IP, TCP, UDP and many others. Like Wireshark, Scapy is
able to interact with live networks. It can be used to capture packets in real
time and to send packets over the network and observe the responses. More-
over, it makes it possible write custom datagrams into capture files and export
them. One of Scapy’s core features is the ability to craft packets at a very low
level. For example, it provides an API for the creation of packets with custom
headers, or packets from raw byte values in hexadecimal format [11].

2.6 Conclusion

This chapter gave an overview over the terminology and structure of indus-
trial control systems and SCADA systems. The term industrial control sys-
tem refers to a computerized system that combines electrical and mechanical
components and thus interacts with the real world. These components allow
computers to automatically control processes or enable manual remote opera-
tion. The term SCADA system refers to a sub-category of ICS. It is a system
targeted towards processes that demand control over long distances. SCADA
systems provide the ability to monitor and control processes in wide areas at
a centralized station.

Moreover, the security aspects were outlined. SCADA systems are highly
interconnected and mutually dependent. Security breaches or failures in single
components can have cascading effects and can lead to catastrophic conse-
quences. Since they are commonly used in critical infrastructures, availability
is a very important requirement, which needs to be ensured.

Modbus/TCP and IEC 60870-5-104 represent two widely used communica-
tion protocols for SCADA systems. They are application layer protocols, built
upon the TCP/IP stack. Modbus/TCP is a variant of the Modbus standard
which defines communication over serial connections. However, Modbus/TCP
defines a way to embed Modbus messages into the TCP payload. IEC 60870-
5-104, commonly referred to as IEC-104, works similarly. It embeds messages
into TCP packets that are normally sent over serial connections. IEC-104 de-
fines 3 different frame formats called S-, U- and I-format frames. The latter
one, is the one conveying measurement and control values. It is thus larger
than the other ones.

14

2.6 Conclusion

Both protocols allow heterogeneous configurations, in which messages are
sent over serial as well as Ethernet connections. Neither Modbus/TCP nor
IEC-104 define any inherent security features or use encryption, which makes
them especially susceptible to man-in-the-middle attacks. Yet, an important
distinction between Modbus/TCP and IEC-104 consists in the way their com-
munication takes place. Modbus and Modbus/TCP only allow synchronous
communication, they are solely request/response based. However, IEC-104 ad-
ditionally allows asynchronous communication. Field devices may send mes-
sages to the control station without a prior query. These occasions are called
spontaneous events.
A number of SCADA testbeds were presented. These are models of real

infrastructure which can be used to create traffic samples and allow researchers
to work with real SCADA components. However, such models are complex and
offer only limited access to researchers. Therefore, a software solution for the
creation of synthetic traffic would be desirable.
SCADA traffic can be dissected and analyzed using standard open-source

software. Wireshark and its command-line version Tshark are protocol ana-
lyzers which allow researchers to view packet contents, such as addresses or
measurement values. They can also be used to convert capture files into se-
quences of hexadecimal byte values. This can easily be done within Python
code. To forge arbitrary datagrams from within Python code, one can utilize
the Scapy library, which provides an API to craft packets.
In the next chapter, the formal definitions for generative adversarial net-

works and their fundamentals, neural networks in general, will be given.

15

3 Methodology

The complex problem of generating network traffic via generative adversarial
networks is the main subject of this thesis.

In contrast to other proposed traffic generation architectures which try to
generate flow-data that has been previously extracted, the proposed generation
of datagrams takes place at the raw byte-level. The network should be able
to generate an arbitrary number of byte sequences represented by their hex-
adecimal notation. Learning the structure of byte sequences will be addressed
by viewing it like the process of learning a language. The GAN will, however,
only have to learn the grammar since the vocabulary will be predefined. The
data pre- and post-processing will be outlined in detail in Chapter 4.

Generative adversarial networks in general and especially the architecture
that will be utilized in this thesis use a large number of machine learning
techniques. In the next sections, these techniques will be outlined concisely.
Firstly, Section 3.1.1 will give a short summary of the most basic terms in the
context of machine learning. Additionally, the functionality of artificial neural
networks will be described and two classes of such networks will be formally
defined, each of which is suited for a particular kind of data representation.
These two classes of networks will be utilized to implement a GAN architec-
ture in the next chapter. Secondly, in Section 3.2 the ideas of basic generative
adversarial networks will be stated, before the difficulties of GANs concerning
the processing of sequential data are described. Subsequently, in Section 3.3
the fundamental terms and techniques of reinforcement learning will be out-
lined, which will be utilized to overcome the aforementioned limitations later
on. Finally, Section 3.4 contains background information on the GAN archi-
tecture that is later used for generating traffic. Additionally, other approaches
towards generating network traffic via GANs will be presented.

3.1 Neural Network Basics

The concepts machine learning, and more precisely, artificial neural networks
(ANN) form the foundation of deep learning and generative adversarial net-
works. Thus before describing more complex variants of these networks, the
most basic terms will be defined and afterwards the fundamentals of neural
networks will be outlined.

17

3 Methodology

3.1.1 Machine Learning

Machine Learning was created due to the desire to create an artificial intelli-
gence (AI) that is able to complete routine tasks automatically, e.g. tasks such
as recognizing natural language or images and drawing conclusions based on
that information to support various research fields [26]. Initially, AI was solely
able to solve those problems based on mathematical formulations. Tasks like
image recognition can be performed by humans without difficulties, but are
hard to describe formally. This is due to the fact that a lot of human decision-
making is based on huge amounts of subjective knowledge, which cannot be
simply formulated in a set of rules. Computers are nevertheless able to ac-
quire this necessary knowledge on their own. This process is called Machine
Learning (ML) [26].

Different variants of Machine Learning algorithms can be characterized by
the extent of the input information they are trained on. The most ordinary
one is the paradigm of supervised learning. Supervised learning algorithms are
commonly used for solving regression and classification problems. The term
regression describes the process of predicting an arbitrary number of contin-
uous variables, given an input vector x [13]. When used for classification,
the Machine Learning model is trained on datasets containing images, speech
samples or other kinds of data. These data samples are associated with a
corresponding label, which describes the category the sample belongs to. Dur-
ing training, the model learns, for example, what a certain object looks like
and tries to output a score or a probability that represents the prediction of a
sample belonging to a certain category [42]. Therefore, a supervised learning
model observes a predefined number of samples often described as a vector x
with their associated label y and estimates p(y|x). The term supervised refers
to the presence of a label that instructs the model what it is supposed to to
[26].

Another paradigm of Machine Learning algorithms is unsupervised learning.
Just as in supervised learning, the algorithms observe a predefined number of
samples. Datasets for unsupervised algorithms, however, do not contain any
labeled data. A sample consists solely of a vector x. The goal of unsupervised
learning algorithms can be learning a structure, more precisely a probability
distribution p(x), of a dataset. This process is called clustering and describes
the process of dividing the samples into sets (or clusters) based on their simi-
larity [26].

The last paradigm is a hybrid of the aforementioned ones. Semi-supervised
learning uses unlabeled samples as well as labeled ones to estimate a proba-
bility P (y|x). Generative models are a common application of this learning
paradigm. They are often used for applications in which unlabeled data is
available in large quantities and the labeling poses a practically unfeasible
task. For such applications, generative models may be used to generate even
more similar and realistic data [27] that could afterwards be used to train

18

3.1 Neural Network Basics

another model to further improve the performance of a classifier, for example
[40].
In addition to the aforementioned learning paradigms, the technique of rein-

forcement learning (RL) is often considered a different class of machine learning
algorithms [70].
Reinforcement learning algorithms are not led by a given example of an opti-

mal output like supervised training algorithms are. They are instead iterative
processes targeted towards discovering an optimal action for a given situation,
while trying to maximize a reward by making trial and error decisions [13].
Due to their objective being the maximization of a reward signal and not find-
ing a hidden structure in the data distribution, RL algorithms are also not
considered unsupervised algorithms [70].
The overall performance of Machine Learning algorithms depends on the

input data representation as well as the representation of individual properties
or pieces of information in the data [26]. These are known as features. Histor-
ically, Machine Learning algorithms were trained using hand-crafted feature
extractors. These not only require considerable engineering skill, but also some
expertise in the domain of which the dataset was taken from. Finding the right
set of features to extract, however, is not trivial for every task. Enabling the
algorithm to detect distinguishing features on its own was therefore desired.
This process of finding the correct data representation for the task is called
representation learning. Representation learning in general transfers the input
samples into a more abstract form [26]. Neural networks trained by supervised
learning are a realisation of representation learning [26].

3.1.2 Feedforward Neural Networks

Feedforward neural networks (FNN) are the foundation of generative adver-
sarial networks. One possibility to outline the computational principles of
neural networks is to start with the concepts of linear regression and classi-
fication models such as the logistic regression. Without going into too much
detail about regression and classification models, the most basic ideas of linear
regression will be outlined.

Linear Regression Models

A Regression Model works on a training data set comprised of N input samples
xn; n = 1, ..., N and the corresponding N target variables tn. It represents a
function y(x) that predicts the corresponding t for every new input x. More
precisely, it models the predictive distribution p(t|x) where x stands for every
new input sample and t for the corresponding new prediction [13].
In its most basic form, such a model is comprised of a number of linear

combinations of the input variables

y(x,w) = w0 + w1x1 + ...+ wDxD, (3.1)

19

3 Methodology

with x = (x1, ..., xD)
T representing the input samples in the form of a D-

dimensional input vector and w0, ..., wD representing the learned model pa-
rameters, often called weights. The use of linear combinations results in a so
called Linear Regression Model. However, not only being linear with respect
to the input variables x, but also with respect to the parameters w, leads to
serious limitations [13]. To be more universally applicable, these simple models
are often extended to linear basis functions by introducing linear combinations
of a fixed set of basis functions. Non-linear functions of the input variables

y(x,w) = w0 +
M−1∑
j=1

wjϕj(x), (3.2)

with ϕj(x) representing the basis functions and w0 representing the bias pa-
rameter, enable the model to apply a fixed offset. The linearity with respect
to the model parameters w makes these models linear regression models as
well. However, this linearity allows them to have simple analytical properties,
while also being able to model non-linearity as far as the input variables are
concerned. The added non-linear transformation of x can be considered a new
representation of x [13].
However, the simplicity in model analysis results in limitations. The basis

functions phij(x) are fixed before observing the properties of the training data
set. Hence their number often grows massively, sometimes exponentially, with
the dimensionality D of the input vector. This problem is commonly called
the Curse of Dimensionality [13].
Another inconvenience in such linear models is the choice of ϕ. Historically,

before the adoption of neural networks, this selection was done manually, thus
requiring substantial amounts of human effort and expertise in the scientific
domain of the training data [13].

Feedforward Neural Networks

Feedforward neural networks provided a solution to the above-mentioned in-
convenience by enabling a model to select an appropriate function ϕ by itself
and therefore learning a representation of x. The new model [26]

y = f(x; θ, w) = ϕ(x; θ)Tw (3.3)

extends ϕ by learnable parameters θ, while w still describes the parameters
mapping ϕ to the desired output. The parameters are learned via an optimiza-
tion algorithm [26].
Neural networks are a composition of various individual functions. In its

most basic form, this can be seen as a composition f(x) = f (3)(f (2)(f (1)(x)).
This function composition is the reason for the term network. A network’s
individual functions are commonly referred to as layers stacked on top of each
other. Thus f (1)(x) would be the first layer or input layer, f (2) the second

20

3.1 Neural Network Basics

(a) Model of a neuron. Taken from: [32] (b) Feedforward Neural Network

Figure 3.1: General schematic of a neuron and FNN Model

layer and f (3) the third and output layer [26]. Layers between the input and
output layers are frequently referred to as hidden layers and represented by h.
A function ϕ as in Figure 3.3 defines such a hidden layer. The number of layers
is considered the depth of a model. Using multiple hidden layers is therefore
referred to as deep learning [26].
A simple example for the computations applied in a layer would be [26]

h(1) = g(1)(W (1)Tx+ b), (3.4)

which defines the mapping of the input layer into the first hidden layer. The
mapping of the first into the second layer is then defined by [26]

h(2) = g(2)(W (2)Th(1) + b), (3.5)

and so on.
The non-linear transformation of the inputs x is controlled by the learned

weight matrix W and a previously selected fixed activation function g. One
common example for such an activation function is the frequently used rectified
linear unit (ReLU) g(z) = max{0, z} [26]. Figure 3.1(a) depicts the computa-
tions in a single unit. The term to which the activation function is applied is
known as the activation of a unit.
The term feedforward refers to the computational principle that all informa-

tion coming from input layer x flows through every layer and computation in
between to the output layer y. In contrast to more sophisticated models which
are outlined in later sections, there are no cyclic connections between a layer’s
output and an earlier layer. A feedforward neural network is often depicted as
a directed acyclic graph (Figure 3.1(b)).
The term neural network is loosely inspired by the biological neurons. While

both have only little in common, the neural network does resemble the brain as
far as it is made up of several processing units or neurons. It gains knowledge
from its environment via a learning process, the optimization algorithm, and

21

3 Methodology

stores information in the neural interconnects, which are represented as weights
[32].
Consisting of chained non-linear transformations of x with learned param-

eters enables the model to approximate an arbitrary function f . Feedforward
neural networks with at least one hidden layer are seen as universal and effi-
cient approximators for arbitrary non-linear functions with an arbitrary degree
of accuracy [26][32].

Optimization

To be able to attain a desired design objective, for example for a supervised
training objective, the corresponding output to an input sample has to have
the highest score or the highest probability of all classes assigned, the network’s
error has to be as small as possible. To achieve this, the network most likely
needs to be trained [42]. The error of the network is computed based on a
cost function J . For supervised tasks, these take the network’s output and
the correct output known from the labelled dataset into account. A frequently
used cost function for classification tasks presents the negative log-likelihood,
commonly referred to as cross-entropy [26],

J(θ) = −Ex,y∼p̂ log pmodel (y|x). (3.6)

Training a neural network means minimizing the error through adjusting the
network’s weights. This adjustment of the weights is done by computing a gra-
dient vector, that describes the increase or decrease of the error after changing
a weight’s value. Through the process of gradient descent, a way of differ-
entiation through successive applications of the chain rule, single weights get
adjusted such that the error step-wise decreases [26]. Modifying the network’s
internal parameters based on the outputs of the network is also known as
backpropagation. It is apparent that the complexity of the training process
increases with the number of weights in the network [42].

Generalization and Regularization

The main objective of a machine learning model is not only to provide plau-
sible outputs on training data, but rather to provide useful outputs on new
data samples it has not been trained on. Techniques that reduce the error
on previously unseen data at the expense of error during training are called
regularization techniques. Making a model perform well on new inputs is com-
monly referred to as generalization [26]. These two terms are frequently used
along two of the most often used terms in machine learning: underfitting and
overfitting. The first term refers to the problem that a model is not able to
attain sufficient accuracy during training. The latter describes a model that
performs well on the training data, but bad on new unseen samples. A model’s
tendency to over- or underfit is controlled by it’s capacity, a term describing

22

3.1 Neural Network Basics

the range of various functions the model is able to approximate. As far as
neural networks are concerned, the most basic way of altering the capacity is
by adjusting the number of layers or units in the model. Parameters such as
the number of layers, which are determined externally and not influenced by
the optimization algorithm, are called hyperparameters. It is assumed that a
neural network reaches its optimum performance, when the capacity is tailored
to a certain task. If it is too complex it is prone to overfitting [26].

Dropout is one powerful example for a regularization technique with little
complexity. It is often applied in so-called dropout layers. As the name sug-
gests, it is used to temporarily remove, or drop, units from the computations
in the network, along with its associated weights. The selection of units to
remove happens randomly. The corresponding probability by which a unit is
removed is a hyperparameter [67]. The dropout operation is very popular due
to its low computational cost [26].

A second frequently used technique is the L2 parameter regularization, also
known as weight decay [26]. For this technique, the cost function is extended
by a regularization term. The term [12]

Ω(θ) =
1

2

∑
i

w2
i (3.7)

expresses a preference for smaller weights. Adding the term to the cost function
encourages the weights to become smaller. This is desirable since another
cause of overfitting can be weights with large values [12]. In practice Ω(θ) will
be multiplied by a hyperparameter λ, which determines how strongly smaller
weights are desired [26].

A third common regularization technique is called pooling, a method often
used in CNNs and therefore described in the next section.

3.1.3 Convolutional Neural Networks

A widely used architecture in the field of deep learning is the convolutional
neural network (CNN), which is often used for classification problems. It
is targeted towards input data that possesses a grid-like topology, such as
2-dimensional grey scale images, 3-dimensional color images or 1-dimensional
time series. A convolutional neural network leverages three key ideas to reduce
the number of weights in the net, while still having enough capacity to fulfill
its intended purpose [26].

Convolutional Layers

A convolutional neural network is named after the performed mathematical
operation, the discrete convolution. In general the convolution is an integral
operation on two functions that produces a third function. It represents the

23

3 Methodology

amount of overlap between the two functions as one is shifted over the other
[73]. The convolution operation is defined as [26]

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a), (3.8)

with x being an input sample and t denoting an index. The function w is
often called kernel or filter and s denotes the output commonly referred to as
a feature map [26]. Therefore, for 2-dimensional inputs, the operation would
be defined as [26]

s(i, j) = (x ∗ w)(i, j) =
∑
m

∑
n

x(m,n)w(i−m, j − n), (3.9)

with i and j being the array indices and m, n describing the input sizes. The
convolution operation replaces the plain matrix multiplication in a common
feedforward network as in Figure 3.2(b). Groups of units utilizing the convo-
lutional operation are called convolutional layers.
Figuratively speaking, in the convolutional layers, filters are step-wisely slid

over the input as in Figure 3.2(b). Doing so enables them to extract local
patches and create a feature map. The result of the convolution operation
gets passed through a non-linear activation function such as ReLU afterwards
[42]. The number of filters in a convolutional layer is a hyperparameter as well
as their size and the step width (stride). A filter’s size can be smaller or larger
than the input’s dimensionality or equally sized [26]. The filters consist of func-
tions that utilize learned weights, which are trained during backpropagation.
One filter is trained to extract one particular feature [42].

CNN Concepts

Replacing the general matrix multiplication of a common feedforward neural
network by a convolution operation allows a net to utilize sparse connectivity
in contrast to a densely-connected feedforward network. In a regular, densely-
connected feedforward network (Figure 3.1(b)) every output neuron is affected
by every input neuron. In a CNN, however, since filters may be smaller than
the input, only a certain number of neurons is involved in the calculations [26].
Another more intuitive interpretation of this is the idea of the receptive field :

It is used to describe a field of view of a neuron. As far as 1-dimensional in-
puts are concerned, the receptive field describes which particular part of an
input sample, for example a time series, a neuron takes into account [46]. The
neurons of deeper layers have a larger receptive field than the ones in shallower
layers, which enables them to recognize longer patterns in the time series. In
other words, the receptive field describes the number of input samples a neu-
ron in deeper layers is able to see, or which number of input samples affects a
deeper neuron (Figure 3.2(a)). Therefore, by increasing the depth of a neural

24

3.1 Neural Network Basics

(a) Sparse Connectivity and Receptive
Field

(b) Convolution Operation. Taken from: [26]

Figure 3.2: Sparse Connectivity, Receptive Field and the Convolution Operation

net, it is possible to recognize larger discriminatory features. Alternatively,
the use of larger filters in the convolutional layers is another way of increasing
the receptive field. Normally heterogeneous filter sizes are used. This is moti-
vated by the idea that salient parts of an image or a time series may vary in
scale. Using larger filters allows for recognizing more global features. However,
smaller filters contribute less to overfitting. All in all, sparse connectivity has
the advantage that fewer weights have to be trained and stored, thus reducing
the amount of required computational resources and the risk of overfitting [26].

Figure 3.3: Hierarchical Feature learning in a DL Model. Taken from: [26]

The second core idea of a CNN makes use of a deep neural networks manner
of feature learning: Many signals such as images, sounds or speech can be

25

3 Methodology

Figure 3.4: Typical CNN Architecture (”AlexNet”). Taken from: [41]

interpreted as hierarchically structured (Figure 3.3). An object in an image is
composed of edges and corners, a sentence is organized in multiple words which
are structured into one or more syllables. A high level feature, like a sentence
or an object, is therefore a composition of multiple lower level ones [42]. Since
lower level features may exist multiple times and at different locations in an
input, the filter creating the feature map for the corresponding lower level
feature may detect the feature in different parts of the input. Reuse of the
filter and its weights therefore reduces the number of required weights and the
computational complexity of the network [42]. This idea is often referred to
as weight sharing or parameter sharing [26].

The third main concept of CNNs are the pooling layers. Since the exact
position or size of a feature is not as important for classification purposes as
the existence of a feature, a certain invariance to small transformations such
as shifts, scale or distortions is desirable [42]. This is achieved by a pool-
ing layer which commonly merges together very similar features by computing
the maximum (max pooling) or the average (average pooling) of local patches
in a feature map, therefore reducing the impact of small variations in the in-
put. This operation additionally decreases the input’s dimensionality in height,
width and length, thus decreasing the number of weights, computational cost
and risk of overfitting [42].

In addition to these mentioned key ideas that motivate the use of a convolu-
tional neural network, there is another main advantage. CNNs are able to be
parallelized effectively and utilize the capabilities of modern GPUs for training
[42]. Until the late ’90s it was doubted that efficient training of neural networks
was feasible. However, in 2012 one of the most famous CNN models, AlexNet
(Figure 3.4) proved that CNNs and therefore deep neural nets were efficiently
trainable and generalized better than traditional neural networks with layers
of fully-connected neurons [41]. Since then, deep learning has gained a large
boost in success [42].

26

3.1 Neural Network Basics

CNN Structure

Usually a convolutional neural network is made up of groups consisting of
several layers (Figure 3.4). These groups will be referred to as modules. A
module’s first layer consists of a convolutional layer, extracting features from
the input. This layer’s feature map is afterwards fed into an activation func-
tion, usually ReLU. Then the output of the activation function gets fed into
a pooling layer, making the net invariant to slight shifts and distortions in
the input [42]. Therefore a module is normally comprised of a convolutional
layer, an activation function and a pooling layer. Regularization layers such
as dropout may be added. Depending on the desired depth or capacity, sev-
eral modules are stacked on top of each other. After one or more modules,
the feature maps are fed into the last layers of the CNN, which are typically
fully-connected or densely-connected ones.
The last layers of a CNN are usually arranged as a traditional, densely-

connected feedforward network, in which each neuron of a layer is connected to
each neuron of the next layer [42]. Since CNNs are often used for classification
tasks, the output of the densely-connected layers is usually fed into a so-called
softmax layer [41] which utilizes the softmax activation function [26]

softmax(x)i =
exp(xi)∑n
j=1 exp(xj)

. (3.10)

A softmax layer is comprised of a number of neurons, equal to the number of
classes in the dataset. Thus it enables the network to output a probability
distribution over every class in the dataset.

3.1.4 Recurrent Neural Networks

While Convolutional Neural Networks are specialized feedforward models for
values that are ordered in grid-like topologies, recurrent neural networks (RNN)
[60] are a family of neural networks specialized in processing sequential data
such as sentences of natural language [26]. A common area of application is
statistical language modelling. SLM often utilizes a form of data representa-
tion particularly useful for data like words or letters. Additionally, it is the
origin of further terminology that will be used later. Thus, the key points of
statistical language modelling will be outlined shortly, before the functionality
of a RNN is decribed in detail.

Statistical Language Modelling

Statistical language modelling is a subcategory of natural language processing
and refers to machine learning models that are targeted towards estimating
the probability distributions of components of natural language, such as word,
letters or sentences. A specific problem to solve may be predicting which word

27

3 Methodology

would have to appear next in a sentence after a particular sequence of words
was observed. This is commonly used for text generation.

Neural networks by default do not understand natural language, but instead
require that words are converted into a numeric representation. A common
approach towards encoding categorical data into discrete vectors is the usage
of one-hot encoding: In the context of SLM one would create a vector with
equal length to the number of unique words in the dataset and fill it with
zeroes. Now, to represent a specific word a zero would be replaced by a one
at the index of the corresponding word [28]. This encoding scheme, however,
is sparse and not useful when dealing with larger amounts of categorical data
since the created vector would consist mostly of zeroes. Moreover, it does not
capture any information about the relations between words. Models used for
SLM often have to deal with datasets containing large numbers of structured
sequences of text, which are called corpus or corpora. In this context, a single
unique word is commonly called token, while the entirety of all unique words
that occur in a dataset is referred to as the vocabulary.

An important form of representation often used in conjunction with SLM
are word embeddings. These describe a dense representation of every item in
a vocabulary by a real-valued, m-dimensional feature vector, with m being
arbitrary, but fixed and much smaller than the size of the vocabulary. Word
embeddings are obtained by training a conventional feedforward network to
estimate the probability that a certain word will appear in a context, such as a
sentence, given a sequence of words taken from a corpus [52]. The embedding
feature vector is a by-product of training and consists of the network’s weights.
The vector of a certain word contains the m weights mapping the input word
to the output probability [9].

The important characteristics of such word embeddings are that they present
a comparatively dense representation, which reduces the dimensionality con-
siderably. Moreover, they encode linguistic information. Semantically similar
words are spatially close to each other, without the need for human assis-
tance or domain knowledge [15]. The characteristic of semantically similar
words being clustered together is especially useful when dealing with genera-
tive problems. It aids the model in hitting a semantically correct word.

The embeddings dimensionality m is a hyperparameter, larger numbers en-
able the embeddings to capture finer nuances in the semantics, but require
more training and training data [28]. In practice, if one needs to use word
embeddings in a neural network, this is mostly achieved by an embedding layer
which can be understood as a lookup table converting words into continu-
ous vectors. The embedding layers of tensorflow expect an integer encoded
vocabulary as input and looks up the corresponding feature vector for each
word index. The elements of the vectors are randomly initialized and become
adjusted during training [28].

28

3.1 Neural Network Basics

RNN Concepts

Figure 3.5: Recurrent Neural Network. Taken from: [52]

Conventional densely-connected feedforward networks may serve as universal
function approximators, however, they are subject to serious drawbacks if it
comes to modelling sequences of ordered values. Take, for example, a simple
regression problem: In order to predict the next value of a sequence, the only
information the feedforward network can work on are the latest observed input
samples. Any previously seen samples are forgotten. If it comes to modelling
languages that follow some sort of grammar, dependencies between words have
to be taken into account. These dependencies could mean that the first and
the last word of a longer sentence are significant for the prediction. Therefore
to be able to make an accurate prediction for longer sequences of data, some
form of memory is necessary [52].

Recurrent neural networks possess a form of inherent memory which is often
also referred to as ”short-term memory” [33], for reasons that will be discussed
later in this section. As the name suggests, RNNs differ from traditional
feedforward networks by containing at least one layer of units with recurrent
connections. These connections are referred to as feedback connections that
connect the output of a layer of neurons to its inputs (Figure 3.5) [32].

Similar to CNNs, recurrent neural networks utilize a form of parameter
sharing to reduce the overall number of weights, although this time temporal
and not spatial [26]. To facilitate the understanding of this temporal parameter
sharing, a closer look at the computational graph of an RNN can be useful.

RNN Structure

As mentioned before, recurrent neural networks are specialized in processing
sequential data. Input samples, for example words, are denoted as vectors
x(t) with an index t ranging from 1 to τ . While not necessarily representing
”time”, the index is commonly referred to as time step. A sequence is therefore
denoted as x(1), ..., x(τ) [26].

29

3 Methodology

Figure 3.6: Unfolded Recurrent Neural Network. Taken from: [26]

The aforementioned inherent memory is realized through hidden layers. In
contrast to a conventional feedforward network, previously observed input sam-
ples at time step (t − 1) become incorporated into the computation of the
current time step. A RNN’s hidden layer can be defined by [26]

h(t) = f(h(t−1), x; θ). (3.11)

Since the hidden units are computed based on the previous time step’s hid-
den units, they represent the models current state. This state is often referred
to as the hidden state. For regression tasks, the model is trained to utilize this
hidden state as a summary of the previously observed inputs [26]. RNNs can
be illustrated in two ways: 1) as a traditional neural network with inserted
recurrent connections and 2) as an unfolded computational graph. The de-
picted RNN in Figure 3.6 predicts an output on every time step and possesses
a recurrent connection from its hidden unit to itself. The upper illustration
depicts a traditional computational graph with a recurrent connection. The
lower one depicts the corresponding unfolded graph. The RNN in Figure 3.6
is formally defined by [26]

h(t) = tanh(b+Wh(t−1) + Ux(t)), (3.12)

o(t) = c+ V h(t), (3.13)

ŷ(t) = softmax(o(t)), (3.14)

30

3.1 Neural Network Basics

L =
∑
t

L(t) = −
∑
t

log pmodel (y
(t)|{x(1), ..., x(t)}). (3.15)

The hidden layers apply two bias vectors b and c and learn two conventional
weight matrices U and V . Additionally, they learn a newly introduced weight
matrix W , representing the recurrent connection. The function tanh(x) rep-
resents the hyperbolic tangent activation function [52]

tanh(x) =
expx − exp−x

expx + exp−x
. (3.16)

L describes the total loss for an input sequence x(1), ..., x(τ) and the correspond-
ing predictions y(1), ..., y(τ). The depicted RNN creates an output of the same
length as the input [26].
RNN architectures can be very versatile, they allow fixed as well as variable

size inputs and outputs. Moreover, RNNs are able to produce an output at
either every time step or only after the last step. The recurrent connections can
be between hidden neurons, while other variants insert recurrent connections
between an output and the next time step’s hidden neurons. The RNN in
Figure 3.6, however, is the most powerful and representative [26].
As can be seen, the parameter sharing manifests itself in the fact that the

learned weight matrices U , V and W as well as the biases are repeatedly
involved in every new time step’s computation. Therefore no matter how long
the input sequence may be, the overall number of parameters in the network
will not increase. This leads to the main advantage of recurrent networks in
contrast to feedforward ones: RNN models, in theory, are able to generalize to
arbitrarily long sequences, independent of those in the training dataset [26].
In practice, however, they are not able to process arbitrarily long contexts

[52]. This is mainly due to the definition of the hidden states in an RNN.
Even for rather short input sequences, the multiple state transitions quickly
lead to very deep computational graphs. Furthermore, applying the same
mathematical operations with the same parameters is especially problematic
[26].

Vanishing and Exploding Gradients

Deep neural networks may be subject to the vanishing or exploding gradient
problem. This is in particular true for neural networks that repeatedly apply
the same mathematical operations, such as recurrent neural networks.
Take the weight matrix W used for the recurrent connections between hid-

den layers. The variable W represents the network’s inherent memory and is
utilized each time the hidden state is rewritten. Then W t represents iterative
multiplying by W for t time steps. The eigendecomposition of W is defined
by [26]

W t = (V diag(λ)V −1)t = V diag(λ)tV −1. (3.17)

31

3 Methodology

Figure 3.7: LSTM Cell. Taken from: [26]

After repetitive computations, any eigenvalues λi smaller than 1 will become
very small, which is referred to as vanishing, or, if they are greater than 1
become very high and thus explode [26].

During backpropagation the gradient of the considered computational graph
will scale with diag(λ)t. A vanishing gradient will then make it difficult for the
optimization algorithm to decide on how to further improve the cost function.

A much rarer exploding gradient will, however, hamper the optimization by
possibly taking too large steps and therefore missing the optimum [26].

Ultimately in an RNN, the vanishing and exploding gradient manifests itself
in the handicap that standard RNNs are not entirely fit to learn long-term de-
pendencies in sequences [26]. Sequences with a length of around 10 to 20 may
already pose a problem [10]. This results in RNNs being considered as pos-
sessing a ”short-term memory” [33]. To be able to learn longer dependencies,
several improvements have been proposed. One popular enhancement presents
the long short-term memory.

Long Short-Term Memory

The long short-term memory (LSTM) [33] presents an implementation of a
gated RNN. These are RNNs that are able to extract useful information from
sub-sequences contained in a context, memorize them and learn to decide which
information can be forgotten [26]. An LSTM replaces the conventional ap-
proach of storing all information in an additional weight matrix, by a more
sophisticated mechanism [52].

LSTMs are made up of an arbitrary number of recurrently connected sub-
nets, the so calledmemory blocks or cells. Each of these contains three different
parameterized, multiplicative units, the gates, allowing the network to take

32

3.1 Neural Network Basics

control of the information flow [52][26]. The first of these is the input gate
unit : its purpose is to protect the memory contents from disturbances by
currently irrelevant inputs. It can be viewed upon as a mechanism to control
read access to the input. The second gate is the output gate unit : Its purpose
is similar to that of the input gate as it is used to protect other cells from
currently irrelevant memory contents [33]. Thus it may be seen as a control
mechanism for write access. The last gate is the forget gate unit, which enables
the reset of a cell’s state and thus enables the RNN to forget information [52].
Figure 3.7 depicts a LSTM cell, with an optional parameterized feedback loop
from the state unit to the gates. The black square on the loops denotes a delay
of one time-step.
Without consideration of the optional feedback loop, the LSTM in Figure

3.7 cell may be defined by [26]

f
(t)
i = σ(bfi +

∑
j

U f
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j), (3.18)

g
(t)
i = σ(bgi +

∑
j

U g
i,jx

(t)
j +

∑
j

W g
i,jh

(t−1)
j), (3.19)

h
(t)
i = tanh(s

(t)
i) q

(t)
i , (3.20)

q
(t)
i = σ(boi +

∑
j

U o
i,jx

(t)
j +

∑
j

W o
i,jh

(t−1)
j). (3.21)

The respective memory cell is denoted by i; the function f
(t)
i defines the

forget gate of cell i at time-step t. The corresponding input gate is defined by
g
(t)
i , and h

(t)
i denotes the cell’s output gated by q

(t)
i . All gate units utilize the

sigmoid activation function σ as defined by [52]

sigmoid(x) =
1

1 + exp−x
. (3.22)

The central building block of the LSTM is the state unit s
(t)
i , resembling the

hidden units in a conventional RNN [26]

s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i σ(bi +

∑
j

Ui,jx
(t)
j +

∑
j

Wi,jh
(t−1)
j). (3.23)

As can be seen, every gate possesses its own bias terms and weights that
will be learned during optimization. The LSTM can therefore decide which
information is important and needs to be stored for future use. The interaction
between input and output gate allows the LSTM network to keep information
from the beginning of a sequence and to apply it at a later time-step. This
can be done by closing and opening the input or output gates, respectively.
Computationally closing the input gate refers to an activation close to 0, while
opening an output gate is realized through an activation closer to 1 [52].

33

3 Methodology

LSTM models have been proven to enable neural networks to learn de-
pendencies in long contexts and have become a state-of-the-art technique for
statistical language modelling [26][69].

It is important to note, since it will be used in the next chapter, that the
concept of LSTMs, the learning of gating mechanisms, was applied in an-
other technique of neural networks. The gating mechanisms were ported to
conventional feedforward and convolutional neural nets, thus creating so called
highway networks, which introduced a way to improve the optimization of very
deep network architectures [68].

3.2 Generative Adversarial Networks

Now that we have established our basic equipment to solve regression and clas-
sification problems using neural networks, we can draw our attention towards
generative models, particularly generative adversarial networks.

3.2.1 Deep Generative Models

Generative models are often utilized for specific tasks where rather large quan-
tities of unlabeled data are accessible and the process of labeling would be
practically unfeasible. These generative models would then be utilized to gen-
erate similar, realistic data [27] that, for example, could be used as training
data for a classifier [40]. This data could essentially be of any kind, though, it
has to be data for which a real-valued data representation is available. Tradi-
tionally, generative models are often used for image generation [26].

The term deep generative model refers to the implementation of a generative
model using neural networks [40]. The task of a deep generative model may be
formulated as a stochastic transformation of a random variable into another,
more complex, arbitrary distribution. Typically, the transformation is applied
to an input vector z which has been sampled from a less complex probability
distribution, such as a uniform or normal distribution.

The transformation is implemented by a neural network that takes z as input
and learns to output a vector x that underlies the desired target probability
distribution. Though a conventional neural network presents a determinis-
tic function, the randomly sampled z makes the transformation stochastic.
Moreover, since the actual values of z are left aside and only its probability
distribution is relevant in most cases, it is referred to as a latent variable or
latent vector. A deep generative model is trained via backpropagation like any
standard neural network. [26].

The differentiable generator network is a variant of a deep generative model
and represents the foundation of the generative adversarial network. These
networks contain a generator model, which is a neural network model that
implements the aforementioned stochastic transformation by approximating a

34

3.2 Generative Adversarial Networks

differentiable function G(z; θ(g)).
After it has been trained, the generator can be utilized as a computational

procedure that outputs an arbitrary number of samples x with a desired target
distribution. The application of a neural network to approximate G(z; θ(g))
has the same advantages as for basic regression or classification tasks: The
transformation function can be learned without manual intervention, even for
much more complicated probability distributions [26].
There is, however, a downside to such generative models: Neural networks

used for basic supervised regression or classification tasks are viewed upon as
universal instruments with a high chance of success. This is not the case for
deep generative models. With a conventional training task for regression or
classification the input x, as well as the expected output y, are well known.
However, in generative modeling the network has to learn the distribution of
a z and its mapping to x. As, z is not known ahead of time, this makes the
training process much more difficult [26].

3.2.2 Adversarial Learning

Generative adversarial networks by default couple their generator network G
with another neural network called discriminator network D. The latter one
aids G in learning the aforementioned differentiable function x = G(z; θ(g))
that is used for generating samples.

Figure 3.8: Generative Adversarial Network for 2D Image Data. Based on: [3]

The discriminator is a classifier, that learns a function D(x; θ(d)) which as-
signs a probability value to each sample x it is fed. The vector x may either be

35

3 Methodology

a sample from the training dataset or a sample generated by g. The assigned
probability value represents the probability of x being from real training data
rather than being synthetic [26].
The training objective of a GAN is often stated as a two-player mini-max

game between the generator G and the discriminator D. This is due to the
idea that D is trained to maximize the chance to assign a correct probability
value to the sample x it is fed. This corresponds to recognizing a sample from
training data as real and a sample from G as synthetic. At the same time, G
is trained to minimize log (1 − D(G(z))). Therefore, it tries to minimize the
probability that it’s own samples are declared synthetic by the discriminator
[27].
At optimum, the generator is able to fool the discriminator to the extent that

it cannot distinguish between real and synthetic anymore. This corresponds
to assigning the generated samples a probability value of 0.5 [26].
The training objective of a generative adversarial network is defined by the

value function V [27]

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log (1−D(G(z)))].

(3.24)

Algorithm 1 Standard training algorithm of a GAN. Taken from: [27]

for number of training iterations do
for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from random
noise with distribution pg(z).
• Sample minibatch of m samples {x(1), . . . , x(m)} from training data
with distribution pdata(x).
• Update Discrimininator by ascending it’s gradient:

∇θd

1

m

m∑
i=1

[log D(x(i)) + log (1−D(G(z(i))))]. (3.25)

end for
• Sample minibatch of m noise samples {z(1), . . . , z(m)} from random noise
with distribution pg(z).
• Update Generator by descending it’s gradient:

∇θg

1

m

m∑
i=1

log (1−D(G(z(i))). (3.26)

end for

The training algorithm is an iterative process. The discriminator is opti-
mized in turns by being fed a number of real data samples and synthetic sam-

36

3.2 Generative Adversarial Networks

ples. Afterwards the generator’s parameters are optimized using the newly
updated discriminator. The number of optimization steps for the discrimina-
tor is denoted as k and presents a hyperparameter [27]. Algorithm 1 shows
the training algorithm in detail.

3.2.3 GAN Properties

The application of GANs is motivated by the usual advantages of neural net-
works. There is seldom a need for deeper scientific domain knowledge as
their learning algorithm is solely based on backpropagation. They are some-
what straightforwardly applicable and only require appropriate pre-processing.
Moreover, they are able to model even more complex probability distributions,
in contrast to other generative models [26].
Generative adversarial networks, however, also have downsides. They can

be difficult to train and are highly sensitive to the choice of hyperparameters
[26]. These difficulties manifest mainly in two problems, the first one being
that GANs tend to underfit. This is because of the training objective be-
ing the simultaneous gradient descent/ascent of generator and discriminator.
Reaching an equilibrium is not guaranteed for this algorithm [26].
The second problem is the so called mode collapse: The conventional GANs

necessitate a well balanced training process between generator and discrim-
inator. Omitting the optimization of the discriminator while updating the
generator may result in a generator that is prone to sampling the same values
over and over. The model therefore loses diversity [27].
The first approach towards the stabilization of GAN training was given by

the authors of [27] themselves. They reformulated the optimization objective
for the generator. The new goal is to maximize the log probability for the
discriminator to wrongfully classify a synthetic sample as real (Equation 3.27).

max
G

V (G) = Ez∼pz(z)[log (D(G(z)))]. (3.27)

Additionally, the authors of [27] found out that the utilization of dropout
layers is very important in GANs and improves the network’s performance [26].
Many enhancements of the traditional GANs have been proposed; one of the

most popular may be the Wasserstein GAN (WGAN) [5] in which the training
objective is replaced by the Earth Mover (EM) distance orWassserstein metric
as an alternative value function [30]. The EM distance is often depicted as
”the minimum cost of transporting mass” that is needed to transform one
probability distribution into another [30]. The new value function is then
defined as [30]

min
G

max
D

V (D,G) = Ex∼pdata(x)[D(x)] + Ez∼pz(z)[D(G(z))]. (3.28)

The discriminator in a WGAN is referred to as critic due to the fact that
it evaluates the distance between two probability distributions. In contrast to

37

3 Methodology

the standard GAN, where training between generator and discriminator needs
to be balanced, in a WGAN, the critic, can simply be trained to optimality.
On top of that, the possibility of a mode collapse is greatly reduced [5].

Another way of mitigating the issues of mode collapse and instability in
training, is the introduction of a pre-training step in the GAN training algo-
rithm. The pre-training consists of estimating the probability density of the
real data samples and adapting the generator’s weights accordingly. This is
done via maximum likelihood estimation as defined by [21]

arg max
θ

Epdata(x) log pθ(x). (3.29)

The utilization of a pre-training step is especially common in language mod-
eling tasks [21].

Sequence Generation

The traditional GAN in [27] simply comprised two fully-connected feedforward
networks. Yet, just like for regression or classification tasks, certain architec-
tures have been proven to work better for some tasks than others. As stated
at the beginning, the main subject of this thesis, the generation of SCADA
network traffic, will be interpreted as learning a language, since the datagrams
will be represented as hexadecimal byte sequences. Thus, a generative adver-
sarial network has to learn how to arrange single bytes such that they equal
the datagrams of a particular network protocol.

Convolutional neural networks have been utilized as generator and discrimi-
nator models for image generation tasks and produced realistic looking images
[55]. In theory, one could also implement the generator and discriminator
using recurrent neural networks [25]. However, as GANs are defined for sam-
pling real-valued data, the modelling of discrete probabilistic models, like the
generation of natural language using GANs, poses a more challenging task [35].

The main problem in natural language processing via GANs lies in the op-
timization using backpropagation: During training the generator produces a
number of synthetic samples. Afterwards, the discriminator decides whether
these are real or synthetic and outputs a probability value. The error is then
computed and backpropagated, which instructs the generator network to grad-
ually adjust its weights. This gradual adjustment makes perfect sense, for
example, for image data. It would mean that the grey level of a pixel gets
slightly darker or lighter. However, a gradual adjustment for discrete valued
samples such as sentences or words is not clearly defined [25].

Another difficulty lies in the fact that the optimization process of a standard
GAN would take a whole generated sequence into account [77]. This means
that, no matter how grammatically good, for example, the beginning of a
generated sentence was, the network’s parameters would be adjusted based on
the whole sentence.

38

3.3 Reinforcement Learning Basics

While [30] were able to produce English sentences using a WGAN, the re-
sults contained a large number of spelling errors and did not capture a lot of
semantics. The authors of [6] and [7] therefore proposed to view the genera-
tion of a sequence as a sequential decision-making process to improve existing
models. It was possible to implement this sequential generation process using
techniques from reinforcement learning, which was also already suggested by
[25].
The application of reinforcement learning in conjunction with a generative

adversarial networks has additional benefits. It not only poses a means to guide
the network to create samples that correspond to an underlying probability
distribution. It also introduces new means to optimize the sampling process
towards additional criteria, such as to comply to a certain grammar or protocol,
for example, by including external reward signals into the objective function
[29].

3.3 Reinforcement Learning Basics

To succeed in generating byte sequences, a special kind of generative adver-
sarial network architecture will be used that uses techniques, which originate
from the machine learning paradigm of reinforcement learning. The utilized
architecture is a modified version of the aforementioned traditional GAN and
models the sequence generation as a sequential decision-making process.
These processes can be formalized as a markov decision process (MDP) [70].

Therefore, in this section the basic principles and terminology of RL and MDP
will be outlined first. Afterwards, the concept of policy gradient methods, which
are utilized for the traffic generation process, will be defined.

3.3.1 Reinforcement Learning Definition

Reinforcement learning (RL) may be considered as a specific machine learn-
ing paradigm that differs from both supervised and unsupervised learning
algorithms. Supervised learning algorithms offer the model a ground-truth
as training data. Reinforcement learning algorithms on the other hand, are
trained a posteriori on the information how good an action was by instructing
it what correct behaviour looks like.
This guidance is also the reason why RL is not considered unsupervised

learning. RL algorithms represent a computational approach towards learning
from feedback after performing an action. This can be formalized as a finite
markov decision process [70].

Markov Decision Processes

Reinforcement learning algorithms learn through interaction, in the form of se-
quential decision-making. They interact with an environment in discrete steps

39

3 Methodology

and receive evaluative feedback afterwards. These interactions may influence
immediate as well as future rewards and also subsequent situations [70].
Such processes are commonly formalized as a finite markov decision pro-

cesses. The terminology of MDPs will be defined in the following.

Figure 3.9: Interaction between Agent and Environment in MDP. Taken from: [70]

Environment Model

An MDP contains some form of model which represents an environment that
reacts to actions that are taken. This model of the environment allows to
estimate the outcome of a taken action by predicting consequent states and
rewards before the outcome was actually experienced. The model is often
simply referred to as environment [70].

Agent

The entity that is interacting with the environment and making decisions is
called the agent. The interactions between agent and environment (Figure 3.9)
take place in discrete sequential time-steps t = 0, 1, 2, 3, At each of these
time-steps the agent selects an action, At ∈ A(s), given a particular state,
St ∈ S, that it received from the environment.
Afterwards, at time step t+1, the agent receives a numerical reward, Rt+1 ∈
R ⊂ R, and transitions into state St+1. The long term goal of the agent is the
maximization of the total, cumulative rewards [70].

S0, A0, R1, S1, A1, R2, S2, A2, R3, (3.30)

The sequence of transitions is referred to as trajectory (Figure 3.30).
In the case of a finite markov decision process, the sets A,S and R are finite

and the random variables St and Rt underlie a discrete probability distribution.
Particular values s′ ∈ S, r ∈ R occur, given particular values for the preceding

40

3.3 Reinforcement Learning Basics

action and state, at time step t with a probability distribution p [70]. This
distribution is defined by [70]

p(s′, r|s, a) =̇ Pr{St = s′, Rt = r|St−1 = s, At−1 = a}, (3.31)

for all s′, s ∈ S, r ∈ R, a ∈ A(s).
The distribution p is called dynamics of a MDP and specifies a probability

distribution for each combination of a and s. For the distribution∑
s′∈S

∑
r′∈R

p(s′, r|s, a) = 1, ∀s ∈ S and a ∈ A(s) (3.32)

applies [70].

Rewards

The agent is led by a reward signal, which it receives from the environment.
It represents a measure of how good a selected action was. The intended
objective of an agent is to maximize the expected value of the sum of rewards,
the expected return.
In environments which offer a well defined final time step T , for example the

last move in a game round, the modelled task is called episodic. A sequence
Rt+1, Rt+2, Rt+3, . . . is then called episode and its last state is the terminal
state. The return Gt after time step t is defined as [70]

Gt=̇Rt+1 +Rt+2 +Rt+3 + · · ·+RT . (3.33)

When there is no such well defined final time step, in the case of a continuing
task, the concept of a discounted return is applied. The agent would seek to
maximize the expected discounted return [70]

Gt=̇Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1, (3.34)

with γ denoting the discount rate and 0 ≤ γ ≤ 1. The discount rate is a
measure for the current value of a reward that will be received in the future
[70].

Value Function and Policies

Value functions enable the agent to measure the expected return, given a state
or alternatively a state-action pair. Since the expected rewards are dependent
on the actions taken, value functions are defined based on a certain behaviour
of the agent. This behaviour is defined as mappings from states to the proba-
bilities of selecting each of the possible actions in that state [70].
Such a mapping is formally referred to as policy. Policies are denoted as π

and π(a|s) denotes the probability for At = a and St = s at time step t. It is

41

3 Methodology

important to note that policies may change, which ultimately represents the
learning of RL algorithms [70].
The value function in a markov decision process, given a state s and policy

π, is called state-value function for Policy π. It is defined by [70]

vπ(s) =̇ Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
,∀s ∈ S. (3.35)

The function vπ(s) is therefore defined as the expected return, when the agent
is in state s and follows policy π from there.
The value function, given a state-action pair (s, a) and policy π, is called

action-value function for policy π. This function is defined by [70]

qπ(s, a) =̇ Eπ[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]
.

(3.36)

The function qπ(s, a) is then defined as the expected return, when the agent
is in state s, performs action a and follows policy π from there [70].

3.3.2 Policy Gradient Methods

Now that the basic RL terminology is defined, we are able to outline the tech-
nique, that will later be used to enhance the generative adversarial network’s
training algorithm. The problem so far was, that a gradual adjustment is not
well suited for discrete outputs. To circumvent this, the task is to model the
generation of a sequence as a sequential decision-making process. This will be
implemented through a policy that is stochastically parameterized [77].
The previously defined policies π can be continuously parameterized and

thus become π(a|s, θ). Such a policy is defined as π(a|s, θ) = Pr{At = a|St =
s, θt = θ}, therefore describing the probability of selecting action a at time
step t, given state s and parameters θ.
In practice these policies are realized using a function approximator such

as a neural network, which receives a representation of a state s as input and
outputs probabilities for each possible action. The network’s weights are then
denoted as θ [71].
The advantage of a parameterized policy is that it can be gradually opti-

mized. Moreover, the optimization can be done using the optimization meth-
ods for neural networks that were established before. Thus, the algorithm is
enabled to approach the desired output probabilities for the possible action in
a state, step-by-step.
Such policies will be optimized on the basis of a performance measure J(θ).

The objective is defined as to maximize the performance via gradient ascent
in J : [70]

θt+1 = θt + α∇̂J(θt), (3.37)

42

3.3 Reinforcement Learning Basics

with α being a step size parameter and ∇̂J(θt) ∈ Rd being an estimate. Its
expectation approximates the gradient of J .
Methods that utilize this concept are called policy gradient methods [70].

These policy gradient methods are able to model continuous action spaces as
well as discrete ones. Yet, since our GAN will have to deal with discrete valued
data, the given definition will be limited to discrete action spaces. Moreover,
continuing and episodic tasks each have separate definitions for their perfor-
mance measure. However, we will only need the episodic definition in the next
section. Thus, only the episodic case will be outlined.
In a discrete action space, to output the possibility of each possible action

a, given a state s, the policy may be defined using a softmax distribution. It
is defined by

π(a|s, θ) =̇ eh(s,a,θ)∑
b e

h(s,b,θ)
, (3.38)

with h(s, a, θ) ∈ R denoting the score or numerical preference for each state-
action pair [70].

REINFORCE Algorithm

The Performance measure under a parameterized policy for episodic tasks is
defined as the value of the start state under a policy πθ. The function is
formally defined as [70]

J(θ) =̇ vπθ
(s0). (3.39)

In other words, the model seeks to find the parameters θ that maximize the
expected return.

Algorithm 2 REINFORCE (episodic case). Taken from: [75],[70] and [65]

Input: Step size Parameter α
Randomly initialize weight vector θ ∈ Rd

for each trajectory (episode) τi ∼ π(a|s, θ) do
for each time step t = 0, 1, . . . , T − 1 of the episode τi do

• Estimate return for trajectory: Gt ←
∑T

k=t+1Rk

• Estimate the gradient of the performance measure:

∇θJ(θ) = Gt · ∇ log π(At|St, θ)

• Update policy weights: θ ← θ + α∇θJ(θ)
end for

end for
return θ

43

3 Methodology

Directly optimizing θ via the gradient ∇J(θ) would require knowledge of
selected actions and the distribution of the states in which the action was
selected. One would have to consider every possible trajectory, which may
either not be computationally feasible or, because policy gradient methods
typically do not use a model of the environment, intractable since the effect of
the policy on the state distribution is unknown [70].

A basic approach for the estimation of ∇̂J(θ) presents the REINFORCE
algorithm [75]. It is based on the idea of sampling a number of trajectories,
given a policy π(a|s, θ) and then afterwards computing an estimation of the
gradient using the sampled action-state pairs.
Given a sampled trajectory, the policy gradient theorem establishes that [70]

∇J(θ) = Eπ

[
qπ(St, At)

∇π(At|St, θ)

π(At|St, θ)

]
(Sampling At, St ∼ π)

= Eπ

[
Gt
∇π(At|St, θ)

π(At|St, θ)

]
(Eπ[Gt|St, At] = qπ(St, At))

= Eπ [Gt ∇ log π(At|St, θ)] .

The parameters θ are then updated as follows [70]

θt+1 = θt + αGt ∇ log π(At|St, θ). (3.40)

The whole REINFORCE operation is shown in detail in Algorithm 2. Now
that the most important terms of reinforcement learning and policy gradients
as well as the REINFORCE optimization algorithm are defined, these concepts
can be transferred to the adversarial learning of GANs.

3.4 Related Work

So far only few approaches towards generating network traffic via generative
adversarial networks were published. GANs, however, have already been uti-
lized to further improve intrusion detection systems for internet of things de-
vices [64] and industrial control systems [45] by providing artificial samples to
the classifier and thus solving the problem of imbalanced and lacking data.
To evaluate network intrusion detection software, GANs have been applied

to generate traffic flows [59]. Instead of crafting whole packets, the GAN was
used to generate timestamps, numbers of transmitted bytes and addresses. To
encode categorical data such as IP addresses word embeddings were used as
representation.
PAC-GAN [16] also represented datagrams in byte form. Yet, instead of

word embeddings, they used a more complex encoding scheme to feed those
bytes into the GAN. They trained a conventional GAN consisting of two con-
volutional neural networks to output ICMP, DNS and HTTP requests. After-
wards they evaluated whether the requests would cause appropriate responses,
when sent over the internet to various servers.

44

3.5 Conclusion

For the creation of malicious traffic the utilization of SeqGAN has been
proposed [17]. To generate realistic botnet traffic, it has been coupled with an
additional blackbox intrusion detection system. Instead of feeding pre-labeled
data to the model, the IDS was used to label the data the discriminator is
trained on. The authors were able to generate traffic, that evaded the detection
of the IDS.

SeqGAN is a GAN architecture specialized on generating discrete sequences.
This architecture is particularly well suited for generating text such as natural
language sentences [77] or music compositions [22].

Its main characteristic is its approach towards combining the conventional
GANs [27] with reinforcement learning. SeqGAN extends the basic training
scheme of generative adversarial networks, by modelling the generation process
as sequential decision-making as suggested by the authors of [6] and [7]. This
intends to make GANs more suitable for the generation of discrete sequences.

A SeqGAN generator produces a sequence one element at a time, while
the discriminator evaluates the authenticity of a sequence as a whole. This
should allow the generator to generate longer and more complex sequences.
Additionally, since it generates sequences of discrete tokens, SeqGAN can be
applied to various tasks dealing with sequential data. Thus, it has the potential
to be used to generate data stemming from a variety of domains. SeqGAN was
rather successful, such that it influenced a large number of related publications

3.5 Conclusion

In this chapter a large number of formal methods for the implementation of a
generative adversarial network were defined. Conventional GANs [27] consist
of two neural networks, a generator and a discriminator network, which are
trained mutually. They are used to obtain a generator model that is able to
sample data that underlies a similar probability distribution as the training
data. To do so, the generator learns a function that transforms an arbitrarily
distributed latent vector into the probability distribution of the training data.

A neural network is basically a universal function approximator and can,
for example, be used to solve regression or classification problems. The net-
works of a GAN can be simple densely-connected feedforward networks or
more sophisticated architectures specifically well suited for the kind of data it
is supposed to process.

For regression tasks that have to deal with sequential data this could be
a recurrent neural network with LSTM cells, which alleviate the vanishing
gradient effect. For classification tasks of grid-like data, such as images or
time series, convolutional neural networks are well suited.

Neural networks require that categorical data such as words are converted
into a numerical representation. A popular way to encode words is to encode
them into a continuously valued vector representation, the word embedding.

45

3 Methodology

The aforementioned types of ANNs as well as GANs are optimized through
backpropagation. This, however, leads to the problem, that GANs in their
most basic form are not well suited to generate sequential data that preserves
the structure of the data they were trained on.
SeqGAN, however, introduces a promising approach to handle sequential

data [77]. This approach leverages reinforcement learning techniques, allowing
it to model the generation of sequences as a sequential decision-making process.
This should enable the model to generate longer and more complex sequences.
In the next chapter, the SeqGAN architecture will be formally defined and an
implementation of SeqGAN will be presented. The model will then be trained
on byte sequences that were collected from real network traffic dumps and a
number of experiments will be conducted.

46

4 Application of ML Techniques

In the previous chapter the fundamentals of generative adversarial networks
and reinforcement learning were established. In this chapter a formal defini-
tion for an architecture that is particularly well suited for the generation of
sequential data will be given.

The SeqGAN approach represents an implementation of the suggested so-
lution towards generating sequences. It models the sequence generation as
sequential decision-making, as it has been proposed by the authors of [6], [7]
and [25].

After giving a formal definition of adversarial learning via policy gradient,
an overview of the implementation and the conducted experiments will be pre-
sented. The goal will be to train a SeqGAN architecture on captured network
traces, containing datagrams of protocols which are used in SCADA systems.
Traffic data of the IEC 60870-5-104 and the Modbus/TCP protocol is used as
a case study.

Afterwards the SeqGAN is expected to be able to produce an arbitrary
number of sequences which can be converted back into network packets. These
packets are evaluated for their syntactical correctness, meaning that they obey
domain constraints and the structure that is given by the protocol definition.
In this thesis, relationships between datagrams are out of scope as well as the
requirement that the generated datagrams are able to trigger state changes in
a real system. This would be understood as semantically correct.

We will begin in Section 4.1 by defining the combination of reinforcement
learning and adversarial learning. Afterwards in Section 4.2 the structure of
the implemented SeqGAN model and in Section 4.3 the training algorithm
will be presented. As a next step, Section 4.4 describes the capture files the
network will be trained on and the processing of the input files and generator
outputs. Finally, in Section 4.5 the conducted experiments for the evaluation
of the network’s performance will be presented. The results will be given in
Chapter 5.

4.1 Adversarial Learning via Policy Gradient

In this section a formal definition for the training of GANs using the policy gra-
dient algorithm of the last section will be given. A detailed explanation of the
steps of the training algorithm will be given later. The described combination
of adversarial and reinforcement learning originates from the SeqGAN archi-

47

4 Application of ML Techniques

tecture in [77]. In contrast to the conventional GAN presented in the previous
chapter, SeqGAN does not consider the sampling process as a transforma-
tion of a latent vector. Instead it models the generation process as sequential
decision-making.

4.1.1 Basic Structure

Just as in the original generative adversarial network [27], the SeqGAN archi-
tecture consists of two neural networks, a generator Gθ with a set of parameters
θ and a discriminator Dϕ, whose parameters are denoted as ϕ. The generator
will be viewed as the agent in reinforcement learning. It will thus implement
a parameterized policy π(a|s, θ), as characterized in Chapter 3 [77].
The generator model Gθ produces sequences of tokens Y1:T . Token sequences

are defined as Y1:T = (y1, . . . , yt, . . . , yT), with yt ∈ Y and Y being the vocab-
ulary. Actions, formerly denoted as a, are denoted as yt. An action is defined
as the selection of the next token in a sequence. The state s at time step t is
defined as the sequence of generated tokens so far (y1, . . . , yt−1) [77].
The discriminator modelDϕ is responsible for the evaluation of the generated

tokens and creates the rewards for the optimization of Gθ. The output of the
discriminator will be Dϕ(Y1:T), which denotes the probability of generated
sequence Y1:T being from real training data [77].
Gθ will be optimized via the REINFORCE algorithm, the training objective

is defined as to generate a synthetic sequence of tokens which maximizes the
expected return [77]

J(θ) = E[GT |s0, θ] =
∑
y1∈Y

Gθ(y1|s0) ·QGθ
Dϕ

(s0, y1). (4.1)

The function GT denotes the return for a whole generated sequence and the
function QGθ

Dϕ
(s, a) denotes the action-value function, which in this case stands

for the expected reward for selecting token y1, given state s0 and afterwards
following the policy.
The numerical reward is calculated by the discriminator and will be the

possibility that a complete sequence originates from real data [77].

QGθ
Dϕ

(s = Y1:T−1, a = yT) = Dϕ(Y1:T). (4.2)

The expected return is then dependent on the quality of the generated se-
quence. The objective is therefore to generate a sequence that is able to trick
the discriminator into thinking that it is real, by selecting single tokens that
in the end maximize the expected return.

4.1.2 Monte Carlo Tree Search

The discriminator can only evaluate a whole generated sequence. It is, however,
desirable to be able to evaluate the selection of tokens at intermittent time-

48

4.1 Adversarial Learning via Policy Gradient

Figure 4.1: Monte Carlo Tree Search. Taken from: [70]

steps. This can be achieved using the Monte Carlo tree search (MCTS) [66].

MCTS is a tree-search algorithm, which can be used to find the most promis-
ing action in a sequential decision-making process. It does so by simulating
random actions given a state to approximate the long-term reward of each
possible action. The MCTS algorithm (Figure 4.1) is commonly defined by
four main steps: selection, expansion, simulation, and backpropagation [70].

During selection, the algorithm begins at the root node, which represents
the current state. The next action is selected based on pre-defined criteria
such as the potential reward of an action. If a selected node has not been fully
expanded, the algorithm adds one or more child nodes and expands the search
to those nodes. This is referred to as expansion [70].

Randomly sampling a trajectory from the expanded node to the terminal
state enables the algorithm to estimate the long-term potential of each possible
action. This is done via a simulation function. This function is called rollout
policy. After a whole trajectory has been sampled, the algorithm updates the
action values of the nodes on the path from the root to the expanded node
with the simulation results [70]. This sequence of steps is repeated until a
timer runs out or a pre-defined number of simulations have been conducted
[66].

In the case of SeqGAN, this means that the remaining part of a sequence will
be sampled using the rollout policy. The rollout policy will be implemented by
the same generator model Gβ, yet with its own set of parameters denoted as β.
If the remaining part of the sequence is complete, it will be evaluated by the
discriminator. The accumulated action-values of each child will be propagated
back to the root node.

49

4 Application of ML Techniques

4.1.3 Action-Value Function

The MCTS for an unfinished sequence is defined as [77]{
Y 1
1:T , . . . , Y

N
1:T

}
= MCGβ(Y1:t;N), (4.3)

with Y n
1:t = (y1, . . . , yt) and the tokens selected so far denoted as Y1:t. The

remaining tokens Yt+1:T have to be sampled using the rollout policy Gβ.
The rollout policy will be conducted N times to reduce variance. The com-

plete action-value function is divided into two cases and defined by [77]

Q
Gθ
Dϕ

(s=Y1:T−1,a=yT) =

{
1
N

∑N
n=1 Dϕ(Y

n
1:T), Y

n
1:T ∈MCGβ(Y1:t;N) for t < T

Dϕ(Y1:t) for t = T
.

(4.4)

In the first case, when there is no complete sequence yet, the already se-
lected tokens will be evaluated together with the remaining tokens, which are
sampled via MCTS. Afterwards, the average of N MCTS runs will be taken
and this yields the action-value. In the second case, the discriminator will
simply evaluate the generated sequence.

4.1.4 Generator and Discriminator Update

The weight optimization of the generator follows the concepts of the REIN-
FORCE algorithm. The derivation of the performance measure (Equation 4.1)
with respect to the parameters θ is defined as [77]

∇ J(θ) = EY1:t−1∼Gθ

[∑
yt∈Y

∇θ Gθ(yt|Y1:t−1) ·QGθ
Dϕ

(Y1:t−1, yt)

]
. (4.5)

The variable Y1:t−1 denotes the intermediate state with (y1, . . . , yt−1) already
selected tokens. An unbiased estimation of the gradient of the performance
measure J(θ) is given by [77]

∇θJ(θ) ≃
1

T

T∑
t=1

∑
yt∈Y

∇θ Gθ(yt|Y1:t−1) ·QGθ
Dϕ

(Y1:t−1, yt) (4.6)

=
1

T

T∑
t=1

∑
yt∈Y

Gθ(yt|Y1:t−1)∇θ log Gθ(yt|Y1:t−1) ·QGθ
Dϕ

(Y1:t−1, yt) (4.7)

=
1

T

T∑
t=1

Eyt∼Gθ(yt|Y1:t−1)

[
∇θ log Gθ(yt|Y1:t−1) ·QGθ

Dϕ
(Y1:t−1, yt)

]
. (4.8)

The generator is then optimized as defined by the REINFORCE algorithm.
Its parameters will be updated as follows [77]

θ ← θ + α∇θJ(θ). (4.9)

50

4.2 SeqGAN Implementation

The generator will then be used to optimize the discriminator with samples
of both real and synthetic data. The discriminator is optimized by minimizing
the function [77]

min
ϕ
− EY∼pdata [log Dϕ(Y)]− EY∼Gθ

[log (1−Dϕ(Y))]. (4.10)

4.2 SeqGAN Implementation

The implementation of SeqGAN, which will be used for the experiments in
this chapter is to serve as an assessment to answer the question, whether the
combination of adversarial and reinforcement learning can offer useful results
for the given task of generating network traffic. To do so, an implementation
of SeqGAN which is as close as possible to the original implementation by [77]
will be used. Possible modifications of the architecture are subject to future
research.
I will train the model on datagrams that are represented by their hexadec-

imal byte notation. The generator will act as a reinforcement learning agent.
It will try to reproduce the structure of datagrams by selecting single bytes,
such that the expected return is maximized. The state at time step t, denoted
as St, thus represents the generated bytes so far, and action At represents the
next selected byte.
The SeqGAN is implemented in Python 3 using Tensorflow 2.x for two main

reasons: firstly, due to me having significantly more experience in using Ten-
sorflow 2, compared to other machine learning frameworks; secondly, due to
the removed support of Tensorflow 1.x in Google Colab. The implementation
is based on [61], which is an adaptation of the original implementation by [77]
to Tensorflow 2.
I adapted the hyperparameters of the generator and discriminator models

for the domain and length of the input data. They were chosen such that both
models reach convergence and the generator is reliably able to produce correct
packets. The network will be trained until the generator loss converges.
The corresponding code of the utilized implementation as well as a Jupyter

Notebook containing my code for the conducted experiments are located at
[62].

4.2.1 Generator Model

The generator model (Figure 4.2) uses a rather sparse design and is merely
comprised of 3 layers. The first one is an embedding layer, which translates
each discrete index of the tokenized input sequences into a vector of size 32.
The next layer consists of a LSTM layer with 384, 512 or 1024 hidden units.
The exact number depends on the conducted experiments and has been chosen
to accommodate for the length of the processed sequences, the exact hyper-
parameters will be stated later. Finally, the output of the LSTM layer is fed

51

4 Application of ML Techniques

into a densely connected layer comprised of 256 units, which uses a softmax
activation to output a probability for each of the entries in the vocabulary.

Figure 4.2: Generator LSTM Model

During sampling, the LSTM generates tokens on the basis of the tokens
generated so far, while the first token will be generated on the basis of a start
token. The start token is the same as the token used for padding shorter
sequences and defined as 0. Figure 4.2 depicts the generator for an input
sequence of length 72. The same architecture will be used to implement the
rollout policy. It will, however, have its own set of weights.

4.2.2 Discriminator Model

The discriminator is a simple Convolutional Neural Network for 1-dimensional
data. Its first layer is an embedding layer, which translates the tokenized
input into 64-dimensional vectors. The higher number of dimensions for the
embedding vector, compared to the generator, eases the classification. This,
however, does not significantly increase the time required to achieve sufficient
accuracy.
Afterwards the convolutional layers are located. While the original imple-

mentation used 12 different filter sizes, tests showed that 6 filters were sufficient
to differentiate synthetic and real data with high accuracy. The convolutional
layers are structured as 6 Tensorflow Conv1D layers in parallel, each of which
uses filters of various lengths (see Figure 4.3 for reference).
The output of each of the Conv1D layers is fed into a Tensorflow MaxPool1D

layer afterwards. The outputs of the pooling operations are then concatenated
and flattened in the next layer. Afterwards, highway and dropout layers are
located. The CNN uses dropout and L2 regularization as means against over-
fitting as suggested by [77]. Finally, the output is fed into a softmax layer
determining the probability of a sequence being real. The specific hyperpa-
rameters of the convolutional layers are denoted in Table 4.1.

52

4.2 SeqGAN Implementation

Figure 4.3: Discriminator CNN Model

Conv1D Layer Filter Size No. Filters

1 5 200
2 6 100
3 8 100
4 10 100
5 15 160
6 20 160

Table 4.1: Discriminator CNN Hyperparameters

53

4 Application of ML Techniques

4.3 Training Algorithm

The first step of the training algorithm consists of the initialization of the
generator and the discriminator models as well as their weights. The training
process consits of 3 main steps: a pre-training for both the generator and the
discriminator and the adversarial training. The number of samples which are
used for training will be specific for each experiment and is denoted in Table
4.2. Real Training samples are read line-by-line from a text file, called the
positive file and synthetic data created during discriminator pre-training and
adversarial learning will be written into a negative text file.

The generator will be trained until its loss converges. The exact number
of the so called pre-training steps is also a hyperparameter and varies based
on the number of training samples and their length. The authors of [77] refer
to the pre-training step as MLE-training, therefore the same terminology is
used here. However, during training the model is trained to minimize the
negative-log-likelihood as defined by Equation 3.6.

During supervised pre-training, the generator model is fed with labelled data
samples, stemming from training data. The model then generates batches of
synthetic sequences, which are compared to batches of real sequences. Then the
model is optimized via gradient descent such that the negative-log-likelihood
decreases. After the pre-training, the weights of the generator will be stored,
so that the conventionally trained generator can later be used as a baseline.
The baseline model can then be compared to the corresponding generator, that
was additionally trained using the adversarial training. When the pre-training
of the generator is finished, the rollout policy model gets initialized and it’s
weights will inherit the values of the generator’s weights.

The next step will be the pre-training of the discriminator (Figure 4.4 left).
To be able to decide whether a sequence stems from real data or from the gen-
erator, it will be trained on both. This is achieved by feeding it a number of
batches containing both real samples and synthetic ones from the pre-trained
generator. The batch size will be fixed to 64 for all experiments and the se-
quences in each batch are ordered randomly. The discriminator will be trained
until it can differentiate between real and synthetic sequences with high cer-
tainty so that it is able to offer a reliable reward signal for the adversarial
training from the beginning. A single discriminator update step during pre-
training and adversarial training consists of k = 3 epochs.

The third step of the training algorithm consists of the adversarial training
(Figure 4.4 right), which uses the REINFORCE policy gradient update. At
the beginning of every adversarial training step, the generator will sample one
batch of synthetic sequences. Then the fitness of every sub-sequence beginning
from token 1 in the batch will be evaluated. In this case, evaluation means that
the discriminator classifies the sequences and assigns them a probability value.
Since the discriminator operates on whole sequences instead of sub-sequences,
the missing tokens in every sub-sequence will be replaced by randomly sampled

54

4.3 Training Algorithm

tokens as described in Subsection 4.1.2. This loop of evaluating every sub-
sequence in a batch will be executed 32 times to reduce variance and to stabilize
the training process.

Algorithm 3 SeqGAN Training Algorithm. Taken from: [77]

Input: Tokenized Training Sequences S = {X1:T }
Randomly initialize weights of Gθ, Gβ and Dϕ

Pre-train Gθ via MLE on S
β ←− θ
Sample sequences N ∼ Gθ

Pre-train Dϕ via cross-entropy loss on N and S
while SeqGAN not converged do

for n generator steps do
Sample sequences Y1:T = (y1, . . . , yT) ∼ Gθ

for t in 1 : T do
Compute QGθ

Dϕ
(s = Y1:t−1, a = yt)

end for
update θ via equation 4.9

end for
for m discriminator steps do

Sample sequences N ∼ Gθ

Combine sequences N and S
Train Dϕ for k epochs to minimize equation 4.10

end for
β ←− θ

end while

As soon as all rewards for every sequence in the batch are gathered, the
generator model will be updated according to 4.9. The update rate α of the
gradient update will vary depending on the specific experiment. Afterwards
the rollout policy model again inherits the weights of the generator model.
Once a new generator is obtained, it will be used to further improve the

discriminator model. This is done in the same way as in the pre-training
process. The generator produces a previously fixed number of samples and
the discriminator gets fed real and synthetic samples and has to distinguish
them. During each adversarial training step, the generator will be updated
once (n = 1), while the discriminator is updated twice (m = 2).
After every adversarial training step, the generator and discriminator weights,

will be saved, so that each step can be evaluated later. This whole process
will be repeated until the loss of the generator converges to zero. Figure 4.4
depicts the training process of SeqGAN. At the beginning the discriminator
will be trained on real data and synthetic samples from the generator to be
able to provide a useful reward signal for the training of the generator. Af-
ter the pre-training, the generator will be adversarially trained through the
REINFORCE policy gradient algorithm and MCTS.

55

4 Application of ML Techniques

Figure 4.4: Two stage training algorithm of SeqGAN. Taken from: [77]

4.4 Input Data and Processing

4.4.1 Training Data Capture Files

As mentioned before, obtaining traffic data that was captured on live SCADA
systems poses a problem. However, since we are only interested in produc-
ing packets, which obey a structure, that is defined by a network protocol,
the demands towards the condition or the origin of the training data are not
especially high. Captured packages that were recognized as correct and not
malformed by the widely used software Wireshark, are considered sufficient
as training data. The SeqGAN model will be trained on Modbus/TCP and
IEC-104 traffic.
The Modbus/TCP dataset was acquired from Netresec using a testbed of

the 4SICS conference [1]. It consists of commercial equipment, such as several
PLCs, RTUs and switches for industrial applications. The capture file from 22
October 2015 will be used: it contains roughly 99400 Modbus/TCP packets.
I chose this dataset due to its size. It is significantly larger, than any other
dataset that is publicly available and could be obtained for testing.
Since deep neural networks are used, it is expected that larger training

datasets lead to a more stable training process. The dataset is far from perfect,
due to only a relatively small number of packets containing actual Modbus
payloads, such as measurements. For the intended purpose of learning the
structure of the datagrams, this will be considered acceptable, however.
The IEC-104 dataset stems from an attack dataset published in [74]. It

was generated using the RICS-el testbed [4] running a commercial SCADA
system, which emulates electrical power generation and a power grid. As with
the Modbus/TCP dataset, I chose this dataset due to its comparatively large
size and its availability. Obtaining datasets containing IEC-104 traffic proved
to be even more difficult than Modbus/TCP.
The dataset contains captures of 12 attack scenarios and a baseline with

benign traffic. The network will be trained on the baseline capture file, which
contains about 2000 rather small packets. However, due to the small number of
packets, I considered merging those attack capture files that contain traffic with

56

4.4 Input Data and Processing

only slightly modified values to obtain a larger dataset. The modifications that
were done to the traffic [74] cover man-in-the-middle attacks, which modified
timestamps and measurements. I think that training the network on this
modified traffic is adequate, due to the defined goal of being able to capture
the structure of packets that stem from real SCADA hardware. But it is
important to note that relationships between packets of this merged dataset
will be incorrect in many cases since the packets are not all related to one
another. Therefore, it will be marked as a modified dataset in the experiments.

4.4.2 Data Processing

Figure 4.5: Processing Steps: Training Capture File to Evaluation

The main purpose of generating SCADA traffic is to obtain traffic that can
be used for further research. The goal of this thesis is, to examine whether a
generative adversarial network is able to lean and reproduce the structure and
domain constraints of datagrams.

I made the decision to train the network on the whole Ethernet frame,
instead of, for example, only processing the TCP payload, since I wanted to
answer the question whether the GAN would be able to generate the whole
frame. This makes the pre- and post-processing less complex. Training data
only has to be converted into byte sequences. However, the amount of data
that has to be correctly reproduced increases. The generated packets need
to resemble a whole Ethernet frame, containing MAC and IP addresses, TCP
port numbers and a Modbus/TCP or IEC-104 payload, respectively.

Additionally, I chose to use the hexadecimal data representation, because
I already had to process categorical data such as IP and MAC addresses to
generate whole datagrams. I also thought it would be desirable to avoid the
need for domain knowledge and manual intervention during pre- and post-
processing. Therefore, I dismissed the idea to generate both continuously
valued and categorical data and craft packets using this information. It would

57

4 Application of ML Techniques

have required to instruct, for example, Scapy where each value belongs, thus
the process of learning a structure would rather be performed by the researcher.
Using the byte-level representation has another advantage, namely that a

GAN that is able to generate byte sequences of Modbus/TCP or IEC-104
datagrams could most likely be universally utilized to generate traffic of various
network protocols without much adaptation.
The input data consists of network captures in *.pcap file format. These will

be processed using the Tshark terminal application, which filters the capture
file for not malformed Modbus/TCP and IEC-104 packets. This filtering step
is especially noteworthy as it ensures that certain domain constraints, for ex-
ample of IPv4 addresses, are obeyed. The filtered packets are then converted
into a JSON string, from which a Python list of byte sequences for each packet
can be extracted. The byte sequences are represented as 2-digit hexadecimal
values and use spaces as separator. I chose the 2-digit representation since
it limits the size of the vocabulary to 256 entries and presents a good com-
promise between sequence length and vocabulary size. A smaller vocabulary
allows to use a smaller number of dimensions in the embedding layer and thus
less complexity. These converted sequences are denoted in Listing 4.1.

00 90 e8 26 40 23 00 07 7c 1a 61 83 08 00 45 00
00 34 4e 34 40 00 7e 06 d2 5c c0 a8 02 a6 c0 a8
58 3c 07 bd 01 f6 bb e0 51 f1 08 74 6d 30 50 18
3 f 5e 05 54 00 00 00 aa 00 00 00 06 01 01 00 00
00 01

Listing 4.1: 66 Bytes Modbus/TCP Frame

The byte sequences are then fed into a function which tokenizes the byte
sequences. Afterwards, each single byte will be represented by it’s index in the
vocabulary. The length of the longest sequence contained in the training data,
that is to be processed has to be fixed. However, if there are shorter sequences,
they will be padded by the index 0. An example for a pre-processed training
sequence is denoted in Listing 4.2. The preprocessed sequences are written
line-by-line into the positive text file.

1 145 233 39 65 36 1 8 125 27 98 132 9 1 70 1
1 53 37 13 65 1 127 7 253 133 193 169 3 167 193 169
89 61 8 189 2 247 15 216 28 186 43 145 176 124 81 25
65 42 133 13 1 1 1 3 1 1 1 7 2 2 1 1
1 2

Listing 4.2: Preprocessed Modbus/TCP Frame

The SeqGAN generator outputs token sequences, which then have to be
converted back into bytes. For this, they are fed into a post-processing function
that looks up the corresponding byte value to an index in the vocabulary. The

58

4.5 Experiments

byte sequence can then be converted into a datagram which is then written
into a capture file. This is achieved through the Python library Scapy. The
library offers a simple API to convert a whole packet frame in hexadecimal
format into a network packet. Scapy then writes the crafted packets into a
*.pcap capture file. Figure 4.5 illustrates the complete data processing.

4.5 Experiments

The application of the SeqGAN training algorithm on the process of generating
network packets will be evaluated in two ways: First, I will test, whether
the generated byte sequences can be recognized by the Wireshark protocol
analyzer, and, if so, how much of the generated output will be considered
syntactically correct by the program. This definition of syntactical correctness
on the one hand means that a datagram is compliant to the structure that
is specified by the protocol. On the other hand, it also implies that domain
constraints, such as certain address ranges, are met.

As a second step, I will assess the address information of the generated
packets. Depending on the use-case of the generated traffic, it is possible that
it should fit into an existing network. Since these often use firewalls with
whitelistings to be able to appear as real traffic, the generated packets must
contain at least some address information of the original training data.

The widely used BLEU-score, which is defined as a measure for the quality
of machine-translated text, will not be used as an evaluation metric. This
differs from many other publications, which tackle problems in the context
of natural language processing. However, due to the findings of [63], which
suggest that BLEU-scores may be misleading for the generated samples of
generative adversarial networks, especially when it comes to mode collapse,
they will not be utilized. I think that it is adequate to use the average number
of syntactically correct packets recognized by Wireshark as main performance
measure, to answer the main question of this thesis.

This was achieved by generating 10000 samples, which corresponds to around
156 batches, to obtain an average value. These generated tokenized sequences
are converted back into their hexadecimal form and written into *.pcap capture
files using the Scapy Python library. The output capture files are then read
via the same Tshark command that was originally used to obtain the training
data. Thus the file will be filtered for Modbus/TCP and IEC-104 packets
which are recognized as not malformed.

For the experiments, I normalized the training data based on their number of
bytes. For the tests, packets with lengths that occurred significantly less than
a thousand times were discarded from training data. This has the consequence
that no tests with IEC-104 packets longer than 72 bytes were conducted. All
72 byte long samples represent spontaneous events. Additionally, there were
only very small numbers of U- and S-format frames, compared to those in

59

4 Application of ML Techniques

I-format, in the capture files. They were therefore also excluded. For the
purpose of the experiments, I considered this acceptable. Since the I-format
frames possess a more complex structure and consist of a larger number of
bytes, it is assumed that this makes the reproduction of a semantically correct
frame more challenging. Table 4.2 denotes the conducted experiments.

Test Type of Training Data Length Train Samples

1 Modbus/TCP small packets 66 512

2 Modbus/TCP small packets 66 1600

3 Modbus/TCP small packets 66 6000

4 Modbus/TCP small packets 66 10000

5a Modbus/TCP small packets 66 15000

5b Modbus/TCP small packets 66 15000

6 Modbus/TCP large packets 314 6000

7 Modbus/TCP small (var.) packets 63-66 6000

8 Modbus/TCP large (var.) packets 311-314 6000

9a Modbus/TCP large (var.) packets 311-314 15000

9b Modbus/TCP large (var.) packets 311-314 15000

10 IEC-104 small packets 72 1600

11 IEC-104 small (Modified Dataset) 72 6000

12 Modbus/TCP small packets 66 15000

13 Modbus/TCP large (var.) packets 311-314 15000

14 Modbus/TCP small packets 66 15000

Table 4.2: Processed Training Data per respective Test

Tests with smaller and larger Modbus/TCP packets were conducted, as well
as tests with only a very small number of samples. This is to gain an impression
whether SeqGAN would be suitable in cases where no large capture files can
be obtained. For both types of network protocol, Modbus/TCP and IEC-104,
tests with the maximum number of available training samples were conducted.
For those tests, which cover the processing of variable length sequences, the
following applies. Test 7, which covers the processing of Modbus/TCP packets
of size 63 to 66 bytes, contains an almost equal number of packets of size 63
and 66 bytes.
Tests 9a and 9b contain almost equal numbers of size 311 to 313 and double

as many packets of size 314. It is important to note that only test 7 contains
a balanced number of queries as well as responses. The responses in these
tests all contain exception codes. There were no datagrams containing actual
Modbus payloads in the training data, due to their very small quantity of
around 200 samples and the aforementioned requirements for the experiments.
Tests 12 and 13 represent a modification of tests 5 and 9 respectively. They

were conducted to examine whether a more complex generator model would
lead to significantly different results. Additionally, for these two tests the

60

4.5 Experiments

training time was largely increased, firstly, to cope with the more complex
model and secondly, to check whether more training steps would affect the
results.
Ultimately, test 14 is also a modification of tests 5 and 9. It was conducted

to examine the effect of interleaved MLE-training steps in between adversarial
training steps. The authors of [31] proposed to utilize interleaved training
instead of solely using adversarial learning after the pre-training to prevent
the SeqGAN from mode collapse. Test 14 applied 20 MLE-training steps after
every 4 adversarial training steps. I chose this number of steps since test 5
reached optimum performance after 4 steps.

Test LSTM States α G Pre-Steps D Pre-Steps SeqGAN Steps

1 384 0.01 100 50 (0)

2 384 0.1 100 20 1

3 384 0.1 100 20 3

4 384 0.1 35 20 1

5a 384 0.1 50 20 4

5b 384 0.1 50 20 4

6 512 0.1 120 10 2

7 384 0.1 100 20 2

8 512 0.1 120 10 2

9a 512 0.1 120 10 (1)

9b 512 0.1 120 10 3

10 384 0.1 100 20 (1)

11 384 0.1 100 20 1

12 1024 0.1 150 20 1

13 1024 0.1 150 20 (25)

14 384 0.1 50 20 116

Table 4.3: Hyperparameters per respective Test

Apart from the aforementioned hyperparameters which presented a good
balance for all conducted tests. I adapted a few hyperparameters (Table 4.3)
for the experiments.
For each experiment the weights of the generator were saved after pre-

training and after each adversarial training step. Afterwards the best per-
forming generator was chosen. The pre-trained generator model will act as a
baseline.
The SeqGAN steps parameter in Table 4.3 refers to the number of adver-

sarial training steps. It denotes the number of steps until the best performing
generator was obtained, except in those cases when the generator was not
able to perform any better than the baseline. Then the number of conducted
training steps for the best adversarially trained generator are denoted in brack-
ets. All tests were conducted multiple times to account for fluctuations in the

61

4 Application of ML Techniques

outcomes of the training process.

4.6 Conclusion

In this chapter, the application of the machine learning techniques, that were
defined in Chapter 3 was presented. Afterwards, the training data that will be
used for the conducted experiments was described as well as the pre-processing
that is applied to it. Capture files, that are part of publicly available datasets
were converted into sequences of 2-digit hexadecimal bytes using the Tshark
command-line application.
To answer the main question of this thesis, the SeqGAN architecture will be

utilized. SeqGAN [77] introduced a promising approach to handle sequential
data. The generator is still trained unsupervised on the basis of an evaluation
of its output, obtained by a discriminator network. This is, however, no longer
done through basic backpropagation. Instead the generator is optimized via
a technique that originates from reinforcement learning. SeqGAN utilizes the
discriminator output as a reward signal for the generator to optimize it via a
policy gradient algorithm. It is able to not only evaluate a whole sequence,
but also to evaluate a sequence at intermittent time steps. Doing so allows
the process of generating a token sequence. to be considered as a sequential
decision-making process. This is to enable the network to generate longer and
more complex sequences than basic MLE-trained LSTM models.
The SeqGAN architecture uses a supervised pre-training step, that applies

conventional MLE-training to the generator model. This offers the possibility
to directly compare the same model’s performance after applying the SeqGAN
training algorithm. The experiments cover an evaluation of the baseline gener-
ator model, as well as the adversarially trained one. Their performance will be
measured by examining how many syntactically correct packets are obtained,
when generating a fixed number of samples. Moreover, it will be examined how
well the generators are able to reproduce address information, that is contained
in the training data. The results of these experiments will be presented and
discussed in the next chapter.

62

5 Discussion and Results

In this chapter the results obtained from the conducted experiments will be
presented in Section 5.1 and interpreted in Section 5.2. Afterwards in Section
5.3 the findings will be discussed and I will answer the question whether the
utilized SeqGAN architecture is a suitable approach for generating datagrams
that obey the Modbus/TCP and IEC 60870-5-104 protocol specifications.

5.1 Results

The presentation of results will be conducted twofold. Firstly, in Subsection
5.1.1 the ability of the baseline and adversarially trained generators will be
evaluated by the number of syntactically correct datagrams they are able to
produce. This will be the quantitative analysis. Secondly, in Subsection 5.1.2
the content of the generated packets will be examined. It will be investigated
whether the address spaces of the training data is reproduced in the generated
samples.
All tests were conducted using Google Colab Pro. The supplied hardware

includes two 2GHz Intel Xeon Skylake cores, 13 gigabytes of RAM and a Nvidia
Tesla T4 GPU with 16 gigabytes GDDR6 RAM. Tests ran until the generator
loss converged.

5.1.1 Quantitative Analysis

The time parameter in Table 5.1 denotes the training time until the best per-
forming generator was obtained. Times in brackets, denote the training time of
the best performing adversarially trained generator which did not perform bet-
ter than the baseline. The baseline correct frames parameter denotes the num-
ber of syntactically correct frames which were generated by the MLE trained
generator. The exact number of correct outputs turned out to be fluctuating
over multiple runs, but they were consistent in their magnitude. Numbers of
frames in brackets describe the best performing generator that was not better
than the baseline.
The tests which fluctuated the most in their results are denoted multiple

times. This applies for test 5, since in test 5a the generator performed as
expected, but in test 5b it performed unexpectedly well. Test 9 fluctuated
between an improvement and no improvement compared to the baseline. How-
ever, there was only an improvement when the baseline generator performed

63

5 Discussion and Results

Test Runtime Baseline Correct Frames SeqGAN Correct Frames

1 (3min) 38/0.4% (0/0.0%)
2 4min 21/0.2% 67/0.7%
3 14min 36/0.4% 55/0.6%
4 12min 74/0.7% 233/2.3%
5a 24min 65/0.7% 162/1.6%
5b 24min 76/0.8% 1439/14.4%
6 1h15min 38/0.4% 108/1.1%
7 11min 2971/29.7% 3919/39.2%
8 49min 32/0.3% 180/1.8%
9a (1h15min) 354/3.5% (90/0.9%)
9b 2h24min 20/0.2% 163/1.6%
10 (4min) 325/3.3% (151/1.5%)
11 10min 360/3.6% 626/6.3%
12 36min 118/1.2% 196/2%
13 (18h57min) 122/1.2% 58/0.6%
14 5h44min 70/0.7% 788/7.88%

Table 5.1: Results: Number of syntactically correct frames

especially badly. Test 7, despite a surprisingly good outcome, performed espe-
cially well in every run. However, it is important to note, that this generator
produces a large number of ”suspected” retransmissions. The desktop version
of Wireshark, in contrast to the terminal application, filters those retransmis-
sions and labels them as as simple TCP traffic. That is why it only recognizes
a much smaller number of packets as correct by the given definition compared
to Tshark.

5.1.2 Assessment of Address Information

The syntactically correct packets all contain address information, which com-
plies to the respective protocol. Creating network traffic that is as close to real
traffic to be able to interact with real SCADA networks is beyond the scope of
this thesis. However, to not only investigate the number of synthetic packets,
the packet contents will be assessed to some extent as well.
Reproduction of the addresses of the training data may or may not be de-

sirable, depending on the use case. However, SCADA systems commonly use
whitelisting rules to prevent the injection of packets from unauthorized sources.
Therefore, if one wishes to make use of the generated datagrams in a real net-
work, they would have to contain specific address information.
As a next step, it will be examined whether the generator is able to reproduce

the address spaces of the input data. This covers the MAC and IPv4 addresses

64

5.1 Results

as well as the combination of IPv4 address and TCP source or destination
port, respectively. The last requirement is especially important, since the
Modbus/TCP port 502 belongs to the well-known ports.

Additionally, it will be examined whether the TCP sequence and acknowl-
edgement numbers fit. This would point to a correct TCP session according
to the protocol. Furthermore, packets with fitting SEQ and ACK numbers are
highlighted as correct transmissions in Wireshark. Finally, the addresses which
are associated with the respective application layer protocol are examined. For
Modbus/TCP this is the Unit ID and for IEC-104 the ASDU Common Address
and the Information Object Address.

To gain a more detailed insight into the quality of the generated network
traffic, the previously generated capture files of those tests in which a signifi-
cant improvement through adversarial training was observed will be examined.
The capture files which contained 10000 samples are again filtered for the re-
spective protocol, Modbus/TCP or IEC-104, and for not malformed packets.
It has to be noted that due to the applied filtering only packets which obey
certain domain constraints are taken into consideration.

Test Src. MAC Dest. MAC Src. IP:Port Dest. IP:Port Unit ID SEQ/ACK

2 21/100% 21/100% 21/100% 19/90.5% 21/100% 8/38.1%
4 74/100% 74/100% 72/97.3% 69/93.2% 73/98.7% 15/20.3%
5b 76/100% 76/100% 64/84.2% 74/97.4% 76/100% 25/32.9%
6 38/100% 37/97.4% 32/84.2% 34/89.5% 38/100% 13/34.2%
7 1169/39.4% 1168/39.3% 1165/39.2% 1167/39.3% 2970/99.9% 26/0.9%
8 32/100% 32/100% 30/93.8% 28/87.5% 30/93.8% 6/18.8%
12 118/100% 118/100% 115/97.5% 118/100% 118/100% 17/14.4%
14 70/100% 70/100% 70/100% 69/98.6% 70/100% 10/14.29%

Table 5.2: Address Reproduction: Baseline Generators (Modbus/TCP)

Test S.MAC D.MAC S.IP:Port D.IP:Port ASDU Addr IOA SEQ/ACK

11 360/100% 359/99.7% 357/99.2% 356/98.9% 351/97.5% 350/97.2% 23/6.4%

Table 5.3: Address Reproduction: Baseline Generators (IEC-104)

Table 5.2 contains the results of the analysis of the capture files stemming
from the MLE-trained baseline generators. Absolute numbers denote the num-
ber of packets that reproduced corresponding addresses in the training data.
The percentages denote the fraction of all 10000 samples contained in the cap-
ture file. Table 5.4 denotes the outputs of the adversarially trained generators.

The conducted evaluation did consider the direction of the transmission
where it was meaningful. Thus, source and destination addresses were consid-
ered separately. For example, a reproduced source MAC address was counted
only if it was used as a source MAC address in the training data. This was

65

5 Discussion and Results

not done for the Unit ID since it is copied from the request upon response [50]
and thus used in both directions.

Test Src. MAC Dest. MAC Src. IP:Port Dest. IP:Port Unit ID SEQ/ACK

2 67/100% 67/100% 57/85.1% 66/98.5% 67/100% 14/20.9%
4 233/100% 232/99.6% 130/55.8% 223/95.7% 233/100% 48/20.6%
5b 1439/100% 1408/97.9% 1414/98.3% 1436/99.8% 1439/100% 27/1.9%
6 77/71.3% 91/84.3% 64/59.3% 91/84.3% 107/99.1% 42/38.9%
7 94/2.4% 94/2.4% 94/2.4% 94/2.4% 3918/99.9% 10/0.3%
8 56/31.1% 0/0% 124/68.9% 164/91.1% 171/95% 26/14.4%
12 196/100% 196/100% 196/100% 195/99.5% 196/100% 25/12.8%
14 777/98.6% 788/100% 788/100% 788/100% 788/100% 363/46.07%

Table 5.4: Address Reproduction: SeqGAN Generators (Modbus/TCP)

Test S.MAC D.MAC S.IP:Port D.IP:Port ASDU Addr IOA SEQ/ACK

11 626/100% 626/100% 624/99.6% 623/99.5% 599/95.7% 598/95.5% 54/8.6%

Table 5.5: Address Reproduction: SeqGAN Generators (IEC-104)

Table 5.3 similarly contains the results of the analysis of the baseline gener-
ator that produced IEC-104 traffic, while Table 5.5 denotes the corresponding
adversarially trained generator. For this experiment, the ASDU addresses
and the information object addresses were examined. Since the network was
trained on spontaneous events only, the direction of ASDU addresses and in-
formation object addresses was disregarded. The SEQ/ACK column in each
table denotes the number and proportion of packets which have their sequence
and acknowledgement numbers set correctly.

5.2 Interpretation

As can be seen, in most cases the adversarial training led to a better yield.
The only two exceptions were those tests in which only a smaller number of
training samples was supplied. As expected in the context of deep learning, a
larger number of training samples led to a more stable training process in all
of the tests.
Tests with up to 66 bytes proved to have a quite stable training process with

similar outcomes when conducted multiple times. In contrast to that, the tests
with up to 314 bytes proved to be much more unstable. The number of correct
packets fluctuated a lot more compared to the other tests.
When examining the results of tests 8 and 9, the tests which were trained

on input data of various length, it can be observed that nearly all of the
generated samples had the maximum length of 314 bytes. This was not the
case for shorter sequences in test 7. Being able to generate a good variety of

66

5.2 Interpretation

Figure 5.1: Wireshark Output - Test 8

differently sized packets may be desirable, since training a generator for every
type of packet can be unfeasible depending on the use-case.
The described outcome of tests 8 and 9 is especially problematic since the

training data was already normalized and filtered for only 4 different sizes.
Normalizing the input such that it only contains samples with a certain range
sizes can, however, be considered acceptable, at least if certain constraints of
the respective protocol are taken into account. The corresponding response to
a request may, for example, have a different length. This was observed on the
Modbus/TCP training dataset.
Figure 5.1 shows the analysis of an unfiltered Modbus/TCP capture file. It

consists of 10000 samples, generated by the generator of test 8. The depicted
analyzed capture files shown are newly generated and not identical to the ones
evaluated in Section 5.1, thus the deviating number of correct frames.
The capture files used for the screenshots do, however, represent typical

results of most of the tests. Figure 5.2 shows the analysis of the same file
after filtering it for Modbus/TCP packets. One can see that in most cases
the transmissions are labeled as missing previous frames. That is because the
SEQ and ACK numbers are not set correctly. There are a number of TCP
transmissions, these are the ones that are presumably retransmissions. Tshark
does recognize those as correct Modbus/TCP packets as mentioned in the
previous section.
Figure 5.4 shows the analysis of an unfiltered IEC-104 capture file and Figure

67

5 Discussion and Results

Figure 5.2: Wireshark Output - filtered - Test 8

5.5 shows the corresponding file after filtering it. One can see, that again SEQ
and ACK numbers rarely fit. The transmissions are all labelled as spontaneous
events. This is as expected since the generator was only trained on such
transmissions.
Tests 12 and 13 were conducted to test whether an even more complex gener-

ator model would lead to significantly different results. The generator models
of these tests used an LSTM layer with 1024 hidden units, thus the number
of units was doubled. The number of pre-train and adversarial training steps
was also increased accordingly, to cope with the increased model complexity.
Tests 12 and 13 used the same training samples as test 5 and test 9 respec-

tively. The baseline model of test 12 showed improved performance. Yet it is
hard to tell whether the adversarial training showed an equal improvement.
This is due to the large fluctuations in test 5. However, these fluctuations
decreased in test 12.
When examining the address information contained in the capture file of

test 12, there was no clear increase in reproduction of addresses. While the
combination of source IP address and TCP port occured slightly more often,
there was a relatively large decrease of correct sequence and acknowledgement
numbers. The decrease in fluctuation of test 12 was also visible in test 13. Nev-
ertheless it showed no real improvement in contrast to test 9. The adversarial
training in this experiment led to worse results.
Test 12 was additionally conducted to ensure that there is no sudden per-

68

5.2 Interpretation

formance improvement during which the generator would overcome the mode
collapse situation after a certain number of training steps. Therefore, it was
trained for much longer.
Training of test 12 ran for 8h 18min and 160 steps. Analyzing the generator

performance after every single training step showed the same results as in most
of the other tests. The first training step leads to improved performance over
the MLE-training. Afterwards the performance gets worse and concludes in
mode collapse.
Listing 5.1 and Listing 5.2 show an example datagram that was created by

the generator after 50 and 120 train steps, respectively. Listing 5.3 ultimately
shows the exact same mode collapse situation after 160 train steps. Figure 5.3
shows the analysis of the capture file created after training the generator of
test 12 for 160 steps. One can see that it only contains byte sequences which do
not correspond to any network protocol. Wireshark labels them as Ethernet
II, since it interprets the first few bytes as source MAC addresses.

00 90 e8 26 e f 91 e7 91 91 e7 e7 e9 91 91 91 91
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91
91 91

Listing 5.1: Test 12 - 50 steps

00 90 e8 26 40 91 91 91 e7 91 e7 e9 91 e7 91 91
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91
91 91 91 e7 91 5 f 91 91 91 91 91 91 91 91 91 91
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91
91 91

Listing 5.2: Test 12 - 120 steps

00 90 e8 26 40 91 79 79 e7 91 e9 91 91 e7 91 91
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91
91 91 91 91 e9 91 91 91 91 91 91 91 91 91 5c 91
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91
91 91

Listing 5.3: Test 12 - 160 steps

Test 14, the experiment that applied interleaved training [31], showed a
much more stable training process. It did not quite reach the performance of
test 5b, however, it provided more consistent results. The results of test 5b
could not easily be reproduced by running the training process multiple times,
this was, however, not the case for test 14. Running it multiple times led to
comparable outcomes.

69

5 Discussion and Results

Figure 5.3: Wireshark Output - Mode Collapse - Test 12

Additionally, it is noteworthy that test 14 showed a large increase in cor-
rectly set sequence and acknowledgement numbers. This indicates, that inter-
leaved training improves the reproduction of syntactical dependencies between
packets. But most importantly, this test showed that the mode collapse situ-
ation can be overcome by enhancing the training algorithm with intermediate
supervised learning steps. The training algorithm ran for 178 steps, until the
runtime encountered an error, unfortunately. However, mode collapse has been
overcome each time, it occured only 11 times and mostly during the first 12
adversarial training steps.

The well performing generators were in many cases able to correctly repro-
duce the address spaces of the input. This is true for the baseline as well as
for the adversarially trained generators. Two exceptions for this were tests 7
and 8, for which the adversarial training overall worsened the result.

Payload data could only be examined for IEC-104 traffic, due to the training
data used. As mentioned before, this was not considered to be a problem,
since semantical correctness lies outside of the scope of this thesis. Yet, a
short examination of the generated IEC-104 traffic showed that the samples
of test 11 at least offered diversity as far as the contained measurement values
are concerned. This suggests, that the generator was able to make out a part
in the sequences that does not have to lie in a very narrow value range, in
contrast to, for example, address information.

70

5.2 Interpretation

Figure 5.4: Wireshark Output - Test 11

Modbus/TCP samples mostly reproduced the Transaction IDs of the train-
ing data. For test 7, which contained queries as well as responses, this had
the consequence that there were correct query-response transmissions. This is,
however, not surprising since the input data contained a very small number of
different Transaction IDs.
It is noteworthy that all generators were able to generate a good variety

of function codes instead of always reproducing a particular value. When
generating a response, the packets contained an exception code as defined by
the protocol.
Independently of the conducted test, all generators were able to set sequence

and acknowledgement numbers correctly according to the TCP protocol on a
fraction of packets. This is noteworthy since these datagrams are marked as
correct transmissions in Wireshark as defined by their protocol. Other packets
were marked as possible retransmissions.
Overall the results suggest that the applied SeqGAN training algorithm led

to an optimization of the conventionally trained generator. Nevertheless, one
has to consider the application area of this thesis. The main objective was
the generation of SCADA system network traffic. Particular network traffic
of which only small numbers of samples are publicly available. Yet especially
those tests that processed only a small number of training samples are the ones
that failed.
In relation to the number of generated samples for each tests, the portion

71

5 Discussion and Results

Figure 5.5: Wireshark Output - filtered - Test 11

of proper Modbus/TCP and IEC-104 datagrams is rather small in most cases.
Generating larger amounts of samples would lead to more datagrams, but of
course prolongs the execution time. The sampling process on the test hardware
was done in a matter of seconds, however. Moreover, there was no particular
performance requirement defined for the goal of this thesis, therefore execution
times were neglected for the conducted experiments.

The generated capture files contain large portions of packets which only
comply to TCP traffic or no protocol at all. The synthetic traffic is therefore
not indistinguishable from real traffic. Instead, the unfiltered capture files in
Figure 5.1 and Figure 5.2 look rather mangled. However, independently of the
size of the processed datagrams, a large proportion of the trained generators
was able to reproduce the structure and contents of the training data. This
is especially noteworthy since SeqGAN was most often used to process much
smaller sequences.

5.3 Discussion

During all experiments it was noticeable to me that the overall good perfor-
mance of the reference implementation presented in [77] could not be achieved
when training the architecture on datagrams in byte form. It became clear that
without modifying the training algorithm, the GAN suffered from an almost

72

5.3 Discussion

guaranteed mode collapse, when fully trained to convergence.
The generator was not able to produce a single Modbus/TCP or IEC-104

packet, after running the training algorithm until the loss of the generator
converged. Instead all output samples contained a MAC address, followed by
periodic repetitions (Listing 5.3) of sub-sequences of one or more hexadeci-
mal values. Yet, at the same time I observed that the baseline MLE-trained
generator was able to produce datagrams as per protocol definition. Thus my
assumption was that the SeqGAN training was not properly optimized for the
task at hand.

5.3.1 Training Instability

It became clear to me that the hyperparameters required further adjustment.
I therefore modified the generator as well as the discriminator model, which
originally used the hyperparameters of the reference implementation, according
to the findings of [22], where a similar behaviour could be observed.
I increased the number of hidden units of the generator’s LSTM layer from

originally 64 to 384, 512 and 1024, respectively, to cope with the larger input
samples than the sequences of size 20 in [77]. Test 12 and 13 used a slightly
more complex generator model with an LSTM layer consisting of 1024 hidden
units. I chose this model with increased capacity to test whether a further
increase of the hidden units would lead to better performance, when processing
longer sequences or even better performance overall. This seemed appropriate
since the selection of 512 unit in [22] was based on a sequence length of 100.
Increasing the number of hidden units alone did not lead to a significantly
different outcome, however.
Moreover, I greatly reduced the number of convolutional layers of the dis-

criminator model from originally 12 to 6 and their filter sizes were increased.
This was due to the finding that for the used training data, the less complex
model performed well enough. These two optimizations led to a better yield
during testing, however, the model still suffered from model collapse.
As a next step I examined whether adapting the policy gradient update

rate of the generator would further improve the training. In contrast to the
suggestions of [22], I did not increase the update rate, but instead largely
decreased it, which resulted in a much larger yield of syntactically correct
packets.
I observed that a lower update rate nearly always meant a better result.

The update rate was then fixed at 0.1, except for the first test where a lower
learning rate was tried out to accommodate for the low number of training
samples. This setting represented the optimum for the conducted tests.
Nevertheless the training process still remained highly unstable and train-

ing until convergence led to mode collapse. Since the baseline generator was
able to generate the desired datagrams, the idea then arose to closer examine
the generator mode collapse. Firstly, I examined whether the mode collapse

73

5 Discussion and Results

occured after a particular training step or continuously. Secondly, I exam-
ined whether there was a moment in training at which the generator would
overcome the mode collapse situation after training it long enough.
Since the generator’s weights were saved after every train step, it was possible

to evaluate the generator at each step. Doing so revealed that in most cases the
adversarial training improved the generator, sometimes greatly. However, after
a certain number of steps, which varied depending on the training data and
hyperparameter setting, the generator’s performance continuously degraded.
This behaviour could be recreated well and was vastly different to the findings
of [77].
To examine whether the mode collapse would be overcome, I conducted an

experiment with a largely increased number of training steps, to investigate
whether there is such a moment in training. However, I could not observe
any improvement over the course of 160 training steps. This number was
considered high enough in relation to the number of required steps to observe
an improvement in other experiments. At maximum 4 steps were required in
test 5.
Thus the constant mode collapse still posed a problem, that required a more

detailed examination. The proposed interleaved training in [31] intends to
alleviate mode collapse. I therefore incorporated this enhancement of training
into the existing training algorithm for test 14. During interleaved training,
the training algorithm applied 20 supervised MLE-training steps after every 4
adversarial training steps. While the overall performance of test 5b was not
achieved, a more consistent training was observed.
As suggested by the authors of [31] interleaved training enabled the model

to overcome mode collapse. They assumed that the additional supervised
learning steps would prevent the model from going too far away from the real
data and thus provide an implicit form of regularization [31].

5.3.2 Considerations

Intuitively, there are two explanations for the results of the experiments.
Firstly, the processed data samples were 3 to 15 times larger than those used
in [77]. Secondly, byte sequences representing datagrams are structured dif-
ferently than natural language texts or music, since datagrams contain large
numbers of repeating values in their header information.
Additionally, the training data only contained very few different addresses,

such as MAC, IPv4 and others. This is because the training capture files were
obtained from rather small testbeds, consisting of few SCADA components.
Independently of the number of training samples that is given to the model, the
network receives the same information on many occasions. Demanding that
the network is able to learn which values have to remain fixed while others are
desired to be diverse is not ideal on the basis of this information.
The combination of reinforcement and adversarial learning SeqGAN uses is

74

5.3 Discussion

a rather complex approach compared to conventional MLE-based training. In
comparison, the less complex baseline generator, a plain MLE-trained LSTM,
was already able to create valid datagrams. However, in most cases the ad-
versarial training improved the yield of correct frames, sometimes by a lot.
Therefore, I think that the utilization of SeqGAN is justified.

Moreover, the runtimes were in the range of minutes to a few hours. This
was achieved by using fairly moderate hardware resources, the training utilized
a single Tesla T4, a GPU from 2018, only 2 CPU cores and 13 gigabytes of
RAM. Therefore, the complexity does not seem to pose a large problem, at
least for the type of training data used.

Nevertheless, the adversarial training is computationally more complex than
the basic MLE-training. For example, a single pre-train step in test 12 took
about 9 seconds, while an adversarial training step took 159 seconds. How-
ever, the latter training time is largely dependant on the number of MCTS
rollouts. A larger number of rollouts is intended to result in reduced variance
and increased accuracy [77]. Yet choosing a larger number than 32 did not
improve the instabilities in training.

The application of the MCTS rollouts makes the training process highly
stochastic. This was observed in the fluctuations in the results in most of
the experiments. This stochastic training process is a serious downside of the
SeqGAN approach. It led to problems in reproducing the results of many tests
and was the reason why each test had to be conducted a number of times.

Apart from the number of rollouts, the presented approach provides even
more variables. The discriminator model appears to perform well enough for
the used input data. After only a few train steps, it was able to distinguish
real from synthetic samples with high accuracy. However, since the generator
model was mostly unmodified in all of the tests, I think that an investigation
of a different generator model is necessary. Therefore, in my opinion further
research should cover an investigation whether a completely different neural
network model for the generator would be more suitable. Nevertheless, the
generator performed well enough for my experiments, therefore I left it mostly
unmodified for better comparability.

In addition to an investigation of the generator model, the presented archi-
tecture would have to be trained on other more diverse capture files. I was not
able to obtain any capture files that are more suitable for the task at hand,
however, the used capture files are appropriate for the set target of generat-
ing datagrams that syntactically obey a certain protocol. Yet if one wanted to
generate traffic that is able to interact with real hardware and cause changes in
the system. The traffic would have to contain more payloads, such as measure-
ments and control instructions. Moreover, it needs to contain more request-
response transactions and the normalization during pre-processing would have
to be adapted to this. For the conducted experiments, only specific sizes of
input data were considered and in many cases this excluded the response to a
particular request in the case of Modbus/TCP.

75

5 Discussion and Results

All in all, according to the results presented in this chapter, the main ob-
jective of utilizing a generative adversarial network to generate network traffic
consisting of protocols used in SCADA systems was achieved. The adversar-
ially trained generator is able to produce an arbitrary number of datagrams
that are properly recognized by the widely used protocol analyzer Wireshark.

A large portion of the generated packets contain the address information
of the original capture files and cover a variety of functions that are given by
the protocol definition. A smaller portion of the traffic is even recognized as
correct transmissions when analyzing it with Wireshark. Still, to utilize this
approach, the results also suggests that as expected a larger amount of training
data is required in the first place. This stands, however, in direct conflict with
the underlying problem, namely that obtaining larger amounts of such data is
difficult.

The most obvious problem of mode collapse was examined in detail and
could be alleviated via interleaved training, it was now possible to train the
network to convergence to reach peak performance.

With hindsight at this point in my research, when it became apparent that
the presented SeqGAN approach is a viable option to generate SCADA network
traffic, I looked for possible enhancements that could be applied to further
improve the architecture.

The presented approach tried to generate the whole Ethernet frame, which
led to less complex pre-processing. Since generating shorter sequences tended
to be more stable it could be tried to only generate a TCP frame or a TCP
payload and incorporate it into existing Ethernet frames. I discarded this idea
since I wanted to test whether it was possible to generate the whole frame.
Nevertheless it is a viable option, depending on the use-case.

According to [31], the training instability could also be explained by a vanish-
ing gradient problem, that is caused by a much stronger discriminator problem
in comparison to the generator. In this case, the reward signal is too weak to
meaningfully update the generator’s parameters. A similar finding was made
by [22]. It was therefore proposed to rescale the reward signal before applying
it during parameter update.

During my experiments, I made the finding that a lower update rate leads
to a more stable training which is similar to the authors of [63]. They suggest
that it could be a characteristic, showing that adversarial learning may not be
the ideal approach. A solution to this might be provided by the findings in
[29].

According to the authors of [29] the use of the policy gradient algorithm
theoretically allows to extend the SeqGAN approach with multiple, arbitrary
reward signals. A similar idea, namely to introduce auxiliary reward signals,
was also proposed by [22]. The core idea of ORGAN [29] is a modification in
the definition of the reward signal. In their experiments, they tried to optimize
the generation of molecules in a pharmaceutical context. They changed the
reward function to a linear combination of multiple reward signals. Instead of

76

5.3 Discussion

only using the reward given by the discriminator. In their experiments, they
defined the numerical reward as the weighted average of the discriminator
output and a domain specific metric.
The proposed model [29] thus becomes a hybrid between a naive reinforce-

ment learning model and a SeqGAN. The domain specific metric can, for ex-
ample, be any kind of static analysis, that ensures that the generated samples
possess certain desired traits. This idea could also be applied towards the gen-
eration of network packets. The problem of mode collapse could possibly be
overcome by penalizing the generation of arbitrary, repeating byte sequences.
The required additional reward signal could be provided by a packet analyzer.
It would have the task to flag datagrams, that completely disobey a certain
structure.
Another possibility to stabilize training might be provided by an adaptation

of LeakGAN [31] for the given task. The authors of [31] suggested the appli-
cation of LeakGAN as an enhancement of SeqGAN for generating sequences
of more than 20 tokens. LeakGAN tries to solve the problem that the discrim-
inator only provides a sparse reward signal by evaluating complete sequences.
SeqGAN tackled this problem via stochastic MCTS rollouts, which led to large
fluctuations in the training outcome, as emphasised before.
The authors of [31] proposed to incorporate the discriminator more deeply

into the training process. SeqGAN used the discriminator model as a blackbox
that outputs a sparse reward signal only. This disregards a lot of information
although the discriminator CNN’s internal states are known. The core idea of
LeakGAN is therefore to leak extracted hierarchical features to the generator.
These features represent sub-goals for the generator which serve as additional
guidance. The generator is then not required to predict a token that is fitting
for the entire sequence, but rather for a shorter salient part of the sequence.
All in all, these enhancements are viable options for future research, I did,

however, not apply them in this thesis since they would have been beyond the
defined goal. I wanted to show that the presented architecture is able to gen-
erate complete datagrams that are recognized as such by widely used software.
In addition, I intended to show that the presented approach is a starting point
that, through the use of reinforcement learning, provides a number of potential
enhancements that could be applied depending on a particular future use case.

77

6 Conclusion

Processes in the critical infrastructure often utilize the SCADA communication
framework, one example for this are smart grids. Smart grids are electrical
grids that utilizes digital technologies to enable communication between energy
production and consumption sites. SCADA communication provides a way to
monitor and control the production and distribution process remotely.
SCADA systems controlling smart grids are valuable targets for cyber at-

tacks. Such attacks have already taken place several times in the past years,
the last noteworthy attacks were associated with the attacks on the Ukrainian
infrastructure in 2022 [18]. Cyber resilience of smart grids is therefore ex-
tremely important.
To be able to provide means for cyber resilience of smart grids, researchers

require access to network traffic of SCADA systems. However, since they are
part of critical infrastructure, obtaining such traffic is challenging. The few
publicly available SCADA traffic datasets seldomly contain large quantities of
malicious traffic. One option to acquire appropriate traffic presents the set
up of testbeds in which the communication can be captured. These testbeds,
however, are only models and may not completely represent real SCADA sys-
tems. Additionally, the construction of these models is complex and can be
cost-intensive and access to these testbeds for research is often limited.
Being able to utilize a software solution to create arbitrary amounts of syn-

thetic network traffic samples would be desirable due to the aforementioned
reasons. To conduct research into new kinds of attacks, the solution would
have to be able to generate benign and malicious SCADA network traffic.
Generative adversarial networks are a means to generate arbitrary amounts

of synthetic data. They are often utilized to generate synthetic images or texts.
It stands to reason whether a GAN would be able to generate sequential data
such as byte sequences. However, there are only few published approaches in
the research field of generating network traffic via GANs. There are especially
none, which try to generate datagrams of communication protocols of SCADA
systems.
Since not much work in this research field has been done yet, this thesis

was concerned with an investigation into whether GANs would be suitable
to generate datagrams stemming from SCADA systems at all. I therefore
examined whether a particular GAN architecture would be able to capture
and reproduce the structure of two specific SCADA protocols.
The goal was to obtain an adversarially trained generator that is able to gen-

erate arbitrary numbers of syntactically correct packets that obey a particular

79

6 Conclusion

SCADA protocol. The given definition of correctness means that the gener-
ated packets obey the protocol definition and are recognized as Modbus/TCP
or IEC-104 datagrams by a widely used protocol analyzer. I used Wireshark
for the conducted experiments.

I made the decision to process whole Ethernet frames since I wanted to
answer the question whether the GAN would be able to generate complete
datagrams. Additionally, this makes the pre- and post-processing less complex.
The processed datagrams were represented as sequences of 2-digit hexadecimal
bytes. I chose to use the byte sequence representation, because I found it to
be desirable to avoid the need for domain knowledge and manual intervention
during pre- and post-processing. This data representation makes it possible to
write the whole sequence into a capture file via Scapy, instead of instructing
it where particular values belong. The process of learning the structure would
in the latter case be performed by the researcher and not by the machine,
in my opinion. Moreover, the used representation has the additional benefit
that a GAN that is able to generate byte sequences would most likely be
able to generate traffic of various network protocols without much adaptation.
Finally, I chose to use the 2-digit representation due to the comparatively
small vocabulary consisting of 256 entries, which presents a good compromise
between sequence length and vocabulary size.

The presented approach used a generative adversarial network particularly
specialized for processing sequential data. The utilized GAN architecture is
called SeqGAN [77] and intends to solve the problem that while conventional
GANs are able to generate continuously valued data, they are, however, not
well suited to generate discrete values.

SeqGAN interprets the process of generating sequences as sequential decision-
making, which means that the selection of each byte is decided based on the
already selected ones. The optimization of this selection process is conducted
using a policy gradient algorithm, a method that originates from reinforcement
learning.

To evaluate the performance of the used SeqGAN model, I conducted multi-
ple tests during which the trained generators were used to generate fixed num-
bers of samples. The adversarially trained generators were evaluated and com-
pared against conventionally trained baseline generators. These were trained
using maximum-likelihood estimation.

Afterwards, the obtained samples were converted into capture files, which
were then analyzed using the command-line version of Wireshark. The base-
line and adversarially trained generators were then compared on the basis of
the number of recognized packets. Additionally, I examined the packet con-
tent of the generated traffic of the best performing generators. I investigated
whether the contained address information reproduced the addresses of the in-
put data and whether the TCP sequence and acknowledgment numbers were
set correctly.

My results showed that the model was able to generate SCADA traffic,

80

with one exception. This exception is, however, important, as it was the
test that processed especially small amounts of training data that failed. The
observed results therefore suggest that, as expected, a large amount of training
data is required. This observation, however, stands in direct conflict with the
underlying problem, namely the difficulty of obtaining larger amounts of such
data.

In the majority of the experiments, I observed a significant improvement of
the adversarially trained generator over the baseline. However, the training
process proved to be rather unstable. The GAN was very susceptible to mode
collapse if trained for too many steps. After being trained to convergence, it
generated repetitive sequences of the same bytes. Those samples therefore did
not represent a particular protocol and were unsuitable.

I therefore conducted a test to examine the effect of alternating supervised
and adversarial learning steps. Afterwards, I was able to observe that this
modification stabilized training and enabled the model to overcome mode col-
lapse situations. Moreover, it finally made it possible to train the model to
convergence while continuing to produce viable results. The application of
this interleaved training was proposed as a mitigation against mode collapse
by [31].

When I adapted the hyperparameters, I observed that the model performed
best, if the learning rate was set close to zero. A similar observation has been
made by the authors of [63]. This reinforces my assumption that adversarial
learning alone is not optimal for the input data. However, I think that further
research in the field of combining adversarial and reinforcement learning is
nevertheless justified, since during most experiments an improvement of the
generator was observable.

My finding that the presented SeqGAN approach is able to generate data-
grams has another advantage. The utilization of reinforce learning allows to
incorporate additional domain specific metrics into the optimization of the
generator. Such modifications of the definition of the reward signal have been
proposed and tested by [29]. They defined the reward as a linear combina-
tion of multiple reward signals. When processing network traffic, this would
provide a means to incorporate external protocol analyzers as reward signal.

As stated at the beginning, the overall goal of the proposed traffic generation
is to provide means for developing novel intrusion detection systems. There-
fore, the GAN needs to be able to generate benign and malicious SCADA
network traffic. To this point, the presented approach will generate any form
of traffic it is trained on. The aforementioned modification of the reward sig-
nal [29] may be a way to influence the GAN to produce benign and malicious
traffic according to preference. Semantical correctness, therefore the require-
ment that generated packets would influence a system’s state, was out of the
scope of this thesis. However, semantical correctness would most definitely
be desirable, if one wanted to generate malicious traffic. Depending on the
utilized reward signal, the presented reinforcement learning based approach

81

6 Conclusion

may be a possibility to achieve semantical correctness. A natural next step
would therefore be to modify the reward signal on the basis of state changes
in a system.
Additionally to the utilization of an enhanced reward function, several other

potential improvements of the presented approach are available for future re-
search. Many other publications that are concerned with generating sequential
data have also employed approaches based on SeqGAN. For example, to fur-
ther improve the stability of the training process, a rescaling of the reward
signal has been proposed by [31]. It would prevent the vanishing gradient in
cases where the discriminator is a lot stronger than the generator.
If this improvement by itself does not provide sufficient results, a further

extension of the SeqGAN approach is possible, namely to adapt LeakGAN [31]
to the given task. In order to ease the task of the generator, LeakGAN only
requires the generator to predict tokens for shorter salient parts of sequences.
While these are viable options for future research, I did, however, not use

them in this thesis because they would have gone far beyond the defined goal.
I wanted to show that the presented architecture is capable of generating com-
plete datagrams that are recognized as such by widely used software. Further-
more, I wanted to show that the presented approach is a starting point that
provides a number of potential extensions through the utilization of reinforce-
ment learning. These extensions might be a way to influence the generation
process depending on the use-case and could be applied in future research.
However, in my opinion the next step of the research begun in this thesis

should be concerned with further improvement of the packet generation first.
A starting point could be an adaptation of ORGAN [29] to the conducted
experiments combined with the proposed rescaling of the reward signal. The
second reward signal could then be provided by a packet analyzer as additional
metric. ORGAN uses very similar models for the generator (LSTM) and the
discriminator (CNN). The performance would therefore be comparable. An
additional adaptation of LeakGAN would be a viable option in the case that
ORGAN does also show significant instability in training. Future tests should,
however, involve more appropriate training data.
Finally, the findings of this thesis are that a GAN that uses a combination

of adversarial and reinforcement learning is able to generate arbitrary numbers
of datagrams, that obey a particular SCADA communication protocol. This is
an important finding since there are no other publications that were concerned
with this problem. Moreover, I provided an implementation in the form of a
Jupyter Notebook that can be used to reproduce my results [62]. Additionally,
the used form of generative adversarial network offers enhancements that po-
tentially make it possible to influence the generation process towards a specific
goal. All in all, these findings represent a starting point for more extensive
research in this field even if potential enhancements still need to be tested in
further research.

82

Bibliography

[1] 4SICS.se. Capture files from 4sics geek lounge. https://www.netresec.
com/?page=PCAP4SICS, 2015.

[2] S. Adepu, N. K. Kandasamy, and A. Mathur. Epic: An electric power
testbed for research and training in cyber physical systems security. In
S. K. Katsikas, F. Cuppens, N. Cuppens, C. Lambrinoudakis, et al., edi-
tors, Computer Security, pages 37–52, Cham, 2019. Springer International
Publishing.

[3] A. Ali. How i used ai to make fake people (gans) — and why it matters.
https://go.wwu.de/1vz9p, 2018.

[4] M. Almgren, P. Andersson, G. Björkman, M. Ekstedt, et al. Rics-el:
Building a national testbed for research and training on scada security
(short paper). In CRITIS, 2018.

[5] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adver-
sarial networks. In ICML, 2017.

[6] P. Bachman and D. Precup. Data generation as sequential decision mak-
ing. ArXiv, abs/1506.03504, 2015.

[7] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, et al. An actor-critic algorithm
for sequence prediction. ArXiv, abs/1607.07086, 2017.

[8] BBC News. Ukrainian power grid ’lucky’ to withstand russian cyber-
attack. https://www.bbc.com/news/technology-61085480, 2022. Ac-
cessed: 2022-07-11.

[9] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic
language model. In J. Mach. Learn. Res., 2000.

[10] Y. Bengio, P. Y. Simard, and P. Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural
networks, 5 2:157–66, 1994.

[11] P. Biondi. Scapy documentation - introduction. https://scapy.

readthedocs.io/en/latest/introduction.html, 2022. Accessed:
2022-12-18.

83

https://www.netresec.com/?page=PCAP4SICS
https://www.netresec.com/?page=PCAP4SICS
https://go.wwu.de/1vz9p
https://www.bbc.com/news/technology-61085480
https://scapy.readthedocs.io/en/latest/introduction.html
https://scapy.readthedocs.io/en/latest/introduction.html

Bibliography

[12] C. M. Bishop. Neural networks for pattern recognition. Oxford university
press, 1995.

[13] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006.

[14] F. Björck, M. Henkel, J. Stirna, and J. Zdravkovic. Cyber resilience –
fundamentals for a definition. In A. Rocha, A. M. Correia, S. Costanzo,
and L. P. Reis, editors, New Contributions in Information Systems and
Technologies, pages 311–316, Cham, 2015. Springer International Publish-
ing.

[15] Y. Chen, B. Perozzi, R. Al-Rfou, and S. Skiena. The expressive power of
word embeddings. ArXiv, abs/1301.3226, 2013.

[16] A. Cheng. Pac-gan: Packet generation of network traffic using gener-
ative adversarial networks. 2019 IEEE 10th Annual Information Tech-
nology, Electronics and Mobile Communication Conference (IEMCON),
pages 0728–0734, 2019.

[17] Q. Cheng, S. Zhou, Y. Shen, D. Kong, and C. Wu. Packet-level adversarial
network traffic crafting using sequence generative adversarial networks.
ArXiv, abs/2103.04794, 2021.

[18] A. Cherepanov and R. Lipovsky. Industroyer2 sandworms cyberwarfare
targets ukraines power grid again. https://go.wwu.de/v958a, 2022. Ac-
cessed: 2022-12-15.

[19] G. Combs et al. Tshark manual page. https://www.wireshark.org/

docs/man-pages/tshark.html, 2022. Accessed: 2022-12-18.

[20] G. Combs et al. Wireshark manual page. https://www.wireshark.org/
docs/man-pages/wireshark.html, 2022. Accessed: 2022-12-18.

[21] C. de Masson d’Autume, M. Rosca, J. W. Rae, and S. Mohamed. Training
language gans from scratch. In NeurIPS, 2019.

[22] S. gil Lee, U. Hwang, S. Min, and S. Yoon. A seqgan for polyphonic music
generation. ArXiv, abs/1710.11418, 2017.

[23] J. Goh, S. Adepu, K. N. Junejo, and A. P. Mathur. A dataset to support
research in the design of secure water treatment systems. In Critical
Information Infrastructures Security, 2016.

[24] N. Goldenberg and A. Wool. Accurate modeling of modbus/tcp for intru-
sion detection in scada systems. Int. J. Crit. Infrastructure Prot., 6:63–75,
2013.

84

https://go.wwu.de/v958a
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/wireshark.html
https://www.wireshark.org/docs/man-pages/wireshark.html

Bibliography

[25] I. Goodfellow. Generative adversarial networks for text. https://go.

wwu.de/dcj3f, 2016. Accessed: 2022-10-19.

[26] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive
Computation and Machine Learning series. MIT Press, 2016.

[27] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, et al. Generative
adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

[28] Google. Tensorflow guide - word embeddings. https://www.tensorflow.
org/text/guide/word_embeddings, 2022. Accessed: 2022-09-16.

[29] G. L. Guimaraes, B. Sánchez-Lengeling, P. L. C. Farias, and A. Aspuru-
Guzik. Objective-reinforced generative adversarial networks (organ) for
sequence generation models. ArXiv, abs/1705.10843, 2017.

[30] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville.
Improved training of wasserstein gans. In NIPS, 2017.

[31] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang. Long text
generation via adversarial training with leaked information. ArXiv,
abs/1709.08624, 2017.

[32] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall
PTR, USA, 2nd edition, 1998.

[33] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9:1735–1780, 1997.

[34] G. Hoogsteen. A cyber-physical systems perspective on decentralized en-
ergy management. PhD thesis, University of Twente Enschede, 2017.

[35] F. Huszár. How (not) to train your generative model: Scheduled sampling,
likelihood, adversary? ArXiv, abs/1511.05101, 2015.

[36] ICS-CERT. Ics alert (ir-alert-h-16-056-01): Cyber-attack against
ukrainian critical infrastructure. https://www.cisa.gov/uscert/ics/

advisories/ICSA-10-272-01, 2016. Accessed: 2022-07-11.

[37] IEC. Telecontrol equipment and systems–part 5-101: Transmission proto-
cols–companion standard for basic telecontrol tasks. https://webstore.
iec.ch/preview/info_iec60870-5-101%7Bed2.0%7Den.pdf, 2003. Ac-
cessed: 2022-11-28.

85

https://go.wwu.de/dcj3f
https://go.wwu.de/dcj3f
https://www.tensorflow.org/text/guide/word_embeddings
https://www.tensorflow.org/text/guide/word_embeddings
https://www.cisa.gov/uscert/ics/advisories/ICSA-10-272-01
https://www.cisa.gov/uscert/ics/advisories/ICSA-10-272-01
https://webstore.iec.ch/preview/info_iec60870-5-101%7Bed2.0%7Den.pdf
https://webstore.iec.ch/preview/info_iec60870-5-101%7Bed2.0%7Den.pdf

Bibliography

[38] IEC. Telecontrol equipment and systems–part 5-104: Transmission
protocols–network access for iec 60870-5-101 using standard transport
profiles. https://webstore.iec.ch/preview/info_iec60870-5-104%

7Bed2.0%7Den_d.pdf, 2006. Accessed: 2022-11-28.

[39] International Energy Agency (IEA). Technology roadmap -
smart grids. technical report. https://www.iea.org/reports/

technology-roadmap-smart-grids, 2011. Accessed: 2022-07-11.

[40] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-
supervised learning with deep generative models. ArXiv, abs/1406.5298,
2014.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information
processing systems, 25:1097–1105, 2012.

[42] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[43] A. Lemay and J. M. Fernandez. Providing scada network data sets for
intrusion detection research. In CSET @ USENIX Security Symposium,
2016.

[44] C.-Y. Lin and S. Nadjm-Tehrani. Understanding iec-60870-5-104 traffic
patterns in scada networks. Proceedings of the 4th ACM Workshop on
Cyber-Physical System Security, 2018.

[45] H. Liu, Z. Zhou, and M. Zhang. Application of optimized bidirectional
generative adversarial network in ics intrusion detection. In 2020 Chinese
Control And Decision Conference (CCDC), pages 3009–3014, 2020.

[46] W. Luo, Y. Li, R. Urtasun, and R. S. Zemel. Understanding the effective
receptive field in deep convolutional neural networks. In NIPS, 2016.

[47] P. Matoušek. Description and analysis of iec 104 protocol. Faculty of
Information Technology, Brno University o Technology, Tech. Rep, 2017.

[48] P. Maynard, K. McLaughlin, and B. Haberler. Towards understanding
man-in-the-middle attacks on iec 60870-5-104 scada networks. In Inter-
national Symposium for ICS & SCADA Cyber Security Research, 2014.

[49] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli. A detailed inves-
tigation and analysis of using machine learning techniques for intrusion
detection. IEEE Communications Surveys & Tutorials, 21(1):686–728,
2019.

86

https://webstore.iec.ch/preview/info_iec60870-5-104%7Bed2.0%7Den_d.pdf
https://webstore.iec.ch/preview/info_iec60870-5-104%7Bed2.0%7Den_d.pdf
https://www.iea.org/reports/technology-roadmap-smart-grids
https://www.iea.org/reports/technology-roadmap-smart-grids

Bibliography

[50] Modbus Organization, Inc. Modbus messaging on tcp/ip implemen-
tation guide v1.0b. https://modbus.org/docs/Modbus_Messaging_

Implementation_Guide_V1_0b.pdf, 2006. Accessed: 2022-11-28.

[51] Modbus Organization, Inc. Modbus application protocol specification
v1.1b3. https://modbus.org/docs/Modbus_Application_Protocol_

V1_1b3.pdf, 2012. Accessed: 2022-11-28.

[52] W. D. Mulder, S. Bethard, and M.-F. Moens. A survey on the application
of recurrent neural networks to statistical language modeling. Comput.
Speech Lang., 30:61–98, 2015.

[53] NIST. Nist special publication 800-82 rev. 2: Guide to industrial
control systems (ics) security. https://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-82r2.pdf, 2015. Accessed: 2022-
07-11.

[54] Q. S. Qassim, N. Jamil, I. Z. Abidin, M. E. B. Rusli, et al. A survey of
scada testbed implementation approaches. Indian journal of science and
technology, 10:1–8, 2017.

[55] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. CoRR,
abs/1511.06434, 2016.

[56] P. I. Radoglou-Grammatikis and P. G. Sarigiannidis. Securing the smart
grid: A comprehensive compilation of intrusion detection and prevention
systems. IEEE Access, 7:46595–46620, 2019.

[57] R. S. Radvanovsky and A. McDougall. Critical Infrastructure: Homeland
Security and Emergency Preparedness, Third Edition. CRC Press, 2013.

[58] A. Remke, J. Chromik, A. Flosbach, and B. R. Haverkort. Smart grid
communication and cyber security. https://go.wwu.de/4g8bh, 2019.
Accessed: 2022-07-11.

[59] M. Ring, D. Schlör, D. Landes, and A. Hotho. Flow-based network traffic
generation using generative adversarial networks. Comput. Secur., 82:156–
172, 2018.

[60] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning represen-
tations by back-propagating errors. Nature, 323:533–536, 1986.

[61] R. A. Sarıtekin. seqgan-text-generation-tf2. https://github.com/us/

seqgan-text-generation-tf2, 2021.

[62] G. Seifert. scadapacketgan. https://zivgitlab.uni-muenster.de/g_

seif03/scadapacketgan, 2022.

87

https://modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
https://modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://go.wwu.de/4g8bh
https://github.com/us/seqgan-text-generation-tf2
https://github.com/us/seqgan-text-generation-tf2
https://zivgitlab.uni-muenster.de/g_seif03/scadapacketgan
https://zivgitlab.uni-muenster.de/g_seif03/scadapacketgan

Bibliography

[63] S. Semeniuta, A. Severyn, and S. Gelly. On accurate evaluation of gans
for language generation. ArXiv, abs/1806.04936, 2018.

[64] M. H. Shahriar, N. I. Haque, M. A. Rahman, and M. Alonso. G-ids:
Generative adversarial networks assisted intrusion detection system. In
2020 IEEE 44th Annual Computers, Software, and Applications Confer-
ence (COMPSAC), pages 376–385, 2020.

[65] D. Silver. Lectures on reinforcement learning. https://www.

davidsilver.uk/teaching/, 2015.

[66] D. Silver, A. Huang, C. J. Maddison, A. Guez, et al. Mastering the game
of go with deep neural networks and tree search. Nature, 529:484–489,
2016.

[67] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res., 15:1929–1958, 2014.

[68] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. ArXiv,
abs/1505.00387, 2015.

[69] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In NIPS, 2014.

[70] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
IEEE Transactions on Neural Networks, 16:285–286, 2005.

[71] R. S. Sutton, D. A. McAllester, S. Singh, and Y. Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In
NIPS, 1999.

[72] D. Upadhyay and S. Sampalli. Scada (supervisory control and data acqui-
sition) systems: Vulnerability assessment and security recommendations.
Comput. Secur., 89, 2020.

[73] E. W. Weisstein. Convolution. https://mathworld.wolfram.com/

Convolution.html, 2022. Accessed: 2022-12-15.

[74] E. Westring, A. Fundin, C.-Y. Lin, T. Gustafsson, and S. Nadjm-Tehrani.
Ricsel21: A dataset with network attacks targeting iec-60870-5-104 in
scada systems, 2021.

[75] R. J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8:229–256, 1992.

88

https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/
https://mathworld.wolfram.com/Convolution.html
https://mathworld.wolfram.com/Convolution.html

Bibliography

[76] Y. Yang, K. McLaughlin, T. B. Littler, S. Sezer, B. Pranggono, and H. F.
Wang. Intrusion detection system for iec 60870-5-104 based scada net-
works. 2013 IEEE Power & Energy Society General Meeting, pages 1–5,
2013.

[77] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence generative
adversarial nets with policy gradient. In AAAI, 2017.

89

Declaration of Academic Integrity

I hereby confirm that this thesis on GAN based Network Traffic Generation
for Communication Protocols used in SCADA Architectures is solely my own
work and that I have used no sources or aids other than the ones stated. All
passages in my thesis for which other sources, including electronic media, have
been used, be it direct quotes or content references, have been acknowledged
as such and the sources cited.

Gerrit Seifert, Münster, March 20, 2023

I agree to have my thesis checked in order to rule out potential similarities
with other works and to have my thesis stored in a database for this purpose.

Gerrit Seifert, Münster, March 20, 2023

91

Eidesstattliche Erklärung

Hiermit versichere ich, dass die vorliegende Arbeit über GAN based Network
Traffic Generation for Communication Protocols used in SCADA Architectures
selbstständig verfasst worden ist, dass keine anderen Quellen und Hilfsmittel
als die angegebenen benutzt worden sind und dass die Stellen der Arbeit, die
anderen Werken – auch elektronischen Medien – dem Wortlaut oder Sinn nach
entnommen wurden, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht worden sind.

Gerrit Seifert, Münster, 19. Januar 2023

Ich erkläre mich mit einem Abgleich der Arbeit mit anderen Texten zwecks
Auffindung von Übereinstimmungen sowie mit einer zu diesem Zweck vorzuneh-
menden Speicherung der Arbeit in eine Datenbank einverstanden.

Gerrit Seifert, Münster, 19. Januar 2023

93

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Application Area
	Industrial Control Systems
	SCADA
	Security Aspects
	Communication Protocols
	Modbus/TCP
	IEC 60870-5-104

	Related Work
	Conclusion

	Methodology
	Neural Network Basics
	Machine Learning
	Feedforward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Generative Adversarial Networks
	Deep Generative Models
	Adversarial Learning
	GAN Properties

	Reinforcement Learning Basics
	Reinforcement Learning Definition
	Policy Gradient Methods

	Related Work
	Conclusion

	Application of ML Techniques
	Adversarial Learning via Policy Gradient
	Basic Structure
	Monte Carlo Tree Search
	Action-Value Function
	Generator and Discriminator Update

	SeqGAN Implementation
	Generator Model
	Discriminator Model

	Training Algorithm
	Input Data and Processing
	Training Data Capture Files
	Data Processing

	Experiments
	Conclusion

	Discussion and Results
	Results
	Quantitative Analysis
	Assessment of Address Information

	Interpretation
	Discussion
	Training Instability
	Considerations

	Conclusion

