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Zusammenfassung

Um komplexe Systeme wie beispielsweise Kommunikationsprotokolle bereits vor ihrer
physischen Realisierung auf Verlasslichkeit, Abhangigkeiten oder Performanz zu testen
wird Model Checking verwendet. Hierfiir wird das betrachtete System als stochastisches
Modell mit Zustanden und probabilistischen Zustandsiibergdngen modelliert. Formuliert
man nun mithilfe einer Logik wie Probabilistic Computational Tree Logic Anforderungen
an das Modell, so kann in einem mathematischen Verfahren die Korrektheit oder auch
Wahrscheinlichkeit einer solchen Formel berechnet werden. Eine hiufig zu priifende
Anforderung ist die Erreichbarkeit einer Zustandsmenge innerhalb einer bestimmten
Zeit: time-bounded Reachability. Betrachtet man komplexe, zeitgemafie Strukturen wie
Kommunikationprotokolle, so stellt man fest, dass endliche Modelle lange nicht ausreichen,
um die Anwendungen unseres Lebens zu modellieren. Model Checking auf unendlichen
Modellen jedoch ist nicht vollstandig erschlossen. Wir werden deshalb MDP-Abstraktion
vorstellen, eine Technik, mit der fiir unendliche Warteschlangenmodelle, sogenannte
Quasi-Death-Birth-Processes, eine endliche Repréasentation entwickelt werden kann. In
einem weiteren Verfahren kann das erhaltene Modell weiter vereinfacht und diskretisiert
werden. Durch diese Mafinahme konnen mithilfe eines Tools, dem PRISM Model Checker,
Eigenschaften validiert werden.
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1. Einleitung

Kommunikationsprotokolle sind komplexe Systeme, iiber die Aussagen beziiglich Perfor-
manz und Abhangigkeiten getroffen werden konnen. Diese Systeme konnen als stochasti-
sche Modelle dargestellt werden, indem die Struktur des Systems als Zustdnde modelliert
wird und das Eintreten moglicher Ereignisse mit probabilistischer Verteilung in Form
von Ubergingen zwischen den Zustinden veranschaulicht wird. Um Eigenschaften und
Spezifikationen, die man an das Modell stellen mochte, zu verifizieren und validieren
wird das sogenannte Model Checking verwendet. Durch diesen Prozess konnen Systeme
schon vor ihrer physischen Umsetzung iiberpriift werden, was bei immer komplexeren
und sicherheitskritischen Systemen an Relevanz gewinnt.

Beim Model Checking wird zwischen symbolischem und explizitem Model Checking unter-
schieden: symbolisches Model Checking verwendet fiir die Reprasentation der Zustande
symbolische Datenstrukturen, sogenannte binary-decision diagrams (BDDs), wihrend das
explizite Model Checking, wie der Name schon sagt, die verwendeten Daten explizit spei-
chert. [1]

Ein Beispiel fiir solche stochastischen Modelle sind Continuos-time Markov Chains (CTMCs).
Mit CTMCs konnen viele verschiedenen, komplexen Strukturen in einem Modell fest-
gehalten werden. Wahrend Model Checking bisher iiberwiegend fiir endliche Modelle
angewandt wurde, sind unendliche Modelle fiir eine Vielzahl an Systemen der passendere
Ansatz. Kommunikationssysteme, wie beispielsweise Transmission Control Protocol (TCP),
verwenden sehr grofie oder unendliche Warteschlangen. Fiir solche Systeme sind verschie-
dene Aspekte von Interesse, unter anderem die Serverauslastung, Warteschlangenlange
oder die Wartezeit eines Nutzers auf ein Ereignis.

Eigenschaften dieser Art lassen sich mit Probabilistic Computational Temporal Logic (PCTL)
formalisieren. Eine wichtige Eigenschaft der Performanzevaluation ist Time-bounded Re-
achability. Diese Eigenschaft beschreibt, ob eine Zustandsmenge innerhalb des Modells
innerhalb einer bestimmten Zeit erreichbar ist. Hiermit kann man im Bereich von Kom-
munikationsprotokollen tiberpriifen, wie hoch die Wahrscheinlichkeit fiir das Erreichen
eines bestimmten Levels ist oder wie wahrscheinlich es ist, einen Zustand des Systems zu
erlangen, in dem Pakete iiber das Protokoll verschickt werden.

Ein typisches Modell eines Warteschlangensystems ist ein sogenannter Quasi-Birth-Death
Process (QBD). Durch ihre starke, level-basierte Struktur ist Model Checking auf QBDs
einfacher, als auf grofien unstrukturierten Modellen. [10]

Die starke Struktur der QBDs wollen wir nutzen, um sie in endliche Modelle zu iiberfithren.
Dafiir verwenden wir die in [7] eingefithrte MDP-Abstraktion. Durch Zusammenfassen
aller korrespondierenden Zustédnde ab einem bestimmten Level eines QBD in einer ab-
strakten Ebene entsteht ein endliches Modell mit Nichtdeterminismus. Dieses nennt man
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1. EINLEITUNG

Continuos-time Markov Decision Process (CTMDP). In jedem Zustand des abstrakten Levels
kann man zwischen verschiedenen Aktionen wéhlen, die urspriingliche Zustande des QBD
modellieren. Dadurch kénnen beim Model Checking keine eindeutigen Wahrscheinlichkei-
ten berechnet werden. Wir konnen jedoch die maximale und minimale Wahrscheinlichkeit
fiir das Erfiillen einer Eigenschaft auf dem CTMDP berechnen.

Tools wie der PRISM Model Checker sind entwickelt worden, um automatisiertes Model
Checking durchzufiithren. Da PRISM nicht in der Lage ist, Kontinuitit in Kombination
mit Nichtdeterminismus zu verarbeiten, werden wir ein weiteres Verfahren einfuhren,
um die erhaltenen Modelle zu vereinfachen und die in [8] beschriebene Diskretisierung
auf CTMDPs erlautern. Die daraus entstehende Modellstruktur ist ein Markov Decision
Process (MDP). Dieser verhélt sich diskret zu einer bei der Diskretisierung gewahlten
Zeitschrittdauer, weshalb immer erst nach Ablauf dieser Zeit genau ein Zustandsiibergang
stattfinden kann.

Auf einem MDP koénnen anschlieffend mithilfe von Model Checking Verfahren wie Value
Iteration oder Policy Iteration Wahrscheinlichkeiten fiir die Erreichbarkeit einer Zustands-
menge berechnet werden.

Zielsetzung Im Verlauf dieser Arbeit wollen wir eine Moglichkeit erlautern, Model
Checking fiir zeit-gebundene Erreichbarkeit auf unendlichen QBDs durchfiihren zu kénnen.

Ubersicht Zunichst werden wir in Kapitel 2 die Grundlagen behandeln. Dafiir fithren
wir in 2.1 Discrete-time Markov Chains (DTMCs), CTMCs und QBDs ein. In 2.2 erlautern
wir die in [7] erlauterte MDP-Abstraktion und definieren, wie sich diese Abstraktionsme-
thode konkret auf QBDs auswirkt. In 2.3 gehen wir auf die Diskretisierung von CTMDPs
ein, wie sie in [8] vorgestellt wurde.

In Kapitel 3 beschreiben wir, wie man Erreichbarkeit formalisiert und entsprechende Wahr-
scheinlichkeiten auf MDPs berechnet. Zunachst gehen wir in 3.1 auf Pfade, Scheduler und
induzierte DTMCs ein, da diese die Grundlage fiir die folgenden Berechnungen schaffen.
Daraufhin wird in 3.2 die Logik PCTL eingefiihrt, mit der wir Eigenschaften formalisieren
werden. Das Berechnen von Wahrscheinlichkeiten mit Verfahren wie Value Iteration wird
dann in 3.3 dargelegt.

Nachdem wir alle nétigen Werkzeuge fiir eine Analyse beschrieben haben, wollen wir
diese Verfahren in einer Fallstudie anwenden. Dafiir betrachten wir in Kapitel 4 das Trans-
mission Control Protocol (TCP). In 4.1 erldutern wir die Modellierung des Protokolls als
CTMC. Anschlieflend wenden wir in 4.2 die Abstraktion an und in 4.3 diskretisieren wir
den erhaltenen CTMDP.

In Kapitel 5 fithren wir eine Analyse des Modells durch. Da wir fiir die Berechnungen
PRISM verwenden, fithren wir in 5.1 die Grundlagen der PRISM Language ein. In 5.2 setzen
wir das Modell des Protokolls um, beschreiben die konkrete Eigenschaft, die wir iiberpriifen
wollen und gehen kurz auf die Parameter, die fiir die Berechnungen zu betrachten sind, ein.
Im néchsten Unterkapitel 5.3 wollen wir dann unsere Resultate vorstellen und analysieren.
Anschlieflend werden wir in 5.4 auf die Laufzeiten verschiedener Losungsverfahren von
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PRISM fiir unser Problem eingehen und in 5.5 auf einen anderen Losungsansatz eingehen
und Unterschiede zu unserer Idee aufzeigen.

In Kapitel 6 fassen wir abschlieBend den behandelten Inhalt zusammen und geben einen
Ausblick auf weitere Betrachtungsansatze.

Verwandte Arbeit Wir wollen in diesem Abschnitt auf andere Arbeiten, die sich mit
dem Model Checking unendlicher Systeme beschaftigen, eingehen. Konventionelle Model
Checking Verfahren konnen nicht auf unendliche Modelle angewandt werden. Es gibt
jedoch bereits einige Ansidtze, gut strukturierte unendliche CTMCs zu priifen. In [11]
werden neue Algorithmen fiir das Model Checking von CSL-Formeln eingefiihrt. Continu-
os Stochastic Logic (CSL) ist eine Erweiterung der Logik PCTL. Fiir den zeitgebundenen
Until-Operator, insbesondere also fiir zeitgebundene Erreichbarkeit, wird hier eine neue
Methode namens Uniformisierung mit Reprdsentanten eingefiihrt. Diese arbeitet mit einem
dynamischen Abbruchkriterium, wobei das Model Checking einer Formel nur so lange
durchgefithrt werden muss, bis man mit Sicherheit sagen kann, dass sie bereits erfiillt
bzw. nicht erfiillt ist. Dadurch kann auch auf unendlichen Systemen Model Checking
durchgefithrt werden, wenn sie eine starke Struktur haben.

Wie auch in [11] werden in [4] unendliche QBDs betrachtet. Darin werden die QBDs ab
einer bestimmten Ebene abgeschnitten. Mithilfe eines a priori gewahlten Fehlers wird
untersucht, wieviele Level fiir eine aussagekraftige Wahrscheinlichkeitsberechnung von
Noten sind. In [6] wird ebenfalls ein Verfahren vorgestellt, das unendliche CTMCs ab-
schneidet. Dabei wird in einem dynamischen Ansatz der optimale Punkt zum Abschneiden
der CTMC gefunden.

Im Gegensatz zu diesen Verfahren wollen wir versuchen durch das Einfiihren einer ab-
strakten Ebene die unendliche Warteschlange besser zu simulieren und den Datenverlust
durch das Abschneiden einzugrenzen.

In [7] hingegen werden unendliche CTMCs mit einer baumartigen Struktur betrachtet.
Diese sind etwas komplexer als gewohnliche QBDs. Hier wird ein Verfahren zum Zusam-
menfassen von Zustdnden vorgestellt, um das Aufbldhen des Zustandsraumes fiir eine
grof3ere Tiefe bzw. Levelzahl zu vermeiden. Diese Abstraktionmethode wollen auf unser
Problem anpassen und zusammen mit der Diskretisierung aus [8] verwenden, um ein
diskretes und endliches Modell zu erhalten. Wir versuchen so, einen anderen Ansatz fiir
das Problem des Model Checkings unendlicher CTMCs, wie es in [11] diskutiert wurde, zu
entwickeln.
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2. Theorie und Grundlagen zur
Abstraktion und Diskretisierung
von QBDs

Im folgenden Kapitel werden wir die Grundlagen fiir die spatere Anwendung formalisieren
und erklaren. Wir definieren zunéchst in 2.1 diskrete und kontinuierliche Markov-Ketten
und Quasi-Birth-Death-Prozesse, fithren anschlieflend in 2.2 eine bestimmte Form der
Abstraktion von kontinuierlichen Markov-Ketten ein, die wir verwenden werden, um ein
endliches Modell zu erhalten und definieren dafiir auch ein nichtdeterministisches Modell:
Markov-Entscheidungsprozesse. Anschlieflend legen wir in 2.3 die Diskretisierung dieser
Modelle dar, durch die wir diskrete nichtdeterministische Modelle erhalten, auf denen wir
spater Wahrscheinlichkeiten fiir Erreichbarkeit bestimmter Zustande bestimmen wollen.

2.1. DTMCs, CTMCs, QBDs

Im Verlauf der Arbeit betrachten wir Zustandsiibergangsmodelle, die komplexe Systeme
darstellen, in denen mit Wahrscheinlichkeitsverteilungen oder Raten ausgehend von ei-
nem Zustand eine Zustandsdnderung eintreten kann. Solche Prozesse konnen in einem
stochastischen Modell als Markov-Kette modelliert werden. Fiir alle Markov-Ketten gilt die
sogenannte MARKOV EIGENSCHAFT. Diese besagt, dass die Wahrscheinlichkeit einer
Transition in einem Zustand ausschliefllich von diesem Zustand abhangt. Der bisherige
Verlauf innerhalb der Markov-Kette ist nicht von Bedeutung fiir die Wahrscheinlichkeit
oder Rate eines Ubergangs. Ein solches zeitdiskretes Modell ist eine Discrete-time Markov
Chain:

2.1.1 Definition DiSCcRETE-TIME MARkoOV CHAIN (DTMC)

Eine DTMC ist ein Tupel D = (S, P, g, L), wobei § ist eine Zustandsmenge ist. P: SxS —
[0, 1] ist eine Ubergangsfunktion, die die Zustandsiiberginge widerspiegelt. Fiir jeden
Zustand s € S gilt ) g P(s,s") = 1. g € Distr(S) aus der Menge aller Verteilungen iiber
S ist die Startverteilung. Sei auBerdem L: S — 2% eine Labelfunktion, die jedem Zustand
eine Menge von atomaren Eigenschaften zuordnet. Dabei ist A die Menge aller atomaren
Eigenschaften. [1]

In einem diskreten Modell finden Zustandsiibergange in regelméfligen Abstinden gemaf}
einer fest definierten Zeiteinheit statt. Um realitatsnahe Modelle zu erhalten muss konti-
nuierliche Zeit betrachtet werden. Fur kontinuierliche Markov-Ketten bedeutet dies, dass
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2. THEORIE UND GRUNDLAGEN ZUR ABSTRAKTION UND DISKRETISIERUNG VON
OBDs

10
0.8

3

Abbildung 2.1.: Beispiel einer CTMC mit Zustandsraum S = {a, b, c}, Startzustand a, der
Ratenfunktion R: 8§ X § — R mit R(a,c) = 3,R(b,a) = 0.8,R(b,c) =
3,R(c,b) = 10, sonst 0.

ein Zustandsiibergang zu jedem beliebigen Zeitpunkt stattfinden kann und nicht, wie in
einem diskreten Modell, nur nach Ablauf einer festen Zeitschrittdauer. Wir fithren nun die
Definition kontinuierlicher Markov-Ketten ein:

2.1.2 Definition CoNTINUOS-TIME MARKOV CHAIN (CTMC) [7], [6]

Eine CTMC ist ein Tupel C = (S,R,q,L). Hierbei ist S ein Zustandsraum,
R: S X S§ — Ry, die Ratenfunktion, die die Zustandsiibergidnge widerspiegelt,
q € Distr(S) die Startverteilung und L : S — 2% eine Labelfunktion, die jedem Zustand
eine Menge von atomaren Eigenschaften aus A, der Menge aller atomaren Eigenschaften,
zuordnet.

Die AUSGANGSRATE E eines Zustands s € S einer CTMC ist die Summe aller
ausgehenden Transitionen:

E(s) = Z R(s,s).

s’eS

In einer CTMC hat jeder Zustand eine Verweildauer. Diese Verweilzeiten sind exponenti-
alverteilt — die Wahrscheinlichkeit, einen Zustand s innerhalb einer Zeit ¢ zu verlassen
ist demnach gegeben durch 1 — e F()*_ Fiir eine Transition mit der Rate y betrigt die

Wahrscheinlichkeit (1 — e_E(S)'t) - #/E(s). In Abbildung 2.1 wird ein Beispiel einer einfachen

CTMC gezeigt. Ein Ubergang von Zustand b in Zustand ¢ geschieht hier mit einer Rate
von 3.

Durch Modellierung von Warteschlangen erhalt man CTMCs einer bestimmten Struktur
mit sich wiederholenden Ebenen. Die Aufnahme eines neuen Elementes in die Warte-
schlange induziert im Modell eine Transition in die nachsthohere Ebene, das Abarbeiten
eines Elementes 16st einen Zustandsiibergang in eine tiefere Ebene aus. Aufgrund dieses
Verhaltens werden diese Modelle auch Quasi-Birth-Death-Prozesse genannt. Die folgende
Definition orientiert sich an QBDs aus [11].

6 Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion



2.2. MDP-Abstraktion

2.1.3 Definition Quasi BiIrRTH DEATH ProcEss (QBD)

Ein QBD ist eine CTMC unendlicher Lange der folgenden Struktur: Ein QBD besteht aus
einer unendlichen Anzahl von Ebenen, auch Level genannt, mit endlich vielen Zustédnden,
Transitionen existieren nur innerhalb einer Ebene und zwischen direkt aufeinanderfolgen-
den Ebenen.

Ein QBD Q ist demnach ein Tupel (S, R, g, L). Der Zustandsraum S lasst sich aufteilen in
disjunkte Teilmengen S; C S fiir i € IN. Die Ratenfunktion R(s, s") hat nur Eintrdge > 0
firs € S;mits” € S;41 US; U S;_y, furs” € S\ (Si+1 U S; U Si_1) gilt demnach R(s,s”) = 0.
Dadurch ist die Ratenfunktion R eine Blockmatrix mit Untermatrizen R;;—1, Ri i, Rii+1:

Roo Roa
R =[Rio Ri1 Ri2

Dabei ist R; ; die Matrix R(s;, s;) mit s; € S;,sj € S;.

Eine wichtige Eigenschaft eines QBD ist Levelunabhdngigkeit, welche eine Aussage tiber
unterschiedliche Strukturen der Ebenen trifft.

2.1.4 Definition LEVELUNABHANGIGKEIT [11]

Ein QBD ist ab einer bestimmten Ebene i € N LEVELUNABHANGIG. Dies bedeutet, dass
sich ab diesem Punkt die Struktur der Ebenen wiederholt: Fiir jeden Zustand s; dieser
Ebene S; existiert in allen folgenden Ebenen S;, j > i, ein entsprechender Zustand s € ;.
Auch die Transitionen und atomaren Eigenschaften verhalten sich entsprechend.

Im Folgenden betrachten wir ausschliefllich QBDs mit Levelunabhangigkeit ab
dem zweiten Level, einzig das erste Level darf sich also von den anderen unterscheiden.
Dieses Level nennen wir GRUNDLEVEL, alle folgenden Ebenen WIEDERHOLENDE
LEVEL.

In Abbildung 2.2 erkennt man die in 2.1.3 beschriebene Struktur eines typischen QBD. Der
OBD ist levelunabhéngig ab dem zweiten Level, alle folgenden Ebenen haben die gleiche,
sich wiederholende, Struktur. Nur die erste Ebene, das Grundlevel, hat eine abweichende
Struktur.

2.2. MDP-Abstraktion

Um eine CTMC zu abstrahieren, kann man eine Abstraktionsmethode verwenden, bei der
die CTMC in einen Continuos-time Markov Decision Process (CTMDP) umgewandelt wird.
Diese Methode heif3t MDP-Abstraktion. Hierbei werden Zustande nach einer gewéhlten
Zustandsraumpartition zusammengefasst. Um die Unterschiede der zusammengefassten
Zustande zu modellieren, werden in den abstrakten Zustianden sogenannte Aktionen
eingefiihrt.

Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion /
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OBDs

la | | | |
SEERT NN
. j o j T )
Grundlevel Wiederholende Level

Abbildung 2.2.: Beispiel eines QBD mit Zustandsraum S = {s;j | i € N,j € {1,2}}. Jede
Ebene i dieses QBD hat zwei Zustinde, s; ; und s; 5. Die Transitionen in ein
hoheres Level finden mit Rate A statt, die in ein niedrigeres mit Rate p.

2.2.1 Definition CONTINUOS-TIME MARKOV DEcistoN Prociss (CTMDP) [8]
Ein CTMDP M ist ein Tupel M = (S, Act, R, g, L) fiir das gilt:

« S ist ein endlicher Zustandsraum,

« Act ist eine endliche Menge von Aktionen, wobei Act(s) fiir s € S die Menge der
moglichen Aktionen eines Zustandes angibt,

e R: S X Act XS — R ist eine dreidimensionale Ratenfunktion

q € Distr(S) ist eine Initialverteilung

« und L: 8 — 2% eine Labelfunktion, wobei A eine Menge von atomaren Eigenschaften
ist.

Die AUSGANGSRATE E eines CTMDP-Zustandes s € S hangt auch von der gewéhlten
Aktion a € Act(s) ab:

E(s,a) = Z R(s,a,s")

s’eS

Ein CTMDP heifit LOCALLY UNIFORM, falls die Ausgangsrate E eines Zustands s € S
nicht von der Wahl der Aktion abhéngt. Es gilt also fiir beliebige «, f € Act(s):

E(s, ) = E(s, ).

Im Folgenden seien CTMDPs falls nicht anders angegeben immer locally uniform, wir
verwenden daher E(s) fiir die Ausgangsrate eines Zustandes s € S.

8 Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion



2.2. MDP-Abstraktion

{a,b}, u

(2) CTMC C (b) CTMDP Cys

Abbildung 2.3.: CTMCC = (S, R, ¢, L) mit S = {a, b, c}, Startzustand a und die zugehorige
abstrahierte CTMDP Cy,.

Ein CTMDP ist ein nichtdeterministisches Modell. In jedem Zustand gibt es die Moglichkeit,
aus einer oder mehr Aktionen auszuwahlen. Eine Aktion a aus Act(s) gibt fiir den Zustand
s eine Menge von moglichen Transitionen an. Diese Transitionen sind, wie in einer CTMC,
mit der Rate r = R(s, @, s”) exponentialverteilt.

Wenn ein CTMDP durch MDP-Abstraktion einer CTMC entsteht, spiegelt fiir jeden Zustand
s, der in einen abstrakten Zustand integriert wurde, genau eine Aktion die Transitionen
dieses Zustandes s dar. Falls zwei Zustande die gleiche Verteilung haben, so werden diese
in einer Aktion zusammengefasst. Fiihrte zuvor eine Transition in einen Zustand s, der
nun mit anderen Zustanden zu einem abstrakten Zustand s’ zusammengefasst wurde, so
fiithrt diese Transition im abstrahierten Modell in den neuen Zustand s’. [7]

In Abbildung 2.3 wird die MDP-Abstraktion an einem einfachen Beispiel illustriert. Als
Zustandsraumpartition werden in diesem Beispiel die Zusténde a, b und d zusammengefasst.
Da a und b beide je eine p-Transition nach ¢ und eine A-Transition nach b bzw. d, also in
den neuen abstrakten Zustand (a, b, d) haben, konnen sie in einer Aktion zusammengefasst
werden. d hat eine andere Verteilung, daher ensteht eine eigene, mit d betitelte Aktion an
der urspriinglich von d ausgehenden Transition.

MDP-Abstraktion angewandt auf QBDs

Wir werden mithilfe der MDP-Abstraktion QBDs in endliche Modelle tiberfithren. Dafiir
wihlen wir die Zustandsraumaufteilung so, dass nach einer bestimmten Ebene m, die wir
im Folgenden ABSTRAKTIONSLEVEL nennen werden, alle sich entsprechenden Zustande
in einem ABSTRAKTEN LEVEL a zusammengefasst werden. Das abstrakte Level hat eine
ahnliche Struktur mit der gleichen Anzahl von Zustdnden wie die Wiederholenden Ebenen.
Die Transitionen sind in diesem Level aufgrund der Abstraktion anders.

Durch die so gewédhlte Partition entstehen nur im abstrakten Level verschiedene Aktionen.
Formal definieren wir fur alle Zustande, in denen sich durch die Abstraktion nichts ver-
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e | |
SRR
N S |
Grundlevel Wiederholende Level Abstraktes Level

Abbildung 2.4.: Beispiel eines CTMDP, der durch Anwendung von MDP-Abstraktion mit
Abstraktionslevel m = 2 auf den in Abbildung 2.2 eingefithrten QBD
entsteht.

andert, eine Aktion default, da wir in einem CTMDP, der so entsteht, in jedem Zustand
eine Aktion wahlen kénnen miissen. Dies gilt insbesondere fiir alle Zustédnde aus den
beibehaltenen Leveln mit den Zustandsmengen Sy, . . ., Sp,.

Fir abstrakte Zustande, deren korrespondieren Zustande keine Transitionen in ein vorhe-
riges Level haben, dndert sich durch die Abstraktion sehr wenig, da keine Wahlméoglichkeit
entsteht. Solche Zustande besitzen die gleichen Transitionen wie die korrespondierenden
Zustiande der Wiederholenden Ebenen, nur entsprechende Uberginge in ein héheres Level
zeigen hier ins abstrakte Level. Diese Zustdnde erhalten aufgrund der nur sehr geringen
strukturellen Veranderungen auch nur die Aktion default.

Falls fiir einen abstrakten Zustand die ihm entsprechenden Zustinde eine oder mehr
Transitionen in ein vorheriges Level haben, entstehen zwei verschiedene Aktionen:

« close: Diese Aktion modelliert genau den Zustand des ersten nicht mehr bestehen-
den Levels m + 1. Demnach sind die Transitionen ins vorherige Level sind mit close
moglich. Die Transitionen in ein weiteres oder innerhalb des Levels zeigen nun auf
den korrespondierenden Zustand der abstrakten Ebene, da die Ziellevel auch durch
das abstrakte Level modelliert werden.

« far: Diese Aktion stellt alle Zustdnde der tibrigen wegfallenden Level > m + 1 dar.
Von diesen Zustdnden aus kann die Ebene m nicht mehr erreicht werden. Auch die
Transitionen, die im QBD in ein niedrigeres Level zeigen, erreichen hier die jeweils
korrespondierenden Zustédnde in der abstrakten Ebene S,.

In Abbildung 2.4 ist dieses Verhalten dargestellt. Man erkennt hier die MDP-Abstraktion
mit den Aktionen far und close anhand des QBDs aus Abbildung 2.2. Aus Ubersichts-
griinden werden hier und in allen weiteren Grafiken die Transitionen der default-Aktion
nicht explizit gekennzeichnet.
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2.2. MDP-Abstraktion

Auf Grundlage der MDP-Abstraktion, wie sie in [7] eingefiithrt und hier vorgestellt wurde,
entsteht fiir unsere Betrachtungen beziiglich QBDs die folgende Definition, die Zustands-
raum und Ratenfunktion des abgeleiteten CTMDPs formalisiert.

2.2.2 Definition MDP-ABSTRAKTION EINES QBD

Durch MDP-ABSTRAKTION mit Abstraktionslevel m eines QBD Q = (S, R, ¢, L) mit
S = Ujen Si entsteht ein CTMDP M = (S, R, Act, g, L), wobei S = SoU---US,,US,. Seien
Sids---,Sin € Sifiuri € {0,...,m,a} die Zustande einer Ebene i. S, ist die Zustandsmenge
des abstrakten Levels und enthdlt zu s; 1, ..., s;, € S; furi € {1,..., m} korrespondierende
Zustande sg1, . . ., San € Sq-

Die RATENFUNKTION R ist folgendermafien definiert:

Fir Zustande s;x € S;, s e Smitie {1,...,m—-1},k € {1,...,n}:

ﬁ(si,k,default,s’) = R(sik,s")

Fir Zusténde sy x € S, k,p € {1,...,n}:
ﬁ(sm,k, default,sm_1k) = R(Smk>Sm-1p)
ﬁ(sm,k, default, s, ) = R(Smpks Smp)
ﬁ(sm,k, default, s, k) = R(Smk»Smi1,p)

Fir Zustande s, € Sy miti € {1,...,m},k,pe {1,...,n}:

Falls R(s;k,Si-1z) = 0mitz € {1,...,n}:

R(sqx default, s, ) = R(Siks Sip) + R(Sik> Siv1p)
ﬁ(sa,k,close,sm,p) = 0

ﬁ(sa,k,close,sad{,) = 0

?(sa,k,f'ar,sa,p) = 0

Sonst:

R(sers default,s,,) = 0

R(sq.k> CLOSE, S p) = R(sik»Si-1p)

R(sak> CLOSE, 54) = R(SiksSip) + R(Siks Siv1p)

7/2(8(1,]0 -Far, sa,p)
Alle nicht explizit definierten Raten sind 0.

R(siks Si-1p) + R(Siks Sip) + R(Siks Siv1,p)

Mit dieser Definition haben wir nun alle Grundlagen, die zum Abstrahieren einer CTMC
benotigt werden, kennengelernt und die Definition der MDP-Abstraktion fiir unsere Pro-
blemstellung, Model Checking von QBDs, formalisiert. Um dies Analysieren zu kénnen,
gehen wir im niachsten Unterkapitel auf die Diskretisierung ein.
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2. THEORIE UND GRUNDLAGEN ZUR ABSTRAKTION UND DISKRETISIERUNG VON
OBDs

2.3. Diskretisierung von CTMDPs

Wie in [2] werden wir CTMDPs diskretisieren, um ein Modell zu erhalten, auf das der PRISM
Model Checker angewandt werden kann. Wir werden die Diskretisierung auf die durch
MDP-Abstraktion von QBDs erhaltenen CTMDPs anwenden. Dabei wird die Ubergangs-
funktion anhand eines moglichst klein gewahlten Zeitschrittes diskretisiert. Wir beziehen
also die Wahrscheinlichkeit, einen Schritt zu machen, in die Ubergangswahrscheinlichkeit
mit ein. Dieses Vorgehen ist in dieser Form nur moéglich, da die betrachtete CTMDP die
Eigenschaft hat, locally uniform zu sein. Durch Anwenden der Methode entsteht aus dem
kontinuierlichen CTMDP ein diskreter Markov-Entscheidungsprozess mit einer speziellen
Ubergangsfunktion. Wir definieren zunichst diskrete Markov-Entscheidungsprozesse:

2.3.1 Definition MarRkov DEecistoN ProcEess (MDP) [1]

Ein MDP M ist ein Tupel M = (S, Act,P;, g, L). Hier ist S ein endlicher Zustandsraum,
Act eine Menge von Aktionen, wobei Act(s) fiir s € S die Menge der moglichen Aktionen
eines Zustandes angibt, P : S X Act xS — [0, 1] die Ubergangsfunktion, g € Distr(S)
die Startverteilung und L : S — 2* eine Labelfunktion, die jedem Zustand eine atomare
Eigenschaft aus der Menge A zuweist. A ist die Menge aller atomaren Eigenschaften.

In der folgenden Definition wird die Ubergangsfunktion beschrieben, wie sie durch die
Diskretisierung entsteht.

2.3.2 Definition DISKRETISIERTE UBERGANGSFUNKTION [8]
Die DISKRETISIERTE WAHRSCHEINLICHKEITSFUNKTION P, : & X Act XS — [0,1]
ist definiert als

(l - e_E(s)'T) -IP(s,a,s’), furs # s’,a € Act(s)
P.(s,a,s") = (1 - e_E(s)'T) -P(s,a,s’) + e EO T firs=¢,a€ Act(s)
0, fur a ¢ Act(s),

wobei 7 € Ry die Dauer eines Zeitschrittes ist. P : S X Act XS — [0, 1] gibt die zeitlich
unabhingige Wahrscheinlichkeit an, mit der gew#hlten Aktion a € Act(s) von Zustand s
aus zu Zustand s’ zu wechseln. Es gilt:

R(s,a,s’)

P(s,a,s’) = EG)

Die Exponentialverteilung 1 — e )7 gibt hierbei die Wahrscheinlichkeit fiir das Eintre-
ten eines Ereignisses innerhalb des Zeitintervalls der Lange 7 an. 7 ist die Granularitit
der diskreten Zeit, mit der wir Kontinuitét simulieren wollen, weshalb 7 mdglichst klein
gewahlt werden muss.

Werden mithilfe des erhaltenen Modells Berechnungen durchgefiihrt, so ist die Wahl von
7 verantwortlich fiir die Genauigkeit der Ergebnisse. Fiir ein zu grof3 gewéahltes 7 entsteht
ein Fehler. Dieser Fehler lasst sich berechnen, worauf wir im Folgenden naher eingehen
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2.3. Diskretisierung von CTMDPs

Diskretisierung

N probabilistische
CTI\E DLTMC } Modelle
> >
2 g
5 g
) ay
o 5
=] =
CTI;/IDP N %]')P nichtdeterministische
Diskretisierung Modelle
%/—/ %/—/
kontinuierliche diskrete
Modelle Modelle

Abbildung 2.5.: In der Arbeit vorgestellte stochastische Zustandstibergangsmodelle. Mit
MDP-Abstraktion erhalt man aus einem probabilistischem Modell ein
nichtdeterministisches. Mit Diskretisierung kann man ein kontinuierliches
Modell in ein diskretes tiberfithren.

werden, nachdem wir die Berechnung von Wahrscheinlichkeiten eingefithrt haben.

Fazit Wir haben nun verschiedene Zustandsiibergangsmodelle im diskreten und konti-
nuierlichen Raum kennengelernt die jeweils probabilistisch oder auch nichtdeterministisch
sein konnen. Auflerdem haben wir zwei Methoden erlernt: MDP-Abstraktion fasst Zustan-
de eines probabilistischen Modells in abstrakten Zustanden zusammen. Dadurch kénnen
wir ein unendliches Modell wie einen QBD in ein endliches tiberfithren. Diskretisierung
kann aus einem kontinuierlichen Modell wie einem CTMDP mithilfe einer Granularitét ¢
die Ubergangsfunktion und damit das Modell in ein diskretes iiberfithren. In Abbildung
2.5 ist dies grafisch festgehalten.
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3. Erreichbarkeit in MDPs

Auf einem stochastischen Modell wie einem MDP koénnen wir verschiedene relevante
Eigenschaften auf ihre Eintrittswahrscheinlichkeiten tiberpriifen. Um diese Berechnungen
durchfithren zu konnen, werden wir in 3.1 noch einige Grundlagen darlegen. AnschlieBend
definieren wir in 3.2 die Logik PCTL sowie zeitgebundene Erreichbarkeit fiir MDPs und
fithren in 3.3 Moglichkeiten zur Berechnung der Wahrscheinlichkeiten dieser Eigenschaft
ein.

3.1. Pfade, Scheduler und induzierte DTMCs

Die folgende Definition eines Pfades erfolgt in Anlehnung an [1].

3.1.1 Definition PFAD
Ein PFAD 7 = sps1... auf einem MDP M, ausgehend von einem Zustand s ist eine
Sequenz von Zustdnden, sodass gilt:

Vs; € m Ja € Act : P(s;, a, siv1) € Rso.

Die MENGE ALLER MOGLICHEN PFADE auf einem MDP M nennen wir Paths . Die
Menge aller Pfade, die von einem Zustand s aus moglich sind nennen wir Paths z((s).

Ein Pfad ist also eine Folge von Zustinden, wobei fiir aufeinanderfolgende Zusténde
eine Transition existieren muss. Da MDPs nichtdeterministische Modelle sind, hangt der
Pfadverlauf in einem MDP in allen Zustdnden mit Wahlmoglichkeit nicht nur von der
Wahrscheinlichkeitsverteilung, sondern auch von der Wahl einer Aktion ab. Um diese
Wahl in die Berechnung von Wahrscheinlichkeiten miteinbeziehen zu kénnen, kann man
sie durch einen Scheduler formalisieren. Auch die Definition fiir Scheduler ist angelehnt
an die entsprechende Definition in [1].

Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion 15



3. ERREICHBARKEIT IN MDPs

(a) MDP M (b) Induzierte DTMC M,

Abbildung 3.1.: Beispiel einer induzierten DTMC durch einen Scheduler o. Der Scheduler
wihlt hier in Zustand a der MDP die Aktion @, wodurch ausgehend von
diesem Zustand die beiden Pfade ab und ac zu moglichen Pfaden werden.
Diese Aktion ist im MDP und in der induzierten DTCM markiert.

3.1.2 Definition SCHEDULER
Ein SCHEDULER (auch: ADVERSARY, PoLicY) fir einen MDP M = (S, Act, P, g, L) ist
eine Funktion o : Pathsyq — Act, sodass fiir einen gegebenen Pfad 7 = sq . . . s, € Pathsp,

gilt:
o(m) € Act(sy).

Ein 0—PFAD ist eine Sequenz 7 = syaps121S2 . .. von Zustinden s; € S und Aktionen
a; € Act mit:

a; =0(sg...s;) Vi>0.

Die MENGE ALLER 0—PFADE auf einem MDP M, ausgehend von einem Zustand s
nennen wir Paths,(s). Es gilt Paths,(s) C Paths,(s).

Einen Scheduler kann man sich wie eine Person vorstellen, die entscheidet, welche Aktion
in einem Zustand gewé&hlt wird. Es gibt eine Vielzahl von Kriterien um Scheduler zu
beschreiben. Eines davon ist Geddchtnislosigkeit. Das bedeutet, dass die Entscheidungen
des Schedulers unabhéangig von den bisher getroffenen Entscheidungen sind.

3.1.3 Definition MEMORYLESS SCHEDULER [1]
Ein Scheduler auf einem MDP M = (8, Act,P,q,L) wird MEMORYLESS (oder auch
GEDACHTNISLOS) genannt, wenn fiir alle Pfade 7, 7° € Pathsy mit s € S gilt:

o(rs) = o(x's).

Ein Scheduler o auf einem MDP M induziert eine DTMC M., da er den Nichtdetermi-
nismus durch die Wahl einer Aktion auf jedem moglichen Pfad auflost. Diese DTMC
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3.1. Pfade, Scheduler und induzierte DTMCs

formalisiert das Verhalten des MDP unter dem Scheduler o. [1] Sie ist folgendermaflen
definiert:

3.1.4 Definition INDUCED DiSCRETE-TIME MARKOV CHAIN [1]
Die durch einen Scheduler ¢ INDUZIERTE DTMC M, eines MDP M = (S, Act, P, q, L)
ist ein Tupel

M, = (Paths,;(q), Ps,q, Ly).
Dabei ist

« Paths,(q) der Zustandsraum der induzierten DTMC. Die Zustinde reprasentieren
alle moglichen Pfade auf dem MDP fiir den Scheduler o.

« P, : Paths,(q) — [0, 1] die Ubergangsfunktion. Eine Transition reprisentiert einen
weiteren Schritt auf dem MDP mit der Wahl einer Aktion durch den Scheduler. Es
gilt P, (7, wspi1) = P(sp, o(), spi1) fur alle 7 = sq. . . s, € Paths;(q).

« g die Initialverteilung.

« L, : Paths,(q) — A eine Labelfunktion, wobei jedem Zustand 7 = sp...s, €
Paths,(q) der induzierten DTMC das Label des letzten Pfadzustandes zugewiesen
wird. Es gilt L, () = L(sp).

Die durch einen Scheduler ¢ induzierte DTMC besteht also aus den moglichen o-Pfaden
auf dem MDP. Ist der Scheduler gediachtnislos, so kann eine vereinfachte induzierte DTMC
betrachtet werden: Diese hat den gleichen Zustandsraum wie der MDP. In jedem Zustand
bleibt dann nur die Verteilung derjenigen Aktion bestehen, die der Scheduler wahlt.

In Abbildung 3.1 ist ein Beispiel fiir einen MDP und die zugehorige induzierte DTMC fiir
den Scheduler mit der folgenden Funktion zu sehen:

a, fallsmt=sy...5,a

y, fallsz=sp...5,b

o(r) = , S0s--->Sn €S ={a,b,c,d}, m € Paths,(q).

r, fallsm=sy...s,¢

o6, fallsm=sy...5,d
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3. ERREICHBARKEIT IN MDPs

3.2. Logik

Um nun eine Wahrscheinlichkeit dafiir berechnen zu konnen, von einem Zustand aus
einen anderen Zustand zu erreichen, mussen wir zunachst formalisieren, was es heif3t,
erreichbar zu sein. Dafiir fithren wir Probabilistic Computational Tree Logic (PCTL) ein,
eine Logik, mit der man Wahrheitsaussagen auf MDPs formulieren kann.

3.2.1 Definition PRoBABILISTIC COMPUTATIONAL TREE Logic (PCTL) [1]
ProBABILISTIC COMPUTATIONAL TREE LoGgic (PCTL) ist eine Logik zum Beschrei-
ben von Eigenschaften von Zustanden in Markov-Ketten und insbesondere MDPs. In PCTL
gibt es Zustands- und Pfadformeln, die der hier definierten Syntax folgen.

Zustandsformeln: ¢ == true | a | ¢1 A @2 | =@ | P3(¢),

wobei a € A eine atomare Eigenschaft ist, A die Menge aller atomaren Eigenschaften, i/
eine Pfadformel, ¢, ¢; und ¢, Zustandsformeln und J C [0, 1] ein Intervall mit Grenzen

aus Q.
Pfadformeln: ¢ == X¢ | ¢ U ¢ | $1 US" ¢y

Hier sind ¢, ¢; und ¢, Zustandsformeln und n ein Schwellwert, der die Anzahl von
Zeitschritten angibt, innerhalb derer eine Eigenschaft gepriift werden soll. Die Bedeu-
tung der temporalen Verkniipfungen X, Uund US" wird in der folgenden Definition erldutert.
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3.2. Logik

3.2.2 Definition ERFULLEN VON ZUSTANDS- UND PFADFORMELN [1]
Eine Zustand s ERFULLT (SATISFIES) eine Zustandsformel ¢, falls gilt s |= ¢, d.h. die
Zustandsformel ¢ gilt in s. Diese Relation ist folgendermafien definiert:

s |= true, fir alle Zustande s.

s = a, genau dann, wenn a € L(s).

s = 9, genau dann, wenn s [~ ¢.

s = ¢1 A P, genau dann, wenn s |= ¢; A's |= ¢@s.
s |= Py(¥), genau dann, wenn Pr(s, /) € J.

Dabei ist Pr(s,/) = Pri{m € Paths(s) | 7 |= ¢/} die Wahrscheinlichkeit, von s aus einen
Pfad zu gehen, der ¢ erfiillt.

Ein Pfad 7 in einer MDP M ERFULLT eine Pfadformel ¢, falls gilt = |= ¢:

7 = X, falls 7[1] = ¢
¢ U ¢,  falls3j>0:(x[j]F ¢2 A (YO <k <j:mlk] = ¢1))
¢ US" ¢y, fallsFieN:0<j<n:(n[j]lEdaANO<Sk<j:r[k] E 1))

Dabei ist 1 = sys1 ... ein Pfad und 7[i] bezeichnet fiir i > 0 den Zustand s;.

Mithilfe dieser Formeln sind nach Definition verschiedene Eigenschaften formal spezifiziert.

X¢: Ein Pfad erfiillt diese Formel, falls der nachste Zustand des Pfades ¢ erfiillt.
Diese Eigenschaft nennt man NEXT.

¢1 U oy Ein Pfad erfiillt diese Formel, falls fiir alle Zustiande entlang des Pfades
¢ gilt, bis fiir einen Zustand auf dem Pfad ¢, gilt. Zu dieser Eigenschaft
sagt man UNTIL.

¢1 US"¢y: Ein Pfad erfullt diese Formel, falls innerhalb von n Schritten auf dem
Pfad ein ¢, Zustand erreicht wird und bis zu diesem Zustand fiir alle
Zustande ¢, gilt. Aufgrund der zeitlichen Beschranktheit nennt man diese
Eigenschaft BOUNDED UNTIL.

Erreichbarkeit ist ein Spezialfall der Unil-Formeln. Dabei gilt ¢; = true. Die Erreich-
barkeit einer Zustandsformel ¢ ist demnach true U ¢. Wir konnen auch zeitgebundene
Erreichbarkeit formalisieren:

true US" ¢.

Ein Pfad erfullt diese Formel, wenn innerhalb von n Schritten ein Zustand auf dem Pfad
die Zustandsformel ¢ erfiillt. Man spricht deshalb auch vom Erreichen von ¢.
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3. ERREICHBARKEIT IN MDPs

3.3. Berechnung von
Erreichbarkeitswahrscheinlichkeiten

Wie bereits erwahnt kénnen durch den Nichtdeterminismus in MDPs keine eindeutigen
Wahrscheinlichkeiten berechnet werden. Betrachtet man allerdings in jedem Zustand die
beste bzw. schlechteste Wahl fiir das Erfiillen der Eigenschaft, so kann eine maximale und
eine minimale Wahrscheinlichkeit berechnet werden. Diese Wahl ist formalisiert durch
einen Scheduler und die entsprechende induzierte DTMC. Der Scheduler mit dem besten
Verhalten in Bezug auf die Pfadformel induziert diejenige DTMC, auf der man die maximale
Wabhrscheinlichkeit fiir das Erfiillen der Pfadformel berechnen kann. Hierfiir berechnet
man das Supremum (bzw. Infimum) der Wahrscheinlichkeiten, die durch alle méglichen
Scheduler induziert werden.

3.3.1 Definition WAHRSCHEINLICHKEIT FUR EINE PFADFORMEL [5]
Fiir einen MDP M = (S, Act, P, g, L) ist pypax die MAXIMALE und pyj, MINIMALE WAHR-
SCHEINLICHKEIT, von einem Zustand s € S aus eine Pfadformel zu erfillen. Es gilt:

pmax(s, l//) = Sup Pra(s’ w),
o€Adv

Pmin($, 1Y) = Glergv Pro(s, ),

wobei ¢ eine Pfadformel ist und Pr?(s, {) die Wahrscheinlichkeit bezeichnet, von s ausge-
hend einen o-Pfad zu gehen, der ¢ erfiillt.

Wir betrachten time-bounded reachability, die Eigenschaft, einen bestimmten Zustand
oder eine Menge innerhalb einer vorgegebenen Zeit oder auch Anzahl von Schritten zu
erreichen. Es gilt also ¢ = true U%!l¢. Zum Berechnen der maximalen und minimalen
Wahrscheinlichkeiten fiir die Erreichbarkeit einer Zustandseigenschaft in einem MDP
gibt es verschiedene Verfahren, die auf der Losung eines Gleichungssystems basieren. Um
alle benoétigten Informationen zum Losen dieser Gleichungen zu haben, muss zuvor noch
die Berechnung einer bestimmten Teilzustandsmenge durchgefiihrt werden. S™"=0 bzw.
§max=0 heschreiben die Menge aller Zustinde, von denen aus die Zielzustandsmenge (unter
Betrachtung der jeweiligen gewiinschten Optimalitat min bzw. max) nicht erreicht werden
kann. Fur die Berechnung dieser Mengen verwenden wir die in [5] vorgestellten Algo-
rithmen. Wir passen die Darstellung des Algorithmus an die in dieser Arbeit verwendete
Notation an.

Smin=0 enthilt diejenigen Zustinde, fiir die die Wahrscheinlichkeit die Zielmenge zu er-
reichen 0 ist, falls immer die moglichst schlechteste Wahl zum Erreichen der Zielmenge
getroffen wird. Der Algorithmus fiir die Berechnung von S™"=° (vgl. Listing 3.1) erwartet
hier als Eingabe eine MDP, zusammen mit der Zielmenge B. Es wird eine Menge R definiert,
die am Ende alle Zustinde enthalten soll, von denen aus man selbst mit der schlechtesten
Wahl B irgendwie erreichen kann. Zu Beginn des Algorithmus gilt trivialerweise R = B.
In der Iteration werden diese Menge nun mit allen Zustdnden vereinigt, von denen aus
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3.3. Berechnung von Erreichbarkeitswahrscheinlichkeiten

Eingabe: MDP M = (S, Act,P,q,L), Zielmenge BCS, mit sl=¢ VseB
Ausgabe: die Menge S™1=0 = {5 € S| pmin(s, true U ¢) =0}
R :=B;
do
R :=R;
R:=R U{s €S |Va € Act(s): (Is’ € R’ : P(s, @, s’) > 0)};
while R# R’;
return S\R;

Listing 3.1: Berechnung von S™n=0

Eingabe: MDP M =(S,Act, P, q,L), Zielmenge BCS, mit s|=¢ VseB
Ausgabe: die Menge S™0 = {5 € S| pmin(s, true U ¢) =0}

R :=B;

do

R’ :=R;

R:=R' U{s €S |3a €Act(s): (3s’ e R : P(s, a, s") > 0)};
while R#R;

return S\R;

Listing 3.2: Berechnung von S™%=0

fiir alle Aktionen eine direkte Transition in die Menge R existiert. Dies wird iiber einen
Zwischenspeicher R’ realisiert. Solange sich die Menge R innerhalb der Iteration verandert
hat, wird dieses Verfahren wiederholt. R enthélt nun alle Zustande, die B, bei Betrachtung
der minimalen Wahrscheinlichkeit, erreichen konnen. S \ B ist daher genau S™1=°,

Der Algorithmus fiir S%=0 (vgl. Listing 3.2) verhilt sich sehr dhnlich. In der Iteration
werden zur Menge R jedoch nur diejenigen Zustande hinzugefiigt, firr die es zumindest
eine Aktion gibt, die eine direkte Transition in die Menge R liefert. Bei der Betrachtung
der maximalen Wahrscheinlichkeit fiir das Erreichen der Zielmenge wiirde hier immer
diese Transition gewihlt werden, weshalb so die gewiinschte Menge S™¥*=? entsteht.

Mithilfe dieser Teilmengen konnen wir nun die Bellman Equations anwenden, um die
gewiinschten Wahrscheinlichkeiten zu berechnen:
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3. ERREICHBARKEIT IN MDPs

3.3.2 Definition BELLMmAN EQuAaTIONS [1], [5]

Gegeben sei ein endlicher MDP M = (S, Act,IP,q,L),s € S und B C § eine Teilmenge
von Zustanden, fiir welche die Zustandsformel ¢ gilt.

Der Vektor (x;); € S mit x; = Pr™®(s, true Ul $) gibt die eindeutige Losung der
folgenden Gleichungen an. Diese werden auch BELLMAN EQUATIONS genannt.

1, fiirs € B
x, =40, firs ¢ B, s € Sm&=0
max{ Y, P(s,a,s’) - xy | a € Act(s)}, sonst.
s’eS

Die Definition fiir die minimale Wahrscheinlichkeit eine Zustandsmenge zu erreichen ist
analog.

Es gibt verschiedene Ansitze, diese Gleichungen zu 16sen. Im Folgenden wollen wir niher
auf die sogenannte Value Iteration eingehen, aber auch andere Verfahren kurz erlautern.
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3.3. Berechnung von Erreichbarkeitswahrscheinlichkeiten

Value Iteration Eine mogliche Losungsvorschrift approximiert in einem iterativen
Verfahren den Losungsvektor. Wir stellen hier die Definition der Value Iteration nach [5]
VOr.

3.3.3 Definition VALUE ITERATION [5]
Sei S die Zustandsmenge eines MDP und B C S eine Teilmenge von Zusténden, fiir welche
die Zustandsformel ¢ gilt. Es gilt

Puin(s, true U¢) = lim x”
n—o0

b

wobei a eine atomare Eigenschaft ist. Dabei gilt fiir xﬁ"):

il furs € B
(n) 0, fiir s ¢ B,s € Smax=0
% =)o, firs ¢ B,s ¢ S™&=0 p =0
max{ ZS P(s,a,s’) - x§7_1) | a € Act(s)}, furs € B, pmax(s, ) > 0,n >0
s’e

Méchte man mithilfe der Value Iteration ein unbounded Until berechnen, so fithrt man das
iterative Verfahren bis zum Eintreten einer Abbruchbedingung aus. Dies konnte beispiels-
weise xﬁ") - xﬁ”‘” < ¢ mit einem zuvor gewéhlten ¢ sein. Bezieht man sich jedoch auf
bounded Until, so wird die Iteration genau fiir die entsprechende Anzahl von Zeitschritten
ausgefiihrt. Es gilt dann pmin(s, true U a) = §”.

Berechnet man mit Value Iteration eine maximale oder minimale Wahrscheinlichkeit fiir
zeitgebundene Erreichbarkeit, geht man demnach folgendermafen vor: Der Vektor x() hat
Eintrage = 1 fiir die Zusténde, die bereits in der Zielmenge sind. Fiir alle anderen Zustande
sind die Eintrdge 0. Insbesondere weif man, dass fiir Zustande s, die die Zielmenge nicht
erreichen konnen gilt: xgi) = 0 mit i € N. Dies sind die Zustinde s € S™*=0 bzw, §™in=0,
Im nichsten Iterationsschritt wird fiir jeden Zustand ein neuer Wert berechnet. Dafiir
werden alle Aktionen dieses Zustandes betrachtet, jedoch nur die Wahrscheinlichkeit der
jeweiligen Aktion, die den maximalen bzw. minimalen Wert liefert, wird gespeichert. Die
entsprechende Wahrscheinlichkeit einer Aktion ist die Summe aus jeweils der Ubergangs-
wahrscheinlichkeit in einen anderen Zustand multipliziert mit der fiir diesen Zustand
geltenenden Wahrscheinlichkeit aus dem letzten Iterationsschritt.

Gauss-Seidel Das Gauss-Seidel Verfahren ist eine Variation der Value Iteration. Dabei
werden in jeder Iteration die aktuell berechneten Werte eines Zustandes verwendet. Im
Gegensatz dazu verwendet die traditionelle Value Iteration immer die Ergebnisse des letzten
Iterationsschrittes, auch, wenn bereits neuere Ergebnisse fiir einen einzelnen Zustand gibt.
Demnach konnen alle berechneten Wahrscheinlichkeiten direkt in den Losungsvektor
geschrieben werden, es wird also nur Speicher fiir einen einzelnen Vektor bendtigt. [5]
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3. ERREICHBARKEIT IN MDPs

Policy Iteration Ein weiteres iteratives Verfahren zur Losung, welches jedoch nicht iiber
die Werte des Losungsvektors, sondern iiber Scheduler iteriert, ist Policy Iteration. Dabei
werden nur gedachtnislose Scheduler betrachtet. Zunachst wird ein beliebiger Scheduler fiir
den MDP ausgewahlt und fiir diesen der Losungsvektor x berechnet. Dafiir berechnet man
die Wahrscheinlichkeiten auf der entsprechenden induzierten DTMC. In einem néchsten
Schritt werden nacheinander alle Zustande betrachtet. In jedem Zustand tiberpriift man,
ob es eine Aktion gibt, die hier eine hohere (bzw. niedrigere) Wahrscheinlichkeit induziert.
Falls dies der Fall ist wird der Scheduler auf die Wahl dieser Aktion angepasst. Das Verfahren
terminiert, wenn der Scheduler in jedem Zustand die beste bzw. schlechteste Wahl trifft.

[5]

Granularitat und Fehler durch Diskretisierung

Berechnet man die Wahrscheinlichkeit fiir eine zeitgebundene Formel auf einem diskreti-
sierten Modell, so muss sich der Parameter fiir die Angabe der Grenzzeit &ndern. Damit die
Formel true UL%tmel ¢ auf dem MDP fiir die entsprechend korrekte Anzahl von Zeitschrit-
ten gepriift wird, miissen wir diese zunachst berechnen. Die ANZAHL DER SCHRITTE
steps, die eine Formel getestet werden muss, berechnet sich aus der zu testenden Zeit time
und der gewéahlten Zeitschrittdauer 7. Es gilt:

time

steps =

Um kontinuierliche Zeit optimal zu simulieren, muss die Granularitat der Diskretisierung,
also 7, moglichst klein gewahlt werden. Wahlt man 7 zu grof3, so schrankt man die Anzahl
der moglichen Schritte stark ein.

3.3.4 Definition FEHLER DER DISKRETISIERUNG [8]
Der FEHLER ¢, der durch die Wahl von 7 bei der Diskretisierung entsteht, kann folgender-
maflen berechnet werden:

_ (Emax - time)?

2 - steps

Dabei ist Epnax = maxges E(s) die maximale Ausgangsrate der CTMDP und steps die Anzahl
der Zeitschritte, die gemacht werden muss, um die gewiinschte Zeit time zu testen.

Fazit In diesem Kapitel haben wir erarbeitet, wie man auf einem MDP Wahrschein-
lichkeiten fiir die Erreichbarkeit einer Zustandsmenge berechnet. Zusammen mit den
Grundlagen zu Abstraktion und Diskretisierung, die wir in Kapitel 2 erldutert haben, sind
wir nun in der Lage aus einem unendlichen QBD ein diskretes Modell zu erlangen und auf
Basis diesen Modells die Wahrscheinlichkeit von PCTL-Formeln tiberprifen.
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4. Anwendung

Neben stochastischen Modellen kennen wir nun auch Moglichkeiten, Wahrscheinlichkeiten
fiir interessante Eigenschaften, die wir in PCTL formalisieren kdnnen, zu berechnen. In
diesem Kapitel werden wir die MDP-Abstraktion und Diskretisierung auf ein realitdtsnahes
Beispiel anwenden. Dafiir betrachten wir in 4.1 die Modellierung des Transmission Control
Protocols als QBD. In 4.2 abstrahieren wir das vorgestellte Modell. Abschlieflend stellen
wir in 4.3 die Diskretisierung mitsamt der erhaltenen Ubergangsfunktion vor.

4.1. Modellierung des Transmission Control Protocols

In einer Modellierung des Kommunikationsprotokolls TCP wird das Verhalten des Connec-
tion Managements on-demand connection with delayed release (ODCR) analysiert. [11]
Das System besteht aus einem Packet Generator, einer unendlichen Warteschlange und

Abbildung 4.1.: Darstellung des TCP-Modells als CTMC nach [11].

einem Connenction Management. Der Zustandsraum ist S = {(i, j, k) | i € N, j, k € {0,1}}.
Hier steht i fiir die Anzahl der Elemente in der Warteschlange, j = 0 dafiir, dass das
Connection Management released, also inaktiv, und j = 1 dafiir, dass es active, also aktiv,
ist. Ist das Connection Management aktiv, so versendet es Pakete mit einer Rate von . Es
wechselt aulerdem mit Rate r von aktiv zu inaktiv, und entsprechend umgekehrt mit Rate
c. In diesem Kontext steht k fiir den Zustand des Packet Generators: Fir k = 1 werden
Pakete mit der Rate A erzeugt. Der Packet Generator wechselt mit Rate « von burst zu off.
Vom ausgeschalteten Modus wechselt er mit der Rate  wieder in den Erzeugungsmodus.
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@ {released,
o Off}

p
{released, @ c
burst} .
@ {active,
o Off}
‘ B
{active, @
burst}
Abbildung 4.2.: Labels der CTMC 7 des TCP fiir alle Level i € N,.

Das Protokoll ist hier als unendliche CTMC 7 = (S, R, q, L) modelliert, wobei S der
oben genannte Zustandsraum ist. Jede Ebene stellt alle Zustande des Connection Manage-
ments und des Packet Generators fiir eine feste Anzahl i € IN an Warteschlangenelementen
dar. Sei (0,0, 1) der Startzustand: In diesem Zustand ist der Packet Generator im Erzeu-
gungsmodus, das Connection Management jedoch ist noch released, also ausgeschaltet. Mit
der Labelfunktion L weisen wir den Zustdnden aus S jeweils die passenden Eigenschaften
aus A = {burst,off,released,active} zu, wie in Abbildung 4.2 fiir die Wiederholenden
Ebenen dargestellt. Die Labels verhalten sich im Grundlevel dquivalent.

Die Ratenfunktion R: S X S — R der unendlichen CTMC hat aufgrund der QBD-Struktur
die Form einer Blockmatrix. Es gilt

Roo Ro
R = Rio Rix Riz

Dabei sehen die Untermatrizen fiir i € N3,s,s” € S folgendermaflen aus:

RQOZ > RM+1:

SO N R ©
o o o o
>~ o o o

Ri,i—l =

p
0
0
r
0
0
0
0

o oo KR oo o
T OO0 O OoO»m o o
O O R © © O O O
coow™ © < >0

ﬁ
oS O O O

R OO o
o™ o O
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4.2. MDP-Abstraktion

4.2. MDP-Abstraktion

Wir wenden auf dieses Modell die MDP-Abstraktion an. Dadurch erhalten wir einen endli-
chen QBD, in dem auf das Abstraktionslevel m ein abstraktes Level folgt. Der Zustandsraum
des abstrakten Levels ist S, = {(j, k) | j, k € {0, 1}}. Intuitiv sind die korrespondierenden
Zustinde zu einem Zustand (j, k) der abstrakten Ebene die Zustéande (i, j, k),i € {1,...,m}
der Wiederholenden Level.

Die Zustinde des abstrakten Levels erhalten nun die verschiedenen Aktionen default,
close und far. In Abbildung 4.3 ist eine Visualisierung der Abstraktion dargestellt. Aus
Ubersichtsgriinden kennzeichnen wir nur die Aktionen close und far besonders, alle
anderen Transitionen haben die Aktion default.

(0,0): Da die Zustande (i,0,0) € S;,i € {1,...,m} keine Transitionen in ein vorheriges
Level haben, erhilt dieser Zustand die default-Aktion. Er hat die gleichen Tran-
sitionen wie die entsprechenden Zusténde, sie fithren in die korrespondierenden
Zustiande des abstrakten Levels.

(0,1): Auch die zu diesem Zustand korrespondierenden Zusténde der Ebenen 1 bis m haben
keine Transitionen, die in ein niedrigeres Level fithren. (0, 1) erhélt demnach auch die
Aktion default. Die a- und c-Transitionen fithren in die entsprechenden abstrakten
Zustande. Die A-Transition der passenden Zustidnde aus anderen Leveln fiithrt in ein
hoheres Level, fiir den abstrakten Zustand bedeutet das, dass diese Transition auch
zum entsprechenden abstrakten Zustand fiihrt.

(1,0): Die diesem Zustand entsprechenden Zusténde haben eine p-Transition ins jeweilige
vorherige Level. Dieser Zustand hat also die Aktionen close und far und modelliert
damit verschiedene Erreichbarkeiten des Abstraktionslevels m. Die close-Aktion
steht fiir diesen Zustand im (m + 1)-ten Level, mit (close, y) kann man also in
den Zustand (m, 1, 0) gelangen. Mit der far-Aktion ist diese Transition nicht mehr
moglich. Die p-Transition wird hier zu einem Selfloop. Mit beiden Aktionen gibt es
die Transitionen, die in der Ebene bleiben: (close, a) und (far, ) fithren zu (1, 1).

(1,1): Dieser Zustand erhélt genau wie (1, 0) die (close, p)-Transition ins Abstraktionslevel.
Zusatzlich gibt es hier eine A-Transition, die in den Wiederholenden Ebenen i ins
(i + 1)-te Level zeigt. Fir close entsteht demnach ein Selfloop mit der Rate A. Da fiir
die Aktion far die - und A-Transition auf das abstrakte Level umgeleitet werden
miissen, entsteht ein Selfloop mit der Rate A + p.
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close, p
far, p

close, A

far,A+pu

Abbildung 4.3.: TCP Modell als CTMDP mit Abstraktionslevel m = 1.

Ratenfunktion der CTMDP

Durch die Abstraktion ergibt sich fiir die Ratenfunktion R : & X Act xS — R, der
CTMPD bei einem Abstraktionslevel m folgende Form:

RO,O Ro,l

RI,O Rl,l R1,2

R = ° S X ..

ﬂm,m—l Rm,m Rm,a
Ra,m Ra,a

Diese Matrix ist offensichtlich dreidimensional, fiir Act ergeben sich drei verschiedene Ebe-
nen, da gilt Act = {default,close, far}. Die Untermatrizen R; ;+1, R;; und R;_y; fur i €
{0, ..., m}, wie aus Definition 2.4 zu entnehmen, entsprechen in der default-Ebene denen
des QOBD aus 4.1. In den anderen Ebenen sind diese Matrizen 0. Die Matrizen R, , und
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4.3. Diskretisierung

Ra.c haben Eintrage in allen drei Ebenen:

0000 0 f c O
Rdefault _ 0 0 00 Rdefault _ a 0 0 c
am 0 0 0 0f a.a 0 0 0 0)
0 0 0O 0 0 0O
00 0 O 0 0 0 O
close _ 0000 close _ 0 0 0 O
7Qa,m_oo;lo’ Ra,a‘oooﬂ’
0 0 0 p 0 0 a A
0 0 0O 0 0 O 0
0 0 0O 0 0 O 0
far _ far
Raﬁm_oooo’ R“ﬂ_oo;z p
0000 00 a A+p

4.3. Diskretisierung

Den nun erhaltene CTMPD M = (S, Act, R, ¢, A, L) wollen wir mit dem in Kapitel 2.3
vorgestellten Verfahren diskretisieren. Dafiir erinnern wir uns an die Bedingung fiir Dis-
kretisierung: Der CTMDP muss lokal einheitlich sein. In 2.2.1 haben wir definiert, was es
heifit, locally uniform zu sein. Die Ausgangsrate E muss in allen Zustdnden unabhangig
von der Wahl der Aktion sein. Da wir bei der MDP-Abstraktion alle Transitionen erhalten
indem wir sie, falls notig, in das abstrakte Level umleiten, ist diese Eigenschaft natiirli-
cherweise gegeben. Wir konnen also Diskretisierung anwenden und erhalten einen MDP
M; = (S, Act, R, g, A, L). Die Ubergangsfunktion P, : S X Act xS — [0, 1] dieses MDPs
hat die folgende Form:

m,m—1 ]Pm,m ]Pm,a

P P

a,m a,a

Die Untermatrizen haben im Wesentlichen dieselben Transitionen wie die der Ratenfunk-
tion R - in diskretisierter Form. Hinzu kommen bei der Diskretisierung Selfloops, die
mit einer Wahrscheinlichkeit die Verweilzeit der Ratenfunktion modellieren. Die para-
metrisierten Werte der Untermatrizen ergeben sich aus der Definition der diskretisierten
Ubergangsfunktion (vgl. 2.3.2).
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Firie {1,...,m} gilt:

e‘ﬁ" 1—f_ﬂ" 0 0
default _ (1_6_(a+ )‘T).aa? el 0 0
Poo = | ey 0 - r+p)T (1 0oy L |
0 (1_6—(r+0:+/1)<1'),r_'—[:”ﬁ_/1 (1_6—(0:4—r+/1)~‘[).0(_*—5:_'—/1 e—(r+l+a)~r
0 0 ; 0 0
pdefault  _ 0 (1—e”Wra)m). A0 0
0,1 - 0 0 0 0 N ’
) .
0 0 0 (1_6 ( +a+r)r)_/1+a+r
00 0 0
default _ - . u
Poefautt = [ o0 (1 trehir) 0 :
—(utd+a)- p
00 0 (1—6 (prdre) T)';H/Ha
e~(cth)r (1_6—(ﬁ+v)~r).% (1_8—(v+ﬂ)~f).ﬁ 0
—(a+A+c)- —(a+A+c)- — A)-
]Pdefault _ (1—8 (a+dte) T)'a+[j1+c € (cthre)e 0 (l_e (crat )T)'c+ocz+/l
ii = _ . _ . B 5
I 0 0 e~ (BT (1_e (B+p) r).m
—(a+A+1)- —(A .
0 0 (l—e (a+A+p) ‘:)'#ﬁﬂl e (A+p+a)-t
0 0 0 0
—(1 . 2
default _ 0 (1_e (raxe) T)’A+a+c 0 g
i,i+1 -
—(A . 2
0 0 0 (1—6 rati) T)./1+a+y
Die Matrizen P, ,IP,, und P, , sind in den Ebenen fiir die Aktionen close und far in

allen Eintragen gleich 0. Fir die Untermatrizen P,,,, P,

a,m>

.o des abstrakten Levels gilt dies

nicht: Sie haben Eintrage in allen drei Ebenen. Diese sehen folgendermaflen aus:

0000
]Pdefault _ 0000
a,m - 0000 |°
0000
default e_(C-hg)'T (1_8—(ﬁ+0)-‘[),/%c (l_e—(C-ﬁ—ﬁ)»‘[).ﬁ 0
Paa = (1me(@rar).ca e 0 (1meer0r). < |
0 0 0 0
0 0 0 0
00 0 0
1 00 0 0
close _ _ ) u
P,n = 00 (1-e 7).t 0 ’
- 2)- "
00 0 0
1 00 0 0 ,
close _ ~ ] B .
Pia = 00 e (1 P75 )
00 (1—e—(a+l+ﬂ>~f).a+i+y (1_e—<l+a+u)~r).“£+u ye-latpt)r
f HE:
ar _
]Pa»m - 0000 |°
0000
00 0 0
P 00 0 0 ﬁ
ar _ _ ) u N ' B '
]Pa,a = 00 (l—e (H+h) T)'m+e (Bru)e (1—e (B+p) f).m
00 (e @)t (e )
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4.3. Diskretisierung

Fazit Indiesem Kapitel haben wir eine Modellierung des Transmission Control Protocols
betrachtet. Die Darstellung von TCP als unendlicher QBD haben wir aus [11] ibernommen.
Auf diesem QBD haben wir die in Kapitel 2 vorgestellten Ideen zum Vereinfachen eines
Modells kombiniert und so aus dem QBD zunéachst einen CTMDP und anschlielend
einen MDP erhalten. Mit den theoretischen Ausfithrungen aus Kapitel 3 wollen wir nun
Berechnungen auf dem erhaltenen vereinfachten Modell durchfithren. Dafiir werden wir
den PRISM Model Checker nutzen.
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5. Tests und Analyse mit dem PRISM
Model Checker

Wir werden im folgenden Kapitel PRISM verwenden, um time-bounded reachability auf
dem abstrahierten und diskretisierten Modell des TCP zu testen und eine Aussage tiber die
Qualitat der berechneten Werte zu treffen.

Dafiir fithren wir in 5.1 PRISM ein und gehen darauf ein, wie Modelle und Eigenschaften
in PRISM spezifiziert werden. Anschlieflend stellen wir in 5.2 die Implementierung des
TCP-Modells vor und konkretisieren die Eigenschaft mitsamt der relevanten Parameter,
fiir die wir Wahrscheinlichkeiten berechnen wollen.

Wenn wir alle Grundlagen geklart haben, um PRISM fiir unser Problem verwenden zu
konnen, werden wir dazu iibergehen, in 5.3 Tests durchzufithren. Wir berechnen mithilfe
des Model Checkers verschiedene Werte und wollen versuchen, diese Werte einzuordnen.
In 5.4 werden wir noch auf verschiedene Losungsmethoden von PRISM sowie ihre ver-
schiedenen Laufzeiten eingehen.

Die Berechnungen werden wir ausschliellich auf einem Lenovo X1 Carbon mit Intel
Core i7, 2.6 GHz und 8 GB RAM durchfiihren. Fiir die Berechnungen verwenden wir die
in Anhang B aufgefiihrten und erlduterten bash-Skripte, die wir entwickelt haben, um
strukturiertes Testen zu vereinfachen. Alle Konsolenausgaben sowie Resultate von PRISM
finden sich auf der beigelegten CD.

5.1. PRISM Model Checker

Der PRISM Model Checker ist ein Tool zur automatischen Verifizierung von Systemen
mit stochastischem Verhalten. PRISM kann fur CTMCs, DTMCs und MDPs Wahrschein-
lichkeiten zu verschiedenen Eigenschaften berechnen. Dafiir tibergibt man dem Tool eine
Modellbeschreibung und eine Liste von Eigenschaften, die getestet werden sollen. Zum
Berechnen der Wahrscheinlichkeiten gibt es eine Anzahl von Losungsansétzen in PRISM,
sowie intern verschiedene Moglichkeiten, die Modelle zu verarbeiten, um Berechnungen
durchzufiihren. Diese verschiedenen Ansitze werden Engines genannt. PRISM verwen-
det standardméaflig die Hybrid Engine, welche eine Kombination aus symbolischem und
explizitem Model Checking realisiert. [9] Fiir MDPs sind die von PRISM verwendeten Lo-
sungsverfahrenValue Iteration, Policy Iteration, Modified Policy Iteration und Gauss-Seidel.
Diese Verfahren haben wir bereits in 3.3 kennengelernt. Bei der Wahl eines Verfahrens muss
man auch die Wahl der Engine in Betracht ziehen. Nur Value Iteration, welche standardma-
Big fir Berechnungen auf MDPs ausgewahlt ist, arbeitet mit der Hybrid Engine. Deshalb
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werden wir fiir unsere Tests auch Value Iteration auf der Hybrid Engine verwenden. Da die
anderen Verfahren die Explicit Engine nutzen, werden wir fiir die Laufzeitanalyse Value
Iteration auf der Hybrid Engine mit allen vier Verfahren auf der Explicit Engine vergleichen.

5.1.1. Modelle in PRISM

An einem Beispiel wollen wir die Eingabe von Modellen in PRISM verdeutlichen. PRISM
verwendet dafiir eine eigene Syntax, die in [12] ausfiihrlich erlautert und dokumentiert
wird. Wir stellen in einem kurzen Abschnitt die fiir uns relevanten Elemente dar. Eine
beispielhafte Modellbeschreibung in PRISM einer einfachen MDP aus Abbildung 3.1 ist in
Listing 5.1 abgebildet.

mdp

module beispiel
s: [0..3] init 0;

[alphal s=0 -> 1/3: (s'=1) + 2/3: (s'=2);
[beta] s=0 -> 1/4: (s'=3) + 3/4: true;

[gammal s=1 -> 4/5: (s'=3) + 1/5: true;

[tau] s=2 -> 1: (s'=3);

[delta] s=3 -> 1: true;
[sigmal s=3 -> 1: (s'=0);
endmodule

label "goal” = s=2;

Listing 5.1: Implementierung einer einfachen MDP (vgl. Abbildung 3.1) in PRISM

Wir fithren kurz die fiir uns wichtigen Elemente der Syntax ein:

mdp Hier geben wir den Typ des Modells an. In diesem Fall ist das
Modell ein Markov Decision Process, kurz mdp.

module beispiel Mit diesem Befehl teilt man PRISM mit, dass hier ein Modell
beginnt. Es konnen mehrere Module eingegeben werden, die
PRISM anschlieflend intern zu einem Modell verarbeitet. Nach
dem Befehl wird der Name des Moduls angegeben.

s: [0..3] init ©; Hier wird der Zustandsraum {0, 1, 2, 3} spezifiziert. Die Zu-
stande werden im Folgenden mit s aufgerufen. 0 ist der Start-
zustand, welcher mit init gekennzeichnet wird.. Durch das
Verwenden von mehreren Variablen mit verschiedenen Eigen-
schaften kann man alle Kombinationen dieser Parameter in
Zustande tiberfithren.
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[alphal s=0 -> Mit diesem Befehl werden alle Transitionen eines Zustan-
1/3: (s’=1) + 2/3: des zu einer bestimmten Aktion beschrieben. Die Syntax ist
(s’=2); hier: [<action>] <current state> -> <probability>:

(<goal state>) + <probability>: (<goal state>);.
Wir beschreiben hier also die Transitionen von a (s=0) aus,
die unter der Aktion « verfiigbar sind.

[gamma] s=1 -> 4/5: Dieser Befehl beschreibt ebenfalls eine Transition. Verwendet

(s’=3) + 1/5: true; man anstatt eines Zielzustandes den Parameter true, so be-
deutet dies, dass sich nichts an der Position im Modell dndert:
Diese Transition ist ein Selfloop.

endmodule Dieser Befehl schliefit die Eingabe fiir das Modul.

label "goal” = s=2; Mit dem label-Befehl bezeichnet man eine Zuweisung durch
die Labelfunktion. label erwartet zunéchst eine Eigenschaft,
gefolgt von einem Zustand. Wir weisen hier dem Zustand ¢
(s=2) das Label goal zu. Die Syntax lautet:
label "<label>" = <state>;.

5.1.2. PCTL-Formeln als Eigenschaften in PRISM

Fir die Formalisierung von Eigenschaften liefert PRISM ebenfalls eine eigene Syntax.
Fiir die exakte Berechnung von Wahrscheinlichkeiten py,,, und pp,;, der zeitgebundenen
Erreichbarkeit einer Zustandsformel wird der folgende Ausdruck verwendet:

Pmax=? [ true U[@,t] <state formula> ]
Pmin=? [ true U[Q,t] <state formula> ]

Dabei miissen in der Zustandsformel verwendete Label in der Form "label” geschrieben
werden. Mit der Eingabe Pmax=? berechnet PRISM die exakte maximale Wahrscheinlichkeit
fir das Eintreten der darauffolgenden Formel. Pmin=? steht analog fiir die minimale
Wabhrscheinlichkeit. Wollen wir beispielsweise die maximale Wahrscheinlichkeit fiir das
Erreichen einer Menge von Zustdnden, die mit dem Label goal versehen sind, innerhalb
einer bestimmten Zeit t = 5 berechnen, so sieht die Eigenschaft folgendermaflen aus:

Pmax=? [ true U[@,5] "goal"” ]

Es konnen alternativ auch Eigenschaften gegen einen konkreten Grenzwert getestet wer-
den. Dies konnte dann die folgende Form haben:

P>0.9 [ true U[Q,t] "goal"” ]
P<@.35 [ true U[O,t] "goal” 1]
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Fiir P>p berechnet PRISM die minimale Wahrscheinlichkeit, und priift, ob sie iiber dem
Grenzwert p liegt. In diesem Fall ist die Ausgabe keine konkrete Wahrscheinlichkeit sondern
der Boolean true bzw. false. Fiir P<p wird gepriift, ob die maximale Wahrscheinlichkeit
unter dem Schwellwert p liegt. [5]

5.2. Realisierung des TCP-Modells in PRISM

In diesem Abschnitt wollen wir kurz den Quelltext des Modells sowie die Eigenschaften,
fur die wir Wahrscheinlichkeiten berechnen werden, vorstellen.

5.2.1. TCP als MDP-Modell

Der vollstandige Text des Modellcodes ist in Anhang A.1 hinterlegt. Wir werden im
Folgenden Ausziige daraus prasentieren und kurz erldutern.

In Listing 5.2 sind die Voreinstellungen des Modells konkretisiert. Wir definieren den
Typ durch mdp. Anschlieffend wird die Konstante e definiert, sowie die intern verwendete
Formel ex fiir eine bessere Ubersichtlichkeit. Es werden die konstanten Parameter des
TCP-Modells mit Werten belegt, wie sie in [11] auch verwendet wurden. Auflerdem wird
mit const int steps = floor(time / tau); die Anzahl von Zeitschritten berechnet,
die abhéngig von den gegebenen Parametern 7 und time tiberpriift werden muss. floor,
also Abrunden, ist hier notig, damit der Wert in einen Integer geschrieben werden kann.
Die Ergebnisse werden dadurch aber nicht verfalscht: Wenn der Quotient nicht ohnehin
eine ganze Zahl ist, bedeutet das, dass ein geringer Abschnitt der zu priifenden Zeit tibrig
bleibt, da dieser Abschnitt kleiner ist als die Dauer unseres Zeitschrittes. In diesem Fall
kann tatsachlich kein weiterer Zeitschritt gemacht werden, durch Abrunden erhalten wir
also genau die gewiinschte Anzahl an Schritten.

Hier wird auch der Eingabeparameter maxlevel definiert, welcher das Abstraktionslevel
des QBD bezeichnet.

mdp

const double e = 2.718281828459045235360287471352662497757247093699959574966;
const double tau;

const double time;

formula ex = pow(e,-tau);

const int steps = floor(time / tau);

const double alpha = 1;
const double beta = 0.04;
const double r = 10;

const double c = 10;

const int maxlevel;

const int a = maxlevel+1;
const double lambda = 100;
const double mu = 125;

Listing 5.2: PRISM Quellcode des TCP-Modells mit der Definition von Konstanten,
Eingabeparametern und dem Typ des Modells.
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5.2. Realisierung des TCP-Modells in PRISM

In Listing 5.3 beginnt die Modulbeschreibung, welche das eigentliche Modell definiert.
Hier wird der modellierte Zustandsraum beschrieben, also die Zustande bestehen aus der
Parametermenge i, j,k, die fiir die Anzahl der Elemente in der Warteschlange (i), den
Zustand des Connection Managements (j) und den Zustand des Packet Generators (k)
stehen. Der Startzustand ist (0, 0, 1), also i=0, j=0,k=1. Mit a wird das letzte zu erzeugende
Level angegeben: Das abstrakte Level des CTMDP.

module tcp

i: [@0..a] init 0;
j: [0..1] init o;
k: [0..1] init 1;

Listing 5.3: PRISM Quellcode des TCP-Modells mit Modulbeginn und Zustandsraum.

In Listing 5.4 beschreiben wir die Transitionen der Zustdnde im Grundlevel. Diese fallen
ausnahmslos unter die default-Aktion. Im PRISM-Code verwenden wir fiir diese Aktion
ein leeres Label: []. Hier ist fur alle vier Zustiande der Grundebene beschrieben, wann ein
Ubergang stattfindet. Dabei gilt:

(1-pow(ex, alpha+lambda))*alpha/(alpha+lambda) = (1 - e_(“”)") . %.
a
Die Transition (pow(ex,beta)): true; beschreibt durch das true einen Selfloop, dieser

modelliert die Verweilzeit in einem Zustand, wie in 2.3 formalisiert wurde.

[1] i=0 & j=0 & k=0
-> (1-pow(ex,beta)) : (k'=1)
+ (pow(ex,beta)): true;

[] i=0 & j=0 & k=1

-> (1-pow(ex,alphatlambda))*alpha/(alpha+lambda): (k'=0)

+ (1-pow(ex,alpha+lambda))*(lambda/(alpha+lambda)): (i'=1)
+ (pow(ex,alphatlambda)): true;

[1 i=0 & j=1 & k=0

-> (1-pow(ex,beta+r))*(beta/(beta+r)): (k'=1)
+ (1-pow(ex,beta+r))*x(r/(beta+r)): (j'=0)

+ pow(ex,betatr): true;

[1 i=0 & j=1 & k=1

-> (1-pow(ex,alpha+r+lambda))*alpha/(alpha+r+lambda): (k'=0)

+ (1-pow(ex,alpha+lambda+r))*(r/(alpha+lambda+r)): (j'=0)

+ (1-pow(ex,alpha+lambda+r))*(lambda/(alpha+lambda+r)): (i'=1)
+ pow(ex,alphat+tr+lambda): true;

Listing 5.4: PRISM Quellcode des TCP-Modells mit Transitionen des Grundlevels.

Die Transitionen der Wiederholenden Level und die default-Transitionen des abstrakten
Levels verhalten sich nahezu identisch und kénnen im Anhang (vgl. A.1) eingesehen
werden. In Listing 5.5 sind die Uberginge der Aktion close aufgefiihrt. Hier ist zu Beginn
der Definition die entsprechende Aktion vermerkt. Die far-Transitionen verhalten sich
analog.
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[close]l i=a & j=1 & k=0

-> (1-pow(ex,betat+tmu))*(beta/(betat+tmu)): (k'=1)

+ (1-pow(ex,beta+mu))*(mu/(beta+mu)): (i'=maxlevel)
+ pow(ex,betatmu): true;

[close] i=a & j=1 & k=1

-> (1-pow(ex, lambda+alpha+mu))*(alpha/(lambda+talpha+mu)): (k'=0)

+ (1-pow(ex, lambda+alpha+mu))*(mu/(lambdat+talpha+mu)): (i'=maxlevel)
+ (1-pow(ex, lambda+alpha+mu))*(lambda/(lambda+alpha+mu)): true

+ pow(ex, lambdat+talpha+mu): true;

Listing 5.5: PRISM Quellcode des TCP-Modells mit close-Transitionen des abstrakten
Levels.

In Listing 5.6 wird das Ende der Modellbeschreibung dargelegt. Hier wird das Modul

beendet. Anschlieflend werden noch die Labels spezifiziert, wie wir sie in Abbildung 4.2

fiir unser Modell eingefiihrt haben.

endmodule

label "burst” = k=1;
label "off" = k=0;
label "active” = j=

label "released”

Listing 5.6: PRISM Quellcode des TCP-Modells mit Modulende und Labeldefinition.

5.2.2. Zeitgebundene Erreichbarkeit von (released A —burst)

Die zu testende Eigenschaft entnehmen wir grundlegend [11], modifizieren sie jedoch fiir
einen durch Abstraktion und Diskretisierung entstandenen MDP. Daraus erhalten wir die
zwei folgenden Eigenschaften:

Pmax=? [ true U[Q,steps] "released & !burst” ]
Pmin=? [ true U[Q,steps] "released & !burst” 1]

Hier ist steps nicht die Zeit, wie sie in [11] zum Testen der Formel angegeben ist, sondern
die Anzahl von Schritten, fiir die die PCTL-Formel tberpriift wird. In Abschnitt 5.2.3
werden wir weiter auf die Berechnung von steps eingehen.

Die Zustandsformel "released & !burst” stellt eine interessante Eigenschaft fir
unser Modell dar. Dem liegt die Bedeutung zu Grunde, dass in einem Zustand, in dem
diese Formel gilt, das Connection Management ausgeschaltet (released) und der Packet
Generator nicht im Erzeugungsmodus (no burst) ist. Naheliegenderweise scheinen dies
ressourcenschonende Zustiande unseres Modells zu sein. Dies betrifft alle Zustiande (i, 0, 0)
fir i € N. Diese Zustiande sind auf zwei verschiedenen Wegen erreichbar:
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« Man ist in einem beliebigen Level i in einem (i, 0, 1)-Zustand. Von dort aus kann
der Zustand (i, 0, 0) des selben Levels mithilfe der mit « parametrisierten Transition
erreicht werden.

+ Man befindet sich im Grundlevel in Zustand (0, 1, 0). Hier gibt es eine mit r parame-
trisierte Transition in den Zustand (0, 0, 0).

Betrachtet man die Struktur unseres QBD in Abbildung 4.3, so erkennt man auflerdem, dass
es nur im Grundlevel eine mit r parametrisierte Transition gibt. Inhaltlich bedeutet dies,
dass das Connection Management in den anderen Leveln nicht ausgeschaltet werden kann.
Nur wenn die Warteschlange abgearbeitet ist, kann das Connection Management wieder
auf released springen. Um unsere Formel zu erfiillen, miissen im Modell also entweder
alle Pakete versandt worden sein, oder das Connection Management darf nie eingeschaltet
worden sein. In beiden Situationen muss anschlieSend der passende Ubergang innerhalb
des Levels geschehen, damit ein Zielzustand erreicht wird.

Wir werden im nachsten Abschnitt darauf eingehen, welche Auswirkungen dies auf die
Wahrscheinlichkeiten haben wird.

5.2.3. Raten sowie Parameter 7, time und maxlevel des Modells

In diesem Abschnitt spezifizieren wir die Parameter, wie wir sie fiir unsere Berechnun-
gen nutzen werden. Dies betrifft die Parameter der Wahrscheinlichkeitsfunktion unseres
Modells sowie die Parameter, die fiir das Priifen einer Formel nétig sind.

Raten Die Wahl der Parameter der Wahrscheinlichkeitsfunktion, die wir aus [11] iiber-
nommen haben, sind in Tabelle 5.2 aufgelistet.

Parameter || ¢ | f rlc| A J7;
Rate 11004 | 10| 10| 100 | 125

Tabelle 5.2.: Parameter der Raten- bzw. Wahrscheinlichkeitsfunktion des Modells, entnom-
men aus [11].

Die Werte dieser Parameter beeinflussen naheliegenderweise die Interpretation des Mo-
dells. Wir wollen anhand einiger Vergleiche kurz auf die Wirkung dieser Werte eingehen.
Wir verwenden dafiir der Einfachheit halber die Notation p,, fiir die Ubergangswahrschein-
lichkeit aus einem Zustand s in einen mit der Aktion « erreichbaren Zustand.

Da A und p sehr grof3 sind, kann man schlussfolgern, dass die Wahrscheinlichkeit fiir
einen Ebenenwechsel sehr hoch ist. Die Wahrscheinlichkeit in ein niedrigeres Level zu
wechseln ist etwas grofler als die Wahrscheinlichkeit in ein hoheres zu wechseln. Im
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Vergleich: Ist die Wahrscheinlichkeit fiir eine Transition mit der urspriinglichen Rate y
eines Zustandes s beispielsweise p, ~ 0.1118 (Wert fiir Zustand (i,1,1), 7 = 0.001), so
ist die Wahrscheinlichkeit fiir die A-Transition in diesem Zustand das 0.8-fache dessen,
also py ~ 0.0895 und fur die entsprechende a-Transition nur 1/100: p, =~ 0.00089. Die
Wahrscheinlichkeiten hingegen, zwischen den Zustanden des Packet Generators und des
Connection Managements zu wechseln, sind deutlich geringer.

Die Parameter r und ¢ beeinflussen die Uberginge des Connection Managements. Der
Wechsel von released zu active unterscheidet sich hier im Wert nur gering von der
Riickrichtung, da r = ¢ gilt. Die unterschiedliche tatsdachliche Wahrscheinlichkeit, eine
solche Transition zu wahlen, wird durch die Gesamtausgangsrate des Zustandes bedingt.
Man kann jedoch in Abbildung 4.3 erkennen, dass die r-Transitionen nur im Grundle-
vel bestehen. Das Connection Management kann also nur in diesem Level ausgeschaltet
(released) werden.

Die Wahrscheinlichkeiten fiir diejenigen Transitionen, die zwischen den Zustédnden burst
und of f des Packet Generators wechseln, sind mit @ = 1 und f = 0.04 auflerst gering.
Da diese Raten relativ zueinander betrachtet werden miissen, erkennt man, dass ein f3-
Ubergang im Vergleich zu einem c-Ubergang deutlich unwahrscheinlicher ist, als ein
c-Ubergang im Vergleich zu einem A-Ubergang.

Dies ist interessant, wenn man betrachten mochte, wie sich die Wahrscheinlichkeiten
eines (i, 0, 1)-Zustandes im Vergleich zu einem (i, 0, 0)-Zustand verhalten. Fir die Zustande
(i,0,0) und (i,0,1) mit i € {1,...,m} gilt dann:

(1 _ e—(c+/1+0()4r) . c

. Pe c+A+a C/(a+/1+c) C 1

In (i,0,1): — = — = ===,
Pa (1 _ e—(A+a+c).T) o ’1/(0(+/1+c) A 10

_ e (Brop7) . B
) pp (1 ¢ ) Bre Bl p 1

In (i,0,0): - = o == =2 _ 75

pC (1 —e€ ) . m /(ﬁ+c) C

Vereinfachend kann man also sagen, dass fir den Zustand (i, 0, 1) die A-Transition in ein
nachstes Level zehnmal so wahrscheinlich ist, wie die c-Transition zum Einschalten des
Connection Managements. Im Zustand (i, 0, 0) jedoch ist es 250-mal so wahrscheinlich,
dass sich das Connection Management einschaltet, als dass der Packet Generator in den
of f-Zustand wechselt. Dies hat zur Folge, dass von einem (i, 0, 0)-Zustand aus der Zustand
(0,0, 0) mit einer hohen Wahrscheinlichkeit erreicht wird. Wir erinnern uns, dass fiir alle
(i,0,0)-Zustéande die Eigenschaft "released & !burst” gilt. Von diesen Zustianden aus
ist es also sehr einfach, den (0, 0, 0)-Zustand zu erreichen, der intuitiv der am stirksten er-
wiinschte Zustand eines Warteschlangenmodells ist: alle Pakete sind hier abgearbeitet und
weder der Packet Generator, noch das Connection Management verbrauchen Ressourcen.
Dies konnte eine Erklarung dafiir sein, weshalb fiir eine Anwendung in der Realitét die
Wahrscheinlichkeit der Eigenschaft, die wir berechnen werden, relevant ist.
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Test-Parameter Da wir im nichsten Kapitel Wahrscheinlichkeiten fiir verschiedene
Instanzen der Parameter 7, time und maxlevel berechnen werden, wollen wir diese Para-
meter hier erneut erlautern.

maxlevel Der Parameter maxlevel beschreibt die Anzahl der bei der Abstraktion
beibehaltenen Level des urspriinglichen QBDs an. Die Abstraktionsebene
ist demnach die maxlevel-te Ebene. Erst in der (maxlevel+1)-ten Ebene
befinden wir uns im abstrakten Level. Um moglichst exakte Ergebnisse zu
erhalten sollte dieser Parameter grof3 gewahlt werden, da das urspriing-
liche Modell unendlich grof3 war. Wir interessieren uns dafiir, ob die
Abstraktion auch fiir ein niedrigeres maxlevel ausreichend gute Ergebnis-
se liefert.

time Der Parameter time gibt die Zeit an, in der eine bestimmte Zustandsformel
erreicht werden soll.

T Der Parameter 7 bezeichnet die Granulariat der Diskretisierung. Er be-
schreibt also, wie lang, relativ zur Zeiteinheit von time, ein diskreter
Zeitschritt in unserem Modell ist. Pro Zeitschritt kann nur eine Transiti-
on innerhalb des Modells durchgefithrt werden. Erst nach Ablauf von 7
kann ein neuer Zustandsiibergang stattfinden. Um kontinuierliche Zeit
zu simulieren muss dieser Parameter moglichst klein gewahlt werden.

Die entsprechende Formel aus [11] wird unter anderem fiir die Zeit time € {1, 2} getestet.
Um Wabhrscheinlichkeiten fiir die gleiche Grenzzeit zu berechnen, miissen wir einen neuen
Parameter berechnen: steps steht fiir die Anzahl diskreter Zeitschritte, innerhalb derer die
Zustandsformel "released & !burst” erfiillt werden soll. Bei einer festen Zeit time und
einer gewéhlten Granularitat 7 ist die Anzahl der Zeitschritte der Quotient: steps = time/z,
Hierbei fallt auf, dass ein zu grofies 7 die Anzahl der Schritte, die innerhalb des Modells
gemacht werden, stark einschrankt. Betrachtet man beispielsweise eine Abstraktion nach
der 10. Ebene, berechnet Werte fiir time = 1 und wahlt 7 = 0.1, so konnen nur zehn
Schritte innerhalb des Modells gemacht werden. Um das abstrakte Level zu erreichen,
werden jedoch mindestens elf Schritte benétigt. Auch in Bezug auf die MDP-Abstraktion
ist es also relevant, 7 entsprechend zu wahlen. In den folgenden Berechnungen werden
wir diese Beobachtung beriicksichtigen.
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Abbildung 5.1.: Wahrscheinlichkeit py,,, und p,;, fir ein kleiner werdendes 7, also eine
feinere Granularitat, bei einer Abstraktion nach 10 Leveln.

5.3. Resultate

Im folgenden Unterkapitel werden wir die unterschiedlichen Auswirkungen der Wahl von
7 und maxlevel auf die Wahrscheinlichkeiten untersuchen. Dafiir werden wir p,;;, und
Pmax fir eine Reihe von verschiedenen Werten von 7 und maxlevel testen; zunachst fir
einen festen Wert time = 1.

Intuitiv erwarten wir fiir ein feineres 7 genauere Werte der berechneten Wahrscheinlich-
keiten, da 7 gewissermaflen die zeitliche Auflésung unseres Modells ist. Die Anzahl der
Schritte, also Zustandsiibergénge, die wir machen konnen, hangt demnach von 7 ab. Ein
zu grof3 gewahltes 7 schriankt die Anzahl der moglichen Schritte stark ein und kénnte
durchaus Ergebnisse produzieren, die signifikant von der tatsdchlichen Wahrscheinlich-
keit abweichen. Diese Tendenz ist bereits in Abbildung 5.1 zu erkennen. Hier wurden
Werte fiir 7 zwischen 0.1 und 0.01 getestet. Wahrend fiir den grof3ten Wert die errechnete
Wabhrscheinlichkeit unter 0.1 liegt, ergeben sich fiir 7 = 0.01 maximale und minimale
Wahrscheinlichkeiten um das Dreifache. Spater werden wir genauer untersuchen, fiir
welche 7 wir moglichst korrekte Wahrscheinlichkeitswerte erhalten.

Variieren wir die Anzahl der beibehaltenen Level, also maxlevel, so erhalten wir fur eine
hohere Anzahl vermutlich exaktere Werte, da wir so naher an das unendliche Modell
herankommen. Auflerdem kann, wie bereits erwahnt, je nach Wahl von 7 und time, die
abstrakte Ebene gar nicht oder nur sehr unwahrscheinlich erreicht werden, wenn maxlevel
grofy genug ist. Wahlen wir maxlevel jedoch kleiner, so erhalten wir ein kleineres Modell,
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Abbildung 5.2.: Wahrscheinlichkeit py,qx und py,in fiir maxlevel = 0 bis maxlevel = 100 bei
T =0.01.

was auch Vorteile haben kann, zum Beispiel fiir die Laufzeit der Tests. Uns interessiert
daher, wie exakte Werte man durch MDP-Abstraktion bereits bei einer niedrigeren Le-
velanzahl erhalten kann. Das unterschiedliche Verhalten der maximalen und minimalen
Wahrscheinlichkeiten ist in Abbildung 5.2 zu erkennen. Fiir ein niedriges Abstraktionslevel
gibt es eine hohe Varianz zwischen maximaler und minimaler Wahrscheinlichkeit.

Wir wollen im Folgenden herausfinden, wie sich diese Werte fiir verschiedene Kombina-
tionen der Granularitit und dem maximalen Level verhalten.

Entwicklung der Wahrscheinlichkeiten beziiglich dem
Abstraktionslevel maxlevel

In diesem Abschnitt betrachten wir den Einfluss von der Wahl des maximalen bei der
MDP-Abstraktion beibehaltenen Levels auf die Wahrscheinlichkeiten. Dafiir berechnen
WIr pmax und ppi, mit Werten fur maxlevel zwischen 0 und 100 und festen Werten fiir 7.

In Abbildung 5.3 sind diese Ergebnisse fiir verschiedene 7 vergleichend in einem Koor-
dinatensystem dargestellt. Fiir 7 = 0.1 liegt die Wahrscheinlichkeit konstant bei ~ 0.069,
die maximale und minimale Wahrscheinlichkeit unterscheiden sich nicht. Mit diesem
betragt bei einer Zeit von 1 die Anzahl moéglicher Schritte 10. Naheliegenderweise ist es
mit einer so geringen Schrittzahl nicht moéglich, ein weiter entferntes abstraktes Level zu
erreichen. Auch die zu erreichende Zustandsmenge ist so nur sehr erschwert zu erreichen.
Fir 7 = 0.01 unterscheiden sich die maximale und die minimale Wahrscheinlichkeit bis
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Abbildung 5.3.: Maximale und minimale Wahrscheinlichkeit fiir die Level 5 bis 100 fiir
verschiedene Werte von 7.

zu einem Abstraktionslevel von 30. Ab hier betragt die Wahrscheinlichkeit fiir p,,;, und
Pmax = 0.3063. Fir 7 = 0.001 erhalten wir eine deutlich hohere Wahrscheinlichkeit von
~ 0.5283. Die Wahrscheinlichkeitsspanne zwischen py, und pp.y ist hier fiir niedrige
maxlevel sehr grof3, sie reicht von 0.16 bis 0.56 bei einem Abstraktionslevel von 5. Erst
ab einem Abstraktionslevel von 55 erkennt man keinen Unterschied mehr zwischen den
beiden Extremen.

Fur die Werte 7 = 0.0001, 7 = 0.00001 und 7 = 0.000001 kann man nur noch einen sehr
geringen Unterschied erkennen. Die Wahrscheinlichkeitsspanne ist auch hier sehr hoch,
fiir maxlevel = 5 und 7 = 107° gilt ppin ~ 0.1586 und ppax ~ 0.5904. Die Spanne zieht sich
bis zu einem Abstraktionslevel von 60. Dort liegt die Wahrscheinlichkeit bei ~ 0.5636.
Betrachtet man den Verlauf dieser Werte im Vergleich, so erkennt man, dass fiir grofiere
7 ein geringerer Unterschied zwischen der maximalen und der minimalen Wahrschein-
lichkeit liegt. Auch der Punkt, ab dem sich die beiden Wahrscheinlichkeiten nicht mehr
unterscheiden, liegt bei einem deutlich niedrigeren Abstraktionslevel als bei kleinen Wer-
ten fiir 7. Wir vermuten den Ursprung dessen darin, dass 7 indirekt proportional zur
moglichen Schrittanzahl innerhalb des Modells ist.

Im Vergleich ist aulerdem zu erkennen, dass sich die konvergierende Wahrscheinlichkeit
fir verschiedene 7 stark unterscheidet, woraus wir schlieflen, wie relevant die Wahl von 7
fir das Erhalten korrekter Ergebnisse ist.
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0.1 | 0.01 | 0.001 | 0.0001 | 0.00001 | 0.000001 | 0.0000001
>1| >1 >1 >1 0.50625 | 0.050625 | 0.0050625

Tabelle 5.4.: Fehlerbetrachtung der Diskretisierung fiir verschiedene 7 bei time = 1.

Betrachtung von Wahrscheinlichkeit und Fehler beziiglich ¢

Wir wollen nun auswerten, wie genau sich der Einfluss von 7 auf die Wahrscheinlichkeit
auswirkt und mithilfe der Fehlerabschéatzung der Diskretisierung berechnen, ab welchen
Werten fiir 7 wir sicher sein konnen, dass die Abweichung von der tatsdchlichen Wahr-
scheinlichkeit unter einem gewissen Signifikanzniveau liegt.

Mithilfe der Formel aus Kapitel 3.3 konnen wir berechnen, wie grof3 der Fehler bei der
Wahl von 7 ist und anhand dessen entscheiden, welche 7 klein genug sind, um sinnvolle
Ergebnisse zu erhalten. In Tabelle 5.4 wird klar, dass erst ab 7 = 107° von exakten Ergeb-
nissen gesprochen werden kann. Diese Ergebnisse weichen maximal um ¢ = 0.050625
von den Werten ab, die nach der MDP-Abstraktion fiir unser Modell gelten. Wir wollen
also herausfinden, wie sich fiir verschiedene feste Werte von maxlevel der Verlauf von
7 auf die Wahrscheinlichkeiten auswirkt. Dafiir wahlen wir als maximale Levelanzahl
Werte, bei denen die Abstraktion noch einen Einfluss auf das Ergebnis hat. Die nachsten
Berechnungen fithren wir demnach fir maxlevel € {10, 20, 30,40} aus.

Da wir in Abbildung 5.1 erkennen konnten, dass die Wahrscheinlichkeiten fiir ein kleiner
werdendes 7 ansteigen, wiahlen wir nun signifikant kleinere 7.

Fiir diese Berechnungen @ndern wir daher die Skala der Granularitat auf eine logarithmi-
sche, um das Verhalten bei einem exponentiell kleiner werdenden 7 betrachten zu kénnen.
Dadurch werden wir einen deutlich hohere Genauigkeit fiir kleinere 7 erhalten und kénnen
sehen, ob die Wahrscheinlichkeiten fiir sehr kleine 7-Werte noch grofie Veranderungen
aufzeigen. In Abbildung 5.4 sind pp,qx und pyin bis 7 = 0.0001 dargestellt. Hier kann man
sehen, dass die Wahrscheinlichkeiten zu konvergieren scheinen. Approximativ ergeben
sich ppmin = 0.3 und ppe,e = 0.58.

In Abbildung 5.5 kann man die Ergebnisse fiir ein logarithmisch kleiner werdendes 7 fiir die
Abstraktionslevel 20, 30 und 40 sehen. Erneut ist gut erkennbar, dass die Spanne zwischen
der maximalen und minimalen Wahrscheinlichkeit fiir grofler werdende Abstraktionslevel
schrumpft. Auflerdem steige in allen drei Betrachtungen pp,;, und pp,y bis zu 7 = 0.001
sehr stark an. Zwischen 0.001 und 0.0001 verdandern sich die Werte bei allen vier Tests nur
noch um maximal 0.04, fiir noch kleiner werdende 7 liegt die Verdnderung in einem Bereich
von 1073, Diese Berechnungen veranschaulichen, dass, entgegen unserer Erwartungen, die
Ergebnisse auch fiir 7 = 0.0001 nicht stark von der tatsachlichen Wahrscheinlichkeit abwei-
chen (vgl. Tabelle ??). Wir haben berechnet, dass bereits fiir 7 = 107® der maximale Fehler
¢ bei 0.050625 liegt. Da die Varianz zwischen 7 = 107 und 7 = 10™* in allen Berechnungen
im Bereich von 1073 liegt, konnen wir festhalten, dass der maximale Fehler fiir 7 = 0.0001
nur bei 0.0150625 liegt. Fiir ein so grofles 7 iibersteigt dies, aufgrund der urspriinglichen
Fehlerabschatzung, unsere Erwartungen. Wir kénnen also mit einer deutlich geringeren
Granularitat arbeiten, was die Laufzeiten vermutlich erheblich verbessert.
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time = 1, maxlevel = 10
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Abbildung 5.4.: Wahrscheinlichkeit p;4 und pyi, fir logarithmisch schrumpfendes 7 bis
0.0001 bei einer Abstraktion nach 10 Leveln.

’ maxlevel H DPmin ‘ DPmax ‘ ’ maxlevel H DPmin ‘ Dmax ‘
10 ~ 0.30 | = 0.56 10 ~ 0.30 | = 0.58
20 ~ 0.49 | = 0.57 20 ~ 0.49 | = 0.57
30 ~ 0.54 | = 0.56 30 =~ 0.55 | = 0.57
40 ~ 0.56 | ~ 0.58 40 ~ 0.56 | ~ 0.56
(a) T = 0.0001 (b) 7 = 0.0000001

Tabelle 5.5.: Approximierte Wahrscheinlichkeiten ppin, pmax fir maxlevel = 10 bis
maxlevel = 40.
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time = 1, maxlevel = 20
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Abbildung 5.5.: Wahrscheinlichkeit p,. und pin fiir logarithmisch schrumpfendes 7 bis
0.0000001 bei einer Abstraktion nach 20, 30 und 40 Leveln.
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Betrachtung fiir time = 2

Die verschiedenen Tests mit Variation von maxlevel und t fithren wir nun nocheinmal fir
time = 2 aus. Wir testen also die Formeln Pmax=? [true U%¥] (released A —burst)]
und Pmin=? [true U] (released A —burst)]. Wir wollen versuchen zu erkennen,
ob die Schliisse, die wir bezliglich der Variation der Parameter maxlevel und 7 fiir time = 1
geschlossen haben, so auch auf eine andere Grenzzeit tibertragbar sind.

7 = 0.0001 -
7 =0.00001
7 =0.000001 —=—
7 = 0.0000001 —=—]

0 \ \ \ \
0 20 40 60 80 100

Abstraktionslevel maxlevel

Abbildung 5.6.: Wahrscheinlichkeiten py,q, und py,;, fir maxlevel zwischen 0 und 100 und
7 von 0.1 bis 0.0000001.

Variation von maxlevel Zunichst betrachten wir wieder fiir fest gewahlte 7 zwischen
0.1 und 0.0000001 den Verlauf der Wahrscheinlichkeiten beziiglich maxlevel. Diese sind in
Abbildung 5.6 dargestellt. Wir beschreiben kurz den Verlauf fiir jedes 7 einzeln.

T =0.1: Pmin Und prqx unterscheiden sich fiir dieses 7 zu Beginn - allerdings nur
bis zu einem Abstraktionslevel von 10 und nur zu einem sehr geringen
Wert von pmax—pPmin = 0.05. Ab dort ist die Wahrscheinlichkeit konstant
~ 0.112.
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7 = 0.01: Hier ist die Differenz zwischen der maximalen und minimalen Wahr-
scheinlichkeit bereits viel ausgepréagter. Die Werte unterscheiden sich
bis zu maxlevel = 40 und der Unterschied betragt fiir ein kleines max-
level bereits 0.53. Die Wahrscheinlichkeit konvergiert zu 0.543.

7 = 0.001: Bei diesem 7 ist die Spanne nun deutlich gréfler. Die Wahrschein-
lichkeiten unterscheiden sich fur maxlevel < 10 um iber 0.733. Ab
maxlevel = 75 ist die Wahrscheinlichkeit p,ax = pmin = 0.808.

7 = 0.0001: Hier ist das Level, ab dem sich py;i, und pyq¢ nicht mehr unterscheiden,
wie fiir alle weiteren getesteten 7 bei 70. Der Unterschied von p,;, und
Pmax betragt fiir maxlevel = 0 etwa 0.75. Die Wahrscheinlichkeit fiir
diese 7 konvergiert zu 0.835.

Im Vergleich zu time = 1 ist der Verlauf insgesamt sehr dhnlich. Das Level, ab dem sich die
Wahrscheinlichkeiten nicht mehr unterscheiden, ist allerdings fiir jedes 7 etwas grofier
als bei den vorherigen Berechnungen. Eine Ubersicht diesbeziiglich kann in Tabelle 5.7
eingesehen werden. Diese Abhangigkeit zeigt klar auf, dass in die Wahl von maxlevel auch
die zu priifende Zeit einbezogen werden muss. Es ist nicht moglich, allgemeingiiltig einen
ausreichenden Wert fir maxlevel zu finden, da die Qualitit der Abstraktion deutlich von
der entsprechenden Formel abhéngt.

]T H timezl\time:Z\
0.1 5 10
0.01 30 55
0.001 50 75
0.0001 60 70
0.00001 50 80
0.000001 50 75
0.0000001 50 70

Tabelle 5.7.: Vergleich von time = 1 und time = 2 fiir das Level, ab dem pp,in = pmax gilt
fir 7 = 0.1 bis 7 = 0.0000001.

Man erkennt auch, dass sich die Wahrscheinlichkeiten ab 7 = 0.0001 kaum veridndern.
Dies entspricht den Beobachtungen der vorherigen Tests. Wir betrachten im nachsten
Abschnitt die Wahl von 7 noch einmal genauer, um diese Aussage zu verifizieren.

Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion 49



5. TESTS UND ANALYSE MIT DEM PRISM MopDEL CHECKER

time = 2, maxlevel = 10

max
0 | | | | | maX\
1 0.1 0.01 0.001 0.0001 1X10°1x10%1x1077

Granularitit 7

Abbildung 5.7.: Verlauf der Wahrscheinlichkeiten p,;, und pp,q fur logarithmisch kleiner
werdende 7 bis 7 = 1077 und maxlevel = 10.

Betrachtung fiir signifikant kleiner werdende 7 Als nichstes berechnen wir auch

fiir time = 2 den Verlauf der Wahrscheinlichkeiten fiir feste Werte maxlevel € {10, 20, 30, 40}
und signifikant kleiner werdende 7. Die Resultate dieser Tests sind in den Abbildungen

5.7, 5.8, 5.9 und 5.10 dargestellt.

Fir maxlevel = 10 steigen die Werte zunachst an, entwickeln dann ab 7 = 0.08 einen

Unterschied zwischen pp,;, und pyq und pendeln sich ab 7 = 0.0001 auf p,;4 =~ 0.82 und

Pmin = 0.33 ein.

Das Verhalten fiir die anderen maxlevel ist ahnlich, wie wir allerdings in Abbildung 5.6

bereits erkennen konnten, ist die Varianz zwischen p,;, und ppe fiir hohere maxlevel
deutlich geringer.

Bei maxlevel = 20 (vlg. Abbildung 5.8) unterscheiden sich die Wahrscheinlichkeiten ab

7 = 0.04. Sie steigen beide weiterhin stark an und entwickeln nur einen Unterschied von

0.2: Prmin ~ 0.64, Pmax ~ 0.84.

Fir maxlevel = 30 (vlg. Abbildung 5.9) ist der erreichte Unterschied geringer als 0.1. pyax

konvergiert zu 0.84, pyin, zu 0.77. Ab 7 = 0.0001 kann man diese Werte erkennen.

Bei einem Abstraktionslevel von 40 erkennt man erst bei 7 = 0.01 einen sichtbaren Unter-
schied zwischen den beiden Werten. pp,;, erreicht hier 0.817, ppqx 0.839. Ab 7 = 0.0001

erkennt man keine Anderung mehr im Verlauf. Diese Ergebnisse sind in Abbildung 5.10

dargestellt.
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time = 2, maxlevel = 20

max
0 | | | | | maX\
1 0.1 0.01 0.001 0.0001 1X10°1x10°1x1077

Granularitit 7

Abbildung 5.8.: Verlauf der Wahrscheinlichkeiten p,;, und pp,e, fur logarithmisch kleiner
werdende 7 bis 7 = 1077 und maxlevel = 20.

Wir konnen erneut deutlich erkennen, dass fiir 7 = 0.0001 bereits aussagekraftige Werte
berechnet werden konnen. Dies vermittelt den Eindruck, dass der Wert von time keine
Bedeutung fiir die Wahl von 7 hat. Da 7 die Granularitat unserer diskreten Zeit darstellt,
scheint diese Unabhangigkeit plausibel. Um sie zu statistisch zu belegen miissten weitere
Berechnungen durchgefiihrt werden.

Fazit In den Berechnungen der Erreichbarkeitsformel mit Zeitbeschrankung time = 2
konnten wir erkennen, dass der Wert von time unbedingt fiir die Wahl des Abstraktionsle-
vels beriicksichtigt werden muss. Fiir eine grofere Zeit erreichen die Wahrscheinlichkeiten
Pmax und ppin erst spater eine Einigung und die Differenz der beiden Werte ist fur klei-
ne maxlevel deutlich groler. Auflerdem haben wir eine vermeintliche Unabhangigkeit
zwischen der Zeit und 7 erkannt. Diese konnte in einer weiteren Studie untersucht wer-
den. Dafiir sollte eine deutlich grofiere Varianz von Werten fiir time betrachtet werden,
insbesondere Zeitwerte die um einige Groflenordnungen grofler sind, als die von uns
analysierten, konnten aussagekriftige Ergebnisse liefern.
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time = 2, maxlevel = 30
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Abbildung 5.9.: Verlauf der Wahrscheinlichkeiten p,;, und pp,q, fir logarithmisch kleiner
werdende 7 bis 7 = 1077 und maxlevel = 30.

time = 2, maxlevel = 40
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Granularitat 7

Abbildung 5.10.: Verlauf der Wahrscheinlichkeiten p,,;;, und pp,qy fiir logarithmisch kleiner
werdende 7 bis 7 = 1077 und maxlevel = 40.
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5.4. Laufzeitanalyse

In diesem Abschnitt wollen wir untersuchen, ob und inwiefern die verschiedenen Losungs-
verfahren unterschiedliche Laufzeiten benédtigen. Dafiir gehen wir erneut kurz auf die
verschiedenen Engines und Losungsverfahren ein, bevor fiir zwei verschiedene Werte fiir 7
die Laufzeiten der Verfahren bei der Berechnung von Wahrscheinlichkeiten fiir maximale
Level zwischen 0 und 100 vergleichen.

Engines: [9]

Hybrid Engine

Sparse Engine

MTBDD Engine

Explicit Engine

Die Hybride Engine verwendet eine Kombination von explizi-
ten und symbolischen Datenstrukturen. Fiir die Berechnun-
gen wird eine Kombination der Methoden der Sparse und der
MTBDD Engine genutzt. Diese Engine kann mit gut grof3en
Zustandsmodellen umgehen ist fiir gewohnlich am perfor-
mantesten.

Die Sparse Engine kombiniert auch explizite und symbolische
Datenstrukturen. Sie nutzt sogenannte diinnbesetzte Matrizen
fiir die Berechnungen. Diese Engine kann im Vergleich zur
Hybrid Engine nur kleinere Modelle verarbeiten, fiir diese
aber unter Umstanden schneller sein.

Diese Engine verwendet sogenannte multi-terminal binary
decision diagrams (MTBDD). Auch sie verwendet eine expli-
zite und symbolische Datenstrukturen. Zur Berechnung ver-
wendet sie nur Bindre Entscheidungsdiagramme (BDDs) und
MTBDDs. Die Performanz dieses Verfahrens ist nicht ein-
heitlich. Fiir Modelle mit einer hohen Regelmafligkeit in der
Struktur kann diese Engine gute Ergebnisse liefern.

Diese Engine verwendet keine symbolischen Datenstrukturen.
Fiir kleinere Modelle kann diese Engine performant sein.
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Losungsverfahren:

Value Iteration Die Methode der Value Iteration iteriert iiber den Losungs-
vektor des Gleichungssystems. In jedem Iterationsschritt
werden die Wahrscheinlichkeiten eines Zustandes aktuali-
siert, indem die Ubergangswahrscheinlichkeiten zu anderen
Zustanden mit den Werten dieser Zustande aus dem letzten
Iterationsschritt multipliziert werden. Hier wird immer das
Maximum bzw. Minimum der Ergebnisse fiir verschiedene
Aktionen gewahlt. [5]

Gauss-Seidel Dieses Verfahren ist eine Optimierung von Value Iteration:
fiir das Berechnen neuer Wahrscheinlichkeiten werden die
aktuellsten gespeicherten Werte jeden Zustandes genutzt. Es
wird dadurch auch weniger Speicher benétigt. [5]

Policy Iteration Diese Methode iteriert tiber die verschiedenen Scheduler.
Es wird zunichst ein beliebiger gedachtnisloser Scheduler
ausgewdhlt. In jedem Iterationssschritt wird verglichen, ob
es einen besseren Scheduler geben kann. [5]

Modified Policy Iteration ~Die Methode Modified Policy Iteration ist eine Variante der
Policy Iteration. Die allgemeine Policy Iteration ist nahelie-
genderweise ein recht umfangreiches Verfahren, da es sehr
viele Scheduler geben kann. Die Modified Policy Iteration
reduziert die Zahl der zu testenden Scheduler und erzielt
dadurch eine Reduktion in der Komplexitit. [3]

Die folgenden vier Tests zeigen je die Laufzeit der vier verschieden numerischen Methoden
auf. Da Gauss-Seidel, Policy Iteration und Modified Policy Iteration die Explicit Engine
nutzen, Value Iteration auf der Hybrid Engine jedoch der Standard ist, haben wir fiir Value
Iteration beide Engines getestet.

In den Tests berechnen wir p,;, und py,q, der Formel true ylotimel(released A —burst)
fur time = 1. Als Granularitat wahlen wir 7 € {0.000001, 0.0000001}. Dies sind Werte fiir
7, fir die mit Sicherheit feststeht, dass der Fehler sehr gering ist (vlg. Tabelle 5.4). Obwohl
wir in spateren Tests erkannt haben, dass auch eine weniger feine Granularitat akzeptable
Ergebnisse liefert, werden wir die Laufzeitanalyse mit diesen sehr kleinen Werten fiir 7
durchfithren. So erwarten wir, Unterschiede in der Laufzeit deutlicher hervorzuheben. Die
Ergebnisse fiir 7 = 0.0000001 sind dabei besser als die des grofieren Wertes, allerdings
vermuten wir hier eine deutlich langere Laufzeit.
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Laufzeiten fur p,;p, time = 1, 7 = 0.000001
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Abbildung 5.11.: Laufzeit in Sekunden fiir py,;,, time = 1, maxlevel = 0 bis maxlevel = 100,
7 = 0.000001 fiir verschiedene Losungsverfahren.

Pmin flir £ = 0.000001: In Abbildung 5.11 sieht man, dass alle vier Verfahren fiir die beiden
getesteten Engines eine sehr dhnliche Laufzeit haben. Die Varianz zwischen den Verfahren
liegt selbst fiir 100 Level nur bei 0.734 Sekunden. In der Abbildung kann man erkennen,
dass Value Iteration auf der Hybrid Engine in diesem Umfeld fiir eine geringe Levelanzahl
das langsamste Verfahren ist. Alle Verfahren der Explicit Engine haben eine sehr dhnliche
Laufzeit, die sich in unserem Test maximal um 0.096 Sekunden unterscheidet. Ab der
Berechnung von 45 Leveln dndert sich etwas: ab hier ist Value Iteration das schnellste
Verfahren. Eine Auflistung einer Auswahl von Laufzeiten, inklusive des Umbruchs zwischen
40 und 45 Ebenen, ist in Tabelle 5.9 dargestellt.

| Level \Verfahren | VI | GS | PI | MPI | VI (Ex.) |

10 0.877 | 0.621 | 0.603 | 0.609 | 0.618
40 2.009 | 2.001 | 2.011 | 2.097 | 2.075
45 2173 | 2.241 | 2.274 | 2.240 | 2.249
100 4.245 | 4.979 | 4969 | 4973 | 4.952

Tabelle 5.9.: Laufzeit in Sekunden fiir die Verfahren Value Iteration (Hybrid Engine), Gauss-
Seidel, Policy Iteration, Modified Policy Iteration, Value Iteration (Explicit
Engine) (vilnr.) der Berechnung von p,;, mit time = 1 und 7 = 0.000001 bei
verschiedenen Abstraktionsleveln.
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Laufzeiten fir pyqy, time = 1, 7 = 0.000001
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Abbildung 5.12.: Laufzeit in Sekunden fiir py,,y, time = 1, maxlevel = 0 bis maxlevel = 100,
7 = 0.000001 fiir verschiedene Lésungsverfahren.

Pmax fir 7 =0.000001: In Abbildung 5.12 werden die Laufzeiten fiir 7 = 0.000001 fiir die
Berechnung von pp,,, dargestellt. Hier erkennt man auch, dass die verglichenen Verfahren
sehr dhnliche Laufzeiten benétigen. Insbesondere die Verfahren auf der Explicit Engine
unterscheiden sich kaum, die maximale Varianz liegt hier bei 0.214 Sekunden. In diesem
Vergleich erkennt man, dass Value Iteration spiirbar langer (im Schnitt 0.575 Sekunden)
fir das Berechnen der Ergebnisse braucht, als die anderen Verfahren, dies gilt allerdings
nur fiir die Hybrid Engine.

Pmin flir £ = 0.0000001: Abbildung 5.13 zeigt die Laufzeiten bei einer Diskretisierung mit
7 = 1077, Die Dauer ist gegeniiber 7 = 10~® etwa verzehnfacht, wie intuitiv zu erwarten
war. Je nach Level betrdgt die Laufzeit zwischen 0 und 50 Sekunden. Die maximale Differenz
der vier expliziten Verfahren betragt 1.107 Sekunden. Die hochste Varianz inklusive Value
Iteration betréagt 6.887 Sekunden bei 100 Leveln. Der Verlauf der Graphen unterscheidet sich
in Bezug auf das relative Verhalten der Verfahren zueinander nicht zu dem des grof3eren
7. Auch hier ist Value Iteration auf der Hybrid Engine fiir wenige Level das schnellste
Verfahren, fiir viele Level jedoch mit Abstand das langsamste.

Pmax fur £ =0.0000001: Der Test fir pp. mit 7 = 0.0000001 ergibt dhnliche Ergebnisse
wie fiir 7 = 0.000001, die Laufzeiten sind allerdings entsprechend verzehnfacht (vgl.
Abbildung 5.14) Value Iteration auf der Hybrid Engine ist hier durchgiangig das langsamste
Verfahren, fiir 100 Level benotigt diese Methode ~ 56 Sekunden.
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Laufzeiten fur p,;p,, time = 1, 7 = 0.0000001
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Abbildung 5.13.: Laufzeit in Sekunden fiir p,;p,, time = 1, maxlevel = 0 bis maxlevel = 100,
7 = 0.0000001 fiir verschiedene Losungsverfahren.

Laufzeiten fir pyqy, time = 1, 7 = 0.0000001
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Abbildung 5.14.: Laufzeit in Sekunden fiir py,,y, time = 1, maxlevel = 0 bis maxlevel = 100,
7 = 0.0000001 fiir verschiedene Losungsverfahren.
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Fazit Zusammenfassend stellen wir fest, dass die Laufzeiten fiir Modelle dieser Grofie und
Granularitat nicht allzu stark variieren. Generell kann man jedoch sagen, dass hier Value
Iteration auf der Hybrid Engine fiir die Berechnung der minimalen Wahrscheinlichkeit
zumindest fiir grofle maxlevel eine gute Wahl ist. Fiir kleinere maxlevel oder die Berechnung
der minimalen Wahrscheinlichkeit scheint die Explicit Engine schnellere Berechnungen
durchzufiihren.

5.5. Vergleich zu Ergebnissen eines anderen
Losungsansatzes

In diesem Abschnitt wollen wir einen Vergleich zu einem anderen Lésungsansatz ziehen.
In [4] wurde fiir das von uns betrachtete Problem eine andere Methode eingefiihrt. Insbe-
sondere wird hier auch auf das Modell aus [11] Bezug genommen, fiir das auch wir unser
Verfahren untersucht haben.

Im Rahmen der zitierten Arbeit werden auch fiir die in 5.2.2 eingefiihrte Erreichbarkeits-
formeln Wahrscheinlichkeiten berechnet. Dafiir wird das Modell bis zu einem maximalen
Level m betrachtet, alle darauffolgenden Level werden abgeschnitten. Im Vergleich: Wir
schneiden unser Modell gewissermafien auch nach einem maximalen Level ab, ergédnzen
aber noch ein abstraktes Level, das nachfolgende Ebenen simuliert. Dadurch bleiben ins-
besondere im m-ten Level die Transitionen erhalten. Schneidet man das Modell ab, so
verandert sich naheliegenderweise in dieser Ebene die Wahrscheinlichkeit fiir die verblie-
benen Transitionen.

In Abbildung 5.15 vergleichen wir die entsprechenden Resultate fiir time = 1 mit unseren
Ergebnissen fiir 7 € {0.0001,0.00001, 0.000001}.

Hier kann man erkennen, dass unsere Berechnungen immer kleinere Werte liefern, als die
in [4] durchgefithrten Berechnungen. Um die Unterschiede besser zu erkennen betrach-
ten wir ndhere Darstellungen davon in Abbildung 5.16. Hier kann man sehen, dass die
feingranulare Berechnung mit 7 = 107° sehr nah am berechneten Wert des alternativen
Verfahrens liegt, allerdings gilt dies nur fiir py,4,. Fiir den Wert 7 = 0.0001 haben wir in der
Analyse ausreichende Korrektheit validiert. In der Nahansicht in Abbildung 5.16 jedoch
kann man erkennen, dass er deutlich vom Ergebnis aus [4] abweicht.

Wir vermuten, dass der Grund fiir unsere minimal niedrigeren Wahrscheinlichkeiten die
maximale Schrittanzahl ist. Da wir die beiden Modelle mit maximalem Level maxlevel
betrachten, hat der MDP ein Level mehr als die CTMC, namentlich das abstrakte Level. Es
ist somit im abgeschnittenen Modell etwas leichter innerhalb einer bestimmten Zeit die
letzte Ebene zu erreichen. Dies st eine minimale Verschiebung auf der maxlevel-Achse
aus.

Interessant hingegen ist, dass das Abschneiden des QBDs scheinbar nahezu identische
Ergebnisse liefert, wie die Berechnung der maximalen Wahrscheinlichkeit. Aufgrund der
MDP-Abstraktion erwarten wir intuitiv, dass die tatsachliche Wahrscheinlichkeit zwischen
unserem berechneten py,, und pp;, liegt. Die in [4] berechnete Wahrscheinlichkeit jedoch
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5.5. Vergleich zu Ergebnissen eines anderen Losungsansatzes

time = 1
0.6 ‘ ‘

0.59
0.58
Q,
=0.57
[<P]
=
S 0.56
50.55
=
2 0.54
<
< 0.53
0.52
0.51
0.5

7 =0.0001 ——
7 =0.00001 ——
7 = 0.000001 -
‘ Alt. ‘Verfah‘ren e
10 20 30 40 50 60 70 80 90 100

Abstraktionslevel maxlevel

Abbildung 5.15.: Wahrscheinlichkeiten pp,;, und ppgy fir time = 1, maxlevel = 0 bis
maxlevel = 100, 7 = 0.0001, 7 = 0.00001 und 7 = 0.000001 im Vergleich
zu den in [4] berechneten Resultaten durch Abschneiden des QBD.

liegt nicht innerhalb dieser Spanne, sondern nahe der Grenzwahrscheinlichkeit p,,y. Dies-
beziiglich kann also keine Verbesserung gegeniiber dem Abschneiden erkannt werden.

Fazit Im Vergleich zu den Ergebnissen aus [4] haben wir erkannt, dass in der gewahlten
Fallstudie die Abstraktion keine Verbesserung gegeniiber dem Abschneiden des QBDs
zur Folge hat. In weiteren Studien wire zu untersuchen, ob dieses Verhalten eine Regel-
mafigkeit zeigt. Ob MDP-Abstraktion fiir andere Formeln oder QBDs eine Verbesserung
gegeniiber einfacher berechneten Werten bleibt offen, kann aber im Rahmen dieser Arbeit
nicht untersucht werden.

Es bliebe auflerdem zu untersuchen, inwiefern die beiden Verfahren sich in der Laufzeit
unterscheiden. Mit geeigneten Tests zu aussagekraftigen Werten fiir time zu verschiedenen
Granularitaten 7 konnte man die beiden Verfahren mit Abschneiden bzw. Abstrahieren
des QBDs nach dem Level maxlevel vergleichen und erkennen, ob die Abstraktion ge-
gebenenfalls trotz dem Nachteil der Wahrscheinlichkeitsspanne praktikabler ist als das
Abschneiden des QBDs.
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5. TESTS UND ANALYSE MIT DEM PRISM MopDEL CHECKER

7 = 0.000001
0.552 - T =0.0001 ——

Alt. Verfahren ——
0‘ 55 | | | | | | | |

|
10 20 30 40 50 60 70 80 90 100
maximales Level maxlevel

Abbildung 5.16.: Wahrscheinlichkeiten py,;;, und pp,y fir time = 1, maxlevel = 0 bis
maxlevel = 100 im Vergleich zu den in [4] berechneten Resultaten durch

Abschneiden des QBD in detailreicheren Darstellungen fiir zwei verschie-
dene 7.
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6. Fazit und Ausblick

Im Laufe dieser Arbeit haben wir unendliche Zustandsiibergangsmodelle mit einer starken
Struktur, QBDs, vorgestellt. Wir haben zwei Verfahren kennengelernt, mit denen solche
Modelle vereinfacht werden konnen: Zum einen die MDP-Abstraktion, welche Zustande
in abstrakten Zustdnden zusammenfasst und so fiir eine deutliche Reduktion des Modells
sorgen kann. Dadurch kénnen wir fiir ein unendliches Modell eine endliche Reprasentation
erhalten. Zum anderen konnen mit der Diskretisierung kontinuierliche Modelle vereinfacht
werden, indem der kontinuierliche Zeitfluss in einzelne Zeitschritte unterteilt wird. Das so
erhaltene Modell verhilt sich demnach diskret beziiglich dieses Zeitschrittes. Insbesondere
ist es erheblich einfacher, Wahrscheinlichkeiten auf Basis des Modells zu berechnen -
allerdings entsteht hierbei ein Fehler, welcher berechnet und in der Analyse beriicksichtigt
werden muss.

In der zweiten Halfte der Arbeit haben wir uns mit einer Fallstudie beschiftigt, um die
Qualitat unserer Modelldnderungen betrachten zu kénnen. Wir haben die Modellierung des
Kommunikationsprotokolls TCP vorgestellt und Abstraktion und Diskretisierung auf die
CTMC angewendet. Auf dem erhaltenen MDP haben wir mit dem PRISM Model Checker
Berechnungen fiir die Wahrscheinlichkeiten p,;, und pp,qx einer Erreichbarkeitsformel
durchgefiihrt. Dabei haben wir die verschiedenen Parameter time, fir die Zeit, innerhalb der
die Erreichbarkeitsformel erfullt werden soll, maxlevel, fiir das Abstraktionslevel unseres
OBD und 7 fiir die Granularitéat der Diskretisierung betrachtet.

Wie erwartet verhalten sich die Ergebnisse fiir besonders feine Werte von 7 deutlich besser,
als bei einer groben Granularitét. Ein zu grofles 7 liefert stark abweichende. Fiir time = 1
haben wir schlief3en konnen, dass eine Zeitschrittdauer 7 = 0.0001 ausreichend ist, um
aussagekraftige Ergebnisse zu erhalten. Dieses Verhalten haben wir auch fiir time = 2
beobachten konnen. In weiterfithrenden Studien sollte untersucht werden, wie sich 7 zu
deutlich langeren Zeiten verhélt, um herauszufinden, ob die Exaktheit der Ergebnisse von
der Zeit time abhangt.

Aus den vielfaltigen Tests zur Wahl des Abstraktionslevels haben wir mitgenommen,
dass ein hoheres Abstraktionslevel préazisere Resultate liefert. Die Wahrscheinlichkeiten
Pmin Und ppay konvergieren fiir grofle Abstraktionslevel, sodass sich pp,i, und ppgy in der
Genauigkeit von Gleitkommazahlen nicht mehr unterscheiden. Durch den Vergleich zu
den fiir time = 2 erhaltenen Ergebnissen haben wir festgestellt, dass dieser Punkt der
Gleichheit fiir eine langere Zeit spater eintritt. Daraus schlieffen wir, dass die Wahl des
Abstraktionslevels von time abhangen muss. Es kann demnach keine allgemeingiiltige
ausreichende Abstraktion gefunden werden. Um optimale Ergebnisse zu erzielen sollte das
Abstraktionslevel dynamisch oder in Abhéngigkeit der zu betrachtenden PCTL-Formeln
gewihlt werden.
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6. FAZIT UND AUSBLICK

Im Vergleich unserer Ergebnisse zu Resultaten einer Methode, in welcher der QBD nach
einer bestimmten Ebene simpel abgeschnitten wird, haben wir auflerdem keine sichtbare
Verbesserung durch die Abstraktion erkannt. In weiteren Studien wére es aufschlussreich,
die Laufzeiten dieser beiden Verfahren miteinander zu vergleichen. Auflerdem konnten
eine Reihe von diverseren Tests veranschaulichen, ob die durch die Abstraktion erhaltenen
Daten gegebenenfalls doch in einer leicht verdnderten Konfiguration einen sichtbaren
Vorteil mit sich bringen.
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A. PRISM Quellcode

mdp

const double e = 2.718281828459045235360287471352662497757247093699959574966;
const double tau;

const double time;

formula ex = pow(e,-tau);

const int steps = floor(time / tau);

const double alpha = 1;
const double beta = 0.04;
const double r = 10;

const double c = 10;

const int maxlevel;

const int a = maxlevel+1;
const double lambda = 100;
const double mu = 125;

module tcp

i: [0..a] init @; // Warteschlange

j: [0..1] init @; // connection management
k: [0..1] init 1; // packet generator

// Grundlevel

[] i=0 & j=0 & k=0

-> (1-pow(ex,beta)) : (k'=1) // von off zu burst
+ (pow(ex,beta)): true;

[1 i=0 & j=0 & k=1

-> (1-pow(ex,alpha+tlambda))*alpha/(alpha+lambda): (k'=@) // von burst zu off

+ (1-pow(ex,alphatlambda))*(lambda/(alphatlambda)): (i'=1) // ins naechste Level
+ (pow(ex,alpha+tlambda)): true;

[] i=0 & j=1 & k=0

-> (1-pow(ex,beta+r))x(beta/(beta+r)): (k'=1) // von off zu burst

+ (1-pow(ex,beta+r))*(r/(beta+r)): (j'=0) // von active zu released
+ pow(ex,beta+r): true;

[] i=0 & j=1 & k=1

-> (1-pow(ex,alpha+tr+lambda))*alpha/(alpha+r+lambda): (k'=0) // von burst zu off

+ (1-pow(ex,alpha+lambda+r))*(r/(alpha+lambda+r)): (j'=0) // von active zu released
+ (1-pow(ex,alpha+tlambda+r))*(lambda/(alpha+tlambda+r)): (i'=1) // ins naechste Level
+ pow(ex,alpha+r+lambda): true;

// Wiederholende Level

[1 i>0 & i<a & j=0 & k=0

-> (1-pow(ex,beta+c))*(beta/(beta+c)) : (k'=1) // von off zu burst
+ (1-pow(ex,betatc))*(c/(betatc)): (j'=1) // von released zu active
+ pow(ex,beta+c): true;

[] i>0 & i<a & j=0 & k=1
-> (1-pow(ex,alphatc+lambda))*alpha/(alpha+c+lambda): (k'=0@) // von burst zu off
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A. PRISM QUELLCODE

+ (1-pow(ex,alphatlambda+c))*(c/(alpha+lambda+c)): (j'=1) // von released zu active
+ (1-pow(ex,alphatlambda+c))*(lambda/(alpha+lambda+c)): (i'=i+1) // ins naechste Level
+ pow(ex,alphatc+lambda): true;

[] i>0 & i<a & j=1 & k=0

-> (1-pow(ex,beta+tmu))x(beta/(beta+mu)) : (k'=1) // von off zu burst

+ (1-pow(ex,mu+beta))*(mu/(mutbeta)): (i'=i-1) // ins vorherige Level
+ pow(ex,mutbeta): true;

[] i>0 & i<a & j=1 & k=1

-> (1-pow(ex,alphatlambda+mu))*(alpha/(alpha+tlambda+mu)): (k'=@) // von burst zu off

+ (1-pow(ex,alphatlambda+mu))*(lambda/(alpha+lambda+mu)): (i'=i+1) // ins naechste Level
+ (1-pow(ex,alpha+lambda+mu))*(mu/(alpha+lambda+mu)): (i'=i-1) // ins vorherige Level

+ pow(ex,alphat+tlambda+mu): true;

// Abstraktes Level

// default-Transitionen

[] i=a & j=0 & k=0

-> (1-pow(ex,betatc))*(beta/(beta+c)): (k'=1) // von off zu burst

+ (1-pow(ex,beta+c))*(c/(beta+c)): (j'=1) // von released zu active
+ pow(ex,betatc): true;

[1 i=a & j=0 & k=1

-> (1-pow(ex,alphat+lambda+c))*(alpha/(alpha+lambda+c)): (k'=@) // von burst zu off

+ (1-pow(ex,alphatlambda+c))*(c/(alpha+lambda+c)): (j'=1) // von released zu active
+ (1-pow(ex,alphatlambda+c))*(lambda/(alphatlambda+c)): true // im Level bleiben

+ pow(ex,alpha+lambda+c): true;

// close-Transitionen

[close] i=a & j=1 & k=0

-> (1-pow(ex,beta+tmu))x(beta/(beta+tmu)): (k'=1) // von off zu burst

+ (1-pow(ex,beta+mu))*(mu/(beta+mu)): (i'=maxlevel) // ins "vorherige” Level (maxlevel)
+ pow(ex,betat+tmu): true;

[close]l i=a & j=1 & k=1

-> (1-pow(ex, lambda+alpha+mu))*(alpha/(lambda+alpha+mu)): (k'=@) // von burst zu off

+ (1-pow(ex, lambdatalpha+mu))*(mu/(lambda+alpha+mu)): (i'=maxlevel) // ins "vorherige”
Level (maxlevel)

+ (1-pow(ex, lambda+talpha+mu))*(lambda/(lambda+alpha+mu)): true // im abstrakten Level
bleiben

+ pow(ex, lambda+alpha+mu): true;

// far-Transitionen

[far] i=a & j=1 & k=0

-> (1-pow(ex,beta+mu))x(beta/(beta+tmu)): (k'=1) // von off zu burst

+ (1-pow(ex,beta+mu))*(mu/(beta+mu)): true // im abstrakten Level bleiben
+ pow(ex,beta+tmu): true;

[far] i=a & j=1 & k=1

-> (1-pow(ex, lambda+alpha+mu))*(alpha/(lambda+alpha+mu)): (k'=1) // von burst zu off

+ (1-pow(ex, lambda+alpha+mu))*((lambda+mu)/(lambda+alpha+mu)): true // im abstrakten
Level bleiben

+ pow(ex, lambdat+talpha+mu): true;

endmodule

// labels

label "burst” =
label "off" = k=0;
label "active” = j=
label "released” =

Listing A.1: PRISM Quellcode des TCP-Modells.
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1

1

Pmax=? [ true U[Q,steps] ("released”)&(!("burst”)) 1

Listing A.2: pmax.props: PCTL-Eigenschaft p,,,, als PRISM-Eingabe

Pmin=? [ true U[Q,steps] ("released”")&(!("burst")) 1]

Listing A.3: pmin.props: PCTL-Eigenschaft p,,;, als PRISM-Eingabe
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B. Hilfs-Quellcode

Die Programme run_varMaxlevel.sh und run_varTau. sh fithren PRISM-Befehle mit
Variation von maxlevel oder 7 aus.

export PATH="${PATH}:/home/janic/programs/prism/bin/"

time="2"
m_start="0"
m_step="5"
m_end="100"
smallest_exp=-1
biggest_exp=-7
mkdir results

mkdir output

for t in ‘seq ${smallest_exp} -1 ${biggest_exp}"*

do
tau=T1E${t}
for opt in "max"” "min"
do
filename="${opt}_time${time}_maxlevel${m_start}-${m_step}-${m_end}_tau${taul}”
prism ./ctmdp.prism ./p${opt}.props -const tau=${taul},time=${time},maxlevel=${m_start
}:${m_step}:${m_end} -exportresults ./results/${filenamel}.txt > ./output/${
filename}. txt
done
echo "fuer ${tau} berechnet.”
done

echo "fertig."

Listing B.1: Bash-Code: Programm run_varMaxlevel. sh zur Berechnung von py,,, und
Pmin mit einem schrittweise angegebenen maxlevel fiir verschiedene 7.

In run_varMaxlevel.sh (vgl. B.1) werden PRISM-Aufrufe ausgefiihrt, denen ein festes
7 mitgegeben wird und eine schrittweise Angabe fiir maxlevel. Im Skript konnen aber
auch verschieden Werte fiir 7 tiber die Anderung der Parameter smallest_exp und
biggest_exp eingegeben werden. Fiir diese Exponenten ¢ werden die PRISM-Aufrufe
mit dem schrittweise verinderten maxlevel fiir alle T = 10/, also mit der aktuellen Eingabe
fir r = 1071,1072,..., 1077 berechnet.
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#!
ex

#F

#P
#t
ti

/bin/sh
port PATH="${PATH}:/home/janic/programs/prism/bin/"

uehrt PRISM Kommandozeilenaufrufe aus mit den angegebenen Parametern time, logarithmisch
kleiner werdende Werte von tau bis zu 10%-biggest_exp, fuer ggf verschiedene Werte
fuer maxlevel von m_start bis m_end in Schritten der Groesse m_step

arametereingabe:
ime
me="2"

#maxlevel

m_
m_
m_
#t
bi

#A
mk
mk
mk

fo
do

start=10
step=10
end=40

au
ggest_exp=-7

b hier nichts aendern.
dir results

dir results/helper

dir output

r maxlevel in ‘seq ${m_start} ${m_step} ${m_end}*

for t in ‘seq -1 -1 ${biggest_exp}®
do
th="expr ${t} + 1°
tau_start=1E${t}
tau_step=T1E${t}
tau_end=1E${tb}
for opt in "max”
do
filename="${opt}_time${time}_maxlevel${maxlevel}_tau${tau_start}-${tau_step}-${
tau_end}”
prism ./ctmdp.prism ./p${opt}.props -const tau=${tau_start}:${tau_step}:${tau_end},
time=${time},maxlevel=%${maxlevel} -exportresults ./results/helper/${filename}.
txt > ./output/${filename}. txt

" n

min

done
echo "bis ${tau_start} berechnet.”
done
for opt in "max" "min”
do
cat ./results/helper/${opt}_time${time}_maxlevel${maxlevel}_x > ./results/helper/${opt
}_time${time}_maxlevel${maxlevel}. txt
grep -v [[:alpha:1] ./results/helper/${opt}_time${time}_maxlevel${maxlevell}.txt > ./
results/${opt}_time${time}_maxlevel${maxlevel}_log. txt
echo "fuer maxlevel=${maxlevel} berechnet und zum plotten zusammengefuegt."”
done

done
echo "fertig."”

Listing B.2: Bash-Code: Programm run_varTau. sh zur Berechnung von pyx und pp,;, mit

einem variierenden 7 fur verschiedene maxlevel.

In run_varTau. sh (vgl. B.2) wird den PRISM-Aufrufen ein fester Wert fiir maxlevel mitge-

geben. Es konnen jedoch auch hier verschieden Werte fiir maxlevel mitgegeben werden.

Die PRISM-Aufrufe werden dann fiir jeden dieser Werte ausgefithrt. Auflerdem wird in

der Eingabe ein kleinster und ein grofter Exponent fir © erwartet. Das Skript fithrt dann
die entsprechenden Berechnungen zwischen diesen beiden Werten durch und figt an-
schlieflend die Resultate aller 7 fiir ein maxlevel zusammen. Dadurch kénnen mit einem
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geeigneten Tool die logarithmischen Betrachtungen wie in Abbildung 5.4 generiert werden.
Das Programm runPrism. sh (vgl. B.3) wurde verwendet, um fiir verschiedene Engines
und Losungsmethoden bei der Berechnung eine Laufzeitausgabe zu speichern. Die Aus-
wahl der Engine bzw. Methode, sowie Werte fiir time, maxlevel und 7 kann beeinflusst
werden, indem an der jeweiligen Stelle im Code der gewiinschte Wert eingegeben wird.
Das Programm fiithrt automatisch fiir alle angegebenen Methoden, Engines und Werte fiir
7 Laufzeitberechnungen durch, time und maxlevel miissen zu Beginn fest gewahlt werden.
Mit den Skripten cutMaxlevel.sh und cutTime. sh, die in Listing B.4 und B.5 aufgefiihrt
sind, werden aus der von PRISM gelieferten Ausgabe die Parameter fiir maxlevel sowie die
benétigte Sekundenzahl ausgeschnitten und anschlieSend mit dem pr-Befehl in eine Datei
geschrieben.

#!/bin/sh
export PATH="${PATH}:/home/janic/programs/prism/bin/"

#Fuehrt in PRISM die Berechnungen zur Laufzeitanalyse und schneidet mit den passenden
Skripten cutTime.sh und cutMaxlevel.sh die Ausgabedateien auf die Laufzeitangaben zu.

#Hier ggf. die Werte fuer time und maxlevel anpassen.

time="1"
maxlevel="0:5:100"
#Hier ggf. die gewuenschten Loesungsverfahren angeben. "valiter” Value Iteration, "gs"
Gauss-Seidel, "politer” Policy Iteration, "modpoliter” Modified Policy Iteration
for method in "valiter” "gs" "politer” "modpoliter”
do
#Hier ggf. die gewuenschten Engines anpassen. "" ist der Standard fuer die jeweilige
Methode, "ex" Explicit, "s" Sparse, "m” MTBDD
for engine in "" "ex" "s" "m"
do
if [ "${engine}” = "" 1]
then
engine_used=""
engine_name=""
elif [ "${method}” = "valiter"” ]
then
engine_used="-${engine}"”
engine_name="_${engine}"
else
continue
fi

#Hier die gewuenschten Werte fuer tau eingeben.
for tau in "1E-2" "1E-3"

do
for opt in "max” "min"
do
filename="${method}${engine_name}_${opt}_time${time}_maxlevel@-5-100_tau${taul}”
prism ./ctmdp.prism ./p${opt}.props -${method} ${engine_used} -const tau=${tau},
time=${time}, maxlevel=${maxlevel} -exportresults ./logs/${filename}.txt > ./
output/${filename}. txt
./cutTime.sh ./output/${filename}.txt ./output/${filename}_cutTime.txt
./cutMaxlevel.sh ./output/${filenamel}.txt ./output/${filename}_cutMaxlevel.txt
pr -m -t ./output/${filename}_cutMaxlevel.txt ./output/${filename}_cutTime.txt >
./output/${filename}_plot.txt
done
echo "${method} ${engine}: tau=${tau} berechnet.”
done
done
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done
echo "fertig."”

Listing B.3: Bash-Code: Programm runPrism.sh zur Berechnung von p, und
Pmin fir verschiedene Parameter sowie fiir verschiedene Engines und
Loésungsmethoden, inklusive Ausgabe der Laufzeiten.

cat ${1} | grep "Model constants: " | cut -d ",” -f3 | grep -o -P "[0-91{1,3}" | awk 'NR %
2 == Q' > ${2}

Listing B.4: Quellcode des cutMaxlevel. sh-Skripts, welches aus der Ausgabe die maxlevel
filtert.

cat ${1} | grep "Time for model checking: " | grep -o -P '[0-9]{1,5}.[0-91{1,3}"' > ${2}

Listing B.5: Quellcode des cutTime. sh-Skripts, welches aus der Ausgabe die Laufzeiten in
Sekunden ausgibt.
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