
Developing a robust communication system for a

distributed IDS

Jan Speckamp

August 16, 2023
Version: 1.0

Westfälische Wilhelms-Universität Münster

Department of Mathematics and Computer Science
Group of Safety-Critical Systems

Master Thesis

Developing a robust communication system for
a distributed IDS

Jan Speckamp

1. Reviewer Prof. Dr. Anne Remke
Department of Mathematics and Computer Science
Westfälische Wilhelms-Universität Münster

2. Reviewer Dr. Dietmar Lammers
Department of Mathematics and Computer Science
Westfälische Wilhelms-Universität Münster

Supervisors Prof. Dr. Anne Remke and MSc. Verena Menzel

August 16, 2023

Jan Speckamp

Developing a robust communication system for a distributed IDS

Master Thesis, August 16, 2023

Reviewers: Prof. Dr. Anne Remke and Dr. Dietmar Lammers

Supervisors: Prof. Dr. Anne Remke and MSc. Verena Menzel

Westfälische Wilhelms-Universität Münster

Group of Safety-Critical Systems

Department of Mathematics and Computer Science

Schlossplatz 2

48149 Münster

Contents

Nomenclature vii

List of Figures viii

List of Tables viii

1 Introduction 1

1.1 Motivation . 1

1.2 Objective and Research Questions . 2

1.3 Outline . 3

2 Background & Related Work 5

2.1 Smart Grid . 5

2.2 SCADA Systems . 8

2.3 Intrusion Detection Systems . 9

2.4 Resilient Communication . 10

3 Definition of the IDS 12

3.1 System Overview . 12

3.2 System Components . 13

3.3 System Model . 17

3.4 Information Archetypes . 18

3.5 Communication Models . 20

4 Analysis of the existing IDS Prototype 25

4.1 System Design . 25

4.2 Problems & Weaknesses . 27

5 Development of a new communication system 31

5.1 Assumptions . 31

5.2 Workflows . 32

5.3 Design Concepts . 32

5.4 Rumor-spreading Algorithms . 34

v

5.5 Motions . 38
5.6 Caller Validation . 44

6 Prototype 45
6.1 Requirements Specification . 45
6.2 Organization . 45
6.3 Documentation & Code Style . 46
6.4 Implementation . 46

6.4.1 Bootstrapping . 47
6.4.2 Local Monitor . 47
6.4.3 Neighborhood Monitor . 49
6.4.4 Challenges . 51

7 Evaluation 54
7.1 Testbed . 54
7.2 Evaluation scenarios . 55
7.3 Results . 62

8 Conclusion 63
8.1 Summary . 63
8.2 Research Questions . 64
8.3 Future Work . 66

Bibliography 68

A Appendix 73
A.1 Requirements Specification . 73
A.2 Data CD . 75

Declaration of Academic Integrity 79

vi

Nomenclature

API Application Programming Interface

C2 Command & Control Server

FLOSS Free/Libre Open Source Software

GM Global Monitor

GSM-R Global System for Mobile Communications - Railway

HLR Home Location Register

IDS Intrusion Detection System

LM Local Monitor

MAC Message Authentication Code

MSC Mobile Switching Centre

NM Neighborhood Monitor

OCSP Online Certificate Status Protocol

OPC-UA Open Platform Communications Unified Architecture

PEP Python Enhancement Proposal

PKI Public Key Infrastructure

RTU Remote Terminal Unit

List of Figures

2.1 Redispatch . 7
2.2 SCADA overview . 8

3.1 Schematic overview of IDS components 14
3.2 Example data encoded in JSON format 22
3.3 Example data encoded in Protobuf format 24

4.1 Schematic Overview of IDS components 25

vii

4.2 Overview of communication in the existing prototype 28

5.1 Bottleneck in fully random model . 36
5.2 Example of quasirandom rumor-spreading algorithm 37
5.3 Common control information included in all motions. 40
5.4 Definition of RegisterMonitor and RemoveMonitor motions. 41
5.5 Definition of RegisterConsumer and RemoveConsumer motions. 43

6.1 Local monitor status diagram . 49
6.2 Neighborhood monitor status diagram 50

7.1 Testbed structure . 54
7.2 Output of selected components in Scenario 1 57
7.3 Output of selected components in Scenario 2 59
7.4 Output of selected components in Scenario 3 61
7.5 Example output of LM when MOSAIK testbed is restarting 62

List of Tables

3.1 Requirements checked by LM . 16
3.2 Requirements of different data archetypes. 20

4.1 Configuration parameters of LM. 26

5.1 Workflows required for establishing the IDS network. 33

6.1 Overview of git repositories. 46
6.2 Configuration of LM. 48
6.3 Fulfillment of requirements specification. 53

7.1 Overview on hardware used in testbed 55

viii

Introduction 1
With the ongoing change from centralized hierarchical energy grids towards more
decentralized and smart energy grids, strategies for monitoring and securing such
grids pose a great challenge and form a large base for research. For this reason,
this master thesis extends the distributed process-aware Intrusion Detection System
(IDS) developed in previous work by Menzel [1] and Chromik et al. [2, 3].

1.1 Motivation

The power grid is one of the most prominent critical infrastructures in use today,
and its importance for every day life cannot be understated. Consequently, securing
the grid against malfunctions and attacks by malicious actors is of high importance.
This necessitates research into improving the security of the grid. For this, Chromik
et al. [2, 3] and Menzel [1] researched and iteratively developed a distributed
process-aware IDS, designed to monitor and protect the power distribution grid.
Chapter 3 will define and analyze the IDS in detail. As the IDS is designed for
integration into critical infrastructures, it needs to be able to handle real-world
conditions, such as malfunctions of components or attacks against the IDS itself
[4]. While previous research has shown promising results for monitoring of the grid
given idealized test scenarios [1, 2, 5], the resilience of the IDS itself has been left
out of scope until now. Especially the communication system, which constitutes a
core part of the distributed IDS, has not been analyzed in detail.

The need for a thorough approach when designing the communication system shows
when recent attacks on critical infrastructure such as the attack on the German train
network on the 8th of October 2022 are examined. Unidentified attackers halted all
train traffic in northern Germany by simply severing two fibre connections, which
cut off connection to two centralized components that are required for operation.
The communication network was not resilient enough for the operating conditions,
compromising its operation. Section 2.4 will elaborate further on this incident.

1

1.2 Objective and Research Questions

This thesis aims to achieve the objective:

Enhance the IDS to strengthen its resilience against internal malfunctions and
external threats by developing a robust communication system.

This will be achieved by answering three different research questions. They aim
to first formalize the system with special focus on communication aspects, expand
the IDS to handle internal malfunctions in a second step, and finally evaluate and
prototype defensive strategies to protect against external threats.

Research Question 1
How should communication inside a hierarchically-organized distributed IDS be

facilitated?

The distributed nature of the IDS naturally leads to the need for communication
between different components. A formalized model (referenced as base model) will
be developed that describes the IDS. It specifies what data needs to be exchanged
to allow for operation of the IDS and specifies workflows that should be used to
facilitate this communication. The three main factors that are evaluated are data
minimization, data integrity and efficiency. The base model describes the IDS given
perfect conditions, explicitly neglecting any operational issues that may arise in a
real-world scenario. Based on this model, the current prototype is analyzed and a set
of improvements compiled. At least all changes that are integral to the fulfillment of
this thesis will be implemented into the prototype.

Research Question 2
How can the IDS organize itself without the need for centralized management?

The IDS incorporates several different components, whose interaction with each
other forms the basis for the monitoring. These components are distributed across the
grid, forming a large and dynamic network. This poses challenges, as the components
need to be orchestrated, i.e. components need to find each other to connect and
exchange data. While this could be achieved using a central management entity,
using this approach negates many of the benefits. It inherently introduces a single
point of failure, compromising the resilience of the whole IDS. The IDS should

2 Chapter 1 Introduction

therefore be able to organize and manage itself without the need for such an entity,
while still supporting common workflows and dynamic reconfiguration of the system
during operation.

Research Question 3
How can the IDS be resilient against malfunctions and outside attacks?

While perfect conditions prevail in a test scenario, it is important to consider mal-
functions of components in an environment representing the real world. To handle
this, several core assumptions of the IDS need to be revised. Specifically assumptions
about availability, synchronization and topology shall be updated to reflect the real
operating environment more appropriately. As the IDS is designed to run on a physi-
cally distributed system, attack scenarios that partially compromise the network are
immanent. Such scenarios can for example constitute a Byzantine Generals Problem
[6], where some nodes inside a network act treacherous. Active defense of networks
against such conditions, e.g. by detecting and excluding such nodes from the active
system, could help to minimize the impact of such attacks [4].

Evaluation

A practical evaluation of changes implemented in the IDS will be done using a
physical testing environment based on the Raspberry Pi Platform. This extends
previous work by Großhanten [5] who showed the feasibility of running the IDS
on this distributed physical hardware. As the testbed currently only includes two
monitored subnets, the testbed is further expanded to allow for testing resilience in
more detail.

1.3 Outline

This thesis is structured into eight chapters. The first two chapters give an in-
troduction to the topic, state the problem, and identify research questions to be
answered.

The third chapter then formally defines the existing IDS on a conceptual level.
Based on this, requirements that need to be met by the communication network,
i.e. necessary workflows and data that needs to be exchanged, are identified and
described. Additionally, all data that is sent through the system is analyzed and

1.3 Outline 3

recommendations on the methodologies that should be used for transmitting the
different types of data are derived. To ensure this analysis is not influenced by the
already implemented prototype, and may have shortcomings and use suboptimal
methodologies, it is performed on the formal model only.

In chapter 4 the existing prototype is evaluated against the previously defined re-
quirements. This analysis focuses on areas that show potential for improvement,
specifically highlighting issues concerning some of the design choices at a fundamen-
tal level.

The fifth chapter remediates the identified weaknesses and problems of the existing
prototype by redeveloping the communication system used by the IDS. Rumor-
spreading algorithms are introduced and identified as a promising methodology for
implementing the communication system.

To show the feasibility of the newly developed system, the theoretical develop-
ments are then prototypically implemented. Chapter 6 details the newly developed
prototype and describes organizational aspects and the implementation.

The seventh chapter validates whether the previously developed prototype functions
properly and tests if the problems identified in chapter 4 are successfully remediated.
For this, the testbed introduced in previous research is expanded and different
scenarios are tested.

Chapter 8 gives a conclusion on the thesis and reflect on the research questions and
the answers that were given. Based on the results future steps are outlined and the
research results reviewed.

4 Chapter 1 Introduction

Background & Related Work 2
To establish a common understanding of the environment this thesis is based on,
as well as showing the relevancy of research into the topic, this chapter describes
and analyzes the most important factors that motivate this thesis. Additionally, it
establishes terminology and showcases the operating environment the system faces.
Section 2.1 first gives a short introduction to electrical power grids, specifically so
called smart grids. The focus lies on the historical development and the threats
critical infrastructures like smart grids face.

Afterwards, Supervisory Control and Data Acquisition (SCADA) Systems which are
very commonly used in electrical grids are introduced. As their name suggests these
systems are used for monitoring and controlling the grid and are therefore very
safety-critical. Previous attacks on such systems are sketched out, emphasising the
need for researching methods to secure them.

Section 2.3 then introduces Intrusion Detection Systems (IDS) which are the de-
facto standard for identifying and defending against attacks on digital systems.
The different methodologies that can be used as well as common approaches to
implement them are outlined.

The concept of resilient communication, whose implementation is the main goal of
this thesis, is introduced in the last section. Specifically, the necessity of a robust
communication network is showcased by analyzing attacks against critical infras-
tructures that exploited issues caused by the lack of resilience in the communication
network.

2.1 Smart Grid

The electricity grid is certainly one of the best-known examples of a critical infras-
tructure that is important across national borders and has been in daily operation
since its beginnings more than a century ago. As technology progressed over the
last century the demand for electricity steadily grew and the grid had to adapt
accordingly. This did not manifest in an abrupt change, as the grid is far too large

5

and complex to allow for this, but as a still ongoing gradual development. As
summarized by Palensky et al. [7] there are two main factors that characterize the
development of the grid:

• The energy generation and consumption got a lot more diverse. Especially
with the rise of renewable energy, e.g. solar energy or wind energy, the amount
of producers grew and they are now geographically distributed over a larger
area. Solar energy and singular onshore-windmills are very decentralized,
while offshore windparks are very centralized but quite far away from the con-
sumers. This starkly contrast the historical structure, which was characterized
by centralized power generation, e.g. by big nuclear or coal power plants, as
the sole producers of electric energy. These centralized power plants were
mostly located very near to areas with high energy consumption, only requir-
ing transport over small distances. This development makes the grid much
more complex to control and monitor, as it now forms a very heterogeneous
landscape instead of the classical small hierarchical structure.

• Information technology has developed immensely. Computing capabilities
increased manyfold and almost every device now has networking capabilities.
This made distributed computing affordable and provides a new paradigm of
controlling the grid, as it opens up many possibilities for monitoring compo-
nents and remote control capabilities can be vastly expanded.

These developments can be summarized as a development from a traditional power
grid towards a smart grid. It must be noted that those terms are very generalizing
and broad and do not constitute a clear distinction criteria. In reality, most systems
are hybrid, incorporating smart components as well as components that do not offer
any smartness [7, 8].

As those terms are very vague, different definitions exist. For the purpose of this
thesis, the definition by the the European Smart Grid Task Force is used, which
defines the smart grid as: “electricity networks that can efficiently integrate the
behaviour and actions of all users connected to it — generators, consumers and
those that do both — in order to ensure an economically efficient, sustainable power
system with low losses and high quality and security of supply and safety” [9].

Allowing for better control of the electrical grid is one of the main features that
can be achieved with increasing smartness of the grid. An example where this
control is needed is the requirement to keep the operation of the electrical grid
stable. To achieve this many control measures must be taken, depending on the
concrete situation. In addition to warranting an equilibrium between generation

6 Chapter 2 Background & Related Work

and consumption of electricity at any point in time to the millisecond, it must also
be ensured that all components, e.g. power lines, circuit breakers, switches and
transformers operate within their specifications and are not overloaded. This is
relevant with regards to renewable energies, as especially wind energy can only be
efficiently harvested in specific geographic locations. In Germany, this manifests
in the prevalence of wind energy in northern Germany including the north sea.
Unfortunately, northern Germany is not as densely populated as southern Germany
which therefore has higher energy demands, resulting in a big geographical distance
between producers and consumers. Whilst it would be ideal to simply transport
the energy to the regions that demand it, there is only a finite amount of transport
capacity available as the physical infrastructure has a maximum capacity [10].
Increasing this capacity requires construction of new high-voltage transport networks,
which is a long and expensive process.

Fig. 2.1.: Abstract view on Redispatch process [@11].

One of the measures deployed to ensure that power lines are not overloaded is
called Redispatch [@12, 13]. It is designed to ensure grid stability by allowing grid
operators to remotely control energy producers in the network, even if they are
owned by other parties. For example, it might be necessary to limit generation
of wind energy in northern Germany while starting up coal-fired power plants
in southern Germany. This ensures that power lines transporting the energy are
not overloaded, as the production is shifted closer to the consumers requiring less
transport capacity. All participants in the network that can produce more than 100
kW of power are legally required to participate in this process and allow for remote
control by the grid operator. Especially with renewable energies, whose production

2.1 Smart Grid 7

can only be controlled and forecasted to a certain degree, this process is carried out
continuously throughout the day.

It is expected that this trend of increasing complexity of the electrical grid, mainly
caused by the shift towards renewable energy, continues in the future. This necessi-
tates innovation and research into more measures to control and monitor the grid to
ensure stability despite the growing complexity.

2.2 SCADA Systems

Supervisory Control and Data Acquisition (SCADA) Systems are the de-facto stan-
dards for control and monitoring of critical infrastructures such as electrical grids.
They have been around since the 80s and have evolved and rapidly developed
with the changing industrial landscape and the increasing availability of computing
capacity. Initially, they were used in isolated networks, e.g. inside control centers of
(electrical) transmission system operators, where the attack surface was very limited
thus ideally serving the need for highest security and intrusion prevention. While this
might have sufficed in the past, nowadays an increasing amount of SCADA systems
is connected to the public internet. This increases the attack surface manyfold, so
security - which remains as the top priority for stable system operation - must be the
primary focus for protecting communication channels and preventing attacks [14,
15, 16].

Fig. 2.2.: Simplified overview of a SCADA system [14]

8 Chapter 2 Background & Related Work

Due to SCADA systems being used in critical infrastructures, they are prime targets
for attacks by malicious actors, whether politically motivated, during warfare or
motivated by financial gain through extortion [17, 18]. The latest examples for
successful attacks include the attack on the Ukrainian power grid in 2015 and
Operation Ghoul which infiltrated several systems in the middle east in 2016. The
history of attacks goes back as far as 1982, and as it is expected that SCADA systems
will stay around and evolve even further, research into the security of these systems
is needed [19, 20, 21, 22].

2.3 Intrusion Detection Systems

Intrusion Detection Systems (IDS) are extensively used in modern infrastructures
to provide continuous monitoring for protecting systems against threats. Different
methodologies exist for facilitating the detection of attacks with the following three
categories being the most prominent [23]:

• Anomaly-based: The anomaly-based approach is an iterative approach that tries
to automatically classify normal system behaviour and subsequently detect
any deviation from said behaviour, referred to as an anomaly, and mark it
as malicious. As there is no strict definition of what usual behaviour is, any
previously not observed behaviour may be classified as an anomaly. This
approach is therefore susceptible to false positives, as distinguishing benign
behaviour from malicious behaviour is difficult.

• Signature-based: The signature-based approach relies on identifying attacks and
threats to the system based on known signatures. The signature is a fingerprint
of the malicious behaviour, that uniquely identifies it. This can for example
be done by scanning program files for specific byte sequences or detecting
patterns that are commonly used by a malicious actor such as specific network
requests. This approach is well suited for defending many systems against
already known attacks, as signatures can easily be shared between systems. As
a fingerprint of the threat is required for detection, this method cannot defend
against novel attacks that have not been observed and classified yet. The most
common application of this are antivirus programs, which compare system
files and program behaviour against a curated list of known threats.

• Specification-based: Similar to the previous approach the specification-based
approach relies on information about the operating environment. Contrary to
signatures which fingerprint malicious behaviour, the specification fingerprints

2.3 Intrusion Detection Systems 9

the system behaviour. Any deviation from this behaviour can then be detected.
As this requires a complete and very precise specification of the system, the
applicability is limited to systems that can be specified in such a precise manner
with reasonable effort.

As each methodology has individual strengths and weaknesses, IDS often combine
methodologies. Additionally, novel approaches exist that do not clearly fit in any of
these categories but form their own categories. Furthermore, each methodology can
be implemented in different ways and with various different technologies, which
results in a very wide landscape of tools existing.

The IDS developed by Chromik [3], which will be evaluated further in this thesis,
fits into the category of specification-based, but uses a novel model-based approach
to alleviate certain problems of this methodology. Chapter 3.3 elaborates further on
the properties of this IDS and the different components used.

2.4 Resilient Communication

With a distributed system the need for communication between different system
components naturally arises. In systems that are physically close to each other, such
as systems running distributed inside a single datacenter, the components are usually
linked to each other via very reliable connections. Due to the physical proximity,
only a few middleware components (routers/switches) are needed and physical
connections are not exposed to any hazardous environments.

Since smart grid components are distributed physically, as energy producers and
consumers are geographically separated, this assumption of a reliable network does
not hold true anymore. Any communication between components needs to traverse
large distances and many traversed physical links are exposed to hazardous environ-
ments. Hazards include cable cuts, natural disasters, power outages, accidents or
malicious attacks against the physical infrastructure [24]. As many of these hazards
cannot be prevented, communication networks must be designed to handle such
failures e.g. by implementing fault-tolerance, self-healing and redundancy. In the
context of this thesis, the sum of all measures taken to prevent failures will be
referred to as resilience.

The necessity of designing the system with this resilience in mind becomes apparent
when recent incidents and attacks on critical infrastructure are examined. A good
example is the attack on the train network of Germany on Saturday the 8th of October

10 Chapter 2 Background & Related Work

2022. Unidentified attackers managed to halt all train traffic in the northern part of
Germany for three hours by severing two glass-fibre connections that were used for
the Global System for Mobile Communications Railway (GSM-R) [@25]. The system
is used for communication and coordination in the train network and is mandatory
for safe operation. Specifically the mobile switching centre (MSC) Hannover, which
is responsible for handling all GSM-R phone connections in northern Germany, was
physically cut off from the home location register (HLR). This register is required for
any phone call as it provides the uplink to the actual telecommunication network.
Whilst the HLR systems were deployed redundantly in physically separated locations,
Berlin and Frankfurt respectively, no backups were in place for when both are
inaccessible [@26]. The incident showed that this was not a sufficient measure and
the system was not resilient enough for the condition it operates in.

While in an ideal world all possible failures would be prevented, this is often not
possible in a real scenario. Usually only limited resources are available and any
measure employed needs to be closely evaluated to ensure its cost-effectiveness. The
maintainability of the system also needs to be ensured, i.e. the system should not
become too complex.

2.4 Resilient Communication 11

Definition of the IDS 3
This chapter defines the current IDS and analyzes workflows and communication
models that are needed for system operation. Based on this definition it evaluates
different approaches for implementing them and answers the research question:

How should communication inside a hierarchically-organized distributed IDS be
facilitated?

3.1 System Overview

The IDS which will further be evaluated was initially designed by Chromik et al.
[2]. The core idea behind the IDS is similar to the concept of the digital twin, which
became popular in recent years. The digital twin is based on the concept of “a
system that couples physical entities to virtual counterparts” [27] by creating a
digital mirror image of the physical world. One exemplary use case for this approach
is to try out processes, e.g. optimizations, that cannot be easily tested in the physical
world, in the virtual world first before actually deploying them. Another big use
case is the monitoring of physical processes. By mapping all physical measurements
into the virtual model, rules can be defined in a very intuitive way, e.g. defining
the rule “Tank A can hold a maximum of 5m3”, and can simply be checked against
the virtual twin of the system. Defining the rules in such a way is very natural and
therefore much easier than defining a rule that pertains to specific sensors and their
measurements.

The IDS uses a digital twin of the monitored smart grid and checks this model
against physical and safety properties that should always hold. These properties are
referred to as requirements. The physical requirements check whether the underlying
physical rules, e.g. the conservation of energy, hold. Safety requirements check that
the grid components are not overloaded, i.e. that every power line operates within
its specifications [28, 29].

The sole input to the IDS are measurements taken by physical sensors at various
points in the electrical grid. Using these measurements, the system evaluates the

12

digital model and may output a requirement violation if any of the requirement
checks fail. This requirement violation could then be used in various ways. Besides
acting as an alert for human operators that may intervene, it could serve as an input
to other automated systems that take appropriate control measures to restore a safe
system state. Chromik showed that this can for example be used to intercept control
commands sent out by a SCADA system, evaluate their effects in the virtual model,
and then possibly drop the commands before they are executed if they would lead
to an unsafe system state[3].

Contrary to a conventional IDS that is deployed as a central entity, e.g. inside
a network-wide firewall, the IDS is distributed across the network. This is not
a completely novel approach in computing, similar approaches are used in the
field of edge computing. The main goal is to reduce bandwidth usage by physically
moving computing resources close to the data producers. In the IDS this distribution
additionally serves multiple other purposes. Firstly, the division of the grid into
several independently monitored subgrids makes the computation of requirements
much more manageable, as less data required for each individual computation.
Secondly it makes the the system more resilient to attacks, as each distributed
component acts independently and no central target for attacks exists [1].

3.2 System Components

Figure 3.1 shows an overview of the individual components that form the distributed
IDS. Each components will be explained further in the following sections.

As illustrated in Figure 3.1, the distributed IDS consists of several components, most
importantly several Local Monitors and Neighborhood Monitors. The exact purpose
of these components and the flow of information between them will be explained in
detail in the following sections.

Local Monitor

The Local Monitor (LM) is the core component introduced by Chromik et al. [2] for
supervision of the grid. It is connected to a remote terminal unit (RTU) which is
directly integrated into the grid and provides sensor data from sensors connected
to the grid. Using this data the LM is then responsible for evaluating several
requirements, all requirements that are checked are shown in Table 3.1. As each
LM is connected to one RTU, only the grid that is accessible from the RTU can be

3.2 System Components 13

Neighborhood Monitor 1 Neighborhood Monitor 2 Neighborhood Monitor 3

Local Monitor 1 Local Monitor 2 Local Monitor 3

Border Region 1

Border Region 2

Fig. 3.1.: Schematic overview of IDS components. Dotted lines show which grid components
a monitor is monitoring. Arrows show the flow of sensor data through the system.

monitored. If the grid deploys multiple RTUs, each RTU is paired with an LM who is
responsible for the individual subgrid.

The IDS does not have strict requirements on how the connection to the RTU is
actually implemented, but it is very beneficial to implement this connection through
a physical link. This removes many sources for malfunctions and reduces the attack
surface, as a minimal amount of intermediary components is used. If this is not
possible and the RTU can only be remotely accessed via a network link, physically
locating the LM close to the RTU is beneficial as it reduces bandwidth, the risk for
any malfunctions of any intermediary networking components and the overall attack
surface.

Neighborhood Monitor

The original IDS by Chromik et al. [2] was extended by Menzel [1] who introduced
a second level of monitors that fill the gap between two subgrids that are monitored
by two LMs. Specifically, they monitor border regions between two subgrids. As
the name suggests this region includes all components that are at the border of a
subgrid and shared with the adjacent subgrid, e.g. a power line that connects the
different subgrids. Previously, as any LM only has access to the measurements in its
own subgrid, not all requirements could be checked for such power lines since this
requires data from all points along the power line.

This additional component is called Neighborhood Monitor (NM) and each LM is
assigned one associated NM that monitors all border regions of the subgrid. Figure

14 Chapter 3 Definition of the IDS

3.1 shows an example setup with three subgrids that have two border regions.
Each border region is independently monitored by two NMs, while the subgrids
themselves are only monitored by one LM.

The NM is not directly connected to any RTU to access sensor data, but receives all
data from the connected LMs. As it does not need access to any physical grid compo-
nents, it is entirely virtual and could be deployed anywhere. Despite this, it may be
beneficial to locate it physically close to the associated LM, as this reduces network
latency and removes potential sources of problems as less network components are
involved.

Global Monitor

The Global Monitor (GM) introduced by Menzel [1] handles safety requirements
that require global knowledge to be evaluated. An example of such a requirement
is a total power equation where the power consumed by all consumers must equal
the power generated by all producers. In a real scenario, this computation must
also include the electrical losses inside the system and account for inaccuracies
of measurements, further increasing the complexity. As the amount of knowledge
increases linearly with the size of the monitored grid, solving the calculation in
reasonable time quickly becomes impractical. The second problem is data availability,
since evaluating such a model would require up-to-date measurements at every
point in the system. This also becomes impractical with a large system [1]. The
GM, while formally specified and part of the system, will therefore not be evaluated
further in this thesis and left out of scope in the prototypical implementation.

Supplementary Components

In addition to the monitors themselves, several additional components are needed
to utilize the system in any meaningful manner. Detecting a requirement violation
inside a monitor is only the first step, actually utilizing this information is equally
important. For this, supplementary components are needed that form the data
consumers of the system, the destinations the generated information flows to. These
components can be categorized into several classes, each serving a different purpose.
For the scope of this thesis the analysis of supplementary components is limited to
the following categories, while components that perform additional tasks may be
added in further expansions of the IDS.

3.2 System Components 15

ID Description

1
For every bus:
The sum of incoming currents equals the sum of outgoing currents

2
For every bus:
All voltages measured at the bus are equal

3
For every powerline:
If the line contains an open switch, no current must flow

4
For every powerline:
Current and voltage are the same at all points

5a
For every power generator:
Measured power value equals current * voltage

5b
For every power consumer:
Measured power value equals (-1 * current * voltage)

6a
For every transformer:
Outgoing voltage equals incoming voltage / transformation ratio

6b
For every transformer:
Outgoing current equals incoming current * transformation ratio

7
For every powerline:
Current does not exceed defined threshold

8
For every powerline:
Voltage is inside defined reference threshold

9
For every fuse + relay:
Component is functional

10
For every fuse + relay:
Trigger current is not exceeded

11a
For every transformer:
Outgoing reference voltage is inside threshold

11b
For every transformer:
Outgoing measured voltage is inside reference threshold

12
For every power consumer:
Consumer measures positive voltage

14a
For every meter:
Current is inside threshold

14b
For every meter:
Current is inside threshold

15a
For every interlock:
Appropriate number of switches are connected

15b
For every interlock:
Maximum capacity of powerlines matches required current

Tab. 3.1.: Requirements checked by the LM [1]. Grey marks physical properties of the
system that should always be fulfilled. Blue marks safety properties that must
hold for safe operation.

16 Chapter 3 Definition of the IDS

• Logging:
Logging systems are tasked with periodically capturing all system parameters.
They are usually not actively used during normal operation, but logging infor-
mation is used as an analytical tool after unexpected circumstances happened.
It can also be used for measuring and tuning system performance, e.g. by
correlating measurements with generated alerts to validate that all alerts were
warranted or analyzing the system to identify bottlenecks and other issues.
The granularity of the logging can vary heavily from logging each individual
sensor measurement to only logging fatal exceptions, mainly depending on
the capabilities provided by the implementation.

• Monitoring:
Monitoring systems are tasked with monitoring the system in near-real-time.
They primarily collect information about the physical host system itself such as
system load, disk usage or uptime and do not interact with the business logic
of the system itself.

• Output:
Output components receive requirement violations or other detected events in
order to further process them in various ways. This can include visualizations,
alerting systems that send alerts to operators or autonomous systems that may
then issue control commands to stabilize the grid, e.g. by shutting off systems.

As these components have very specialized requirements, dedicated technology
stacks should be used for implementing such components. Examples for open-source
software that is commonly used for such use cases is the Elastic Stack1 for log
analysis, or Apache Kafka2 for stream processing of dataflows to various different
consumers. How these established software software-stacks can be integrated into
the IDS depends on the capabilities of the specific software. It therefore needs to be
assessed individually and is out of scope of this thesis.

3.3 System Model

The following chapters will define the formal IDS system. Using the formalized grid
model by Menzel [1], the IDS can be interpreted as a tuple:

IDS = (ω, L, N , G, C)
1https://www.elastic.co/elastic-stack/
2https://kafka.apache.org/

3.3 System Model 17

https://www.elastic.co/elastic-stack/
https://kafka.apache.org/

with:
ω = {o | o ϵ Ω3} set of electrical subgrids
L = set of Local Monitors (LM)
N = set of Neighborhood Monitors (NM)
G = Global Monitor (GM)
C = set of connections between components

While the structure of any specific IDS is dependent on the underlying grid itself,
the following properties always hold:

• |L| = |ω| → the number of LMs equals the number of subgrids

• |N | = |L| → the number of NMs equals the number of LMs

• |C| >= |L| → the number of connections is at least as large as the number of
LMs (as each LM needs to connect to at least one NM)

Based on this definition of the IDS, the data that needs to be exchanged between
components can be identified and categorized in the following section.

3.4 Information Archetypes

As it is common in distributed systems, various points of data must be exchanged
between the components on a regular basis in order to function properly. This data
can be categorized into several classes, referred to as archetypes, where each has
different requirements. Three generally applicable criteria to be fulfilled by each
data exchange can be established: authenticity, time criticality and minimization.

Authenticity summarizes the security requirements of the data. While data should
always be transmitted over secure channels, additional measures can and may
need to be employed to prevent attacks not covered by a secure channel alone.
Especially when assuring data integrity it is necessary to augment the original data
with additional metadata, such as message authentication codes (MAC). Validating
the origin of the data by checking whether it is trustworthy might also be required.
While fully securing every message and ensuring full integrity and authenticity is
technically possible, the associated cost, such as the time required for performing
the validation, needs to be critically evaluated. Especially when querying of external

3Ω = electrical grid. For the full definition see [1]

18 Chapter 3 Definition of the IDS

services is required, e.g. verifying certificate information, the time required quickly
exceeds reasonable bounds.

Time criticality of the data refers to the maximum delay before messages are received.
Especially when data is used as a base for decisions, e.g. automatically triggering
workflows in autonomous systems, near-real time transmission is important and
should be prioritized. This may come at the cost of more messages being transmitted,
as messages cannot be bundled together, or reduced security, as verification steps
might need to be skipped if they cannot be performed fast enough.

Minimization of data refers to the need for efficient encoding of the information
to be transmitted. Especially if the transfer uses a network with limited resources
such as a very low bandwidth, efficient encoding is required as to not overload
the network. There is always a tradeoff between the expressiveness and flexibility,
e.g. the capability to include additional information and the size of the message.
Section 3.5 elaborates further on the benefits and drawbacks of different encoding
schemes.

The three archetypes that are present in the IDS can be categorized as follows:

• Configuration data:
Configuration data includes all data that is used for managing the system. This
includes certificates, addresses of components, configuration for parametrized
requirements (threshold values) and information about the monitored subgrid.
This data does not change often and therefore only needs to be transmitted
infrequently. As configuration data has severe impact on the system, the
authenticity of the data needs to be assured.

• Sensor data:
Sensor data describes all data that is used as an input to the monitoring system
during operation. This data is mostly made up of sensor measurements that
are provided by an RTU. Since these measurements serve as the sole input to
the entire IDS, transmission is very time-critical. Any delay in transmission
will subsequently delay system operation and therefore the detection of re-
quirement violations. Additionally, this data is assumed to always be present
and needs to be transferred very frequently. Therefore, minimization of this
data, reducing it to the minimum size possible e.g. by filtering out data not
needed by the other party, is required to minimize the amount of data that
needs to be transferred via the network.

• Event data:
Event data is data that is actively produced by the system. This includes

3.4 Information Archetypes 19

monitoring data about the system state, requirement violations and other
events detected by the system such as detected abnormalities or attacks. As
the IDS is supposed to monitor the network in real-time and this data is the
main output of the system, it is time-critical. Minimization of the data is less
important, because these events are presumed to be a deviation from normal
operations and only generated infrequently.

Table 3.2 summarizes the requirements by each data archetype.

authentic time-critical minimized

Configuration Data yes no no

Sensor Data partial yes yes

Event Data yes yes no
Tab. 3.2.: Requirements of different data archetypes.

3.5 Communication Models

Since the IDS is a reactive and data-driven system, where all outputs are directly
caused by a given input, no action can be taken without first receiving input data.
This inherently creates a problem, because data is generated at a single point but
required as input at multiple points in the system. Specifically, the LM commu-
nicating with an RTU is the sole producer, and all neighboring NMs require this
data. It therefore needs to be distributed inside the system in a secure manner,
while preserving accuracy and minimizing delay [1, Section 3.3]. Communication
between components for the purpose of data sharing is therefore a central task that
needs to be handled by the system. To perform this communication, defining a
communication strategy is crucial. The following section will elaborate further on
the different strategies that could be used.

Communication strategy: Push vs. Pull

One of the core requirements is the time-criticality of communication. This is mostly
influenced by the communication strategy, which governs the way how data is
transferred. Communication strategies can generally be classified into push-based

20 Chapter 3 Definition of the IDS

and pull-based strategies. Both have strengths and weaknesses and are suited for
different kinds of data and different environments.

In pull-based strategies, the communication is initiated by the party that currently
does not have the desired information. This is done by sending a request for data
to the other party, which then responds with the data if it is available. This process
can be described as pulling the data, as the uninformed party performs the active
part, and the informed party does not perform any action other than responding
to requests. This mode is very common, the most prominent example is surfing
the internet - when instructed to access a website the browser actively requests the
relevant data from a remote system.

This strategy is well suited for when the communicating parties do not know each
other beforehand, because they require any communication other than the request
for data itself. It is also well suited when always-present data is requested, as
the request can always be fulfilled immediately. Conversely, the efficiency of this
approach decreases if the data is not available when the request is received, as in
this case the request does not return the queried information and the requesting
party needs to repeat the request at a later time. Especially if the data is only
available irregularly, e.g. because it is generated by an external system or generated
in irregular intervals, many of the requests do not result in a response containing
the desired information, but still require resources and bandwidth to handle.

In a push-based strategy this flow is reversed. Data is not requested by an uninformed
party, but instead proactively pushed to it by the party providing the data. This is
done by first establishing a permanent communication channel that is subsequently
used for transferring the data. This mode is well suited when the two parties
know each other and the data to be transferred is either frequently changing or not
guaranteed to be available, e.g. because it depends on a process that takes a variable
amount of time. In such cases this approach is much more efficient, as it avoids
unnecessary requests. The push-based system is especially well suited when data
transfer is triggered by an event on the side of the providing party, as it minimizes
any delay.

Evaluation for the IDS

Table 3.2 shows the requirements regarding the time-criticality of the different
archetypes present in the IDS. Transmission of configuration data is neither time-
critical nor dependent on any dynamic processes and is therefore agnostic to the
mode that is used for transmission. Sensor and event data on the other hand is

3.5 Communication Models 21

especially time-critical, as it forms the input and output of the whole IDS system.
Sensor data is always generated by the LMs and flows to the NMs, while event data
is generated at the monitors and flows to consumers. The generation of sensor data
is dependent on external systems and only the LM requesting the data from the RTU
knows when new data is available. Similarly event data, albeit originating inside
the system itself, is only generated sporadically with variable time intervals. These
factors heavily favor transmission via a push-based model, as only the data-providing
side knows when data is available that warrants a transfer.

Data Encoding

Whilst the communication strategy elaborated on earlier defines how data is trans-
ferred, the data encoding governs what is actually transferred. While the goal of
communication is to transfer some information between two parties, the network
layers work on a simple stream of bytes without any connotation as to what informa-
tion these bytes hold. Transferring information between two parties therefore needs
encoding and serializing to bytes by the providing party, and then deserialization
and decoding by the receiver. To successfully do this, both parties need to agree
on an interpretation of the raw bytes being transferred. Different formats exist for
facilitating this encoding and decoding.

1 {
2 "id": "ea4ab234 -254b -498e-b0e4 -848903666 df7",
3 "value": 123.5 ,
4 " parameters ": [
5 {
6 "type": "depth",
7 "value": 13,
8 "unit" : " metres "
9 },

10 {
11 "type": " accuracy ",
12 "value": 23,
13 "unit": "not defined "
14 }
15]
16 }

Fig. 3.2.: Example data encoded in JSON format. Using control characters such as double
quotes, curly brackets and square brackets, the schema of the data is directly
embedded. Additionally, key-value pairs are used to organize the individual
values.

The formats can mainly be distinguished into text-based and binary-based formats.
Among the text-based formats, the most prominent and commonly used formats

22 Chapter 3 Definition of the IDS

are JSON and XML. The main feature is that in such formats the payload, the data
actually transferred between two parties, contains both the information itself as well
as its structure. This structure is also referred to as schema. Embedding it allows for
flexibility because as the schema can be different in each data package. No previous
agreement between the two communicating parties is needed. Especially for use
cases where the transferred data is very dynamic, e.g. because it depends on user
input, or in cases where the two communicating parties do not know each other,
these properties are very helpful. The drawback is, that much more data needs to
be transferred, as the schema is sent with every transfer even if it never changes.
The specific overhead this incurs depends on the specific schema used, it is generally
preferred to have small schemas with large sections of data.

An alternative to text-based formats are binary-based formats. The most commonly
used formats among them are Protobuf and Avro. Additionally various different
specialized formats exist, such as IEC 60870-5-1044, that is commonly used for
SCADA/RTU communication in power grids, or framework-specific formats, such
as the OPC-UA Binary Format5 that is used in the OPC-UA framework. The main
difference to text-based formats is the strict separation of schema from data. Instead
of sending the schema with each transfer, both parties agree on a schema beforehand
and then only send the raw information. Figure 3.3 shows an examplary schema
with encoded data. The advantage of this approach is that it allows for very efficient
encoding, as no superfluous data will be transmitted. The drawback is that, due to
the static nature of predefined schemas, changing them, i.e. adding or removing
properties during runtime, is not easily possible. Additionally, agreeing on a schema
beforehand requires either knowing the partner or communicating with them before
actually transferring data. This exchange only needs to happen once and the
resulting overhead amortizes with the subsequent transfers. The specific overhead
therefore is dependent on the complexity of the schema and the actual number of
transfers that utilize the schema.

Evaluation for the IDS

As pointed out in section 3.4, the IDS has three different archetypes of data which
are all internal to the IDS and exchanged between components that know each
other. These circumstances favor the use of a binary-based format. For event data
it could be argued that flexible data should be included, e.g. information about
the specific values that triggered a requirement violation if they constitute a heavy

4https://www.ipcomm.de/protocol/IEC104/en/sheet.html
5OPC-UA file format description

3.5 Communication Models 23

https://documentation.unified-automation.com/uasdkhp/1.1.1/html/md_opcua_binary_fileformat.html

1 Schema:
2 syntax = " proto3 ";
3
4 message Request {
5 message Parameter {
6 string type = 1;
7 uint32 value = 2;
8 string unit = 3;
9 }

10
11 string id = 1;
12 float value = 2;
13 repeated Parameter parameters = 3;
14 }
15
16
17 Data (base64 encoded for readability as it contains unprintable characters):
18 CiRlYTRhYjIzNC0yNTRiLTQ5OGUtYjBlNC04NDg5MDM2NjZkZjcVAAD3QhoRCgVkZXB0

aBANGgZtZXRyZXMaGQoIYWNjdXJhY3kQFxoLbm90IGRlZmluZWQ =

Fig. 3.3.: Example data encoded in Protobuf format. The schema of the data is not coupled
with the data but seperate. The data itself only contains values, decoding it
requires knowledge of the schema.

deviation from the expected values. As currently none of the checked properties
warrants such a handling, it will be omitted for simplicity. If at a later point this is
required, embedding a text-based detailed description of the violations inside the
binary format is possible.

24 Chapter 3 Definition of the IDS

Analysis of the existing IDS
Prototype

4
The following chapter analyzes the existing prototype of the IDS. It mainly focuses
on the differences between the actual implementation and the theoretical model as
defined in the previous chapter. The prototype was developed as part of a project
seminar at University of Münster and is based on the work by Menzel [1].

4.1 System Design

Since the IDS is designed as a distributed system, the existing prototype is also
organized as a multi-component infrastructure. Figure 4.1 shows all components
currently used by the prototype [cf. 5, 30].

Command & Control Server

Neighborhood Monitor 1 Neighborhood Monitor 2

Local Monitor 1 Local Monitor 2

RTU RTU

Fig. 4.1.: Schematic overview of components used by the current IDS prototype as used by
[5, 30]

.

The monitors are implemented close to the conceptual model (cf. section 3.3). They
communicate directly via dedicated connections. There is one additional component
present, the Cmmand & Control server (C2). It is connected to all IDS components

25

and provides supplementary services (cf. section 3.2) for the IDS. The individual
components are analyzed further in the following sections.

Local Monitor & Neighborhood Monitor

The monitors are implemented very close to the conceptual models as defined in
Section 3.2. The connection to the grid is realized by using a pull-based approach to
read out sensor values from the RTU based on a timer. The Modbus 3 protocol is used
for communication with the RTU Simulators used in the testbed, as this is currently
the only supported protocol. To initialize and run an LM, various configuration
parameters need to be supplied. These are shown in Table 4.1.

Key Description

IDS_C2_ADDRESS OPC-UA address of the C2 server

IDS_OPC_DOMAIN OPC-UA domain

IDS_LM_OPC_ADDRESS OPC-UA adress of this component

IDS_NM_CERT Certificate of associated NM

IDS_C2_CERT Certificate of C2 server

IDS_CERT Certificate of LM (own certificate)

IDS_PRIVATE_KEY Private key for certificate

IDS_PRIVATE_KEY_PASSWORD Password for private key

IDS_RTU_MODBUS_HOST Hostname of RTU

IDS_RTU_MODBUS_PORT Port of RTU

IDS_RTU_CONFIG_FILE JSON configuration of RTU
Tab. 4.1.: Configuration parameters of LM.

Command & Control Server

The Command & Control (C2) server is a component serving as a central manage-
ment service for the IDS. It is responsible for management and organization of
components, capturing alert data, providing data to the visualization and monitoring
the system as a whole. It thereby bundles all supplementary components (cf. section

26 Chapter 4 Analysis of the existing IDS Prototype

3.2) into a monolithic application and constitutes the sole data consumer for all
generated information in the entire system.

Communication

The prototype uses the OPC-UA framework for facilitating the communication be-
tween components. Components connect directly with each other without the
presence of a server, forming a peer-to-peer network. Figure 4.2 shows all the
different messages that are exchanged and how the exchange is triggered. Three dif-
ferent methodologies are used for facilitating data exchange: traditional pull-based
reading, push-based exchange via events and remote procedure calls (RPC). These
are triggered either based on a timer or by external events. It can be noted that most
of the communication takes place between the C2 server and the monitors, while
the communication between monitors themselves is limited to exchanging sensor
data.

4.2 Problems & Weaknesses

The existing system has several weaknesses that are elaborated on in this section.
The two main factors, the reliance on centralized components and the assumptions
the IDS makes about the operating environment, will be analyzed further in this
section.

Centralized components

The biggest weakness with regards to resilience of the system is the centralization
introduced by the C2 server. While the monitoring itself is performed in a distributed
fashion, all management of the system as well as output handling is done on a
centralized server. This includes the identification of border regions, assigning
of monitors to regions, collecting detected events and collecting monitoring data.
This inherently introduces a single point of failure as an active connection to this
single server is required at all times. Any problems with this component or the
infrastructure around it will have detrimental effects on the system, up to the point
of a total system failure. While various redundancy strategies could be developed to
guarantee high availability, they all heavily increase the complexity of the system
and rather serve as a temporary workaround than as a permanent solution.

4.2 Problems & Weaknesses 27

C
om

m
an

d
&

C
on

tr
ol

Se
rv

er

N
ei

gh
bo

rh
oo

d
M

on
it

or

Lo
ca

lM
on

it
or

R
TU

configure
OPC-UA Event (event)

OPC-UA Read

registerNM
OPC-UA RPC (startup)

System Statistics
OPC-UA Read (event)

Heartbeat
OPC-UA Event (timer)

LogEvent
OPC-UA Event (timer)

ReqViolationEvent
OPC-UA Event (event)

RTUDataEvent
OPC-UA Event (event)

OPC-UA Read

(de-)registerNM
OPC-UA RPC (event)

Sensor Data
Modbus (timer)

registerLM
OPC-UA RPC (event)

Heartbeat
OPC-UA Event (timer)

LogEvent
OPC-UA Event (timer)

ReqViolationEvent
OPC-UA Event (event)

Fig. 4.2.: Overview of all communication workflows currently used in the existing prototype.
Arrow directions indicate the initiator of the request.

28 Chapter 4 Analysis of the existing IDS Prototype

The existence of a centralized component also needs to be critically examined
when the scalability of the system is evaluated. With an increasing amount of
distributed components, centralized components need to scale accordingly. This
inherently forms a bottleneck in the system, as the vertical scalability of any system
is limited due to technical constraints. As shown in Section 2.4, reliance on a central
component also introduces a very lucrative target for potential attacks.

Communication channels

As described earlier the OPC-UA Framework is used for facilitating all communi-
cation. The suitability of the framework for the task has been elaborated on by
Deuschle et al. [30]. But as Figure 4.2 illustrates, there is no general policy on
which communication methodology is used for which data. A multitude of different
workflows are used, which results in a very complex system. This leads to suboptimal
results, e.g. when new data is available the NM receives an event from the LM and
then subsequently needs to manually pull the data. This delays data receival as
additional requests need to be made, without providing any benefits.

Assumptions

The system makes several assumptions regarding the operating circumstances of the
IDS that are unlikely to hold up in a real-world scenario:

• Temporal Synchronization
As the components of the IDS are designed to run distributed on physical
hardware, there is no common source for real-time timestamps. With the
presence of clock drift this can cause desynchronization between clocks and
cause errors. In the context of the IDS, synchronization between components
is especially critical as the hierarchical structure of the IDS mandates that
measurements from different physical systems are compared during evaluation
of requirements. Großhanten [5] has already observed such effects. During
the test scenarios, desynchronization between components occured. Due to
random delays in data transmission, amplified by the lack of synchronization,
sensor values from different timestamps were compared. This caused false
positive requirement violations. This is a common issue for distributed systems
and different strategies exist to mitigate the impact on actual systems, e.g.
Google uses a clock that includes uncertainty in accuracy when synchronizing

4.2 Problems & Weaknesses 29

datacenters. Another mitigation is the usage of logical clocks such as Lamport
clocks that are independent of real time [31, 6].

• Static & Predefined Topology
Currently the IDS is based on pre-calculated configuration files, which requires
full knowledge of the grid and all IDS components prior to starting the IDS.
As already identified by Menzel: “[The system assumes] that the static data
was safely exchanged before the start of the monitoring system and during
operation only the dynamic data, the data generated from measurements,
needs to be communicated” [1, Section 3.3]. While this may be sufficient for
simple proof of concept scenarios, it idealizes the real environment. Changes
in the topology, e.g. removal or addition of components when the network is
restructured, are expected and must be handled without requiring a complete
shutdown of the IDS.

Certificate handling

All communication between components is encrypted using common public key
cryptography. To do this the current implementation requires the certificates of all
communication partners to be known before communicating. For example, every
LM requires the certificate of the C2 server as well as the certificates of all relevant
NMs (see Table 4.1). While this might not be a problem for the limited scope the
IDS has been tested on, this approach does not work well when expanding the IDS
to more monitors.

Furthermore, this approach does not work when the network topology is not static.
As certificates of all connected components need to be known when deploying a
monitor, supplementary components that are added after a component has been
deployed can never be connected. This is a conceptual problem and there is no
remediation for this using the current implementation.

The implementation currently accepts all certificates without checking their expiry
date or validating the authority signing the certificates. Additionally, only one NM
certificate can be configured, forcing all NMs to use the same certificate. Both
of these problems are not conceptual and could be remediated in the existing
prototype.

30 Chapter 4 Analysis of the existing IDS Prototype

Development of a new
communication system

5

To remedy the weaknesses of the currently used communication system and en-
able further enhancements, the following chapters incrementally develop a new
communication system for the IDS. The main focus of this new system will be its
robustness against malfunctions and attacks while preserving all functionality the
current communication system offers. The new system is designed to be expandable,
allowing for future development of additional features, e.g. active defense against
threats or specialized monitoring components.

5.1 Assumptions

Several assumptions need to be made to limit the scope for this thesis, mostly
concerning the operating environment of the IDS. A detailed analysis checking
whether all assumptions hold true in real-world environments is out of scope for this
thesis, but it can reasonably be assumed that they do.

The first assumption is that each element in the network has a universally unique
identifier (UUID) as specified by RFC 4122 [32]. This extends to components not
actively managed by the system itself such as meters, substations or power lines.
As identifiers are the base used for identification and configuration of components,
duplicate identifiers would lead to non-determinism and may create invalid system
configurations. This must also hold for all smart grid elements, as otherwise two
IDS components could never decide if they are looking at the same component.
Whether this identifier is predefined based on physical properties, e.g. by using a
serial number of a device, or is created via an algorithm is not relevant. If programs
are used to automatically generate the identifier it is necessary to assure that this is
deterministic and the identifier stays the same for a given element.

The second assumption is that all deployed components of the IDS are networked
and can reach to all relevant other components via this network. Since the IDS is
designed as a distributed system to be deployed on physically separate hosts, having

31

network access is mandatory to allow for any coordination between components.
The system is agnostic to how networking is implemented, it could be done via
dedicated network cables, broadband, other wireless network technologies, e.g.
LoRaWan1 or other means as long as bidirectional point-to-point data transfer is
supported.

The last two assumptions concern the implementation of cryptography in the IDS.
To perform authorization and authentication various cryptographic methods are
necessary. It is therefore assumed that each component has capabilities to store
and handle required data, e.g. secure storage of private keys. The availability of
dedicated cryptography modules, e.g. the capability to use full disk encryption,
the existence of a trusted platform module (TPM) or secure sources of entropy for
random number generation, is dependant on the specific hardware used [5, chapter
4.3.2]. Furthermore, the usage of certificates is dependent on the existence of a
trusted public key infrastructure (PKI) which is also not directly part of the IDS and
is assumed to exist outside of the system.

5.2 Workflows

The primary task of the IDS is the detection of requirement violations. Being
designed as a self-organized system without a central management component, the
IDS needs various workflows to facilitate the management of the network. The most
basic example is the construction of the network itself, specifically finding other
components and establishing connections to them.

While various workflows are possible, for a first step all workflows that are required
for basic system establishment and operation, referred to as core workflows, are
specified. These can later be expanded on, e.g. by workflows that help to secure
the network or provide additional remote monitoring and controlling capabilities.
The core workflows that are required are primarily the addition and removal of
components.

5.3 Design Concepts

Based on the previous analysis (c.f. chapter 4.2) multiple core concepts shall be
respected when developing and implementing a new communication system:

1https://lora-alliance.org/

32 Chapter 5 Development of a new communication system

Identifier Description

AddLM Adds a new LM

RemoveLM Remove a connected LM

AddNM Adds a new NM

RemoveNM Removes a connected NM

AddSC Adds a new supplementary component

RemoveSC Removes a connected supplementary component
Tab. 5.1.: Workflows required for establishing the IDS network.

• Fully distributed:
The system should not use centralized components. If certain components are
mandatory, e.g. for providing configuration data, they must be distributed as
well to assure that failure of a singular component does not pose a problem to
the overall system.

• Robust:
The system should anticipate component faults, network errors, commission
and decommission of components and all other workflows that are expected
in a real-world scenario. As described in section 5.2 such events are to be
expected and may not hinder the system more than required.

• Dynamic topology:
The system should not require a predefined static component topology but
instead allow for dynamic reconfiguration of the system. This includes addition
or removal of monitors and output components as well as redefinition of border
regions between monitors.

• Modular framework:
A multitude of components could be used in the system, e.g. various data con-
sumers that implement analysis and logging of events. As they all require the
same functionality to interface with the IDS, it should be provided in reusable
libraries. This heavily simplifies the development of additional components,
as no in-depth knowledge about the inner workings of the communication
network is required for the development of these new components.

Since the system needs to work without the presence of a central management
entity and all communication is done in a peer-to-peer paradigm, any coordination

5.3 Design Concepts 33

between individual components, e.g. finding local monitors providing data, needs to
be initiated by the components themselves. This poses multiple challenges that will
be elaborated on further in this section.

The first problem is that connecting to other components requires knowledge of
the address of the communication partner. With centralized structures this is not a
problem as the addresses are fixed and known beforehand. Due to the decentralized
and dynamic structure of the IDS there is no static list of addresses. Connecting
to a component therefore first requires a discovery step to determine the network
address of the communication partner.

In the context of the IDS a second problem arises that amplifies the first one. As
monitors do not even know the name of their communication partner, but only that
they want to communicate with their direct neighbors. These are only identified
by the presence of shared power lines (cf. section 3.2). Since only the monitors
themselves have knowledge about their individual subgrid and the power lines
within, evaluating whether two monitors are neighbors can only be done by the
individual monitors themselves.

In order to solve these two challenges two approaches will be taken: To allow for
identifying communication partners, all changes to the system, e.g. registration or
removal of components, will be encapsulated inside a dedicated structure referred
to as a motion. Section 5.5 will elaborate on their structure and properties. These
motions will then be distributed to all network components using a rumor-spreading
algorithm which will be described in more detail in Section 5.4. This implements the
aforementioned discovery step, as it lets each IDS component individually decide
whether it needs to act to any system change.

5.4 Rumor-spreading Algorithms

While many ways to broadcast a message through a network exist, this thesis focuses
on rumor-spreading (also referred to as gossiping) algorithms. These algorithms are
well suited for the use case of the IDS and have been used for similar problems in
smart grids before. The core idea is that a piece of information, referred to as message,
propagates incrementally through the whole network similar to how gossip spreads
in a human social group (e.g. a neighborhood or social circle). All participants in the
network exchange messages with their respective neighbors, informing each other
about any new messages they received since the last exchange. The communication
is triggered by the participants themselves and is not synchronized, resulting in rather

34 Chapter 5 Development of a new communication system

sporadic communication. This closely mimics the human behaviour of gossiping,
which is also not centrally organized but happens naturally during interaction. As
the communication happens asynchronously and over many different individual
connections, any message is duplicated manyfold within the network. This provides
a very robust and fault-tolerant method to share information with the whole network
because failed connections, loss of messages, or other faults can often be tolerated
[33]. This fault-tolerance cannot be established without consequences, in this case a
tradeoff between redundancy and an increased volume of transmitted data. Due to
the fact that there is no clear and direct routing for any message, a single participant
receives every message multiple times via different connections, increasing the
overall volume of transmitted messages.

This rumor-spreading paradigm has been intensely researched since the 80s for
various use cases [34, 35]. While the early developments mostly focused on database
replication [36], later research showed many more use cases such as discovery of
network components or distributed computations [37, 38]. The rise of the Internet
of Things, which provides large networks of connected sensors, is another more
recent use case that shows the advantages of this paradigm [33].

In the context of smart grids, such rumor-spreading algorithms can also be used
effectively, as shown by Schindler [39], who implemented a distributed energy
market, or Koukoula [40], who used such an algorithm to ensure the safety of a smart
grid by detecting and automatically remediating overvoltage conditions in the grid
without the presence of a central control unit. Croce [41] also showed the feasibility
of using a rumor-spreading algorithm approach for managing a microgrid.

Several different approaches exist for implementing this paradigm of rumor-spreading.
The main goal is to guarantee that all nodes in the network receive the message as
fast as possible, while minimizing the amount of messages sent and communication
rounds needed. Various methodologies can be used, e.g. sending to all neighbors,
randomizing the neighbors, using additional information like geographic location
and many more. The main difference between these approaches is the selection
of neighbors to communicate with in each step. Address-aware neighbor selection
calculates a perfect message exchange sequence, e.g. by removing all redundant
exchanges, based on knowledge about the network topology. This kind of selection
is very difficult to deploy in a dynamic network topology with unreliable connections
and is therefore not suited for use in the IDS. Therefore, in the following only
address-oblivious algorithms, selection algorithms that do not rely on knowledge
about the network topology and the addresses of communication partners, will be
evaluated.

5.4 Rumor-spreading Algorithms 35

1

2

3

4

5

6

7

9

10

8

Fig. 5.1.: Network with bottleneck (marked red). Nodes that already received the message
are marked green.

One of the most promising approaches is the class of fully random rumor-spreading
and quasirandom rumor-spreading algorithms. In these models the neighbor to
communicate with is chosen randomly for each iteration. As there is no predefined
path and messages are transmitted over many different connections these approaches
have shown to be very resilient. Because there is no defined order of communication
partners no bias towards or against a specific network topology exists [42, 43].

The drawback of this fully random selection is, an isolated with only a few connec-
tions to other nodes, is unlikely to be chosen as a communication partner, while
nodes that are highly connected are chosen very frequently. This can have detri-
mental effects when the network contains bottlenecks, like as locations where a
single node with very few connections acts as a connecting element between heavily
interconnected networks. Figure 5.1 illustrates this problem. Due to the many con-
nections of node 5 into the right subgraph it is very likely for a node from this group
to be chosen as the next communication partner despite this node already being
informed about the message. With an increasing amount of connections to already
informed nodes it becomes more unlikely to spread the message to uninformed
nodes such as node 7 and subsequently nodes 8, 9 and 10 despite them being well
interconnected. Although this approach is guaranteed to converge given infinite
time, as probability dictates that every element is chosen eventually, it is certainly
not ideal for this use case.

36 Chapter 5 Development of a new communication system

1 : [5, 2]

2 : [1, 3]

3 : [2, 4]

4 : [8, 1, 3]

5 : [7, 6, 1]

6 : [7, 5, 4]

7 : [5, 6]

8 : [4]

(a) Initial state

1 : [5, 2]

2 : [1, 3]

3 : [2, 4]

4 : [8, 1, 3]

5 : [7, 6, 1]

6 : [7, 5, 4]

7 : [5, 6]

8 : [4]

(b) Round 1

1 : [5, 2]

2 : [1, 3]

3 : [2, 4]

4 : [8, 1, 3]

5 : [7, 6, 1]

6 : [7, 5, 4]

7 : [5, 6]

8 : [4]

(c) Round 2

1 : [5, 2]

2 : [1, 3]

3 : [2, 4]

4 : [8, 1, 3]

5 : [7, 6, 1]

6 : [7, 5, 4]

7 : [5, 6]

8 : [4]

(d) Round 3

1 : [5, 2]

2 : [1, 3]

3 : [2, 4]

4 : [8, 1, 3]

5 : [7, 6, 1]

6 : [7, 5, 4]

7 : [5, 6]

8 : [4]

(e) Round 4

1 : [5, 2]

2 : [1, 3]

3 : [2, 4]

4 : [8, 1, 3]

5 : [7, 6, 1]

6 : [7, 5, 4]

7 : [5, 6]

8 : [4]

(f) Round 5

Fig. 5.2.: Example of quasirandom rumor-spreading algorithm. Nodes that are marked
in green already received the message. Each node has a randomized list of all
neighbours it sequentially gossips with.

5.4 Rumor-spreading Algorithms 37

Quasirandom algorithms can perform better in such situations [44]. They differ from
fully-random algorithms in the selection of the next communication partner. Instead
of choosing a random partner in each step, where every neighbor has the same
likelihood to be selected, the order of communication partners is randomized once
and then iterated on sequentially. Given n neighbors it is thereby guaranteed that
after n steps each neighbor has been communicated with. Doerr [45] showed that
this approach significantly improves the upper bounds of the algorithm compared to
the fully random model.

Figure 5.2 shows an example propagation of a message through the network using a
quasirandom approach. Each component holds a randomized list of its neighbors.
This list is iterated upon in each step to choose a neighbor to gossip with. The
message is then propagated to the chosen neighbor. The arrows show that the same
message is received multiple times by a component, each time using a different
connection. This provides redundancy, the loss of a connection does not impact the
system at all. In an ideal scenario where every exchange succeeds, all components
are informed after five steps. All steps thereafter are still performed, providing
redundancy in case an exchange failed. After seven steps the message is fully
handled by all components.

For many graphs, e.g. Hypercubes or Ramanujan graphs, an upper bound for the
computational complexity of Θ(log(n)) has been proven [45]. As the topology of the
IDS network is not predefined, no tight bound for the complexity of any algorithm
can be given, only the rough bounds of △diam(G) and 2n − 3 that hold for any
graph G containing n nodes can be guaranteed [45, Section 1.4]. But it can be
noted that the algorithm performs better the lower the diameter of the graph is and
the more edges it includes.

Using this approach, all components in the network eventually receive every message
and can react to it. Duplicate receival of messages does not pose a problem, as these
duplicates can easily be filtered out by the components themselves. As the algorithm
requires multiple rounds before the information is fully propagated through the
whole network, it implements a model of eventual consistency.

5.5 Motions

The rumor-spreading algorithms are oblivious to the actual data transmitted, as they
only govern how data is transmitted through the system. The transmitted message
should include all information that is necessary to allow the receiving components to

38 Chapter 5 Development of a new communication system

react to the message. To guarantee that each message has all necessary information,
a message container called motion is defined.

All workflows of the system are encapsulated within such a dedicated motion. They
can be summarized as a well defined request by a component to modify the system
state. Motions are can be created by any system component (referred to as caller)
and may address any number of other components (referred to as callees). A motion
encloses all information that is needed by any other component to decide whether to
take action upon receiving it. This encapsulation eliminates the need for any further
communication and streamlines processes, as no additional requests for clarification
need to be made. After creating and publishing a motion the component then takes
a passive role and waits for action by other components.

To ensure integrity and authenticity, each motion is signed by the caller using a
cryptographic signature. This guarantees integrity and authenticity, provided the
used certificates are not compromised. Using this strict system, which forces all
workflows to be encapsulated inside motions, assures that all workflows adhere to
the same security requirements. Furthermore, this system allows for easy future
extension, e.g. the addition of new workflows, without the need to modify the
implementation of the communication.

In the following, the motions strictly required for the system to function, referred to
as core motions, are described. These implement the core workflows as defined in
section 5.2. These core motions are:

• RegisterMonitor

• RemoveMonitor

• RegisterConsumer

• RemoveConsumer

All motions share common control information that is required for validating and
processing, shown in Figure 5.3. The system may later be expanded by adding
motions that implement specific other functions, e.g. securing the network. In the
following the individual core motions will be further examined.

5.5 Motions 39

Common Control Information

Description: Common control information that must be present in each
motion

Parameters:

• uuid : Unique RFC 4211 identifier of this motion

• version : Version identifier of this motion

• caller_uuid : Unique identifier of caller

• caller_address : Address of caller

• timestamp : Timestamp of motion creation

• signature : Ed25519 signature

Fig. 5.3.: Common control information included in all motions.

Motion RegisterMonitor

The RegisterMonitor motion implements the AddLM and AddNM workflows (see
section 5.2) using one shared container. The motion is created by any monitor not
currently part of the system when it is initialized and ready to be integrated into
the IDS. It includes two properties, the type of monitor that created the motion
and a list of border component ids. These properties are used by the receivers to
decide whether a reactionary workflow is triggered. Figure 5.4 illustrates the motion
structure and the triggered workflows.

Motion RemoveMonitor

During operation it might be necessary to remove an already registered monitor
from the system while the system is operational. As an example this is required
during maintenance work on the subgrid, during a restructuring of the network, or
when hardware is decommissioned. For this the monitor that wants to be removed
publishes a RemoveMonitor motion. While the directly connected components could
also be informed about the removal via the already established connections directly,
this is not desirable as it is a very intransparent process. Modeling the removal
as a motion allows for clean logging of system state changes and allows for other
components to react upon the removal, even if they are not directly connected during

40 Chapter 5 Development of a new communication system

Motion RegisterMonitor

Description: Adds a new monitor to the system.

Caller: New monitor (not yet part of the system)

Callee: Bootstrapper

Properties:

• monitor_type : Type of Monitor (NM or LM)

• data : List of border components

Receiver Workflow: Local Monitor

1. Check if monitor_type is NM and data contains border compo-
nents we are monitoring

2. If true: Connect to NM

Receiver Workflow: Neighborhood Monitor

1. Check if caller is assigned LM

2. If true: Connect to LM and subscribe to relevant events

Receiver Workflow: Consumer

1. Check if interested in events from monitor

2. If true: Connect to caller and subscribe to events

Motion RemoveMonitor

Description: Removes a monitor from the system.

Caller: Monitor

Callee: Any system component

Parameters:

• reason : Reason for removal.

Receiver Workflow

1. Check if monitor is connected to this component

2. If true: disconnect from component

Fig. 5.4.: Definition of RegisterMonitor and RemoveMonitor motions.

5.5 Motions 41

operation. This could for example be used to implement a failover mechanism which
automatically deploys and starts replacement components.

The motion is RemoveMonitor has a single parameter, describing the reason for
removal of the monitor. This reason is currently not used outside of debugging. In
future work it could be used to multiplex between different reactionary workflows
based on the reason for removal. For example the reason can be used to differentiate
whether the component is only temporarily removed during expected maintenance
or whether it encountered a unrecoverable error which should be investigated
further by human operators.

Motion RegisterConsumer

To handle alert data, monitor the system or implement logging various data con-
sumers can be created and linked to any amount of monitors. The registration of
consumers works analogous to the registration of monitors but using the Register-
Consumer motion. The motion is parameterized with a list of identifiers, specifying
which components it is interested in. Using this mechanism specialized consumers,
e.g. a visualization that only handles a small subgrid, can be implemented. This
list of identifiers needs to be provided when initially creating the motion. While
this suffices for basic consumers that are interested in a very broad range of events,
advanced filtering capabilities are needed when more complex consumers are inte-
grated. Implementation of more in-depth filtering is out of scope of this thesis, but
could easily be integrated into the existing motion structure.

Motion RemoveConsumer

Analogous to the RemoveMonitor motion, the removal of consumers is also handled
by a dedicated motion called RemoveConsumer.

42 Chapter 5 Development of a new communication system

Motion RegisterConsumer

Description: Adds a new consumer to the system.

Caller: New consumer (not yet part of the system)

Callee: Bootstrap Service

Parameters:

• id_filter[] : List of identifiers (only components with identifiers that
match this filter apply)

Receiver Workflow: Monitor

1. Check if consumer applies

2. If applies: Connect to caller

Motion RemoveConsumer

Description: Removes a registered consumer from the system.

Caller: Registered consumer

Callee: Any component

Parameters:

• reason : Reason for removal

Receiver Workflow

1. Check if consumer is connected to this component

2. If true: disconnect

Fig. 5.5.: Definition of RegisterConsumer and RemoveConsumer motions.

5.5 Motions 43

5.6 Caller Validation

As motions actively change the system state, it is mandatory to cryptographically
validate all motions before they are handled. This is done by validating the cryp-
tographic signature included in the motion. If the signature is invalid an alert
is triggered, as this immediately signifies the existence of either a malicious or
erroneously configured component.

To assure cryptographic soundness and reduce the potential for bugs, the validation
is done using an established PKI. This allows for the use of common cryptographic
modules for implementing the checks themselves and allows for using off-the-shelf
software for issuance and management of the certificates. Which infrastructure is
used for these steps remains unspecified and depends on the actual use case and
workflows in the deployment.

The workflow for validating a caller is composed of several steps:

1. Check if certificate is provided

2. Check if certificate is temporally valid (i.e. not expired)

3. Check if certificate issuer chain is valid

4. Check revocation status of certificate with PKI

If any of the steps fail, the verification as a whole will fail, the motion will be
discarded, and an alert will be generated and send to the appropriate consumers.

44 Chapter 5 Development of a new communication system

Prototype 6
To demonstrate the feasibility of using this new communication network, it is pro-
totypically implemented and tested. The development is inspired by the existing
prototype by Deuschle et al. [30], but constitutes a nearly complete redevelop-
ment. The following sections introduce the new prototype and illustrate the design
decisions that influence it.

6.1 Requirements Specification

To allow for evaluating whether the prototypical implementation successfully imple-
ments the newly developed system a set of requirements is compiled. This includes
functional as well as non functional requirements. The functional requirements
mainly pertain to whether the prototype is functional and implements the system
designed in the previous chapter. This is augmented by several non functional
requirements, which concern code quality, documentation, and code organization.
The complete list of requirements is attached in appendix A.1.

6.2 Organization

As the IDS is conceptually designed as a distributed system, the prototype is also
split into multiple separate components. To organize these, multiple dedicated git
repositories are used. The GitLab server provided by the University of Münster
is used for hosting the git repositories1. Table 6.1 lists the repositories currently
used.

To share common libraries the pipy package registry provided by GitLab is used2.
As the registry is directly tied to the individual repository which are currently not
public, using it requires additional configuration. Specifically, an access token needs
to be provided to allow for the build process to access and download packages from

1https://zivgitlab.uni-muenster.de/ag-sks/distributed-grid-ids/
2https://zivgitlab.uni-muenster.de/ag-sks/distributed-grid-ids/ids-components/-/packages

45

https://zivgitlab.uni-muenster.de/ag-sks/distributed-grid-ids/
https://zivgitlab.uni-muenster.de/ag-sks/distributed-grid-ids/ids-components/-/packages

Name Description

ids-components IDS core components (monitors, consumers, etc.)

ids-testbed MOSAIK Testbed

ids-replay-tool CSV Replay Tool [5]

documentation Documentation

ids-attack-tool Attack Tool [30]

pymodbus3 Modbus3 Library
Tab. 6.1.: Overview of git repositories.

the registry. Instructions for getting and providing the token are provided in the
readme-files of the respective repositories.

6.3 Documentation & Code Style

A comprehensive documentation for the project is provided in HTML format. This
documentation includes general information about the project, presentations and
published research, contributor information as well as code documentation. The
documentation is compiled using the sphinx3 toolkit. To make the documentation
available without requiring a dedicated server, it is directly hosted on the GitLab
server 4.

To ensure readability of the code, it is automatically formatted according to PEP
8 guidelines. The code itself is documented using docstrings, as well as inline
comments where appropriate. The docstrings use reStructuredText format, allowing
automatic documentation generation by the sphinx toolkit.

6.4 Implementation

This subsection describes features and challenges of the actual implementation. As
the communication network is a central part of the system, it heavily influences
the overall design and constitutes the major part of the actual code. As section 4.2

3https://www.sphinx-doc.org/en/master/
4https://ag-sks.zivgitlabpages.uni-muenster.de/distributed-grid-ids/documentation/

46 Chapter 6 Prototype

https://www.sphinx-doc.org/en/master/
https://ag-sks.zivgitlabpages.uni-muenster.de/distributed-grid-ids/documentation/

pointed out this system has several weaknesses, this new prototype will therefore
replace it with the new communication system designed in Chapter 5. This imple-
mentation is therefore a complete redevelopment of the IDS. Similar to the previous
prototypes the OPC-UA Framework is used for implementing the IDS. It offers all
required capabilities and has been identified as a future key technology in the field
of industrial control applications [5, 46].

6.4.1 Bootstrapping

The lack of a central component creates a challenge during system initialization.
Each component needs at least one communication partner to start gossiping with.
In centralized systems, a central entity is always available using a static network
address, but in the dynamic network of the IDS, no static addresses exist. To alleviate
this problem a new component called bootstrapper is introduced.

The bootstrapper serves as an initial entrypoint to the system. When connecting
to the system for the first time, components connect to the bootstrapper, which is
available on a static address. Using this connection the initial motions of the new
component can be spread via gossiping. The bootstrapper keeps a rotating cache
of connections to the last components that connected to it, which are then used for
further spreading the motion.

It has to be noted that this bootstrapper does not suffer from the problems the
centralized C2 server had (cf. section 4.2). Specifically, the bootstrapper is not
stateful and does not include any business logic. It can therefore be trivially deployed
multiple times within the network. The bootstrapper does not participate in the
logic of the IDS and is only used for initial onboarding of new components to the
system. Theoretically, any component could serve as the bootstrapper for the system
in parallel to the original functionality, but for simplicity a dedicated component
was created.

6.4.2 Local Monitor

To initialize the LM various parameters need to be supplied. In the previous prototype
each LM required a static JSON configuration that described the monitored subgrid.
These configuration files were created manually by transcribing the grid definition
used by the PyPower simulators used in the testbed. This approach is not scalable
and manual transcription is very prone to errors, e.g. typos or copy-and-paste errors.

6.4 Implementation 47

Key Example Description

uuid 3e5b9c46-5dcd-4c82-ade8-913947f00000 Unique ID of this monitor

identifier lm00 Identifier of this monitor

opc_address opc.tcp://0.0.0.0:10700/ Address of the local OPC server

opc_namespace ids OPC-UA Namespace of the IDS

root_cert_file root_cert.der Root Certificate

cert_file lm00_cert.der Own Certificate

private_key_file lm00_key.pem Private Key

bootstrap_uuid 3e5b0000-0000-0000-0000-000000000000 Identifier of the bootstrapper

bootstrap_address opc.tcp://manul-master:10900/ Address of the bootstrapper

rtu_config new_rtu_0.xml RTU xml config file

retransmission_threshold 20 Step interval before retransmitting motions

Tab. 6.2.: Configuration of LM.

This configuration file has therefore been removed. Unfortunately, there is no way to
scan an RTU and extract information about the subgrid it provides. A configuration
file is therefore still necessary, but instead of using a custom configuration the LM
uses the configuration file used by the RTU itself. While this is not the perfect
solution, as RTU configuration files need to be shared with the LM, it eliminates one
error source.

As described in Section 3.3, each LM has a designated NM that is tasked with
monitoring the border region of the individual LM. This component is called the
associated NM. To allow for flexibility, the components are only loosely coupled, i.e.
they exist independently of one another. The coupling of the LM with the respective
NM will be described further in Section 6.4.3.

During operation the LM can be in different states. Figure 6.1 shows the overall
flow between those states. The LM starts in the initializing state. During this phase,
all necessary structures, such as the internal server and RTU connection, are set
up and the connection to the bootstrapper is established. Using this connection
the RegisterMonitor motion of the LM is published and the LM transitions into the
waiting_for_nm state. As soon as the connection with the RTU is established, the
LM can start checking the safety and physical requirements of the grid (cf. Table
3.1). The LM stays in this state and passively waits for connections established by
other components upon receiving the previously published RegisterMonitor motion.
Specifically, it waits for the RegisterMonitor motion of the associated NM. Once this
connection is established it changes into the running state.

48 Chapter 6 Prototype

INITIALIZING

WAITING_FOR_NM RUNNING

DEGRADED

ERROR

configuration error

initialized

NM connected

connection lost connection restored

reconnect timeout

Fig. 6.1.: Status diagram of the local monitor states. During green and yellow states
requirement checking is performed.

During operation the LM tracks all connected components, and keeps a list of
components that are expected to be present. E.g. upon receiving a RegisterMonitor
motion of an NM that monitors a border region, this NM is added to the tracker.
If one of these components loses connection, the LM switches to a degraded state
and reconnection is attempted. If the connection is reestablished, the LM returns
to the running state. If the reconnection attempts are unsuccessful, the LM stays in
degraded state. Due to technical limitations currently only the presence of a session
is tracked and not what specific events these clients subscribed to. It is assumed that
once a session is established the client then successfully subscribes to all relevant
events. A special case exists when the connection to the associated NM is lost. If
reconnection times out, the LM does not stay in degraded state but reverts back to
waiting_for_nm state. Reconnection with the NM is then reestablished using the
normal workflow used during system initialization. This allows for flexibility, as a
different NM instance could take over responsibility if the original associated NM is
not recoverable.

6.4.3 Neighborhood Monitor

Each LM has a associated NM, responsible for monitoring the border regions. As the
NM is the flexible component, as it is fully virtual and does not require a connection
to the physical grid (cf. section 3.2), the NM implements the mapping between LM
and NM. For that the NM is is configured with the UUID of the LM whose border

6.4 Implementation 49

region it should monitor. Analogous to the notion of the associated NM, this LM is
referred to as associated LM.

INITIALIZING

WAITING_FOR_ASSOCIATED_LM

WAITING_FOR_REGION_LMS

RUNNING DEGRADED

ERROR

configuration error

initialized

received motion from associated LM

received connections from all relevant LMs

connection lost

connection restored

Fig. 6.2.: Status diagram of the NM states. In green states, physical and safety requirements
are checked. In yellow states, partial or no requirements can be checked due to
missing data.

Similar to the LM, the NM also has different states as shown in figure 6.2. It
first starts in the initialization state. After the configuration has successfully been
parsed and connection to the bootstrapper is established it transitions to wait-
ing_for_associated_lm state. Contrary to the LM, which can start checking require-
ments immediately after initializing, the NM first needs to connect to the associated
LM to retrieve the grid definition, as well as the adjacent LMs for retrieving sensor
data. The first step is done passively by waiting for the RegisterMonitor motion
of the associated LM. Once this motion is received, the NM can connect to the
associated LM and retrieve the border region to be monitored. Based on this border
region definition, the RegisterMonitor motion of the NM itself is constructed and
published. The NM subsequently transitions into the waiting_for_region_lms state,
where it passively waits for connections by LMs that react upon this motion. These
LMs are here referred to as region LMs.

The NM tracks the sessions of all connected LMs. If an LM disconnects the NM
transitions to degraded state while waiting for reconnection.

50 Chapter 6 Prototype

6.4.4 Challenges

Several unexpected challenges arose during the development. The following sections
will describe them and explain possible as well as actually implemented solutions.

Unsuccessful motions

While the gossiping algorithm guarantees that all components eventually receive
every motion, this only refers to components which are actually connected to the
system. This poses a problem, as due to the distributed nature it is not guaranteed
that the designated receiver of a motion is already connected to the system and
can receive the motion. For example, when an LM initializes and sends out a
RegisterMonitor motion it expects the associated NM to connect back to it after
receiving the motion. If this NM is not yet part of the system or temporarily
disconnected it never receives the motion the connection never happens.

Two different approaches are possible for resolving this issue. Either motions that
have already happened are stored or motions are repeated if they did not resolve
successfully. The first approach requires a component that provides a log of motions,
which allows components to synchronize themselves by accessing motions that
have happened in the past. While off-the-shelf software products that explicitly
support such usage, such as Apache Kafka5, exist, they need to be adapted to the
specific IDS use case. Additionally, mechanisms for synchronization need to be
implemented in each component, which makes this approach relatively complex.
The second approach, simply republishing motions if they are not successful, does
not require any external components. The caller of the motion simply publishes the
motion again with an incremented version number. As the gossip algorithm does
not provide instantaneous delivery, this retransmission should only be triggered
after a reasonable amount of time has passed. This approach is only possible if the
caller can identify that the motion failed, e.g. when no components connect after a
RegisterMonitor motion was send. The additional drawback of this approach is the
increased amount of motions circulating in the network.

To keep the system as simple as possible, the second approach of retransmitting
unsuccessful motions will be implemented in the prototype. If it later shows that the
increased amount of motions creates a problem, the bootstrapper component could
be extended to provide a history of motions.

5Apache Kafka Documentation

6.4 Implementation 51

https://kafka.apache.org/documentation/#uses_commitlog

Handling of disconnects

Disconnects of components can and will happen, and should therefore be anticipated
by the system. When a component detects that another component disconnect
unexpectedly two different things could have happened. The first case is an inter-
mittent loss of connectivity while both components are operational, where simply
reconnecting solves all issues and normal operation can continue. The second case
is the loss of connection because the component crashed fatally, e.g. caused by a
power outage. Which of these cases is actually happening in a concrete scenario is
not detectable from the viewpoint of a component.

The first case does not pose a problem - all components keep their configuration
and eventually the connection is reestablished. In the second case one of the
components lost its configuration, while the other components still have their
respective configuration. This mismatch causes multiple operational issues, as
the components have a differing understanding about the established network.
When the crashed component recovers, e.g. power is reestablished, it receives
unsolicited connection attempts by, from its perspective unknown, components. As
the components are all independent the order of these connections is unpredictable,
and connection attempts occur even before it is expected, e.g. still during the
initialization phase (cf. Figure 6.2). This is especially a problem when the connection
is not used to provide data for other components, but to actively subscribe to events
generated by another component, as the handling required for these processes is not
yet possible.

To solve this issue, unsolicited connections that occur while still initializing the
component are cached and handling is deferred until initialization is completed.

Deployment

To allow for portability of the system, Docker is used as a containerization engine.
This allows for a clean and well defined operating environment. Images are provided
via the container registry integrated into GitLab6.

While the system conceptually separates LM and NM as two standalone system
components, it does not necessitate them to be on different physical hosts that are
only connected via network. To distribute the monitors several strategies could be
employed. As each LM always has an associated NM, colocating them on the same

6https://zivgitlab.uni-muenster.de/ag-sks/distributed-grid-ids/deployment/container_registry

52 Chapter 6 Prototype

https://zivgitlab.uni-muenster.de/ag-sks/distributed-grid-ids/deployment/container_registry

host is beneficial, as this eliminates the need for network communication to transfer
data to the associated NM. This cuts the amount of sensor data that needs to be
transmitted via the network in half. This colocation of monitors has already been
done before by Großhanten [5], and has not caused issues.

For deploying the containers, several different docker compose files are supplied. As
these files need to be individualized for each deployment, as names and certificates
differ, they are provided based on the testbed that is used for evaluation in chapter
7. The specific structure of these files is therefore discussed in Section 7.1.

Review: Fulfillment of requirements

This sectin reflects on the requirements to be met by the prototype as specified in
Appendix A.1.

It can be seeen that not all functional requirements are met by the prototype.
Specifically, the implementation omits cryptographically signing of motions and the
respective counterpart of checking signatures. All other functional requirements
are met as shown in Table 6.3. All non-functional requirements are met. General
project documentation is provided via readme files project documentation using the
sphinx toolkit, the code is additionally documented using common documentation
practices. All software components are provided with build instructions in the form
of dockerfiles, ensuring reproducibility.

ID Importance Level Fulfillment

F010 MUST yes

F011 MUST yes

F020 MUST yes

F030 MUST yes

F200 MUST yes

F201 SHALL yes

F202 SHALL no

F203 SHALL no
Tab. 6.3.: Fulfillment of requirements specification.

6.4 Implementation 53

Evaluation 7
This chapter evaluates the implemented prototype, with special focus on the newly
developed communication system. The first section describes the testing environ-
ment and infrastructure that is deployed to facilitate the test. Section 7.2 then
introduces different scenarios that represent common circumstances encountered
during operation of the IDS.

7.1 Testbed

To test the system, the existing testbed already used by Großhanten [5], Menzel [1]
and Chromik et al. [47] is extended.

PKIMOSAIK SimulatorReqViolationLogger

network switchBootstrapper

NM 2 NM 3 NM 4

NM 5

NM 1NM 0

LM 0 LM 1 LM 2 LM 3 LM 4

LM 5

manul-master

manul-bootstrapper

manul0 manul1 manul2 manul3 manul4

manul5

manul6

Fig. 7.1.: Structure of the physical testbed. Physical hosts start with the prefix manul and
host different containers.

Figure 7.1 shows the physical infrastructure that is used for the testbed. Several
physical host systems are used to isolate components, their names are prefixed with

54

Identifier Hardware Software

manul-master 8vCPU, 8Gb RAM Ubuntu 22 VM on Proxmox CE

manul-bootstrapper 2vCPU, 2Gb RAM Ubuntu 22 VM on Proxmox CE

network switch TP-Link TL-SG1016D OEM (by manufacturer)

manulX Raspberry Pi 3 Model B v1.2 Raspberry Pi OS Lite (64-bit)

Tab. 7.1.: Overview on the hardware and software stacks used in the testbed.

manul. Different physical hosts are used to more accurately reflect a real world
deployment. The suitability of the hardware was already examined extensively by
Großhanten [5] and is therefore not evaluated further here. Table 7.1 shows the
specific hardware and software stacks used for each component. While parts of the
testbed have been kept, mainly the physical devices used and a subgrid, several
notable adaptions have been made to the testbeds that were used previously.

To better test the capabilities of the new communication system that is designed
to work with a large network, the testbed was expanded to monitor the whole
simulated grid, previously only a limited subgrid was used. The division of the grid
into different subgrids was done manually with the guideline of creating roughly
equally sized grids, the existing subgrids were incorporated.

The second adaption is the separation of the MOSAIK simulator and other man-
agement software from the monitors. This is done to more accurately reflect the
real-world scenario where these components are not running on the same hard-
ware as the monitoring components themselves. This also helps to mitigate side
effects, e.g. conflicts for memory and CPU resources, as most hosts have very limited
hardware resources.

7.2 Evaluation scenarios

To allow for analyzing the performance of the IDS, scenarios are defined. They form
a description of the operating environment and may include additional events such
as the the malfunction of a component. The goal is to cover the different conditions
that can occur in a real-world use case. Each scenario description consists of four
different parameters: a short description of the scenario, the expected behaviour,
instructions for the execution and the actual observed behaviour with an evaluation
on the success of the scenario.

7.2 Evaluation scenarios 55

Scenario 1: Normal system operation

Description:
This scenario represents normal system operation. All external components are
running normally and all network links are operational. The IDS components are
started in no particular order.

Expectation:
It is expected that the IDS successfully establishes itself, and starts monitoring of the
grid. Specifically, the following conditions are met:

1. All LMs successfully connect to the testbed and retrieve sensor data

2. All NMs find their associated LMs and establish connections with them

3. All monitors eventually transition into running state

4. During connection the certificate status is checked using OCSP.

5. No requirement violations are detected

Execution:

1. Setup non-IDS components (PKI + Testbed)

2. Start all IDS components

Observations:
As the monitors are started in parallel, a high amount of motions circulating through
the system can be observed. After this initial flood of motions the system successfully
establishes itself. During initialization, the monitors intermittently transition into
degraded state. This is caused by a desynchronization between time their are added
to the tracking mechanisms and the actual successful initialization of the connection
and associated handlers. This behaviour is benign, but could be improved upon
by better synchronizing the tracker with the actual connection. Figure 7.2 shows
the output during initialization the LM and NM hosted on manul03. The logs from
the other components are analogous and have therefore been omitted here. The
observations match the expectations, no deviation is observed.

56 Chapter 7 Evaluation

[
l

m
0

3
]

2
1

:
3

9
:

5
3

.
4

4
4

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

L
M

S
t

a
t

u
s

.
I

N
I

T
I

A
L

I
Z

I
N

G
-

-
>

L
M

S
t

a
t

u
s

.
W

A
I

T
I

N
G

_
F

O
R

_
N

M
[

l
m

0
3

]
2

1
:

4
1

:
0

5
.

3
0

6
:

C
h

a
n

g
i

n
g

s
t

a
t

u
s

:
L

M
S

t
a

t
u

s
.

W
A

I
T

I
N

G
_

F
O

R
_

N
M

-
-

>
L

M
S

t
a

t
u

s
.

R
U

N
N

I
N

G
[

l
m

0
3

]
2

1
:

4
1

:
0

7
.

3
5

1
:

m
i

s
s

i
n

g
c

l
i

e
n

t
s

:
[

U
U

I
D

(
’3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

1
1

1
1

4
’

)
]

[
l

m
0

3
]

2
1

:
4

1
:

0
7

.
3

5
1

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

L
M

S
t

a
t

u
s

.
R

U
N

N
I

N
G

-
-

>
L

M
S

t
a

t
u

s
.

D
E

G
R

A
D

E
D

[
l

m
0

3
]

2
1

:
4

1
:

0
9

.
3

9
8

:
m

i
s

s
i

n
g

c
l

i
e

n
t

s
:

[
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
1

1
1

1
4

’
)

]
[

l
m

0
3

]
2

1
:

4
1

:
1

1
.

4
4

6
:

m
i

s
s

i
n

g
c

l
i

e
n

t
s

:
[

U
U

I
D

(
’3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

1
1

1
1

4
’

)
]

[
l

m
0

3
]

2
1

:
4

1
:

1
3

.
4

9
7

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

L
M

S
t

a
t

u
s

.
D

E
G

R
A

D
E

D
-

-
>

L
M

S
t

a
t

u
s

.
R

U
N

N
I

N
G

(a
)

O
ut

pu
t

of
LM

3.
A

ft
er

12
se

co
nd

s
th

e
LM

ha
s

fo
un

d
it

s
as

so
ci

at
ed

N
M

an
d

tr
an

si
ti

on
s

to
ru

nn
in

g
st

at
e.

Si
nc

e
th

e
N

M
is

st
ill

in
it

ia
liz

in
g

th
e

co
nn

ec
ti

on
,t

he
LM

te
m

po
ra

ri
ly

re
po

rt
s

a
de

gr
ad

ed
st

at
e.

[
l

m
0

4
]

2
1

:
3

1
:

1
6

.
5

0
0

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

L
M

S
t

a
t

u
s

.
W

A
I

T
I

N
G

_
F

O
R

_
N

M
-

-
>

L
M

S
t

a
t

u
s

.
R

U
N

N
I

N
G

[
l

m
0

4
]

2
1

:
3

1
:

1
8

.
6

0
4

:
m

i
s

s
i

n
g

c
l

i
e

n
t

s
:

[
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
1

1
1

1
3

’
)

,
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

↪→
f

1
1

1
1

5
’

)
,

U
U

I
D

(
’3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

1
1

1
1

6
’

)
]

[
l

m
0

4
]

2
1

:
3

1
:

1
8

.
6

0
5

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

L
M

S
t

a
t

u
s

.
R

U
N

N
I

N
G

-
-

>
L

M
S

t
a

t
u

s
.

D
E

G
R

A
D

E
D

[
l

m
0

4
]

2
1

:
3

1
:

2
0

.
6

9
0

:
m

i
s

s
i

n
g

c
l

i
e

n
t

s
:

[
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
1

1
1

1
3

’
)

,
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

↪→
f

1
1

1
1

5
’

)
,

U
U

I
D

(
’3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

1
1

1
1

6
’

)
]

[
l

m
0

4
]

2
1

:
3

1
:

2
6

.
9

3
9

:
m

i
s

s
i

n
g

c
l

i
e

n
t

s
:

[
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
1

1
1

1
5

’
)

,
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

↪→
f

1
1

1
1

6
’

)
]

[
l

m
0

4
]

2
1

:
3

1
:

3
5

.
3

1
5

:
m

i
s

s
i

n
g

c
l

i
e

n
t

s
:

[
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
1

1
1

1
5

’
)

,
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

↪→
f

1
1

1
1

6
’

)
]

[
l

m
0

4
]

2
1

:
3

1
:

4
1

.
6

0
0

:
m

i
s

s
i

n
g

c
l

i
e

n
t

s
:

[
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
1

1
1

1
6

’
)

]
[

l
m

0
4

]
2

1
:

3
1

:
4

3
.

6
9

6
:

C
h

a
n

g
i

n
g

s
t

a
t

u
s

:
L

M
S

t
a

t
u

s
.

D
E

G
R

A
D

E
D

-
-

>
L

M
S

t
a

t
u

s
.

R
U

N
N

I
N

G

(b
)

O
ut

pu
t

of
LM

4.
A

ft
er

in
it

ia
lly

m
is

si
ng

co
nn

ec
ti

on
s

to
se

ve
ra

lN
M

s,
th

ey
ar

e
su

bs
eq

ue
nt

ly
es

ta
bl

is
he

d

[
n

m
0

3
]

2
1

:
3

9
:

4
4

.
5

1
4

:
c

o
n

n
e

c
t

i
o

n
_

c
a

l
l

b
a

c
k

f
r

o
m

b
o

o
t

r
a

p
p

e
r

[
n

m
0

3
]

2
1

:
3

9
:

5
2

.
6

0
0

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

N
M

S
t

a
t

u
s

.
I

N
I

T
I

A
L

I
Z

I
N

G
-

-
>

N
M

S
t

a
t

u
s

.
W

A
I

T
I

N
G

_
F

O
R

_
A

S
S

O
C

I
A

T
E

D
_

L
M

[
n

m
0

3
]

2
1

:
4

0
:

5
6

.
0

7
6

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

N
M

S
t

a
t

u
s

.
W

A
I

T
I

N
G

_
F

O
R

_
A

S
S

O
C

I
A

T
E

D
_

L
M

-
-

>
N

M
S

t
a

t
u

s
.

W
A

I
T

I
N

G
_

F
O

R
_

R
E

G
I

O
N

_
L

M
S

[
n

m
0

3
]

2
1

:
4

1
:

0
6

.
1

5
5

:
r

e
c

o
n

n
e

c
t

i
n

g
c

o
n

n
e

c
t

i
o

n
_

c
a

l
l

b
a

c
k

3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
0

0
0

0
3

[
n

m
0

3
]

2
1

:
4

1
:

2
0

.
5

5
9

:
c

o
n

n
e

c
t

i
o

n
w

h
i

l
e

w
a

i
t

i
n

g
f

o
r

r
e

g
i

o
n

l
m

3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
0

0
0

0
2

[
n

m
0

3
]

2
1

:
4

1
:

2
9

.
2

5
1

:
c

o
n

n
e

c
t

i
o

n
w

h
i

l
e

w
a

i
t

i
n

g
f

o
r

r
e

g
i

o
n

l
m

3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
0

0
0

0
4

[
n

m
0

3
]

2
1

:
4

1
:

3
7

.
2

4
2

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

N
M

S
t

a
t

u
s

.
W

A
I

T
I

N
G

_
F

O
R

_
R

E
G

I
O

N
_

L
M

S
-

-
>

N
M

S
t

a
t

u
s

.
R

U
N

N
I

N
G

(c
)

O
ut

pu
to

fN
M

3.
A

ft
er

fin
di

ng
th

e
as

so
ci

at
ed

LM
th

e
Re

gi
st

er
M

on
it

or
m

ot
io

n
is

pu
bl

is
he

d
an

d
se

ve
ra

lc
on

ne
ct

io
ns

by
ot

he
r

co
m

po
ne

nt
s

ar
e

re
ce

iv
ed

an
d

ha
nd

le
d.

Fi
g.

7.
2.

:
O

ut
pu

t
of

co
m

po
ne

nt
s

ho
st

ed
on

m
an

ul
03

an
d

m
an

ul
04

du
ri

ng
st

ar
tu

p
of

th
e

sy
st

em
.

Th
e

ou
tp

ut
is

tr
im

m
ed

fo
r

re
ad

ab
ili

ty
.

7.2 Evaluation scenarios 57

Scenario 2: Component malfunction: NM

Description:
This scenario evaluates how the IDS handles malfunction of an NM. Specifically the
total failure of an NM is simulated by forcefully shutting down NM 3.

Expectation:
Until the NM is disconnected the system behaves normal, analogous the the previous
scenario. After NM 3 is disconnected, all components except NM 3 continue running.
The LMs whose border region was watched by NM 3 continue running in a degraded
state. All components that had a connection with NM 3 will generate an event
about the unexpected connection loss. These components will attempt to reconnect
with exponential backoff until the maximum number of retries is exceeded. After
NM 3 is reconnected, it reintegrates itself into the system and normal operation is
restored.

Execution:

1. Setup non-IDS components (PKI + Testbed)

2. Start IDS

3. After IDS is established and running, forcefully shutdown NM 5

4. Reconnect NM

Observations:
Figure 7.3 shows the output of components during the scenario. The system success-
fully recovers, and the stopped NM is reintegrated into the system. This matches the
expectations. It can be noted that the outputs from LM 3 and LM 4 differ, the debug
logging of LM 4 does not show any connection errors. This happens, because LM
4 did not actively use the connection with NM 3 for gossiping and therefore does
not detect the loss of connection. As the order of gossip partners is randomized (cf.
Section 5.4), this is normal behaviour and an error would have been logged if the
NM would have still been disconnected when it is chosen as gossip partner.

58 Chapter 7 Evaluation

[
l

m
0

3
]

2
2

:
4

7
:

4
0

.
3

7
6

:
m

i
s

s
i

n
g

c
l

i
e

n
t

s
:

[
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
1

1
1

1
3

’
)

]
[

l
m

0
3

]
2

2
:

4
7

:
4

0
.

3
7

8
:

C
h

a
n

g
i

n
g

s
t

a
t

u
s

:
L

M
S

t
a

t
u

s
.

R
U

N
N

I
N

G
-

-
>

L
M

S
t

a
t

u
s

.
D

E
G

R
A

D
E

D
[

l
m

0
3

]
2

2
:

4
7

:
4

2
.

4
2

5
:

m
i

s
s

i
n

g
c

l
i

e
n

t
s

:
[

U
U

I
D

(
’3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

1
1

1
1

3
’

)
]

.
.

.
[

l
m

0
3

]
2

2
:

4
8

:
2

3
.

6
7

7
:

C
o

n
n

e
c

t
i

o
n

e
r

r
o

r
w

h
i

l
e

c
o

n
n

e
c

t
i

n
g

t
o

OP
C

-
U

A
S

e
r

v
e

r
.

R
e

t
r

y
i

n
g

i
n

2
s

e
c

o
n

d
s

[
l

m
0

3
]

2
2

:
4

8
:

2
5

.
6

6
3

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

L
M

S
t

a
t

u
s

.
D

E
G

R
A

D
E

D
-

-
>

L
M

S
t

a
t

u
s

.
W

A
I

T
I

N
G

_
F

O
R

_
N

M
[

l
m

0
3

]
2

2
:

4
8

:
2

5
.

7
3

8
:

C
o

n
n

e
c

t
i

o
n

e
r

r
o

r
w

h
i

l
e

c
o

n
n

e
c

t
i

n
g

t
o

OP
C

-
U

A
S

e
r

v
e

r
.

R
e

t
r

y
i

n
g

i
n

4
s

e
c

o
n

d
s

[
l

m
0

3
]

2
2

:
4

8
:

2
9

.
8

2
0

:
C

o
n

n
e

c
t

i
o

n
e

r
r

o
r

w
h

i
l

e
c

o
n

n
e

c
t

i
n

g
t

o
OP

C
-

U
A

S
e

r
v

e
r

.
R

e
t

r
y

i
n

g
i

n
8

s
e

c
o

n
d

s
[

l
m

0
3

]
2

2
:

4
9

:
0

7
.

3
9

9
:

C
h

a
n

g
i

n
g

s
t

a
t

u
s

:
L

M
S

t
a

t
u

s
.

W
A

I
T

I
N

G
_

F
O

R
_

N
M

-
-

>
L

M
S

t
a

t
u

s
.

R
U

N
N

I
N

G

(a
)

O
ut

pu
t

of
LM

3
du

ri
ng

th
e

sc
en

ar
io

.
LM

co
nt

in
ue

s
ru

nn
in

g
in

de
gr

ad
ed

st
at

e
be

fo
re

th
e

N
M

re
co

ve
rs

an
d

th
e

co
nn

ec
ti

on
is

re
es

ta
bl

is
he

d.
Th

e
LM

tr
ie

d
to

go
ss

ip
w

it
h

th
e

N
M

an
d

re
ce

iv
ed

a
co

nn
ec

ti
on

er
ro

r,
tr

ig
ge

ri
ng

re
co

nn
ec

ti
on

at
te

m
pt

s
w

it
h

ex
po

ne
nt

ia
lb

ac
ko

ff
.

[
l

m
0

4
]

2
2

:
4

7
:

4
1

.
1

5
3

:
m

i
s

s
i

n
g

c
l

i
e

n
t

s
:

[
U

U
I

D
(

’3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
1

1
1

1
3

’
)

]
[

l
m

0
4

]
2

2
:

4
7

:
4

1
.

1
5

4
:

C
h

a
n

g
i

n
g

s
t

a
t

u
s

:
L

M
S

t
a

t
u

s
.

R
U

N
N

I
N

G
-

-
>

L
M

S
t

a
t

u
s

.
D

E
G

R
A

D
E

D
[

l
m

0
4

]
2

2
:

4
7

:
4

3
.

2
3

6
:

m
i

s
s

i
n

g
c

l
i

e
n

t
s

:
[

U
U

I
D

(
’3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

1
1

1
1

3
’

)
]

.
.

.
[

l
m

0
4

]
2

2
:

4
8

:
5

4
.

4
2

7
:

m
i

s
s

i
n

g
c

l
i

e
n

t
s

:
[

U
U

I
D

(
’3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

1
1

1
1

3
’

)
]

[
l

m
0

4
]

2
2

:
4

8
:

5
6

.
5

4
2

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

L
M

S
t

a
t

u
s

.
D

E
G

R
A

D
E

D
-

-
>

L
M

S
t

a
t

u
s

.
R

U
N

N
I

N
G

(b
)

O
ut

pu
t

of
LM

4,
w

ho
se

bo
rd

er
re

gi
on

is
w

at
ch

ed
by

th
e

st
op

pe
d

N
M

3.
A

ft
er

ru
nn

in
g

in
de

gr
ad

ed
st

at
e

th
e

N
M

re
co

nn
ec

ts
an

d
th

e
LM

tr
an

si
ti

on
s

in
to

no
rm

al
ru

nn
in

g
st

at
e.

[
n

m
0

3
]

2
2

:
4

8
:

3
2

.
2

1
0

:
c

o
n

n
e

c
t

i
o

n
_

c
a

l
l

b
a

c
k

3
e

5
b

0
0

0
0

-
0

0
0

0
-

0
0

0
0

-
0

0
0

0
-

0
0

0
0

0
0

0
0

0
0

0
0

[
n

m
0

3
]

2
2

:
4

8
:

3
2

.
2

1
1

:
c

o
n

n
e

c
t

i
o

n
_

c
a

l
l

b
a

c
k

f
r

o
m

b
o

o
t

r
a

p
p

e
r

[
n

m
0

3
]

2
2

:
4

8
:

3
4

.
2

4
6

:
c

o
n

n
e

c
t

i
o

n
_

c
a

l
l

b
a

c
k

3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
0

0
0

0
2

[
n

m
0

3
]

2
2

:
4

8
:

3
4

.
2

4
8

:
b

u
f

f
e

r
i

n
g

c
a

l
l

b
a

c
k

t
o

3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
0

0
0

0
2

[
n

m
0

3
]

2
2

:
4

8
:

3
7

.
8

6
6

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

N
M

S
t

a
t

u
s

.
I

N
I

T
I

A
L

I
Z

I
N

G
-

-
>

N
M

S
t

a
t

u
s

.
W

A
I

T
I

N
G

_
F

O
R

_
A

S
S

O
C

I
A

T
E

D
_

L
M

[
n

m
0

3
]

2
2

:
4

8
:

3
8

.
8

0
9

:
c

o
n

n
e

c
t

i
o

n
_

c
a

l
l

b
a

c
k

3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
0

0
0

0
3

[
n

m
0

3
]

2
2

:
4

8
:

3
8

.
8

0
9

:
c

o
n

n
e

c
t

i
o

n
_

c
a

l
l

b
a

c
k

f
r

o
m

a
s

s
o

c
i

a
t

e
d

L
M

[
n

m
0

3
]

2
2

:
4

8
:

4
7

.
2

5
6

:
c

o
n

n
e

c
t

i
o

n
_

c
a

l
l

b
a

c
k

3
e

5
b

0
0

0
0

-
0

0
0

0
-

0
0

0
0

-
0

0
0

0
-

0
0

0
0

0
0

0
0

0
0

0
0

[
n

m
0

3
]

2
2

:
4

8
:

4
7

.
2

5
7

:
r

e
c

o
n

n
e

c
t

i
n

g
c

o
n

n
e

c
t

i
o

n
_

c
a

l
l

b
a

c
k

3
e

5
b

0
0

0
0

-
0

0
0

0
-

0
0

0
0

-
0

0
0

0
-

0
0

0
0

0
0

0
0

0
0

0
0

[
n

m
0

3
]

2
2

:
4

8
:

4
8

.
1

9
5

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

N
M

S
t

a
t

u
s

.
W

A
I

T
I

N
G

_
F

O
R

_
A

S
S

O
C

I
A

T
E

D
_

L
M

-
-

>
N

M
S

t
a

t
u

s
.

W
A

I
T

I
N

G
_

F
O

R
_

R
E

G
I

O
N

_
L

M
S

[
n

m
0

3
]

2
2

:
4

8
:

4
8

.
2

0
1

:
c

o
n

n
e

c
t

i
o

n
_

c
a

l
l

b
a

c
k

3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
0

0
0

0
2

[
n

m
0

3
]

2
2

:
4

8
:

4
8

.
2

0
2

:
c

o
n

n
e

c
t

i
o

n
w

h
i

l
e

w
a

i
t

i
n

g
f

o
r

r
e

g
i

o
n

l
m

3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
0

0
0

0
2

[
n

m
0

3
]

2
2

:
4

8
:

5
1

.
2

3
4

:
c

o
n

n
e

c
t

i
o

n
_

c
a

l
l

b
a

c
k

3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
0

0
0

0
4

[
n

m
0

3
]

2
2

:
4

8
:

5
1

.
2

3
6

:
c

o
n

n
e

c
t

i
o

n
w

h
i

l
e

w
a

i
t

i
n

g
f

o
r

r
e

g
i

o
n

l
m

3
e

5
b

9
c

4
6

-
5

dc
d

-
4

c8
2

-
a

d
e

8
-

9
1

3
9

4
7

f
0

0
0

0
4

[
n

m
0

3
]

2
2

:
4

9
:

0
2

.
0

8
1

:
C

h
a

n
g

i
n

g
s

t
a

t
u

s
:

N
M

S
t

a
t

u
s

.
W

A
I

T
I

N
G

_
F

O
R

_
R

E
G

I
O

N
_

L
M

S
-

-
>

N
M

S
t

a
t

u
s

.
R

U
N

N
I

N
G

(c
)

O
ut

pu
t

of
N

M
3

af
te

r
it

is
re

st
ar

te
d.

D
ur

in
g

in
it

ia
liz

at
io

n
th

e
N

M
al

re
ad

y
re

ce
iv

es
co

nn
ec

ti
on

s
by

ot
he

r
co

m
po

ne
nt

s
w

hi
ch

ar
e

bu
ff

er
ed

an
d

ha
nd

le
d

la
te

r
(c

f.
Se

ct
io

n
6.

4.
4)

.
Th

e
N

M
su

cc
es

sf
ul

ly
re

co
ve

rs
an

d
re

in
te

gr
at

es
it

se
lf

w
it

h
th

e
ne

tw
or

k.

Fi
g.

7.
3.

:
Ex

am
pl

ar
y

ou
tp

ut
of

di
ff

er
en

t
co

m
po

ne
nt

s
du

ri
ng

sc
en

ar
io

2.
O

ut
pu

t
is

tr
im

m
ed

fo
r

re
ad

ab
ili

ty
.

7.2 Evaluation scenarios 59

Scenario 3: Requirement violations

Description:
This scenario demonstrates the integration of a consumer into the running system.
The consumer subscribes to requirement violation events from all monitors. No filter
is provided, so the consumer subscribes to events generated by all monitors.

Expectation:
The consumer integrates with the IDS and registers with all monitors. If a violation
is then detected, the consumer is actively notified via an event. The delay between
the LM detecting a requirement violation and the consumer receiving it is minimal.
As the consumer and the LM are connected using physical network links and located
very close to each other, the delay should not exceed a couple of milliseconds. The
event includes all relevant information about the violation.

Execution:
As the testbed by default does not produce requirement violations, the configuration
file defining the maximum permissible values for a powerline is modified. Specifically
the maximum allowed voltage on node_b28, which is connected to sensor_209 and
sensor_207 is redefined to be 1337 Volt. This triggers a requirement violation in
every monitoring step, as the voltage on the bus actually fluctuates around 10.5kV.

1. Setup non-IDS components (PKI + Testbed)

2. Start IDS

3. After the IDS is established, start consumer

Observations:
The consumer subscribes to requirement violation events from all monitors. After
subscribing to LM 3, events are received. Events are received milliseconds after the
LM detected the violation, as the push-based workflow minimizes delay (cf. Section
3.5). Figure 7.4 shows the logs generated by the consumer and LM 3.

60 Chapter 7 Evaluation

[
v

i
o

l
a

t
i

o
n

l
o

g
g

e
r

]
:

0
3

:
2

5
:

2
9

.
6

5
9

:
i

n
i

t
i

a
l

i
z

i
n

g
[

v
i

o
l

a
t

i
o

n
l

o
g

g
e

r
]

:
0

3
:

2
5

:
2

9
.

6
5

9
:

c
o

n
n

e
c

t
i

n
g

t
o

b
o

o
t

s
t

r
a

p
p

e
r

[
v

i
o

l
a

t
i

o
n

l
o

g
g

e
r

]
:

0
3

:
2

6
:

0
6

.
6

0
8

:
m

o
t

i
o

n
c

a
l

l
e

r
3

e
5

b
0

0
0

0
-

0
0

0
0

-
0

0
0

0
-

0
0

0
0

-
0

0
0

0
0

0
0

0
0

0
0

0
i

s
a

l
r

e
a

d
y

k
n

o
w

n
-

n
o

t
h

i
n

g
t

o
d

o
[

v
i

o
l

a
t

i
o

n
l

o
g

g
e

r
]

:
0

3
:

2
6

:
0

7
.

1
9

9
:

S
u

b
s

c
r

i
b

e
d

t
o

R
e

q
V

i
o

l
a

t
i

o
n

E
v

e
n

t
f

r
o

m
3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

1
1

1
1

3
[

v
i

o
l

a
t

i
o

n
l

o
g

g
e

r
]

:
0

3
:

2
6

:
1

0
.

5
1

9
:

S
u

b
s

c
r

i
b

e
d

t
o

R
e

q
V

i
o

l
a

t
i

o
n

E
v

e
n

t
f

r
o

m
3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

0
0

0
0

6
[

v
i

o
l

a
t

i
o

n
l

o
g

g
e

r
]

:
0

3
:

2
6

:
1

3
.

6
3

6
:

S
u

b
s

c
r

i
b

e
d

t
o

R
e

q
V

i
o

l
a

t
i

o
n

E
v

e
n

t
f

r
o

m
3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

0
0

0
0

5
[

v
i

o
l

a
t

i
o

n
l

o
g

g
e

r
]

:
0

3
:

2
6

:
2

1
.

6
7

9
:

S
u

b
s

c
r

i
b

e
d

t
o

R
e

q
V

i
o

l
a

t
i

o
n

E
v

e
n

t
f

r
o

m
3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

1
1

1
1

2
[

v
i

o
l

a
t

i
o

n
l

o
g

g
e

r
]

:
0

3
:

2
6

:
2

4
.

8
5

0
:

S
u

b
s

c
r

i
b

e
d

t
o

R
e

q
V

i
o

l
a

t
i

o
n

E
v

e
n

t
f

r
o

m
3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

1
1

1
1

5
[

v
i

o
l

a
t

i
o

n
l

o
g

g
e

r
]

:
0

3
:

2
6

:
2

8
.

2
8

2
:

S
u

b
s

c
r

i
b

e
d

t
o

R
e

q
V

i
o

l
a

t
i

o
n

E
v

e
n

t
f

r
o

m
3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

0
0

0
0

3
[

v
i

o
l

a
t

i
o

n
l

o
g

g
e

r
]

:
0

3
:

2
6

:
3

0
.

2
1

3
:

E
v

e
n

t
([

’
r

e
q

u
i

r
e

m
e

n
t

:8
’

,
’

c
o

m
p

o
n

e
n

t
_

i
d

:
s

e
n

s
o

r
_

2
0

7
’

,
"

E
v

e
n

t
I

d
:

b
’

7
9

4
↪→

b
5

c
4

4
6

3
6

0
4

7
9

4
b

d
b

9
d

4
e

9
f

9
9

1
4

e
5

9
’"

,
’

T
i

m
e

:
0

1
:

2
6

:
3

0
.

1
9

8
5

3
0

’
,

’
R

e
c

e
i

v
e

T
i

m
e

:
0

1
:

2
6

:
3

0
.

1
9

8
5

4
5

’
,

"
M

e
s

s
a

g
e

:
L

o
c

a
l

i
z

e
d

T
e

x
t

(
↪→

L
o

c
a

l
e

=
N

o
n

e
,

T
e

x
t

=
’

R
e

q
u

i
r

e
m

e
n

t
8

(
l

o
c

a
l

)
v

i
o

l
a

t
e

d
!

V
o

l
t

a
g

e
o

n
m

e
t

e
r

s
e

n
s

o
r

_
2

0
7

e
x

c
e

e
d

s
m

a
x

_
v

o
l

t
a

g
e

:
↪→

(
1

0
5

0
2

.
8

9
2

6
2

2
3

1
0

8
2

8
>=

1
3

3
7

.
0

)
’)

"
,

’
S

e
v

e
r

i
t

y
:

1
’

]
)

[
v

i
o

l
a

t
i

o
n

l
o

g
g

e
r

]
:

0
3

:
2

6
:

3
0

.
2

1
4

:
E

v
e

n
t

([
’

r
e

q
u

i
r

e
m

e
n

t
:8

’
,

’
c

o
m

p
o

n
e

n
t

_
i

d
:

s
e

n
s

o
r

_
2

0
9

’
,

"
E

v
e

n
t

I
d

:
b

’
1

4
8

↪→
b

7
f

f
d

6
3

e
7

4
5

1
5

8
c

0
b

c
c

9
f

4
b

7
e

3
6

d
1

’"
,

’
T

i
m

e
:

0
1

:
2

6
:

3
0

.
2

0
2

0
3

4
’

,
’

R
e

c
e

i
v

e
T

i
m

e
:

0
1

:
2

6
:

3
0

.
2

0
2

0
4

3
’

,
"

M
e

s
s

a
g

e
:

L
o

c
a

l
i

z
e

d
T

e
x

t
(

↪→
L

o
c

a
l

e
=

N
o

n
e

,
T

e
x

t
=

’
R

e
q

u
i

r
e

m
e

n
t

8
(

l
o

c
a

l
)

v
i

o
l

a
t

e
d

!
V

o
l

t
a

g
e

o
n

m
e

t
e

r
s

e
n

s
o

r
_

2
0

9
e

x
c

e
e

d
s

m
a

x
_

v
o

l
t

a
g

e
:

↪→
(

1
0

5
0

2
.

8
9

2
6

2
2

3
1

0
8

2
8

>=
1

3
3

7
.

0
)

’)
"

,
’

S
e

v
e

r
i

t
y

:
1

’
]

)
[

v
i

o
l

a
t

i
o

n
l

o
g

g
e

r
]

:
0

3
:

2
6

:
3

1
.

4
3

1
:

S
u

b
s

c
r

i
b

e
d

t
o

R
e

q
V

i
o

l
a

t
i

o
n

E
v

e
n

t
f

r
o

m
3

e
5

b
9

c
4

6
-

5
dc

d
-

4
c8

2
-

a
d

e
8

-
9

1
3

9
4

7
f

1
1

1
1

4
[

v
i

o
l

a
t

i
o

n
l

o
g

g
e

r
]

:
0

3
:

2
6

:
3

2
.

2
9

9
:

E
v

e
n

t
([

’
r

e
q

u
i

r
e

m
e

n
t

:8
’

,
’

c
o

m
p

o
n

e
n

t
_

i
d

:
s

e
n

s
o

r
_

2
0

9
’

,
"

E
v

e
n

t
I

d
:

b
’

8
2

2
↪→

d
8

f
d

e
a

9
5

4
4

d
c

1
8

9
8

0
9

b
8

e
6

9
d

6
c

c
f

e
’"

,
’

T
i

m
e

:
0

1
:

2
6

:
3

2
.

2
7

8
2

0
6

’
,

’
R

e
c

e
i

v
e

T
i

m
e

:
0

1
:

2
6

:
3

2
.

2
7

8
2

2
1

’
,

"
M

e
s

s
a

g
e

:
L

o
c

a
l

i
z

e
d

T
e

x
t

(
↪→

L
o

c
a

l
e

=
N

o
n

e
,

T
e

x
t

=
’

R
e

q
u

i
r

e
m

e
n

t
8

(
l

o
c

a
l

)
v

i
o

l
a

t
e

d
!

V
o

l
t

a
g

e
o

n
m

e
t

e
r

s
e

n
s

o
r

_
2

0
9

e
x

c
e

e
d

s
m

a
x

_
v

o
l

t
a

g
e

:
↪→

(
1

0
5

0
0

.
8

1
3

2
6

9
2

7
0

2
4

7
>=

1
3

3
7

.
0

)
’)

"
,

’
S

e
v

e
r

i
t

y
:

1
’

]
)

[
v

i
o

l
a

t
i

o
n

l
o

g
g

e
r

]
:

0
3

:
2

6
:

3
4

.
4

9
0

:
E

v
e

n
t

([
’

r
e

q
u

i
r

e
m

e
n

t
:8

’
,

’
c

o
m

p
o

n
e

n
t

_
i

d
:

s
e

n
s

o
r

_
2

0
7

’
,

"
E

v
e

n
t

I
d

:
b

’
2

↪→
e

6
b

e
b

5
9

9
2

d
a

4
b

a
5

b
0

0
c

4
1

9
b

0
b

9
7

8
7

a
8

’"
,

’
T

i
m

e
:

0
1

:
2

6
:

3
4

.
3

2
5

5
0

5
’

,
’

R
e

c
e

i
v

e
T

i
m

e
:

0
1

:
2

6
:

3
4

.
3

2
5

5
1

6
’

,
"

M
e

s
s

a
g

e
:

L
o

c
a

l
i

z
e

d
T

e
x

t
(

↪→
L

o
c

a
l

e
=

N
o

n
e

,
T

e
x

t
=

’
R

e
q

u
i

r
e

m
e

n
t

8
(

l
o

c
a

l
)

v
i

o
l

a
t

e
d

!
V

o
l

t
a

g
e

o
n

m
e

t
e

r
s

e
n

s
o

r
_

2
0

7
e

x
c

e
e

d
s

m
a

x
_

v
o

l
t

a
g

e
:

↪→
(

1
0

4
9

9
.

8
1

1
5

7
5

7
5

1
6

1
>=

1
3

3
7

.
0

)
’)

"
,

’
S

e
v

e
r

i
t

y
:

1
’

]
)

[
v

i
o

l
a

t
i

o
n

l
o

g
g

e
r

]
:

0
3

:
2

6
:

3
4

.
4

9
0

:
E

v
e

n
t

([
’

r
e

q
u

i
r

e
m

e
n

t
:8

’
,

’
c

o
m

p
o

n
e

n
t

_
i

d
:

s
e

n
s

o
r

_
2

0
9

’
,

"
E

v
e

n
t

I
d

:
b

’
2

9
9

3
3

0
5

6
3

1
6

2
4

4
1

↪→
a

8
8

7
9

d
b

f
8

9
0

3
9

e
c

7
a

’"
,

’
T

i
m

e
:

0
1

:
2

6
:

3
4

.
3

2
8

9
6

3
’

,
’

R
e

c
e

i
v

e
T

i
m

e
:

0
1

:
2

6
:

3
4

.
3

2
8

9
7

1
’

,
"

M
e

s
s

a
g

e
:

L
o

c
a

l
i

z
e

d
T

e
x

t
(

L
o

c
a

l
e

=
N

o
n

e
,

T
e

x
t

↪→
=

’
R

e
q

u
i

r
e

m
e

n
t

8
(

l
o

c
a

l
)

v
i

o
l

a
t

e
d

!
V

o
l

t
a

g
e

o
n

m
e

t
e

r
s

e
n

s
o

r
_

2
0

9
e

x
c

e
e

d
s

m
a

x
_

v
o

l
t

a
g

e
:

↪→
(

1
0

4
9

9
.

8
1

1
5

7
5

7
5

1
6

1
>=

1
3

3
7

.
0

)
’)

"
,

’
S

e
v

e
r

i
t

y
:

1
’

]
)

(a
)

O
ut

pu
t

of
C

on
su

m
er

.
A

ft
er

pu
bl

is
hi

ng
th

e
Re

gi
st

er
C

on
su

m
er

m
ot

io
n

m
on

it
or

s
st

ar
t

co
nn

ec
ti

ng
an

d
th

e
co

ns
um

er
su

bs
cr

ib
es

to
re

le
va

nt
ev

en
ts

.
R

eq
ui

re
m

en
t

vi
ol

at
io

ns
fo

r
re

qu
ir

em
en

t
8

on
se

ns
or

_2
09

an
d

se
ns

or
_2

07
ar

e
re

ce
iv

ed
an

d
lo

gg
ed

.

[
l

m
0

3
]

0
3

:
2

6
:

3
6

.
3

7
9

3
4

6
:

R
e

q
u

i
r

e
m

e
n

t
8

(
l

o
c

a
l

)
v

i
o

l
a

t
e

d
!

V
o

l
t

a
g

e
o

n
m

e
t

e
r

s
e

n
s

o
r

_
2

0
7

e
x

c
e

e
d

s
m

a
x

_
v

o
l

t
a

g
e

:
↪→

(
1

0
4

9
9

.
8

0
9

0
4

4
6

9
7

8
4

6
>=

1
3

3
7

.
0

)
[

l
m

0
3

]
0

3
:

2
6

:
3

6
.

3
8

2
7

0
0

:
R

e
q

u
i

r
e

m
e

n
t

8
(

l
o

c
a

l
)

v
i

o
l

a
t

e
d

!
V

o
l

t
a

g
e

o
n

m
e

t
e

r
s

e
n

s
o

r
_

2
0

9
e

x
c

e
e

d
s

m
a

x
_

v
o

l
t

a
g

e
:

↪→
(

1
0

4
9

9
.

8
0

9
0

4
4

6
9

7
8

4
6

>=
1

3
3

7
.

0
)

[
l

m
0

3
]

0
3

:
2

6
:

3
8

.
4

5
3

7
7

0
:

R
e

q
u

i
r

e
m

e
n

t
8

(
l

o
c

a
l

)
v

i
o

l
a

t
e

d
!

V
o

l
t

a
g

e
o

n
m

e
t

e
r

s
e

n
s

o
r

_
2

0
7

e
x

c
e

e
d

s
m

a
x

_
v

o
l

t
a

g
e

:
↪→

(
1

0
5

0
6

.
0

7
5

6
6

8
3

9
9

5
4

4
>=

1
3

3
7

.
0

)
[

l
m

0
3

]
0

3
:

2
6

:
3

8
.

4
5

9
3

4
9

:
R

e
q

u
i

r
e

m
e

n
t

8
(

l
o

c
a

l
)

v
i

o
l

a
t

e
d

!
V

o
l

t
a

g
e

o
n

m
e

t
e

r
s

e
n

s
o

r
_

2
0

9
e

x
c

e
e

d
s

m
a

x
_

v
o

l
t

a
g

e
:

↪→
(

1
0

5
0

6
.

0
7

5
6

6
8

3
9

9
5

4
4

>=
1

3
3

7
.

0
)

(b
)

O
ut

pu
t

of
LM

3
du

ri
ng

th
e

sc
en

ar
io

.
R

eq
ui

re
m

en
t

vi
ol

at
io

ns
ar

e
de

te
ct

ed
an

d
lo

gg
ed

.

Fi
g.

7.
4.

:
O

ut
pu

t
of

th
e

co
ns

um
er

an
d

LM
3,

w
hi

ch
ge

ne
ra

te
s

th
e

vi
ol

at
io

n
ev

en
ts

.

7.2 Evaluation scenarios 61

General observations

The MOSAIK testbed used for simulating the grid and providing the data only has
a limited simulation time. After about 723 seconds the simulation finishes and all
simulators are shut down. To allow for longer evaluation of the IDS, the testbed is
then restarted automatically by docker. It takes some time until the testbed is set up
again and reconnection is accepted. This intermittent loss of connection to testbed
reflects in the logs of each LM, as they experience intermittent connection failures
during this restart process. Figure 7.5 shows the log generated by the LMs. As this is
a limitation of the setup, these error messages are benign and can be ignored. But
it can be noted that intermittent loss of connection to the grid does not cause any
issues, other than the lack of detected requirement violations caused by the lack of
actual sensor data.

[lm02] 22:55:46.857: Modbus Error : [Input / Output] Server responded with bad
↪→ response

[lm02] 22:55:48.863: Error connecting to Modbus Server ’manul - master :10501 ’

Fig. 7.5.: Example output of LM when MOSAIK testbed is restarting

7.3 Results

The scenarios show that the new communication system is functional and can handle
different scenarios. While these scenarios do not cover all possible conditions the
system is subjected to in a real world use case, it forms a base for further research
and evaluation.

It can be deduced that the new communication system works and the approaches
developed in Chapter 5 can be successfully be used to develop an IDS that is fully
distributed. The new communication system thereby remediates several of the
problems and weaknesses which were present in previous prototypes. The most
important factor is the removal of the central Command & Control server, whose
centralized nature formed a big weakness in the overall IDS. Section 8.2 further
elaborates on the results by answering the research questions.

62 Chapter 7 Evaluation

Conclusion 8
Finalizing this thesis, this chapter gives an overall review of the thesis and evaluates
the answers to the research questions. Furthermore, future work is outlined, pointing
out future research topics that have been identified during work on this thesis.

8.1 Summary

After Chapter 1 introduces the general topic and motivates the thesis, Chapter 2
gives an overview over related work and the general background. The smart grid
and the challenges it entails are described, establishing the operating environment
and problems that need to be solved. Based on this, SCADA as well as IDS systems
are introduced. Furthermore, the need for research in the context of resilient
communication networks is outlined.

Chapter 3 then defines the distributed IDS that is examined further in this thesis.
Special focus is given to the communication requirements of the IDS. Three different
data archetypes that are present in the IDS are identified, and recommendations on
how communication should be facilitated given.

The existing IDS prototype is then analyzed in Chapter 4. Based on the analysis
and the recommendations given in the previous chapter, the existing prototype is
critically evaluated. It showed that while the system works sufficiently in the limited
test scenarios that were used in previous research, various problems and weaknesses
exist when expanding these scenarios. Especially the centralization caused by the
presence of a monolithic Command & Control server is a big weakness when the
resilience of the IDS is investigated.

Chapter 5 subsequently develops a new communication network. The main goal
is to remediate the issues identified in the previous chapter, while also improv-
ing overall maintainability and scalability of the system. First the assumptions
this system makes, mainly requirements towards the operating environment, are
clarified. Afterwards, the overall design goals that influence the development are
outlined. Rumor-spreading algorithms are identified as a promising approach for

63

facilitating the communication, and different types are described. To fully utilize
the rumor-spreading approach the concept of motions is introduced, which is used
to standardize management of the network by containerizing each workflow into a
dedicated container.

The next chapter describes the actual prototypical implementation of the system.
For this, a small requirements specification is compiled, which later allows for
evaluating whether the set goals were accomplished. The following sections describe
the prototype, first organizational aspects and then different interesting and relevant
implementation details are presented.

The developed prototype is evaluated in Chapter 7. The existing scenarios is ex-
panded upon to more accurately reflect real conditions. The prototype is then
subjected to the three scenarios and the actual behaviour is compared with the
expected behaviour. Based on this an overall evaluation of the new system can be
given, specifically in comparison with the previous prototype.

The last chapter concludes the thesis, summarizing the work and revisiting the
research questions. Lastly, future research areas are identified and sketched out.

8.2 Research Questions

This thesis aimed to achieve the objective of developing a new and robust commu-
nication system for the IDS with the primary goal to achieve robustness against
internal malfunctions as well as external threads. For this, the thesis posed three
different research questions, which can be answered based on the results of the
various chapters.

Question 1: How should communication inside a hierarchically-organized distributed
IDS be facilitated?

This question has been thoroughly investigated in Chapter 3. The three data
archetypes present in the system, configuration data, sensor data and event data each
have differing requirements and should therefore be handled differently. Configura-
tion data needs to be validated, but has no strict requirements towards time-criticality
or minimization. It is therefore relatively indifferent to the communication mode
chosen. Sensor and Event data on the other hand are very time-critical and should
therefore always be transmitted using a push-based approach. Furthermore, as
sensor data is transmitted very frequently, its size should be minimized by using a

64 Chapter 8 Conclusion

binary-based encoding format. For the other types this does not matter as much as
they are only transmitted infrequently.

Question 2: How can the IDS organize itself without the need for centralized manage-
ment?

The problems of using a centralized management entity, such as the Command &
Control server that was used by the previous prototype, have been elaborated on in
Section 4.2. While various ways exist to implement self-organization of components,
this thesis further explored the use of rumor-spreading algorithms (cf. Section 5.4).
This methodology is very flexible and can handle the dynamic network topology
that is present in the IDS, while providing very high redundancy without requiring
external entities or complex mechanisms. By using a pseudorandom selection
algorithm for choosing communication partners, a model of eventual consistency
can be implemented while still guaranteeing acceptable bounds for time complexity.
All of these properties make it a good fit for a fully self-organized distributed IDS.

When using such a rumor-spreading algorithm for distribution of messages through
a network, it is important to ensure that the transmitted message contains all
information that is necessary by any receiver to successfully handle the message. For
this the concept of motions is introduced in Section 5.5. Motions form a standardized
message container, encapsulating all information that is required for a specific
workflow. Using this framework, all core workflows of the IDS can be handled in a
efficient manner. Additionally, it can be guaranteed that all messages conforms to
the same security guidelines.

Question 3: How can the IDS be resilient against malfunctions and outside attacks?

A distributed system inherently has a large attack surfaces, as components often
run in untrusted environments and due to the number of components many attack
vectors exist. When evaluating attacks, two primary cases need to be addressed. The
first case is the defense against attacks originating outside of the system. While this
is certainly the most prominent attack vector, attacks originating form inside the
system, e.g. through a compromised component, are another attack vector to be
recognized.

Both of these factors are best addressed by integrating resilience into the system by
design. The new communication system for the IDS is therefore fully distributed,
each component is autonomous and configures itself. This minimizes the attack
surface, as no external dependencies such as configuration services exist that could
be compromised.

8.2 Research Questions 65

The communication network presented in this thesis also inherently incorporates
some protection against attacks by malicious components that are already inside
the system. In the rumor-spreading algorithm each motion is duplicated manyfold
inside the network, with each duplicate taking a different route. Even if a malicious
component is able to modify the motion, e.g. because a key got compromised, it can
only modify the motions that pass through it. Motions that take a different route
through the network cannot be modified. While this does not inherently protect
against an intermediary component modifying motions, it makes it trivially easy to
detect by comparing all received duplicates of a motion and ensuring they are the
same.

Another factor impacting the security of the grid is ensuring continuous monitoring.
As the power grid is continuously in operation, the IDS must also support this mode
of operation. Requiring the IDS to temporarily shut down, e.g. when reconfiguration
is necessary, would invalidate the whole approach of the IDS. An attacker could just
wait until the next downtime for the attack, or possibly even inducing downtime
themselves by a secondary attack.

The new communication network is certainly not the ultimate defense against all
possible attacks, but it forms a solid base for further research into enhancing the
capabilities and resilience of the IDS.

8.3 Future Work

As already described in Chapter 2, the evolution of the smart grid is still ongoing,
requiring continuous research and innovation. While this thesis provided a starting
point towards a resilient distributed IDS, other challenges remain unsolved. The
following points form a short list of future research topics that have been identified
during work on this thesis:

• Additional consumers:
Due to time constraints this thesis only implemented a basic proof-of-concept
consumer that logs requirement violations to a console. But various other
consumers can be conceptualized.

– Visualization of the IDS itself

– Visualization of requirement violations

– Monitoring of IDS components themselves

66 Chapter 8 Conclusion

– Fallback orchestration (e.g. automatically startup new components if
other components are unavailable or crashed unrecoverably)

• Defensive strategies:
This thesis only implemented the core workflows required for basic func-
tionality of the IDS, but various other workflows are imaginable. As the
communication system is designed to be very transparent, any change to the
system state is implemented by publishing motions, it can easily be monitored.
A component could integrate itself into the system and monitor the flow of
motions to detect abnormalities.

• Expand caller verification:
Due to time constraints this thesis only implemented encryption and crypto-
graphic validation on the level of individual connections between components.
As described in Section 5.5, the individual motions should also be signed and
validated cryptographically. This allows for any receiver of the motion to
ensure that the motion itself is valid, and was not modified by an intermittent
component transmitting the motion.

8.3 Future Work 67

Bibliography

[1]Verena Menzel. “A hierarchical approach to monitoring SCADA networks”. Master’s
Thesis. WWU Münster, 2021 (cit. on pp. 1, 13–18, 20, 25, 30, 54, 73).

[2]Justyna J. Chromik, Carina Pilch, Pascal Brackmann, et al. “Context-aware local
Intrusion Detection in SCADA systems: A testbed and two showcases”. In: 2017 IEEE
International Conference on Smart Grid Communications (SmartGridComm). 2017
IEEE International Conference on Smart Grid Communications (SmartGridComm).
Oct. 2017, pp. 467–472 (cit. on pp. 1, 12–14).

[3]Justyna Joanna Chromik. “Process-aware SCADA traffic monitoring: A local ap-
proach”. ISBN: 978-90-365-4801-4 Issue: 19-009 Series: DSI Ph.D. thesis series.
PhD thesis. Netherlands: University of Twente, July 12, 2019 (cit. on pp. 1, 10, 13).

[4]Panagiotis I. Radoglou-Grammatikis and Panagiotis G. Sarigiannidis. “Securing the
Smart Grid: A Comprehensive Compilation of Intrusion Detection and Prevention
Systems”. In: IEEE Access 7 (2019), pp. 46595–46620 (cit. on pp. 1, 3).

[5]Kai Oliver Großhanten. “Anforderungsanalyse fur ein verteiltes IDS und Entwicklung
eines Prototypen auf Raspberry Pis”. Bachelor’s Thesis. WWU Münster, Oct. 1, 2022
(cit. on pp. 1, 3, 25, 29, 32, 46, 47, 53–55).

[6]Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine Generals Prob-
lem”. In: ACM Transactions on Programming Languages and Systems (July 1982),
pp. 382–401 (cit. on pp. 3, 30).

[7]Peter Palensky and Friederich Kupzog. “Smart Grids”. In: Annual Review of Environ-
ment and Resources 38.1 (Oct. 17, 2013), pp. 201–226 (cit. on p. 6).

[8]Chendan Li, Tomislav Dragicevic, Nelson Leonardo Díaz Aldana, et al. “Grid archi-
tecture for future distribution system — A cyber-physical system perspective”. In:
IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IECON
2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. Oct. 2017,
pp. 5235–5239 (cit. on p. 6).

[9]COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE
COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COM-
MITTEE OF THE REGIONS Smart Grids: from innovation to deployment. 2011 (cit. on
p. 6).

[10]Volker Berkhout, André Bisevic, Michael Claußner, et al. “Windenergie Report
Deutschland 2018”. In: (2019). Publisher: Fraunhofer Verlag (cit. on p. 7).

[13]Katrin Schaber and Florian Bieberbach. “Redispatch und dezentrale Erzeugung:
Alternativen zum Netzausbau?” In: (2015) (cit. on p. 7).

68

[14]Irfan Ahmed, Sebastian Obermeier, Martin Naedele, and Golden G. Richard III.
“SCADA Systems: Challenges for Forensic Investigators”. In: Computer 45 (Dec. 1,
2012), pp. 44–51 (cit. on p. 8).

[15]Ye Yan, Yi Qian, Hamid Sharif, and David Tipper. “A Survey on Cyber Security for
Smart Grid Communications”. In: IEEE Communications Surveys & Tutorials 14.4
(2012). Conference Name: IEEE Communications Surveys & Tutorials, pp. 998–1010
(cit. on p. 8).

[16]Stephen McLaughlin, Charalambos Konstantinou, Xueyang Wang, et al. “The Cyber-
security Landscape in Industrial Control Systems”. In: Proceedings of the IEEE 104.5
(May 2016), pp. 1039–1057 (cit. on p. 8).

[17]Simon Duque Anton, Daniel Fraunholz, Christoph Lipps, et al. “Two decades of SCADA
exploitation: A brief history”. In: 2017 IEEE Conference on Application, Information
and Network Security (AINS). 2017 IEEE Conference on Application, Information and
Network Security (AINS). Miri: IEEE, Nov. 2017, pp. 98–104 (cit. on p. 9).

[18]Teodor Sommestad, Göran N. Ericsson, and Jakob Nordlander. “SCADA system cyber
security — A comparison of standards”. In: IEEE PES General Meeting. IEEE PES
General Meeting. ISSN: 1944-9925. July 2010, pp. 1–8 (cit. on p. 9).

[19]Geeta Yadav and Kolin Paul. “Architecture and security of SCADA systems: A review”.
In: International Journal of Critical Infrastructure Protection 34 (Sept. 1, 2021),
p. 100433 (cit. on p. 9).

[20]A. Nicholson, S. Webber, S. Dyer, T. Patel, and H. Janicke. “SCADA security in the
light of Cyber-Warfare”. In: Computers and Security 31.4 (June 1, 2012), pp. 418–436
(cit. on p. 9).

[21]Elisavet Grigoriou, Athanasios Liatifis, Panagiotis Radoglou Grammatikis, et al. “Pro-
tecting IEC 60870-5-104 ICS/SCADA Systems with Honeypots”. In: July 27, 2022,
pp. 345–350 (cit. on p. 9).

[22]Vasiliki Kelli, Panagiotis Radoglou Grammatikis, Achilleas Sesis, et al. “Attacking and
Defending DNP3 ICS/SCADA Systems”. In: May 1, 2022, pp. 183–190 (cit. on p. 9).

[23]Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung. “Intru-
sion detection system: A comprehensive review”. In: Journal of Network and Computer
Applications 36.1 (Jan. 1, 2013), pp. 16–24 (cit. on p. 9).

[24]David Tipper. “Resilient network design: challenges and future directions”. In:
Telecommunication Systems 56.1 (May 1, 2014), pp. 5–16 (cit. on p. 10).

[27]David Jones, Chris Snider, Aydin Nassehi, Jason Yon, and Ben Hicks. “Characterising
the Digital Twin: A systematic literature review”. In: CIRP Journal of Manufacturing
Science and Technology 29 (May 1, 2020), pp. 36–52 (cit. on p. 12).

[28]Robert Flosbach, Justyna Joanna Chromik, and Anne Remke. “Architecture and Pro-
totype Implementation for Process-Aware Intrusion Detection in Electrical Grids”. In:
2019 38th Symposium on Reliable Distributed Systems (SRDS). 2019 38th Symposium
on Reliable Distributed Systems (SRDS). Lyon, France: IEEE, Oct. 2019, pp. 42–4209
(cit. on p. 12).

Bibliography 69

[29]Verena Menzel, Johann L. Hurink, and Anne Remke. “Securing SCADA networks
for smart grids via a distributed evaluation of local sensor data”. In: 2021 IEEE
International Conference on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm). 2021, pp. 405–411 (cit. on p. 12).

[30]Tom Deuschle, Piet Adick, and Jan Speckamp. Abschlussbericht Projektseminar: IT-
Sicherheit für Stromnetze. WWU Münster, 2022 (cit. on pp. 25, 29, 45, 46).

[31]Eric Brewer. Spanner, TrueTime and the CAP Theorem. 2017 (cit. on p. 30).

[32]Paul J. Leach, Rich Salz, and Michael H. Mealling. A Universally Unique IDentifier
(UUID) URN Namespace. Request for Comments RFC 4122. Num Pages: 32. Internet
Engineering Task Force, July 2005 (cit. on p. 31).

[33]Alexandros G. Dimakis, Anand D. Sarwate, and Martin J. Wainwright. “Geographic
gossip: efficient aggregation for sensor networks”. In: Proceedings of the 5th interna-
tional conference on Information processing in sensor networks. IPSN ’06. New York,
NY, USA: Association for Computing Machinery, Apr. 19, 2006, pp. 69–76 (cit. on
p. 35).

[34]Boris Pittel. “On Spreading a Rumor”. In: SIAM Journal on Applied Mathematics 47.1
(Feb. 1987), pp. 213–223 (cit. on p. 35).

[35]C. Avin and Robert Elsässer. “Breaking the log n barrier on rumor spreading”. In:
ArXiv (Dec. 8, 2015) (cit. on p. 35).

[36]Alan Demers, Dan Greene, Carl Hauser, et al. “Epidemic algorithms for replicated
database maintenance”. In: Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing. PODC ’87. New York, NY, USA: Association for
Computing Machinery, Dec. 1, 1987, pp. 1–12 (cit. on p. 35).

[37]Mor Harchol-Balter, Tom Leighton, and Daniel Lewin. “Resource discovery in dis-
tributed networks”. In: Proceedings of the eighteenth annual ACM symposium on
Principles of distributed computing. PODC99: ACM Symposium on Principles of Dis-
tributed Computing. Atlanta Georgia USA: ACM, May 1999, pp. 229–237 (cit. on
p. 35).

[38]D. Kempe, A. Dobra, and J. Gehrke. “Gossip-based computation of aggregate infor-
mation”. In: 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings. 44th Annual IEEE Symposium on Foundations of Computer Science,
2003. Proceedings. ISSN: 0272-5428. Oct. 2003, pp. 482–491 (cit. on p. 35).

[39]Josef Schindler, Asmaa Tellabi, and Karl Waedt. Gossip protocol approach for a
decentralized energy market with OPC UA client-server communication. Accepted: 2021-
01-27T13:33:39Z ISSN: 1617-5468. Gesellschaft für Informatik, Bonn, 2021 (cit. on
p. 35).

[40]Despina I. Koukoula and Nikos D. Hatziargyriou. “Convergence acceleration of gossip
protocols applied for decentralized distribution grid management”. In: 2015 IEEE
Eindhoven PowerTech. 2015 IEEE Eindhoven PowerTech. June 2015, pp. 1–6 (cit. on
p. 35).

70 Bibliography

[41]Daniele Croce, Fabrizio Giuliano, Ilenia Tinnirello, et al. “Overgrid: A Fully Distributed
Demand Response Architecture Based on Overlay Networks”. In: IEEE Transactions
on Automation Science and Engineering 14.2 (Apr. 2017), pp. 471–481 (cit. on p. 35).

[42]R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. “Randomized rumor spread-
ing”. In: Proceedings 41st Annual Symposium on Foundations of Computer Science.
Proceedings 41st Annual Symposium on Foundations of Computer Science. ISSN:
0272-5428. Nov. 2000, pp. 565–574 (cit. on p. 36).

[43]George Giakkoupis. “Tight bounds for rumor spreading in graphs of a given conduc-
tance”. In: 28th International Symposium on Theoretical Aspects of Computer Science
(STACS 2011). Ed. by Thomas Schwentick and Christoph Dürr. Vol. 9. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). ISSN: 1868-8969. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011, pp. 57–68 (cit. on p. 36).

[44]Petra Berenbrink, Robert Elsässer, and Thomas Sauerwald. “Communication Com-
plexity of Quasirandom Rumor Spreading”. In: Algorithmica 72.2 (June 1, 2015),
pp. 467–492 (cit. on p. 38).

[45]Benjamin Doerr, Tobias Friedrich, and Thomas Sauerwald. “Quasirandom Rumor
Spreading”. In: ACM Transactions on Algorithms 11.2 (Oct. 30, 2014), 9:1–9:35
(cit. on p. 38).

[46]S. Rohjans and Michael Specht. “OPC UA: An Automation Standard for Future Smart
Grids”. In: 2013 (cit. on p. 47).

[47]Justyna J Chromik, Anne Remke, and Boudewijn R Haverkort. “An integrated testbed
for locally monitoring SCADA systems in smart grids”. In: Energy Informatics 1.1
(2018). Publisher: SpringerOpen, pp. 1–29 (cit. on p. 54).

Webpages

[@11]Timo Hartmann, Simon Bächle, and Ellen Szczepaniak. Redispatch 3.0: bottleneck
management through decentralised micro-plants? URL: https://www.adesso.de/en/
news/blog/redispatch-3-0-bottleneck-management-through-decentralised-
micro-plants-2.jsp (visited on Aug. 9, 2023) (cit. on p. 7).

[@12]Bundesnetzagentur - Redispatch. URL: https://www.bundesnetzagentur.de/DE/
Fachthemen/ElektrizitaetundGas/Versorgungssicherheit/Netzengpassmanagement/
Engpassmanagement/Redispatch/start.html (visited on July 25, 2023) (cit. on
p. 7).

[@25]tagesschau.de. Kritische Infrastruktur: Politiker fordern bessere Sicherheit. tagess-
chau.de. URL: https://www.tagesschau.de/inland/sabotage-infrastruktur-
sicherheit-101.html (visited on July 25, 2023) (cit. on p. 11).

[@26]Thorsten Neuhetzki. Hintergrund: Darum ist das Bahn-Netz ausgefallen. inside digital.
Oct. 10, 2022. URL: https://www.inside-digital.de/news/hintergrund-darum-
ist-das-bahn-netz-ausgefallen (visited on Aug. 9, 2023) (cit. on p. 11).

Webpages 71

https://www.adesso.de/en/news/blog/redispatch-3-0-bottleneck-management-through-decentralised-micro-plants-2.jsp
https://www.adesso.de/en/news/blog/redispatch-3-0-bottleneck-management-through-decentralised-micro-plants-2.jsp
https://www.adesso.de/en/news/blog/redispatch-3-0-bottleneck-management-through-decentralised-micro-plants-2.jsp
https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Versorgungssicherheit/Netzengpassmanagement/Engpassmanagement/Redispatch/start.html
https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Versorgungssicherheit/Netzengpassmanagement/Engpassmanagement/Redispatch/start.html
https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Versorgungssicherheit/Netzengpassmanagement/Engpassmanagement/Redispatch/start.html
https://www.tagesschau.de/inland/sabotage-infrastruktur-sicherheit-101.html
https://www.tagesschau.de/inland/sabotage-infrastruktur-sicherheit-101.html
https://www.inside-digital.de/news/hintergrund-darum-ist-das-bahn-netz-ausgefallen
https://www.inside-digital.de/news/hintergrund-darum-ist-das-bahn-netz-ausgefallen

Appendix A
A.1 Requirements Specification

The following table shows all requirements towards the prototypical implementation
developed during this thesis. The requirements each have one of three importance
levels attached. The level MUST denotes that fulfillment is integral to the operation
of the prototype. The level SHALL denotes requirements that should be fulfilled,
but operation is possible without fulfillment or with partial fulfillment, possibly in a
degraded way. The level CAN describes requirements that are optional.

ID Description Importance
Level

Operation

F010 The system detects requirement violations for the local
and neighborhood scope as defined by Menzel [1].

MUST

F011 The IDS provides a method to actively push requirement
violations and other remarkable system events to relevant
consumers

MUST

F020 The IDS is fully decentralized (external systems, e.g.
networking equipment, are exempt from this requirement
as it is not enforceable).

MUST

Workflows

73

F030 The system handles the core motions specified in Section
5.5.

• Add Monitor

• Remove Monitor

• Add Consumer

• Remove Consumer

MUST

Security

F200 All communication is encrypted using common
cryptography methods. For authentication x509
certificates are used

MUST

F201 Certificates are validated using PKI. I.e. either OCSP or
CRLs are supported.

SHALL

F202 Motions are signed with a cryptographic signature based
on the certificate after creation

SHALL

F203 The authenticity and integrity of received motions is
cryptographically checked upon receival

SHALL

Non-functional requirements

ID Description Importance
Level

Documentation & Maintainability

74 Appendix A Appendix

NF001 All source code is documented using established
documentation practices. All newly written code
conforms to commonly used formatting and linting
requirements. Python code adheres to the guidelines
specified in PEP 8. Automatically generated code is
exempt from these requirements.

SHALL

NF002 All code repositories include a readme file describing the
contents. If external documentation exists it is linked
there.

SHALL

NF003 The code is organized using git repositories and hosted
on the zivgitlab.uni-muenster.de provider.

SHALL

Licensing

NF101 All implemented components and specifications are
licensed under a common FLOSS license. Compatibility
with used libraries and frameworks is ensured.

MUST

Ease-of-Setup

NF201 All software component are provided in a portable and
standardized format (e.g. docker containers). All steps
required to build the software are
reproducible/deterministic given the documentation.

CAN

A.2 Data CD

A compact disk is attached to this thesis, containing the data listed below.

• Thesis:
A PDF version of this thesis.

• Sourcecode:
The sourcecode of the prototype. The sourcecode is copied from the GitLab
repository at commit <>. The code can also be found at https://zivgitlab.uni-
muenster.de/ag-sks/distributed-grid-ids/.

A.2 Data CD 75

https://zivgitlab.uni-muenster.de/ag-sks/distributed-grid-ids/
https://zivgitlab.uni-muenster.de/ag-sks/distributed-grid-ids/

Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by
Ricardo Langner. The design of the Clean Thesis style is inspired by user guide
documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

Declaration of Academic
Integrity

I hereby confirm that this thesis, entitled

Developing a robust communication system for a distributed IDS

is solely my own work and that I have used no sources or aids other than the ones
stated. All passages in my thesis for which other sources, including electronic media,
have been used, be it direct quotes or content references, have been acknowledged
as such and the sources cited. I am aware that plagiarism is considered an act
of deception which can result in sanction in accordance with the examination
regulations.

Münster, August 16, 2023

Jan Speckamp

I agree to have my thesis cross-checked with other texts to identify possible similari-
ties and to having it stored in a database for this purpose.

I confirm that I have not submitted the following thesis in part or whole as an
examination paper before.

Münster, August 16, 2023

Jan Speckamp

	Cover
	Titlepage
	Contents
	Nomenclature
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objective and Research Questions
	1.3 Outline

	2 Background & Related Work
	2.1 Smart Grid
	2.2 SCADA Systems
	2.3 Intrusion Detection Systems
	2.4 Resilient Communication

	3 Definition of the IDS
	3.1 System Overview
	3.2 System Components
	3.3 System Model
	3.4 Information Archetypes
	3.5 Communication Models

	4 Analysis of the existing IDS Prototype
	4.1 System Design
	4.2 Problems & Weaknesses

	5 Development of a new communication system
	5.1 Assumptions
	5.2 Workflows
	5.3 Design Concepts
	5.4 Rumor-spreading Algorithms
	5.5 Motions
	5.6 Caller Validation

	6 Prototype
	6.1 Requirements Specification
	6.2 Organization
	6.3 Documentation & Code Style
	6.4 Implementation
	6.4.1 Bootstrapping
	6.4.2 Local Monitor
	6.4.3 Neighborhood Monitor
	6.4.4 Challenges

	7 Evaluation
	7.1 Testbed
	7.2 Evaluation scenarios
	7.3 Results

	8 Conclusion
	8.1 Summary
	8.2 Research Questions
	8.3 Future Work

	Bibliography
	A Appendix
	A.1 Requirements Specification
	A.2 Data CD

	Colophon
	Declaration
	Declaration of Academic Integrity

