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Zusammenfassung
Um komplexe Systeme wie beispielsweise Kommunikationsprotokolle bereits vor ihrer
physischen Realisierung auf Verlässlichkeit, Abhängigkeiten oder Performanz zu testen
wird Model Checking verwendet. Hierfür wird das betrachtete System als stochastisches
Modell mit Zuständen und probabilistischen Zustandsübergängen modelliert. Formuliert
man nun mithilfe einer Logik wie Probabilistic Computational Tree Logic Anforderungen
an das Modell, so kann in einem mathematischen Verfahren die Korrektheit oder auch
Wahrscheinlichkeit einer solchen Formel berechnet werden. Eine häu�g zu prüfende
Anforderung ist die Erreichbarkeit einer Zustandsmenge innerhalb einer bestimmten
Zeit: time-bounded Reachability. Betrachtet man komplexe, zeitgemäße Strukturen wie
Kommunikationprotokolle, so stellt man fest, dass endliche Modelle lange nicht ausreichen,
um die Anwendungen unseres Lebens zu modellieren. Model Checking auf unendlichen
Modellen jedoch ist nicht vollständig erschlossen. Wir werden deshalb MDP-Abstraktion

vorstellen, eine Technik, mit der für unendliche Warteschlangenmodelle, sogenannte
Quasi-Death-Birth-Processes, eine endliche Repräsentation entwickelt werden kann. In
einem weiteren Verfahren kann das erhaltene Modell weiter vereinfacht und diskretisiert
werden. Durch diese Maßnahme können mithilfe eines Tools, dem PRISM Model Checker,
Eigenschaften validiert werden.
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1. Einleitung
Kommunikationsprotokolle sind komplexe Systeme, über die Aussagen bezüglich Perfor-
manz und Abhängigkeiten getro�en werden können. Diese Systeme können als stochasti-
sche Modelle dargestellt werden, indem die Struktur des Systems als Zustände modelliert
wird und das Eintreten möglicher Ereignisse mit probabilistischer Verteilung in Form
von Übergängen zwischen den Zuständen veranschaulicht wird. Um Eigenschaften und
Spezi�kationen, die man an das Modell stellen möchte, zu veri�zieren und validieren
wird das sogenannte Model Checking verwendet. Durch diesen Prozess können Systeme
schon vor ihrer physischen Umsetzung überprüft werden, was bei immer komplexeren
und sicherheitskritischen Systemen an Relevanz gewinnt.
Beim Model Checking wird zwischen symbolischem und explizitem Model Checking unter-
schieden: symbolisches Model Checking verwendet für die Repräsentation der Zustände
symbolische Datenstrukturen, sogenannte binary-decision diagrams (BDDs), während das
explizite Model Checking, wie der Name schon sagt, die verwendeten Daten explizit spei-
chert. [1]
Ein Beispiel für solche stochastischen Modelle sindContinuos-timeMarkov Chains (CTMCs).
Mit CTMCs können viele verschiedenen, komplexen Strukturen in einem Modell fest-
gehalten werden. Während Model Checking bisher überwiegend für endliche Modelle
angewandt wurde, sind unendliche Modelle für eine Vielzahl an Systemen der passendere
Ansatz. Kommunikationssysteme, wie beispielsweise Transmission Control Protocol (TCP),
verwenden sehr große oder unendliche Warteschlangen. Für solche Systeme sind verschie-
dene Aspekte von Interesse, unter anderem die Serverauslastung, Warteschlangenlänge
oder die Wartezeit eines Nutzers auf ein Ereignis.
Eigenschaften dieser Art lassen sich mit Probabilistic Computational Temporal Logic (PCTL)
formalisieren. Eine wichtige Eigenschaft der Performanzevaluation ist Time-bounded Re-

achability. Diese Eigenschaft beschreibt, ob eine Zustandsmenge innerhalb des Modells
innerhalb einer bestimmten Zeit erreichbar ist. Hiermit kann man im Bereich von Kom-
munikationsprotokollen überprüfen, wie hoch die Wahrscheinlichkeit für das Erreichen
eines bestimmten Levels ist oder wie wahrscheinlich es ist, einen Zustand des Systems zu
erlangen, in dem Pakete über das Protokoll verschickt werden.
Ein typisches Modell eines Warteschlangensystems ist ein sogenannter Quasi-Birth-Death
Process (QBD). Durch ihre starke, level-basierte Struktur ist Model Checking auf QBDs
einfacher, als auf großen unstrukturierten Modellen. [10]
Die starke Struktur der QBDs wollen wir nutzen, um sie in endliche Modelle zu überführen.
Dafür verwenden wir die in [7] eingeführte MDP-Abstraktion. Durch Zusammenfassen
aller korrespondierenden Zustände ab einem bestimmten Level eines QBD in einer ab-
strakten Ebene entsteht ein endliches Modell mit Nichtdeterminismus. Dieses nennt man
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1 . Einleitung

Continuos-time Markov Decision Process (CTMDP). In jedem Zustand des abstrakten Levels
kann man zwischen verschiedenen Aktionen wählen, die ursprüngliche Zustände des QBD
modellieren. Dadurch können beim Model Checking keine eindeutigen Wahrscheinlichkei-
ten berechnet werden. Wir können jedoch die maximale und minimale Wahrscheinlichkeit
für das Erfüllen einer Eigenschaft auf dem CTMDP berechnen.
Tools wie der PRISM Model Checker sind entwickelt worden, um automatisiertes Model
Checking durchzuführen. Da PRISM nicht in der Lage ist, Kontinuität in Kombination
mit Nichtdeterminismus zu verarbeiten, werden wir ein weiteres Verfahren einführen,
um die erhaltenen Modelle zu vereinfachen und die in [8] beschriebene Diskretisierung
auf CTMDPs erläutern. Die daraus entstehende Modellstruktur ist ein Markov Decision

Process (MDP). Dieser verhält sich diskret zu einer bei der Diskretisierung gewählten
Zeitschrittdauer, weshalb immer erst nach Ablauf dieser Zeit genau ein Zustandsübergang
statt�nden kann.
Auf einem MDP können anschließend mithilfe von Model Checking Verfahren wie Value

Iteration oder Policy Iteration Wahrscheinlichkeiten für die Erreichbarkeit einer Zustands-
menge berechnet werden.

Zielsetzung Im Verlauf dieser Arbeit wollen wir eine Möglichkeit erläutern, Model
Checking für zeit-gebundene Erreichbarkeit auf unendlichen QBDs durchführen zu können.

Übersicht Zunächst werden wir in Kapitel 2 die Grundlagen behandeln. Dafür führen
wir in 2.1 Discrete-time Markov Chains (DTMCs), CTMCs und QBDs ein. In 2.2 erläutern
wir die in [7] erläuterte MDP-Abstraktion und de�nieren, wie sich diese Abstraktionsme-
thode konkret auf QBDs auswirkt. In 2.3 gehen wir auf die Diskretisierung von CTMDPs
ein, wie sie in [8] vorgestellt wurde.
In Kapitel 3 beschreiben wir, wie man Erreichbarkeit formalisiert und entsprechende Wahr-
scheinlichkeiten auf MDPs berechnet. Zunächst gehen wir in 3.1 auf Pfade, Scheduler und
induzierte DTMCs ein, da diese die Grundlage für die folgenden Berechnungen scha�en.
Daraufhin wird in 3.2 die Logik PCTL eingeführt, mit der wir Eigenschaften formalisieren
werden. Das Berechnen von Wahrscheinlichkeiten mit Verfahren wie Value Iteration wird
dann in 3.3 dargelegt.
Nachdem wir alle nötigen Werkzeuge für eine Analyse beschrieben haben, wollen wir
diese Verfahren in einer Fallstudie anwenden. Dafür betrachten wir in Kapitel 4 das Trans-
mission Control Protocol (TCP). In 4.1 erläutern wir die Modellierung des Protokolls als
CTMC. Anschließend wenden wir in 4.2 die Abstraktion an und in 4.3 diskretisieren wir
den erhaltenen CTMDP.
In Kapitel 5 führen wir eine Analyse des Modells durch. Da wir für die Berechnungen
PRISM verwenden, führen wir in 5.1 die Grundlagen der PRISM Language ein. In 5.2 setzen
wir das Modell des Protokolls um, beschreiben die konkrete Eigenschaft, die wir überprüfen
wollen und gehen kurz auf die Parameter, die für die Berechnungen zu betrachten sind, ein.
Im nächsten Unterkapitel 5.3 wollen wir dann unsere Resultate vorstellen und analysieren.
Anschließend werden wir in 5.4 auf die Laufzeiten verschiedener Lösungsverfahren von
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PRISM für unser Problem eingehen und in 5.5 auf einen anderen Lösungsansatz eingehen
und Unterschiede zu unserer Idee aufzeigen.
In Kapitel 6 fassen wir abschließend den behandelten Inhalt zusammen und geben einen
Ausblick auf weitere Betrachtungsansätze.

Verwandte Arbeit Wir wollen in diesem Abschnitt auf andere Arbeiten, die sich mit
dem Model Checking unendlicher Systeme beschäftigen, eingehen. Konventionelle Model
Checking Verfahren können nicht auf unendliche Modelle angewandt werden. Es gibt
jedoch bereits einige Ansätze, gut strukturierte unendliche CTMCs zu prüfen. In [11]
werden neue Algorithmen für das Model Checking von CSL-Formeln eingeführt. Continu-
os Stochastic Logic (CSL) ist eine Erweiterung der Logik PCTL. Für den zeitgebundenen
Until-Operator, insbesondere also für zeitgebundene Erreichbarkeit, wird hier eine neue
Methode namens Uniformisierung mit Repräsentanten eingeführt. Diese arbeitet mit einem
dynamischen Abbruchkriterium, wobei das Model Checking einer Formel nur so lange
durchgeführt werden muss, bis man mit Sicherheit sagen kann, dass sie bereits erfüllt
bzw. nicht erfüllt ist. Dadurch kann auch auf unendlichen Systemen Model Checking
durchgeführt werden, wenn sie eine starke Struktur haben.
Wie auch in [11] werden in [4] unendliche QBDs betrachtet. Darin werden die QBDs ab
einer bestimmten Ebene abgeschnitten. Mithilfe eines a priori gewählten Fehlers wird
untersucht, wieviele Level für eine aussagekräftige Wahrscheinlichkeitsberechnung von
Nöten sind. In [6] wird ebenfalls ein Verfahren vorgestellt, das unendliche CTMCs ab-
schneidet. Dabei wird in einem dynamischen Ansatz der optimale Punkt zum Abschneiden
der CTMC gefunden.
Im Gegensatz zu diesen Verfahren wollen wir versuchen durch das Einführen einer ab-
strakten Ebene die unendliche Warteschlange besser zu simulieren und den Datenverlust
durch das Abschneiden einzugrenzen.
In [7] hingegen werden unendliche CTMCs mit einer baumartigen Struktur betrachtet.
Diese sind etwas komplexer als gewöhnliche QBDs. Hier wird ein Verfahren zum Zusam-
menfassen von Zuständen vorgestellt, um das Aufblähen des Zustandsraumes für eine
größere Tiefe bzw. Levelzahl zu vermeiden. Diese Abstraktionmethode wollen auf unser
Problem anpassen und zusammen mit der Diskretisierung aus [8] verwenden, um ein
diskretes und endliches Modell zu erhalten. Wir versuchen so, einen anderen Ansatz für
das Problem des Model Checkings unendlicher CTMCs, wie es in [11] diskutiert wurde, zu
entwickeln.
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2. Theorie und Grundlagen zur
Abstraktion und Diskretisierung
von QBDs

Im folgenden Kapitel werden wir die Grundlagen für die spätere Anwendung formalisieren
und erklären. Wir de�nieren zunächst in 2.1 diskrete und kontinuierliche Markov-Ketten
und Quasi-Birth-Death-Prozesse, führen anschließend in 2.2 eine bestimmte Form der
Abstraktion von kontinuierlichen Markov-Ketten ein, die wir verwenden werden, um ein
endliches Modell zu erhalten und de�nieren dafür auch ein nichtdeterministisches Modell:
Markov-Entscheidungsprozesse. Anschließend legen wir in 2.3 die Diskretisierung dieser
Modelle dar, durch die wir diskrete nichtdeterministische Modelle erhalten, auf denen wir
später Wahrscheinlichkeiten für Erreichbarkeit bestimmter Zustände bestimmen wollen.

2.1. DTMCs, CTMCs, QBDs
Im Verlauf der Arbeit betrachten wir Zustandsübergangsmodelle, die komplexe Systeme
darstellen, in denen mit Wahrscheinlichkeitsverteilungen oder Raten ausgehend von ei-
nem Zustand eine Zustandsänderung eintreten kann. Solche Prozesse können in einem
stochastischen Modell als Markov-Kette modelliert werden. Für alle Markov-Ketten gilt die
sogenannte Markov Eigenschaft. Diese besagt, dass die Wahrscheinlichkeit einer
Transition in einem Zustand ausschließlich von diesem Zustand abhängt. Der bisherige
Verlauf innerhalb der Markov-Kette ist nicht von Bedeutung für die Wahrscheinlichkeit
oder Rate eines Übergangs. Ein solches zeitdiskretes Modell ist eine Discrete-time Markov

Chain:

2.1.1 Definition Discrete-time Markov Chain (DTMC)
Eine DTMC ist ein TupelD = (S,�,q,L), wobeiS ist eine Zustandsmenge ist.� : S×S →
[0, 1] ist eine Übergangsfunktion, die die Zustandsübergänge widerspiegelt. Für jeden
Zustand s ∈ S gilt

∑
s ′∈S �(s, s

′) = 1. q ∈ Distr(S) aus der Menge aller Verteilungen über
S ist die Startverteilung. Sei außerdem L : S → 2A eine Labelfunktion, die jedem Zustand
eine Menge von atomaren Eigenschaften zuordnet. Dabei ist A die Menge aller atomaren
Eigenschaften. [1]

In einem diskreten Modell �nden Zustandsübergänge in regelmäßigen Abständen gemäß
einer fest de�nierten Zeiteinheit statt. Um realitätsnahe Modelle zu erhalten muss konti-
nuierliche Zeit betrachtet werden. Für kontinuierliche Markov-Ketten bedeutet dies, dass
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Abbildung 2.1.: Beispiel einer CTMC mit Zustandsraum S = {a,b, c}, Startzustand a, der
Ratenfunktion R : S × S → �>0 mit R(a, c) = 3,R(b,a) = 0.8,R(b, c) =
3,R(c,b) = 10, sonst 0.

ein Zustandsübergang zu jedem beliebigen Zeitpunkt statt�nden kann und nicht, wie in
einem diskreten Modell, nur nach Ablauf einer festen Zeitschrittdauer. Wir führen nun die
De�nition kontinuierlicher Markov-Ketten ein:

2.1.2 Definition Continuos-time Markov Chain (CTMC) [7], [6]
Eine CTMC ist ein Tupel C = (S,R,q,L). Hierbei ist S ein Zustandsraum,
R : S × S → �>0 die Ratenfunktion, die die Zustandsübergänge widerspiegelt,
q ∈ Distr(S) die Startverteilung und L : S → 2A eine Labelfunktion, die jedem Zustand
eine Menge von atomaren Eigenschaften aus A, der Menge aller atomaren Eigenschaften,
zuordnet.

Die Ausgangsrate E eines Zustands s ∈ S einer CTMC ist die Summe aller
ausgehenden Transitionen:

E(s) =
∑
s ′∈S

R(s, s′).

In einer CTMC hat jeder Zustand eine Verweildauer. Diese Verweilzeiten sind exponenti-
alverteilt – die Wahrscheinlichkeit, einen Zustand s innerhalb einer Zeit t zu verlassen
ist demnach gegeben durch 1 − e−E(s)·t . Für eine Transition mit der Rate µ beträgt die
Wahrscheinlichkeit

(
1 − e−E(s)·t

)
· µ/E(s). In Abbildung 2.1 wird ein Beispiel einer einfachen

CTMC gezeigt. Ein Übergang von Zustand b in Zustand c geschieht hier mit einer Rate
von 3.
Durch Modellierung von Warteschlangen erhält man CTMCs einer bestimmten Struktur
mit sich wiederholenden Ebenen. Die Aufnahme eines neuen Elementes in die Warte-
schlange induziert im Modell eine Transition in die nächsthöhere Ebene, das Abarbeiten
eines Elementes löst einen Zustandsübergang in eine tiefere Ebene aus. Aufgrund dieses
Verhaltens werden diese Modelle auch Quasi-Birth-Death-Prozesse genannt. Die folgende
De�nition orientiert sich an QBDs aus [11].
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2.2. MDP-Abstraktion

2.1.3 Definition �asi Birth Death Process (QBD)
Ein QBD ist eine CTMC unendlicher Länge der folgenden Struktur: Ein QBD besteht aus
einer unendlichen Anzahl von Ebenen, auch Level genannt, mit endlich vielen Zuständen,
Transitionen existieren nur innerhalb einer Ebene und zwischen direkt aufeinanderfolgen-
den Ebenen.
Ein QBD Q ist demnach ein Tupel (S,R,q,L). Der Zustandsraum S lässt sich aufteilen in
disjunkte Teilmengen Si ⊂ S für i ∈ �. Die Ratenfunktion R(s, s′) hat nur Einträge > 0
für s ∈ Si mit s′ ∈ Si+1 ∪ Si ∪ Si−1, für s′ ∈ S \ (Si+1 ∪ Si ∪ Si−1) gilt demnach R(s, s′) = 0.
Dadurch ist die Ratenfunktion R eine Blockmatrix mit Untermatrizen Ri,i−1,Ri,i ,Ri,i+1:

R =
©­­«
R0,0 R0,1
R1,0 R1,1 R1,2

. . .
. . .

. . .

ª®®¬ .
Dabei ist Ri,j die Matrix R(si , sj) mit si ∈ Si , sj ∈ Sj .

Eine wichtige Eigenschaft eines QBD ist Levelunabhängigkeit, welche eine Aussage über
unterschiedliche Strukturen der Ebenen tri�t.

2.1.4 Definition Levelunabhängigkeit [11]
Ein QBD ist ab einer bestimmten Ebene i ∈ � levelunabhängig. Dies bedeutet, dass
sich ab diesem Punkt die Struktur der Ebenen wiederholt: Für jeden Zustand sk dieser
Ebene Si existiert in allen folgenden Ebenen Sj , j > i , ein entsprechender Zustand sk ∈ Sj .
Auch die Transitionen und atomaren Eigenschaften verhalten sich entsprechend.

Im Folgenden betrachten wir ausschließlich QBDs mit Levelunabhängigkeit ab
dem zweiten Level, einzig das erste Level darf sich also von den anderen unterscheiden.
Dieses Level nennen wir Grundlevel, alle folgenden Ebenen Wiederholende
Level.

In Abbildung 2.2 erkennt man die in 2.1.3 beschriebene Struktur eines typischen QBD. Der
QBD ist levelunabhängig ab dem zweiten Level, alle folgenden Ebenen haben die gleiche,
sich wiederholende, Struktur. Nur die erste Ebene, das Grundlevel, hat eine abweichende
Struktur.

2.2. MDP-Abstraktion
Um eine CTMC zu abstrahieren, kann man eine Abstraktionsmethode verwenden, bei der
die CTMC in einen Continuos-time Markov Decision Process (CTMDP) umgewandelt wird.
Diese Methode heißt MDP-Abstraktion. Hierbei werden Zustände nach einer gewählten
Zustandsraumpartition zusammengefasst. Um die Unterschiede der zusammengefassten
Zustände zu modellieren, werden in den abstrakten Zuständen sogenannte Aktionen
eingeführt.

Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion 7
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s0,1 s1,1 s2,1

s0,2 s1,2 s2,2 ...

...

α

β β

λ λ λ

µµµ

Wiederholende LevelGrundlevel

Abbildung 2.2.: Beispiel eines QBD mit Zustandsraum S = {si,j | i ∈ �, j ∈ {1, 2}}. Jede
Ebene i dieses QBD hat zwei Zustände, si,1 und si,2. Die Transitionen in ein
höheres Level �nden mit Rate λ statt, die in ein niedrigeres mit Rate µ.

2.2.1 Definition Continuos-time Markov Decision Process (CTMDP) [8]
Ein CTMDP M ist ein TupelM = (S,Act,R,q,L) für das gilt:

• S ist ein endlicher Zustandsraum,

• Act ist eine endliche Menge von Aktionen, wobei Act(s) für s ∈ S die Menge der
möglichen Aktionen eines Zustandes angibt,

• R : S × Act×S → �>0 ist eine dreidimensionale Ratenfunktion

• q ∈ Distr(S) ist eine Initialverteilung

• und L : S → 2A eine Labelfunktion, wobeiA eine Menge von atomaren Eigenschaften
ist.

Die Ausgangsrate E eines CTMDP-Zustandes s ∈ S hängt auch von der gewählten
Aktion α ∈ Act(s) ab:

E(s,α) =
∑
s ′∈S

R(s,α , s′)

Ein CTMDP heißt locally uniform, falls die Ausgangsrate E eines Zustands s ∈ S
nicht von der Wahl der Aktion abhängt. Es gilt also für beliebige α , β ∈ Act(s):

E(s,α) = E(s, β).

Im Folgenden seien CTMDPs falls nicht anders angegeben immer locally uniform, wir
verwenden daher E(s) für die Ausgangsrate eines Zustandes s ∈ S.

8 Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion
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a

b c

d

µ

λ

λ α

µ β

(a) CTMC C

ca,b,d
β

{a,b}, µ

{a,b}, λ
{d},α

(b) CTMDP CM

Abbildung 2.3.: CTMC C = (S,R,q,L)mitS = {a,b, c}, Startzustand a und die zugehörige
abstrahierte CTMDP CM .

Ein CTMDP ist ein nichtdeterministisches Modell. In jedem Zustand gibt es die Möglichkeit,
aus einer oder mehr Aktionen auszuwählen. Eine Aktion α aus Act(s) gibt für den Zustand
s eine Menge von möglichen Transitionen an. Diese Transitionen sind, wie in einer CTMC,
mit der Rate r = R(s,α , s′) exponentialverteilt.
Wenn ein CTMDP durch MDP-Abstraktion einer CTMC entsteht, spiegelt für jeden Zustand
s , der in einen abstrakten Zustand integriert wurde, genau eine Aktion die Transitionen
dieses Zustandes s dar. Falls zwei Zustände die gleiche Verteilung haben, so werden diese
in einer Aktion zusammengefasst. Führte zuvor eine Transition in einen Zustand s , der
nun mit anderen Zuständen zu einem abstrakten Zustand s′ zusammengefasst wurde, so
führt diese Transition im abstrahierten Modell in den neuen Zustand s′. [7]
In Abbildung 2.3 wird die MDP-Abstraktion an einem einfachen Beispiel illustriert. Als
Zustandsraumpartition werden in diesem Beispiel die Zuständea,b undd zusammengefasst.
Da a und b beide je eine µ-Transition nach c und eine λ-Transition nach b bzw. d , also in
den neuen abstrakten Zustand (a,b,d) haben, können sie in einer Aktion zusammengefasst
werden. d hat eine andere Verteilung, daher ensteht eine eigene, mit d betitelte Aktion an
der ursprünglich von d ausgehenden Transition.

MDP-Abstraktion angewandt auf QBDs
Wir werden mithilfe der MDP-Abstraktion QBDs in endliche Modelle überführen. Dafür
wählen wir die Zustandsraumaufteilung so, dass nach einer bestimmten Ebene m, die wir
im Folgenden Abstraktionslevel nennen werden, alle sich entsprechenden Zustände
in einem abstrakten Level a zusammengefasst werden. Das abstrakte Level hat eine
ähnliche Struktur mit der gleichen Anzahl von Zuständen wie die Wiederholenden Ebenen.
Die Transitionen sind in diesem Level aufgrund der Abstraktion anders.
Durch die so gewählte Partition entstehen nur im abstrakten Level verschiedene Aktionen.
Formal de�nieren wir für alle Zustände, in denen sich durch die Abstraktion nichts ver-

Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion 9
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QBDs

s0,1 s1,1 s2,1

s0,2 s1,2 s2,2 sa,1

sa,2

α

β β

λ λ λ

µµ

Wiederholende LevelGrundlevel Abstraktes Level

β

close, µ far, µ

λ

Abbildung 2.4.: Beispiel eines CTMDP, der durch Anwendung von MDP-Abstraktion mit
Abstraktionslevel m = 2 auf den in Abbildung 2.2 eingeführten QBD
entsteht.

ändert, eine Aktion default, da wir in einem CTMDP, der so entsteht, in jedem Zustand
eine Aktion wählen können müssen. Dies gilt insbesondere für alle Zustände aus den
beibehaltenen Leveln mit den Zustandsmengen S0, . . . , Sm.
Für abstrakte Zustände, deren korrespondieren Zustände keine Transitionen in ein vorhe-
riges Level haben, ändert sich durch die Abstraktion sehr wenig, da keine Wahlmöglichkeit
entsteht. Solche Zustände besitzen die gleichen Transitionen wie die korrespondierenden
Zustände der Wiederholenden Ebenen, nur entsprechende Übergänge in ein höheres Level
zeigen hier ins abstrakte Level. Diese Zustände erhalten aufgrund der nur sehr geringen
strukturellen Veränderungen auch nur die Aktion default.
Falls für einen abstrakten Zustand die ihm entsprechenden Zustände eine oder mehr
Transitionen in ein vorheriges Level haben, entstehen zwei verschiedene Aktionen:

• close: Diese Aktion modelliert genau den Zustand des ersten nicht mehr bestehen-
den Levelsm + 1. Demnach sind die Transitionen ins vorherige Level sind mit close
möglich. Die Transitionen in ein weiteres oder innerhalb des Levels zeigen nun auf
den korrespondierenden Zustand der abstrakten Ebene, da die Ziellevel auch durch
das abstrakte Level modelliert werden.

• far: Diese Aktion stellt alle Zustände der übrigen wegfallenden Level > m + 1 dar.
Von diesen Zuständen aus kann die Ebene m nicht mehr erreicht werden. Auch die
Transitionen, die im QBD in ein niedrigeres Level zeigen, erreichen hier die jeweils
korrespondierenden Zustände in der abstrakten Ebene Sa .

In Abbildung 2.4 ist dieses Verhalten dargestellt. Man erkennt hier die MDP-Abstraktion
mit den Aktionen far und close anhand des QBDs aus Abbildung 2.2. Aus Übersichts-
gründen werden hier und in allen weiteren Gra�ken die Transitionen der default-Aktion
nicht explizit gekennzeichnet.
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2.2. MDP-Abstraktion

Auf Grundlage der MDP-Abstraktion, wie sie in [7] eingeführt und hier vorgestellt wurde,
entsteht für unsere Betrachtungen bezüglich QBDs die folgende De�nition, die Zustands-
raum und Ratenfunktion des abgeleiteten CTMDPs formalisiert.

2.2.2 Definition MDP-Abstraktion eines QBD
Durch MDP-Abstraktion mit Abstraktionslevel m eines QBD Q = (S,R,q,L) mit
S =

⋃
i∈� Si entsteht ein CTMDPM = (Ŝ, R̂,Act,q,L), wobei Ŝ = S0∪· · ·∪Sm∪Sa . Seien

si,1, . . . , si,n ∈ Si für i ∈ {0, . . . ,m,a} die Zustände einer Ebene i . Sa ist die Zustandsmenge
des abstrakten Levels und enthält zu si,1, . . . , si,n ∈ Si für i ∈ {1, . . . ,m} korrespondierende
Zustände sa,1, . . . , sa,n ∈ Sa .

Die Ratenfunktion R̂ ist folgendermaßen de�niert:
Für Zustände si,k ∈ Si , s′ ∈ S mit i ∈ {1, . . . ,m − 1},k ∈ {1, . . . ,n}:

R̂(si,k , default, s
′) ..= R(si,k , s′)

Für Zustände sm,k ∈ Sm,k,p ∈ {1, . . . ,n}:

R̂(sm,k , default, sm−1,k) ..= R(sm,k , sm−1,p)

R̂(sm,k , default, sm,k) ..= R(sm,k , sm,p)

R̂(sm,k , default, sa,k) ..= R(sm,k , sm+1,p)

Für Zustände sa,k ∈ Sa mit i ∈ {1, . . . ,m},k,p ∈ {1, . . . ,n}:

Falls R(si,k , si−1,z) = 0 mit z ∈ {1, . . . ,n}:

R̂(sa,k , default, sa,p) ..= R(si,k , si,p) + R(si,k , si+1,p)

R̂(sa,k , close, sm,p) ..= 0

R̂(sa,k , close, sa,p) ..= 0

R̂(sa,k , far, sa,p) ..= 0

Sonst:

R̂(sa,k , default, sa,p) ..= 0

R̂(sa,k , close, sm,p) ..= R(si,k , si−1,p)

R̂(sa,k , close, sa,p) ..= R(si,k , si,p) + R(si,k , si+1,p)

R̂(sa,k , far, sa,p) ..= R(si,k , si−1,p) + R(si,k , si,p) + R(si,k , si+1,p)
Alle nicht explizit de�nierten Raten sind 0.

Mit dieser De�nition haben wir nun alle Grundlagen, die zum Abstrahieren einer CTMC
benötigt werden, kennengelernt und die De�nition der MDP-Abstraktion für unsere Pro-
blemstellung, Model Checking von QBDs, formalisiert. Um dies Analysieren zu können,
gehen wir im nächsten Unterkapitel auf die Diskretisierung ein.
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2 . Theorie und Grundlagen zur Abstraktion und Diskretis ierung von

QBDs

2.3. Diskretisierung von CTMDPs
Wie in [2] werden wir CTMDPs diskretisieren, um ein Modell zu erhalten, auf das der PRISM
Model Checker angewandt werden kann. Wir werden die Diskretisierung auf die durch
MDP-Abstraktion von QBDs erhaltenen CTMDPs anwenden. Dabei wird die Übergangs-
funktion anhand eines möglichst klein gewählten Zeitschrittes diskretisiert. Wir beziehen
also die Wahrscheinlichkeit, einen Schritt zu machen, in die Übergangswahrscheinlichkeit
mit ein. Dieses Vorgehen ist in dieser Form nur möglich, da die betrachtete CTMDP die
Eigenschaft hat, locally uniform zu sein. Durch Anwenden der Methode entsteht aus dem
kontinuierlichen CTMDP ein diskreter Markov-Entscheidungsprozess mit einer speziellen
Übergangsfunktion. Wir de�nieren zunächst diskrete Markov-Entscheidungsprozesse:

2.3.1 Definition Markov Decision Process (MDP) [1]
Ein MDP M ist ein TupelM = (S,Act,�τ ,q,L). Hier ist S ein endlicher Zustandsraum,
Act eine Menge von Aktionen, wobei Act(s) für s ∈ S die Menge der möglichen Aktionen
eines Zustandes angibt, � : S × Act×S → [0, 1] die Übergangsfunktion, q ∈ Distr(S)
die Startverteilung und L : S → 2A eine Labelfunktion, die jedem Zustand eine atomare
Eigenschaft aus der Menge A zuweist. A ist die Menge aller atomaren Eigenschaften.

In der folgenden De�nition wird die Übergangsfunktion beschrieben, wie sie durch die
Diskretisierung entsteht.

2.3.2 Definition Diskretisierte Übergangsfunktion [8]
Die diskretisierte Wahrscheinlichkeitsfunktion �τ : S × Act×S → [0, 1]
ist de�niert als

�τ (s,a, s
′) =


(
1 − e−E(s)·τ

)
· �(s,a, s′), für s , s′,a ∈ Act(s)(

1 − e−E(s)·τ
)
· �(s,a, s′) + e−E(s)·τ , für s = s′,a ∈ Act(s)

0, für a < Act(s),

wobei τ ∈ �≥0 die Dauer eines Zeitschrittes ist. � : S × Act×S → [0, 1] gibt die zeitlich
unabhängige Wahrscheinlichkeit an, mit der gewählten Aktion a ∈ Act(s) von Zustand s
aus zu Zustand s′ zu wechseln. Es gilt:

�(s,a, s′) =
R(s,a, s′)

E(s)
.

Die Exponentialverteilung 1 − e−E(s)·τ gibt hierbei die Wahrscheinlichkeit für das Eintre-
ten eines Ereignisses innerhalb des Zeitintervalls der Länge τ an. τ ist die Granularität
der diskreten Zeit, mit der wir Kontinuität simulieren wollen, weshalb τ möglichst klein
gewählt werden muss.
Werden mithilfe des erhaltenen Modells Berechnungen durchgeführt, so ist die Wahl von
τ verantwortlich für die Genauigkeit der Ergebnisse. Für ein zu groß gewähltes τ entsteht
ein Fehler. Dieser Fehler lässt sich berechnen, worauf wir im Folgenden näher eingehen
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2.3. Diskretisierung von CTMDPs

CTMDP MDP

DTMCCTMC

Diskretisierung

Diskretisierung

A
bstraktion

A
bstraktion

kontinuierliche
Modelle

diskrete
Modelle

probabilistische
Modelle

nichtdeterministische
Modelle

Abbildung 2.5.: In der Arbeit vorgestellte stochastische Zustandsübergangsmodelle. Mit
MDP-Abstraktion erhält man aus einem probabilistischem Modell ein
nichtdeterministisches. Mit Diskretisierung kann man ein kontinuierliches
Modell in ein diskretes überführen.

werden, nachdem wir die Berechnung von Wahrscheinlichkeiten eingeführt haben.

Fazit Wir haben nun verschiedene Zustandsübergangsmodelle im diskreten und konti-
nuierlichen Raum kennengelernt die jeweils probabilistisch oder auch nichtdeterministisch
sein können. Außerdem haben wir zwei Methoden erlernt: MDP-Abstraktion fasst Zustän-
de eines probabilistischen Modells in abstrakten Zuständen zusammen. Dadurch können
wir ein unendliches Modell wie einen QBD in ein endliches überführen. Diskretisierung
kann aus einem kontinuierlichen Modell wie einem CTMDP mithilfe einer Granularität τ
die Übergangsfunktion und damit das Modell in ein diskretes überführen. In Abbildung
2.5 ist dies gra�sch festgehalten.
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3. Erreichbarkeit in MDPs
Auf einem stochastischen Modell wie einem MDP können wir verschiedene relevante
Eigenschaften auf ihre Eintrittswahrscheinlichkeiten überprüfen. Um diese Berechnungen
durchführen zu können, werden wir in 3.1 noch einige Grundlagen darlegen. Anschließend
de�nieren wir in 3.2 die Logik PCTL sowie zeitgebundene Erreichbarkeit für MDPs und
führen in 3.3 Möglichkeiten zur Berechnung der Wahrscheinlichkeiten dieser Eigenschaft
ein.

3.1. Pfade, Scheduler und induzierte DTMCs
Die folgende De�nition eines Pfades erfolgt in Anlehnung an [1].

3.1.1 Definition Pfad
Ein Pfad π = s0s1 . . . auf einem MDP M, ausgehend von einem Zustand s0 ist eine
Sequenz von Zuständen, sodass gilt:

∀si ∈ π ∃α ∈ Act : �(si ,α , si+1) ∈ �>0.
Die Menge aller möglichen Pfade auf einem MDPM nennen wir PathsM . Die
Menge aller Pfade, die von einem Zustand s aus möglich sind nennen wir PathsM(s).

Ein Pfad ist also eine Folge von Zuständen, wobei für aufeinanderfolgende Zustände
eine Transition existieren muss. Da MDPs nichtdeterministische Modelle sind, hängt der
Pfadverlauf in einem MDP in allen Zuständen mit Wahlmöglichkeit nicht nur von der
Wahrscheinlichkeitsverteilung, sondern auch von der Wahl einer Aktion ab. Um diese
Wahl in die Berechnung von Wahrscheinlichkeiten miteinbeziehen zu können, kann man
sie durch einen Scheduler formalisieren. Auch die De�nition für Scheduler ist angelehnt
an die entsprechende De�nition in [1].
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Abbildung 3.1.: Beispiel einer induzierten DTMC durch einen Scheduler σ . Der Scheduler
wählt hier in Zustand a der MDP die Aktion α , wodurch ausgehend von
diesem Zustand die beiden Pfade ab und ac zu möglichen Pfaden werden.
Diese Aktion ist im MDP und in der induzierten DTCM markiert.

3.1.2 Definition Scheduler
Ein Scheduler (auch: Adversary, Policy) für einen MDPM = (S,Act,�,q,L) ist
eine Funktion σ : PathsM → Act, sodass für einen gegebenen Pfad π = s0 . . . sn ∈ PathsM
gilt:

σ (π ) ∈ Act(sn).

Ein σ−Pfad ist eine Sequenz π = s0α0s1α1s2 . . . von Zuständen si ∈ S und Aktionen
αi ∈ Act mit:

αi = σ (s0 . . . si) ∀i > 0.

Die Menge aller σ−Pfade auf einem MDP M, ausgehend von einem Zustand s
nennen wir Pathsσ (s). Es gilt Pathsσ (s) ⊆ PathsM(s).

Einen Scheduler kann man sich wie eine Person vorstellen, die entscheidet, welche Aktion
in einem Zustand gewählt wird. Es gibt eine Vielzahl von Kriterien um Scheduler zu
beschreiben. Eines davon ist Gedächtnislosigkeit. Das bedeutet, dass die Entscheidungen
des Schedulers unabhängig von den bisher getro�enen Entscheidungen sind.

3.1.3 Definition Memoryless Scheduler [1]
Ein Scheduler auf einem MDP M = (S,Act,�,q,L) wird memoryless (oder auch
gedächtnislos) genannt, wenn für alle Pfade π ,π ′ ∈ PathsM mit s ∈ S gilt:

σ (πs) = σ (π ′s).

Ein Scheduler σ auf einem MDPM induziert eine DTMCMσ , da er den Nichtdetermi-
nismus durch die Wahl einer Aktion auf jedem möglichen Pfad au�öst. Diese DTMC
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3.1. Pfade, Scheduler und induzierte DTMCs

formalisiert das Verhalten des MDP unter dem Scheduler σ . [1] Sie ist folgendermaßen
de�niert:

3.1.4 Definition Induced Discrete-Time Markov Chain [1]
Die durch einen Scheduler σ induzierte DTMC Mσ eines MDPM = (S,Act,�,q,L)
ist ein Tupel

Mσ = (Pathsσ (q),�σ ,q,Lσ ).

Dabei ist

• Pathsσ (q) der Zustandsraum der induzierten DTMC. Die Zustände repräsentieren
alle möglichen Pfade auf dem MDP für den Scheduler σ .

• �σ : Pathsσ (q) → [0, 1] die Übergangsfunktion. Eine Transition repräsentiert einen
weiteren Schritt auf dem MDP mit der Wahl einer Aktion durch den Scheduler. Es
gilt �σ (π ,πsn+1) = �(sn,σ (π ), sn+1) für alle π = s0 . . . sn ∈ Pathsσ (q).

• q die Initialverteilung.

• Lσ : Pathsσ (q) → A eine Labelfunktion, wobei jedem Zustand π = s0 . . . sn ∈
Pathsσ (q) der induzierten DTMC das Label des letzten Pfadzustandes zugewiesen
wird. Es gilt Lσ (π ) = L(sn).

Die durch einen Scheduler σ induzierte DTMC besteht also aus den möglichen σ -Pfaden
auf dem MDP. Ist der Scheduler gedächtnislos, so kann eine vereinfachte induzierte DTMC
betrachtet werden: Diese hat den gleichen Zustandsraum wie der MDP. In jedem Zustand
bleibt dann nur die Verteilung derjenigen Aktion bestehen, die der Scheduler wählt.
In Abbildung 3.1 ist ein Beispiel für einen MDP und die zugehörige induzierte DTMC für
den Scheduler mit der folgenden Funktion zu sehen:

σ (π ) =


α , falls π = s0 . . . sna
γ , falls π = s0 . . . snb
τ , falls π = s0 . . . snc
δ , falls π = s0 . . . snd

, s0, . . . , sn ∈ S = {a,b, c,d},π ∈ Pathsσ (q).
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3 . Erreichbarkeit in MDPs

3.2. Logik
Um nun eine Wahrscheinlichkeit dafür berechnen zu können, von einem Zustand aus
einen anderen Zustand zu erreichen, müssen wir zunächst formalisieren, was es heißt,
erreichbar zu sein. Dafür führen wir Probabilistic Computational Tree Logic (PCTL) ein,
eine Logik, mit der man Wahrheitsaussagen auf MDPs formulieren kann.

3.2.1 Definition Probabilistic Computational Tree Logic (PCTL) [1]
Probabilistic Computational Tree Logic (PCTL) ist eine Logik zum Beschrei-
ben von Eigenschaften von Zuständen in Markov-Ketten und insbesondere MDPs. In PCTL
gibt es Zustands- und Pfadformeln, die der hier de�nierten Syntax folgen.

Zustandsformeln: ϕ ....= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | PJ(ψ ),

wobei a ∈ A eine atomare Eigenschaft ist, A die Menge aller atomaren Eigenschaften,ψ
eine Pfadformel, ϕ, ϕ1 und ϕ2 Zustandsformeln und J ⊆ [0, 1] ein Intervall mit Grenzen
aus �.

Pfadformeln:ψ ....= Xϕ | ϕ1 U ϕ2 | ϕ1 U6n ϕ2

Hier sind ϕ, ϕ1 und ϕ2 Zustandsformeln und n ein Schwellwert, der die Anzahl von
Zeitschritten angibt, innerhalb derer eine Eigenschaft geprüft werden soll. Die Bedeu-
tung der temporalen Verknüpfungen X, U und U6n wird in der folgenden De�nition erläutert.

18 Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion



3.2. Logik

3.2.2 Definition Erfüllen von Zustands- und Pfadformeln [1]
Eine Zustand s erfüllt (satisfies) eine Zustandsformel ϕ, falls gilt s |= ϕ, d.h. die
Zustandsformel ϕ gilt in s . Diese Relation ist folgendermaßen de�niert:

s |= true, für alle Zustände s .
s |= a, genau dann, wenn a ∈ L(s).

s |= ¬ϕ, genau dann, wenn s 6 |= ϕ .

s |= ϕ1 ∧ ϕ2, genau dann, wenn s |= ϕ1 ∧ s |= ϕ2.

s |= PJ(ψ ), genau dann, wenn Pr (s,ψ ) ∈ J.

Dabei ist Pr (s,ψ ) = Prs{π ∈ Paths(s) | π |= ψ } die Wahrscheinlichkeit, von s aus einen
Pfad zu gehen, derψ erfüllt.

Ein Pfad π in einer MDPM erfüllt eine Pfadformelψ , falls gilt π |= ψ :

π |= Xϕ, falls π [1] |= ϕ
π |= ϕ1 U ϕ2, falls ∃j > 0 : (π [j] |= ϕ2 ∧ (∀0 6 k < j : π [k] |= ϕ1))
π |= ϕ1 U6n ϕ2, falls ∃j ∈ � : 0 6 j 6 n : (π [j] |= ϕ2 ∧ (∀0 6 k < j : π [k] |= ϕ1))

Dabei ist π = s0s1 . . . ein Pfad und π [i] bezeichnet für i > 0 den Zustand si .

Mithilfe dieser Formeln sind nach De�nition verschiedene Eigenschaften formal spezi�ziert.

Xϕ: Ein Pfad erfüllt diese Formel, falls der nächste Zustand des Pfades ϕ erfüllt.
Diese Eigenschaft nennt man next.

ϕ1 U ϕ2: Ein Pfad erfüllt diese Formel, falls für alle Zustände entlang des Pfades
ϕ1 gilt, bis für einen Zustand auf dem Pfad ϕ2 gilt. Zu dieser Eigenschaft
sagt man until.

ϕ1 U6nϕ2: Ein Pfad erfüllt diese Formel, falls innerhalb von n Schritten auf dem
Pfad ein ϕ2 Zustand erreicht wird und bis zu diesem Zustand für alle
Zustände ϕ1 gilt. Aufgrund der zeitlichen Beschränktheit nennt man diese
Eigenschaft bounded until.

Erreichbarkeit ist ein Spezialfall der Unil-Formeln. Dabei gilt ϕ1 = true. Die Erreich-
barkeit einer Zustandsformel ϕ ist demnach true U ϕ. Wir können auch zeitgebundene

Erreichbarkeit formalisieren:

true U6n ϕ .

Ein Pfad erfüllt diese Formel, wenn innerhalb von n Schritten ein Zustand auf dem Pfad
die Zustandsformel ϕ erfüllt. Man spricht deshalb auch vom Erreichen von ϕ.
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3 . Erreichbarkeit in MDPs

3.3. Berechnung von
Erreichbarkeitswahrscheinlichkeiten

Wie bereits erwähnt können durch den Nichtdeterminismus in MDPs keine eindeutigen
Wahrscheinlichkeiten berechnet werden. Betrachtet man allerdings in jedem Zustand die
beste bzw. schlechteste Wahl für das Erfüllen der Eigenschaft, so kann eine maximale und
eine minimale Wahrscheinlichkeit berechnet werden. Diese Wahl ist formalisiert durch
einen Scheduler und die entsprechende induzierte DTMC. Der Scheduler mit dem besten
Verhalten in Bezug auf die Pfadformel induziert diejenige DTMC, auf der man die maximale
Wahrscheinlichkeit für das Erfüllen der Pfadformel berechnen kann. Hierfür berechnet
man das Supremum (bzw. In�mum) der Wahrscheinlichkeiten, die durch alle möglichen
Scheduler induziert werden.

3.3.1 Definition Wahrscheinlichkeit für eine Pfadformel [5]
Für einen MDPM = (S,Act,�,q,L) istpmax die maximale undpmin minimale Wahr-
scheinlichkeit, von einem Zustand s ∈ S aus eine Pfadformel zu erfüllen. Es gilt:

pmax (s,ψ ) = sup
σ∈Adv

Prσ (s,ψ ),

pmin(s,ψ ) = inf
σ∈Adv

Prσ (s,ψ ),

wobeiψ eine Pfadformel ist und Prσ (s,ψ ) die Wahrscheinlichkeit bezeichnet, von s ausge-
hend einen σ -Pfad zu gehen, derψ erfüllt.

Wir betrachten time-bounded reachability, die Eigenschaft, einen bestimmten Zustand
oder eine Menge innerhalb einer vorgegebenen Zeit oder auch Anzahl von Schritten zu
erreichen. Es gilt also ψ = true U[0,t]ϕ. Zum Berechnen der maximalen und minimalen
Wahrscheinlichkeiten für die Erreichbarkeit einer Zustandseigenschaft in einem MDP
gibt es verschiedene Verfahren, die auf der Lösung eines Gleichungssystems basieren. Um
alle benötigten Informationen zum Lösen dieser Gleichungen zu haben, muss zuvor noch
die Berechnung einer bestimmten Teilzustandsmenge durchgeführt werden. Smin=0 bzw.
Smax=0 beschreiben die Menge aller Zustände, von denen aus die Zielzustandsmenge (unter
Betrachtung der jeweiligen gewünschten Optimalität min bzw. max) nicht erreicht werden
kann. Für die Berechnung dieser Mengen verwenden wir die in [5] vorgestellten Algo-
rithmen. Wir passen die Darstellung des Algorithmus an die in dieser Arbeit verwendete
Notation an.
Smin=0 enthält diejenigen Zustände, für die die Wahrscheinlichkeit die Zielmenge zu er-
reichen 0 ist, falls immer die möglichst schlechteste Wahl zum Erreichen der Zielmenge
getro�en wird. Der Algorithmus für die Berechnung von Smin=0 (vgl. Listing 3.1) erwartet
hier als Eingabe eine MDP, zusammen mit der Zielmenge B. Es wird eine Menge R de�niert,
die am Ende alle Zustände enthalten soll, von denen aus man selbst mit der schlechtesten
Wahl B irgendwie erreichen kann. Zu Beginn des Algorithmus gilt trivialerweise R = B.
In der Iteration werden diese Menge nun mit allen Zuständen vereinigt, von denen aus
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3.3. Berechnung von Erreichbarkeitswahrscheinlichkeiten

1 Eingabe: MDP M = (S, Act, �, q, L), Zielmenge B ⊆ S , mit s |= ϕ ∀s ∈ B
2 Ausgabe: die Menge Smin=0 = {s ∈ S | pmin(s, true U ϕ) = 0}
3 R := B;
4 do
5 R′ := R;
6 R := R′ ∪ {s ∈ S | ∀α ∈ Act(s) : (∃s′ ∈ R′ : �(s, α, s′) > 0)};
7 while R , R′;
8 return S \ R;

Listing 3.1: Berechnung von Smin=0

1 Eingabe: MDP M = (S, Act, �, q, L), Zielmenge B ⊆ S , mit s |= ϕ ∀s ∈ B
2 Ausgabe: die Menge Smax=0 = {s ∈ S | pmin(s, true U ϕ) = 0}
3 R := B;
4 do
5 R′ := R;
6 R := R′ ∪ {s ∈ S | ∃α ∈ Act(s) : (∃s′ ∈ R′ : �(s, α, s′) > 0)};
7 while R , R′;
8 return S \ R;

Listing 3.2: Berechnung von Smax=0

für alle Aktionen eine direkte Transition in die Menge R existiert. Dies wird über einen
Zwischenspeicher R′ realisiert. Solange sich die Menge R innerhalb der Iteration verändert
hat, wird dieses Verfahren wiederholt. R enthält nun alle Zustände, die B, bei Betrachtung
der minimalen Wahrscheinlichkeit, erreichen können. S \ B ist daher genau Smin=0.
Der Algorithmus für Smax=0 (vgl. Listing 3.2) verhält sich sehr ähnlich. In der Iteration
werden zur Menge R jedoch nur diejenigen Zustände hinzugefügt, für die es zumindest
eine Aktion gibt, die eine direkte Transition in die Menge R liefert. Bei der Betrachtung
der maximalen Wahrscheinlichkeit für das Erreichen der Zielmenge würde hier immer
diese Transition gewählt werden, weshalb so die gewünschte Menge Smax=0 entsteht.

Mithilfe dieser Teilmengen können wir nun die Bellman Equations anwenden, um die
gewünschten Wahrscheinlichkeiten zu berechnen:
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3.3.2 Definition Bellman Eqations [1], [5]
Gegeben sei ein endlicher MDPM = (S,Act,�,q,L), s ∈ S und B ⊆ S eine Teilmenge
von Zuständen, für welche die Zustandsformel ϕ gilt.
Der Vektor (xs)s ∈ S mit xs = Prmax(s, true U[0,t] ϕ) gibt die eindeutige Lösung der
folgenden Gleichungen an. Diese werden auch Bellman Eqations genannt.

xs =


1, für s ∈ B
0, für s < B, s ∈ Smax=0

max{
∑
s ′∈S
�(s,a, s′) · xs ′ | a ∈ Act(s)}, sonst.

Die De�nition für die minimale Wahrscheinlichkeit eine Zustandsmenge zu erreichen ist
analog.

Es gibt verschiedene Ansätze, diese Gleichungen zu lösen. Im Folgenden wollen wir näher
auf die sogenannte Value Iteration eingehen, aber auch andere Verfahren kurz erläutern.

22 Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion



3.3. Berechnung von Erreichbarkeitswahrscheinlichkeiten

Value Iteration Eine mögliche Lösungsvorschrift approximiert in einem iterativen
Verfahren den Lösungsvektor. Wir stellen hier die De�nition der Value Iteration nach [5]
vor.

3.3.3 Definition Value Iteration [5]
Sei S die Zustandsmenge eines MDP und B ⊆ S eine Teilmenge von Zuständen, für welche
die Zustandsformel ϕ gilt. Es gilt

pmin(s, true U ϕ) = lim
n→∞

x (n)s ,

wobei a eine atomare Eigenschaft ist. Dabei gilt für x (n)s :

x (n)s =


1, für s ∈ B
0, für s < B, s ∈ Smax=0

0, für s < B, s < Smax=0,n = 0
max{

∑
s ′∈S
�(s,a, s′) · x (n−1)s ′ | a ∈ Act(s)}, für s < B,pmax(s,ψ ) > 0,n > 0

Möchte man mithilfe der Value Iteration ein unbounded Until berechnen, so führt man das
iterative Verfahren bis zum Eintreten einer Abbruchbedingung aus. Dies könnte beispiels-
weise x (n)s − x

(n−1)
s 6 ε mit einem zuvor gewählten ε sein. Bezieht man sich jedoch auf

bounded Until, so wird die Iteration genau für die entsprechende Anzahl von Zeitschritten
ausgeführt. Es gilt dann pmin(s, true U[0,t] a) = x (t)s .
Berechnet man mit Value Iteration eine maximale oder minimale Wahrscheinlichkeit für
zeitgebundene Erreichbarkeit, geht man demnach folgendermaßen vor: Der Vektor x (0) hat
Einträge = 1 für die Zustände, die bereits in der Zielmenge sind. Für alle anderen Zustände
sind die Einträge 0. Insbesondere weiß man, dass für Zustände s , die die Zielmenge nicht
erreichen können gilt: x (i)s = 0 mit i ∈ �. Dies sind die Zustände s ∈ Smax=0 bzw. Smin=0.
Im nächsten Iterationsschritt wird für jeden Zustand ein neuer Wert berechnet. Dafür
werden alle Aktionen dieses Zustandes betrachtet, jedoch nur die Wahrscheinlichkeit der
jeweiligen Aktion, die den maximalen bzw. minimalen Wert liefert, wird gespeichert. Die
entsprechende Wahrscheinlichkeit einer Aktion ist die Summe aus jeweils der Übergangs-
wahrscheinlichkeit in einen anderen Zustand multipliziert mit der für diesen Zustand
geltenenden Wahrscheinlichkeit aus dem letzten Iterationsschritt.

Gauss-Seidel Das Gauss-Seidel Verfahren ist eine Variation der Value Iteration. Dabei
werden in jeder Iteration die aktuell berechneten Werte eines Zustandes verwendet. Im
Gegensatz dazu verwendet die traditionelle Value Iteration immer die Ergebnisse des letzten
Iterationsschrittes, auch, wenn bereits neuere Ergebnisse für einen einzelnen Zustand gibt.
Demnach können alle berechneten Wahrscheinlichkeiten direkt in den Lösungsvektor
geschrieben werden, es wird also nur Speicher für einen einzelnen Vektor benötigt. [5]
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Policy Iteration Ein weiteres iteratives Verfahren zur Lösung, welches jedoch nicht über
die Werte des Lösungsvektors, sondern über Scheduler iteriert, ist Policy Iteration. Dabei
werden nur gedächtnislose Scheduler betrachtet. Zunächst wird ein beliebiger Scheduler für
den MDP ausgewählt und für diesen der Lösungsvektor x berechnet. Dafür berechnet man
die Wahrscheinlichkeiten auf der entsprechenden induzierten DTMC. In einem nächsten
Schritt werden nacheinander alle Zustände betrachtet. In jedem Zustand überprüft man,
ob es eine Aktion gibt, die hier eine höhere (bzw. niedrigere) Wahrscheinlichkeit induziert.
Falls dies der Fall ist wird der Scheduler auf die Wahl dieser Aktion angepasst. Das Verfahren
terminiert, wenn der Scheduler in jedem Zustand die beste bzw. schlechteste Wahl tri�t.
[5]

Granularität und Fehler durch Diskretisierung
Berechnet man die Wahrscheinlichkeit für eine zeitgebundene Formel auf einem diskreti-
sierten Modell, so muss sich der Parameter für die Angabe der Grenzzeit ändern. Damit die
Formel true U[0,time] ϕ auf dem MDP für die entsprechend korrekte Anzahl von Zeitschrit-
ten geprüft wird, müssen wir diese zunächst berechnen. Die Anzahl der Schritte
steps, die eine Formel getestet werden muss, berechnet sich aus der zu testenden Zeit time
und der gewählten Zeitschrittdauer τ . Es gilt:

steps = time
τ
.

Um kontinuierliche Zeit optimal zu simulieren, muss die Granularität der Diskretisierung,
also τ , möglichst klein gewählt werden. Wählt man τ zu groß, so schränkt man die Anzahl
der möglichen Schritte stark ein.

3.3.4 Definition Fehler der Diskretisierung [8]
Der Fehler ε , der durch die Wahl von τ bei der Diskretisierung entsteht, kann folgender-
maßen berechnet werden:

ε =
(Emax · time)2

2 · steps .

Dabei ist Emax = maxs∈S E(s) die maximale Ausgangsrate der CTMDP und steps die Anzahl
der Zeitschritte, die gemacht werden muss, um die gewünschte Zeit time zu testen.

Fazit In diesem Kapitel haben wir erarbeitet, wie man auf einem MDP Wahrschein-
lichkeiten für die Erreichbarkeit einer Zustandsmenge berechnet. Zusammen mit den
Grundlagen zu Abstraktion und Diskretisierung, die wir in Kapitel 2 erläutert haben, sind
wir nun in der Lage aus einem unendlichen QBD ein diskretes Modell zu erlangen und auf
Basis diesen Modells die Wahrscheinlichkeit von PCTL-Formeln überprüfen.
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4. Anwendung
Neben stochastischen Modellen kennen wir nun auch Möglichkeiten, Wahrscheinlichkeiten
für interessante Eigenschaften, die wir in PCTL formalisieren können, zu berechnen. In
diesem Kapitel werden wir die MDP-Abstraktion und Diskretisierung auf ein realitätsnahes
Beispiel anwenden. Dafür betrachten wir in 4.1 die Modellierung des Transmission Control

Protocols als QBD. In 4.2 abstrahieren wir das vorgestellte Modell. Abschließend stellen
wir in 4.3 die Diskretisierung mitsamt der erhaltenen Übergangsfunktion vor.

4.1. Modellierung des Transmission Control Protocols
In einer Modellierung des Kommunikationsprotokolls TCP wird das Verhalten des Connec-
tion Managements on-demand connection with delayed release (ODCR) analysiert. [11]
Das System besteht aus einem Packet Generator, einer unendlichen Warteschlange und
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Abbildung 4.1.: Darstellung des TCP-Modells als CTMC nach [11].

einem Connenction Management. Der Zustandsraum ist S = {(i, j,k) | i ∈ �, j,k ∈ {0, 1}}.
Hier steht i für die Anzahl der Elemente in der Warteschlange, j = 0 dafür, dass das
Connection Management released, also inaktiv, und j = 1 dafür, dass es active, also aktiv,
ist. Ist das Connection Management aktiv, so versendet es Pakete mit einer Rate von µ. Es
wechselt außerdem mit Rate r von aktiv zu inaktiv, und entsprechend umgekehrt mit Rate
c . In diesem Kontext steht k für den Zustand des Packet Generators: Für k = 1 werden
Pakete mit der Rate λ erzeugt. Der Packet Generator wechselt mit Rate α von burst zu o�.
Vom ausgeschalteten Modus wechselt er mit der Rate β wieder in den Erzeugungsmodus.
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Abbildung 4.2.: Labels der CTMC T des TCP für alle Level i ∈ �>0.

Das Protokoll ist hier als unendliche CTMC T = (S,R,q,L) modelliert, wobei S der
oben genannte Zustandsraum ist. Jede Ebene stellt alle Zustände des Connection Manage-
ments und des Packet Generators für eine feste Anzahl i ∈ � an Warteschlangenelementen
dar. Sei (0, 0, 1) der Startzustand: In diesem Zustand ist der Packet Generator im Erzeu-
gungsmodus, das Connection Management jedoch ist noch released, also ausgeschaltet. Mit
der Labelfunktion L weisen wir den Zuständen aus S jeweils die passenden Eigenschaften
ausA = {burst,off,released,active} zu, wie in Abbildung 4.2 für die Wiederholenden
Ebenen dargestellt. Die Labels verhalten sich im Grundlevel äquivalent.
Die Ratenfunktion R : S × S → � der unendlichen CTMC hat aufgrund der QBD-Struktur
die Form einer Blockmatrix. Es gilt

R =
©­­«
R0,0 R0,1
R1,0 R1,1 R1,2

. . .
. . .

. . .

ª®®¬ .
Dabei sehen die Untermatrizen für i ∈ �>0, s, s′ ∈ S folgendermaßen aus:

R0,0 =
©­­­«
0 β 0 0
α 0 0 0
r 0 0 β
0 r α 0

ª®®®¬ , Ri,i+1 =
©­­­«
0 0 0 0
0 λ 0 0
0 0 0 0
0 0 0 λ

ª®®®¬ ,
Ri,i−1 =

©­­­«
0 0 0 0
0 0 0 0
0 0 µ 0
0 0 0 µ

ª®®®¬ , Ri,i =

©­­­«
0 β c 0
α 0 0 c
0 0 0 β
0 0 α 0

ª®®®¬.
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4.2. MDP-Abstraktion
Wir wenden auf dieses Modell die MDP-Abstraktion an. Dadurch erhalten wir einen endli-
chen QBD, in dem auf das Abstraktionslevelm ein abstraktes Level folgt. Der Zustandsraum
des abstrakten Levels ist Sa = {(j,k) | j,k ∈ {0, 1}}. Intuitiv sind die korrespondierenden
Zustände zu einem Zustand (j,k) der abstrakten Ebene die Zustände (i, j,k), i ∈ {1, . . . ,m}
der Wiederholenden Level.

Die Zustände des abstrakten Levels erhalten nun die verschiedenen Aktionen default,
close und far. In Abbildung 4.3 ist eine Visualisierung der Abstraktion dargestellt. Aus
Übersichtsgründen kennzeichnen wir nur die Aktionen close und far besonders, alle
anderen Transitionen haben die Aktion default.

(0, 0): Da die Zustände (i, 0, 0) ∈ Si , i ∈ {1, . . . ,m} keine Transitionen in ein vorheriges
Level haben, erhält dieser Zustand die default-Aktion. Er hat die gleichen Tran-
sitionen wie die entsprechenden Zustände, sie führen in die korrespondierenden
Zustände des abstrakten Levels.

(0, 1): Auch die zu diesem Zustand korrespondierenden Zustände der Ebenen 1 bism haben
keine Transitionen, die in ein niedrigeres Level führen. (0, 1) erhält demnach auch die
Aktion default. Die α- und c-Transitionen führen in die entsprechenden abstrakten
Zustände. Die λ-Transition der passenden Zustände aus anderen Leveln führt in ein
höheres Level, für den abstrakten Zustand bedeutet das, dass diese Transition auch
zum entsprechenden abstrakten Zustand führt.

(1, 0): Die diesem Zustand entsprechenden Zustände haben eine µ-Transition ins jeweilige
vorherige Level. Dieser Zustand hat also die Aktionen close und far und modelliert
damit verschiedene Erreichbarkeiten des Abstraktionslevelsm. Die close-Aktion
steht für diesen Zustand im (m + 1)-ten Level, mit (close, µ) kann man also in
den Zustand (m, 1, 0) gelangen. Mit der far-Aktion ist diese Transition nicht mehr
möglich. Die µ-Transition wird hier zu einem Sel�oop. Mit beiden Aktionen gibt es
die Transitionen, die in der Ebene bleiben: (close,α ) und (far,α ) führen zu (1, 1).

(1, 1): Dieser Zustand erhält genau wie (1, 0) die (close, µ)-Transition ins Abstraktionslevel.
Zusätzlich gibt es hier eine λ-Transition, die in den Wiederholenden Ebenen i ins
(i + 1)-te Level zeigt. Für close entsteht demnach ein Sel�oop mit der Rate λ. Da für
die Aktion far die µ- und λ-Transition auf das abstrakte Level umgeleitet werden
müssen, entsteht ein Sel�oop mit der Rate λ + µ.
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Abbildung 4.3.: TCP Modell als CTMDP mit Abstraktionslevelm = 1.

Ratenfunktion der CTMDP
Durch die Abstraktion ergibt sich für die Ratenfunktion R : S × Act×S → �>0 der
CTMPD bei einem Abstraktionslevelm folgende Form:

R =

©­­­­­­«

R0,0 R0,1
R1,0 R1,1 R1,2

. . .
. . .

. . .

Rm,m−1 Rm,m Rm,a
Ra,m Ra,a

ª®®®®®®¬
.

Diese Matrix ist o�ensichtlich dreidimensional, für Act ergeben sich drei verschiedene Ebe-
nen, da gilt Act = {default,close,far}. Die Untermatrizen Ri,i+1,Ri,i und Ri−1,i für i ∈
{0, . . . ,m}, wie aus De�nition 2.4 zu entnehmen, entsprechen in der default-Ebene denen
des QBD aus 4.1. In den anderen Ebenen sind diese Matrizen 0. Die Matrizen Ra,m und

28 Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion



4.3. Diskretisierung

Ra,a haben Einträge in allen drei Ebenen:

Rdefault
a,m =

©­­­«
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ª®®®¬ , Rdefault
a,a =

©­­­«
0 β c 0
α 0 0 c
0 0 0 0
0 0 0 0

ª®®®¬ ,
Rclose
a,m =

©­­­«
0 0 0 0
0 0 0 0
0 0 µ 0
0 0 0 µ

ª®®®¬ , Rclose
a,a =

©­­­«
0 0 0 0
0 0 0 0
0 0 0 β
0 0 α λ

ª®®®¬ ,
Rfar
a,m =

©­­­«
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ª®®®¬ , Rfar
a,a =

©­­­«
0 0 0 0
0 0 0 0
0 0 µ β
0 0 α λ + µ

ª®®®¬ .
4.3. Diskretisierung
Den nun erhaltene CTMPDM = (S,Act,R,q,A,L) wollen wir mit dem in Kapitel 2.3
vorgestellten Verfahren diskretisieren. Dafür erinnern wir uns an die Bedingung für Dis-
kretisierung: Der CTMDP muss lokal einheitlich sein. In 2.2.1 haben wir de�niert, was es
heißt, locally uniform zu sein. Die Ausgangsrate E muss in allen Zuständen unabhängig
von der Wahl der Aktion sein. Da wir bei der MDP-Abstraktion alle Transitionen erhalten
indem wir sie, falls nötig, in das abstrakte Level umleiten, ist diese Eigenschaft natürli-
cherweise gegeben. Wir können also Diskretisierung anwenden und erhalten einen MDP
Mτ = (S,Act,R,q,A,L). Die Übergangsfunktion �τ : S × Act×S → [0, 1] dieses MDPs
hat die folgende Form:

� =

©­­­­­­«

�0,0 �0,1
�1,0 �1,1 �1,2

. . .
. . .

. . .

�m,m−1 �m,m �m,a
�a,m �a,a

ª®®®®®®¬
.

Die Untermatrizen haben im Wesentlichen dieselben Transitionen wie die der Ratenfunk-
tion R – in diskretisierter Form. Hinzu kommen bei der Diskretisierung Sel�oops, die
mit einer Wahrscheinlichkeit die Verweilzeit der Ratenfunktion modellieren. Die para-
metrisierten Werte der Untermatrizen ergeben sich aus der De�nition der diskretisierten
Übergangsfunktion (vgl. 2.3.2).
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Für i ∈ {1, . . . ,m} gilt:

�
default
0,0 =

©­­«
e−β ·τ 1−e−β ·τ 0 0

(1−e−(α+λ)·τ )· α
α+λ e−(λ+α )·τ 0 0

(1−e−(r+β )·τ )· r
r+β 0 e−(r+β )·τ (1−e−(β+r )·τ )· β

β+r

0 (1−e−(r+α+λ)·τ )· r
r+α+λ (1−e

−(α+r+λ)·τ )· α
α+r+λ e−(r+λ+α )·τ

ª®®¬,
�
default
0,1 =

( 0 0 0 0
0 (1−e−(λ+α )·τ )· λ

λ+α 0 0
0 0 0 0
0 0 0 (1−e−(λ+α+r )·τ )· λ

λ+α+r

)
,

�
default
i,i−1 =

©­«
0 0 0 0
0 0 0 0
0 0 (1−e−(µ+β )·τ )· µ

µ+β 0
0 0 0 (1−e−(µ+λ+α )·τ )· µ

µ+λ+α

ª®¬,
�
default
i,i =

©­­­«
e−(c+β )·τ (1−e−(β+c)·τ )· β

β+c (1−e−(c+β )·τ )· c
c+β 0

(1−e−(α+λ+c)·τ )· α
α+λ+c e−(α+λ+c)·τ 0 (1−e−(c+α+λ)·τ )· c

c+α+λ

0 0 e−(β+µ)·τ (1−e−(β+µ)·τ )· β
β+µ

0 0 (1−e−(α+λ+µ)·τ )· α
α+λ+µ e−(λ+µ+α )·τ

ª®®®¬,
�
default
i,i+1 =

©­«
0 0 0 0
0 (1−e−(λ+α+c)·τ )· λ

λ+α+c 0 0
0 0 0 0
0 0 0 (1−e−(λ+α+µ)·τ )· λ

λ+α+µ

ª®¬.
Die Matrizen �i,i−1,�i,i und �i,i+1 sind in den Ebenen für die Aktionen close und far in
allen Einträgen gleich 0. Für die Untermatrizen �a,m,�a,a des abstrakten Levels gilt dies
nicht: Sie haben Einträge in allen drei Ebenen. Diese sehen folgendermaßen aus:

�
default
a,m =

( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
,

�
default
a,a =

©­«
e−(c+β )·τ (1−e−(β+c)·τ )· β

β+c (1−e
−(c+β )·τ )· c

c+β 0
(1−e−(α+c)·τ )· α

α+c e−(c+α )·τ 0 (1−e−(c+α )·τ )· c
c+α

0 0 0 0
0 0 0 0

ª®¬,
�
close
a,m =

©­«
0 0 0 0
0 0 0 0
0 0 (1−e−(µ+β )·τ )· µ

µ+β 0
0 0 0 (1−e−(µ+α+λ)·τ )· µ

µ+α+λ

ª®¬,
�
close
a,a =

©­«
0 0 0 0
0 0 0 0
0 0 e−(β+µ)·τ (1−e−(β+µ)·τ )· β

β+µ

0 0 (1−e−(α+λ+µ)·τ )· α
α+λ+µ (1−e

−(λ+α+µ)·τ )· λ
λ+α+µ +e

−(α+µ+λ)·τ

ª®¬,
�
far
a,m =

( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
,

�
far
a,a =

©­«
0 0 0 0
0 0 0 0
0 0 (1−e−(µ+β )·τ )· µ

µ+β +e
−(β+µ)·τ (1−e−(β+µ)·τ )· β

β+µ

0 0 (1−e−(α+λ+µ)·τ )· α
α+λ+µ (1−e−(λ+µ+α )·τ )· λ+µ

λ+µ+α +e
−(λ+µ+α )·τ

ª®¬.
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Fazit In diesem Kapitel haben wir eine Modellierung des Transmission Control Protocols
betrachtet. Die Darstellung von TCP als unendlicher QBD haben wir aus [11] übernommen.
Auf diesem QBD haben wir die in Kapitel 2 vorgestellten Ideen zum Vereinfachen eines
Modells kombiniert und so aus dem QBD zunächst einen CTMDP und anschließend
einen MDP erhalten. Mit den theoretischen Ausführungen aus Kapitel 3 wollen wir nun
Berechnungen auf dem erhaltenen vereinfachten Modell durchführen. Dafür werden wir
den PRISM Model Checker nutzen.
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Wir werden im folgenden Kapitel PRISM verwenden, um time-bounded reachability auf
dem abstrahierten und diskretisierten Modell des TCP zu testen und eine Aussage über die
Qualität der berechneten Werte zu tre�en.
Dafür führen wir in 5.1 PRISM ein und gehen darauf ein, wie Modelle und Eigenschaften
in PRISM spezi�ziert werden. Anschließend stellen wir in 5.2 die Implementierung des
TCP-Modells vor und konkretisieren die Eigenschaft mitsamt der relevanten Parameter,
für die wir Wahrscheinlichkeiten berechnen wollen.
Wenn wir alle Grundlagen geklärt haben, um PRISM für unser Problem verwenden zu
können, werden wir dazu übergehen, in 5.3 Tests durchzuführen. Wir berechnen mithilfe
des Model Checkers verschiedene Werte und wollen versuchen, diese Werte einzuordnen.
In 5.4 werden wir noch auf verschiedene Lösungsmethoden von PRISM sowie ihre ver-
schiedenen Laufzeiten eingehen.
Die Berechnungen werden wir ausschließlich auf einem Lenovo X1 Carbon mit Intel
Core i7, 2.6 GHz und 8 GB RAM durchführen. Für die Berechnungen verwenden wir die
in Anhang B aufgeführten und erläuterten bash-Skripte, die wir entwickelt haben, um
strukturiertes Testen zu vereinfachen. Alle Konsolenausgaben sowie Resultate von PRISM
�nden sich auf der beigelegten CD.

5.1. PRISM Model Checker
Der PRISM Model Checker ist ein Tool zur automatischen Veri�zierung von Systemen
mit stochastischem Verhalten. PRISM kann für CTMCs, DTMCs und MDPs Wahrschein-
lichkeiten zu verschiedenen Eigenschaften berechnen. Dafür übergibt man dem Tool eine
Modellbeschreibung und eine Liste von Eigenschaften, die getestet werden sollen. Zum
Berechnen der Wahrscheinlichkeiten gibt es eine Anzahl von Lösungsansätzen in PRISM,
sowie intern verschiedene Möglichkeiten, die Modelle zu verarbeiten, um Berechnungen
durchzuführen. Diese verschiedenen Ansätze werden Engines genannt. PRISM verwen-
det standardmäßig die Hybrid Engine, welche eine Kombination aus symbolischem und
explizitem Model Checking realisiert. [9] Für MDPs sind die von PRISM verwendeten Lö-
sungsverfahrenValue Iteration, Policy Iteration, Modi�ed Policy Iteration und Gauss-Seidel.
Diese Verfahren haben wir bereits in 3.3 kennengelernt. Bei der Wahl eines Verfahrens muss
man auch die Wahl der Engine in Betracht ziehen. Nur Value Iteration, welche standardmä-
ßig für Berechnungen auf MDPs ausgewählt ist, arbeitet mit der Hybrid Engine. Deshalb
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werden wir für unsere Tests auch Value Iteration auf der Hybrid Engine verwenden. Da die
anderen Verfahren die Explicit Engine nutzen, werden wir für die Laufzeitanalyse Value
Iteration auf der Hybrid Engine mit allen vier Verfahren auf der Explicit Engine vergleichen.

5.1.1. Modelle in PRISM
An einem Beispiel wollen wir die Eingabe von Modellen in PRISM verdeutlichen. PRISM
verwendet dafür eine eigene Syntax, die in [12] ausführlich erläutert und dokumentiert
wird. Wir stellen in einem kurzen Abschnitt die für uns relevanten Elemente dar. Eine
beispielhafte Modellbeschreibung in PRISM einer einfachen MDP aus Abbildung 3.1 ist in
Listing 5.1 abgebildet.

1 mdp
2
3 module beispiel
4 s: [0..3] init 0;
5 // Transitionen von a (s=0) aus
6 [alpha] s=0 -> 1/3: (s'=1) + 2/3: (s'=2);
7 [beta] s=0 -> 1/4: (s'=3) + 3/4: true;
8 // Transitionen von b (s=1) aus
9 [gamma] s=1 -> 4/5: (s'=3) + 1/5: true;

10 // Transitionen von c (s=2) aus
11 [tau] s=2 -> 1: (s'=3);
12 // Transitionen von d (s=3) aus
13 [delta] s=3 -> 1: true;
14 [sigma] s=3 -> 1: (s'=0);
15 end module
16
17 // labels
18 label "goal" = s=2;

Listing 5.1: Implementierung einer einfachen MDP (vgl. Abbildung 3.1) in PRISM
Wir führen kurz die für uns wichtigen Elemente der Syntax ein:

mdp Hier geben wir den Typ des Modells an. In diesem Fall ist das
Modell ein Markov Decision Process, kurz mdp.

module beispiel Mit diesem Befehl teilt man PRISM mit, dass hier ein Modell
beginnt. Es können mehrere Module eingegeben werden, die
PRISM anschließend intern zu einem Modell verarbeitet. Nach
dem Befehl wird der Name des Moduls angegeben.

s: [0..3] init 0; Hier wird der Zustandsraum {0, 1, 2, 3} spezi�ziert. Die Zu-
stände werden im Folgenden mit s aufgerufen. 0 ist der Start-
zustand, welcher mit init gekennzeichnet wird.. Durch das
Verwenden von mehreren Variablen mit verschiedenen Eigen-
schaften kann man alle Kombinationen dieser Parameter in
Zustände überführen.
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[alpha] s=0 ->
1/3: (s’=1) + 2/3:
(s’=2);

Mit diesem Befehl werden alle Transitionen eines Zustan-
des zu einer bestimmten Aktion beschrieben. Die Syntax ist
hier: [<action>] <current state> -> <probability>:
(<goal state>) + <probability>: (<goal state>);.
Wir beschreiben hier also die Transitionen von a (s=0) aus,
die unter der Aktion α verfügbar sind.

[gamma] s=1 -> 4/5:
(s’=3) + 1/5: true;

Dieser Befehl beschreibt ebenfalls eine Transition. Verwendet
man anstatt eines Zielzustandes den Parameter true, so be-
deutet dies, dass sich nichts an der Position im Modell ändert:
Diese Transition ist ein Sel�oop.

endmodule Dieser Befehl schließt die Eingabe für das Modul.

label "goal" = s=2; Mit dem label-Befehl bezeichnet man eine Zuweisung durch
die Labelfunktion. label erwartet zunächst eine Eigenschaft,
gefolgt von einem Zustand. Wir weisen hier dem Zustand c
(s=2) das Label goal zu. Die Syntax lautet:
label "<label>" = <state>;.

5.1.2. PCTL-Formeln als Eigenscha�en in PRISM
Für die Formalisierung von Eigenschaften liefert PRISM ebenfalls eine eigene Syntax.
Für die exakte Berechnung von Wahrscheinlichkeiten pmax und pmin der zeitgebundenen
Erreichbarkeit einer Zustandsformel wird der folgende Ausdruck verwendet:

Pmax=? [ true U[0,t] <state formula> ]

Pmin=? [ true U[0,t] <state formula> ]

Dabei müssen in der Zustandsformel verwendete Label in der Form "label" geschrieben
werden. Mit der Eingabe Pmax=? berechnet PRISM die exakte maximale Wahrscheinlichkeit
für das Eintreten der darau�olgenden Formel. Pmin=? steht analog für die minimale
Wahrscheinlichkeit. Wollen wir beispielsweise die maximale Wahrscheinlichkeit für das
Erreichen einer Menge von Zuständen, die mit dem Label goal versehen sind, innerhalb
einer bestimmten Zeit t = 5 berechnen, so sieht die Eigenschaft folgendermaßen aus:

Pmax=? [ true U[0,5] "goal" ]

Es können alternativ auch Eigenschaften gegen einen konkreten Grenzwert getestet wer-
den. Dies könnte dann die folgende Form haben:

P>0.9 [ true U[0,t] "goal" ]

P<0.35 [ true U[0,t] "goal" ]
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Für P>p berechnet PRISM die minimale Wahrscheinlichkeit, und prüft, ob sie über dem
Grenzwertp liegt. In diesem Fall ist die Ausgabe keine konkrete Wahrscheinlichkeit sondern
der Boolean true bzw. false. Für P<p wird geprüft, ob die maximale Wahrscheinlichkeit
unter dem Schwellwert p liegt. [5]

5.2. Realisierung des TCP-Modells in PRISM
In diesem Abschnitt wollen wir kurz den Quelltext des Modells sowie die Eigenschaften,
für die wir Wahrscheinlichkeiten berechnen werden, vorstellen.

5.2.1. TCP als MDP-Modell
Der vollständige Text des Modellcodes ist in Anhang A.1 hinterlegt. Wir werden im
Folgenden Auszüge daraus präsentieren und kurz erläutern.
In Listing 5.2 sind die Voreinstellungen des Modells konkretisiert. Wir de�nieren den
Typ durch mdp. Anschließend wird die Konstante e de�niert, sowie die intern verwendete
Formel ex für eine bessere Übersichtlichkeit. Es werden die konstanten Parameter des
TCP-Modells mit Werten belegt, wie sie in [11] auch verwendet wurden. Außerdem wird
mit const int steps = floor(time / tau); die Anzahl von Zeitschritten berechnet,
die abhängig von den gegebenen Parametern τ und time überprüft werden muss. floor,
also Abrunden, ist hier nötig, damit der Wert in einen Integer geschrieben werden kann.
Die Ergebnisse werden dadurch aber nicht verfälscht: Wenn der Quotient nicht ohnehin
eine ganze Zahl ist, bedeutet das, dass ein geringer Abschnitt der zu prüfenden Zeit übrig
bleibt, da dieser Abschnitt kleiner ist als die Dauer unseres Zeitschrittes. In diesem Fall
kann tatsächlich kein weiterer Zeitschritt gemacht werden, durch Abrunden erhalten wir
also genau die gewünschte Anzahl an Schritten.
Hier wird auch der Eingabeparameter maxlevel de�niert, welcher das Abstraktionslevel
des QBD bezeichnet.

1 mdp
2
3 const double e = 2.718281828459045235360287471352662497757247093699959574966;
4 const double tau;
5 const double time;
6 formula ex = pow(e,-tau);
7 const int steps = floor(time / tau);
8
9 const double alpha = 1;

10 const double beta = 0.04;
11 const double r = 10;
12 const double c = 10;
13 const int maxlevel;
14 const int a = maxlevel +1;
15 const double lambda = 100;
16 const double mu = 125;

Listing 5.2: PRISM Quellcode des TCP-Modells mit der De�nition von Konstanten,
Eingabeparametern und dem Typ des Modells.
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In Listing 5.3 beginnt die Modulbeschreibung, welche das eigentliche Modell de�niert.
Hier wird der modellierte Zustandsraum beschrieben, also die Zustände bestehen aus der
Parametermenge i,j,k, die für die Anzahl der Elemente in der Warteschlange (i), den
Zustand des Connection Managements (j) und den Zustand des Packet Generators (k)
stehen. Der Startzustand ist (0, 0, 1), also i=0,j=0,k=1. Mit a wird das letzte zu erzeugende
Level angegeben: Das abstrakte Level des CTMDP.

18 module tcp
19 i: [0..a] init 0; // Warteschlange
20 j: [0..1] init 0; // Connection Management
21 k: [0..1] init 1; // Packet Generator

Listing 5.3: PRISM Quellcode des TCP-Modells mit Modulbeginn und Zustandsraum.
In Listing 5.4 beschreiben wir die Transitionen der Zustände im Grundlevel. Diese fallen
ausnahmslos unter die default-Aktion. Im PRISM-Code verwenden wir für diese Aktion
ein leeres Label: []. Hier ist für alle vier Zustände der Grundebene beschrieben, wann ein
Übergang statt�ndet. Dabei gilt:

(1-pow(ex,alpha+lambda))*alpha/(alpha+lambda) =
(
1 − e−(α+λ)·τ

)
·

α

α + λ
.

Die Transition (pow(ex,beta)): true; beschreibt durch das true einen Sel�oop, dieser
modelliert die Verweilzeit in einem Zustand, wie in 2.3 formalisiert wurde.

24 // Grundlevel
25 [] i=0 & j=0 & k=0
26 -> (1-pow(ex,beta)) : (k'=1) // von off zu burst
27 + (pow(ex ,beta)): true;
28
29 [] i=0 & j=0 & k=1
30 -> (1-pow(ex,alpha+lambda))*alpha/(alpha+lambda): (k'=0) // von burst zu off
31 + (1-pow(ex,alpha+lambda))*( lambda /(alpha+lambda)): (i'=1) // ins naechste Level
32 + (pow(ex ,alpha+lambda)): true;
33
34 [] i=0 & j=1 & k=0
35 -> (1-pow(ex,beta+r))*(beta/(beta+r)): (k'=1) // von off zu burst
36 + (1-pow(ex,beta+r))*(r/(beta+r)): (j'=0) // von active zu released
37 + pow(ex ,beta+r): true;
38
39 [] i=0 & j=1 & k=1
40 -> (1-pow(ex,alpha+r+lambda))*alpha/(alpha+r+lambda): (k'=0) // von burst zu off
41 + (1-pow(ex,alpha+lambda+r))*(r/(alpha+lambda+r)): (j'=0) // von active zu released
42 + (1-pow(ex,alpha+lambda+r))*( lambda /(alpha+lambda+r)): (i'=1) // ins naechste Level
43 + pow(ex ,alpha+r+lambda): true;

Listing 5.4: PRISM Quellcode des TCP-Modells mit Transitionen des Grundlevels.
Die Transitionen der Wiederholenden Level und die default-Transitionen des abstrakten
Levels verhalten sich nahezu identisch und können im Anhang (vgl. A.1) eingesehen
werden. In Listing 5.5 sind die Übergänge der Aktion close aufgeführt. Hier ist zu Beginn
der De�nition die entsprechende Aktion vermerkt. Die far-Transitionen verhalten sich
analog.
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81 // close -Transitionen
82 [close] i=a & j=1 & k=0
83 -> (1-pow(ex,beta+mu))*(beta/(beta+mu)): (k'=1) // von off zu burst
84 + (1-pow(ex,beta+mu))*(mu/(beta+mu)): (i'= maxlevel) // ins "vorherige" Level (maxlevel)
85 + pow(ex,beta+mu): true;
86
87 [close] i=a & j=1 & k=1
88 -> (1-pow(ex,lambda+alpha+mu))*(alpha/( lambda+alpha+mu)): (k'=0) // von burst zu off
89 + (1-pow(ex,lambda+alpha+mu))*(mu/( lambda+alpha+mu)): (i'= maxlevel) // ins "vorherige"

Level (maxlevel)
90 + (1-pow(ex,lambda+alpha+mu))*( lambda /( lambda+alpha+mu)): true // im abstrakten Level

bleiben
91 + pow(ex,lambda+alpha+mu): true;

Listing 5.5: PRISM Quellcode des TCP-Modells mit close-Transitionen des abstrakten
Levels.

In Listing 5.6 wird das Ende der Modellbeschreibung dargelegt. Hier wird das Modul
beendet. Anschließend werden noch die Labels spezi�ziert, wie wir sie in Abbildung 4.2
für unser Modell eingeführt haben.

104 end module
105
106 // labels
107 label "burst" = k=1;
108 label "off" = k=0;
109 label "active" = j=1;
110 label "released" = j=0;

Listing 5.6: PRISM Quellcode des TCP-Modells mit Modulende und Labelde�nition.

5.2.2. Zeitgebundene Erreichbarkeit von (released ∧ ¬burst)

Die zu testende Eigenschaft entnehmen wir grundlegend [11], modi�zieren sie jedoch für
einen durch Abstraktion und Diskretisierung entstandenen MDP. Daraus erhalten wir die
zwei folgenden Eigenschaften:

Pmax=? [ true U[0,steps] "released & !burst" ]

Pmin=? [ true U[0,steps] "released & !burst" ]

Hier ist steps nicht die Zeit, wie sie in [11] zum Testen der Formel angegeben ist, sondern
die Anzahl von Schritten, für die die PCTL-Formel überprüft wird. In Abschnitt 5.2.3
werden wir weiter auf die Berechnung von steps eingehen.

Die Zustandsformel "released & !burst" stellt eine interessante Eigenschaft für
unser Modell dar. Dem liegt die Bedeutung zu Grunde, dass in einem Zustand, in dem
diese Formel gilt, das Connection Management ausgeschaltet (released) und der Packet
Generator nicht im Erzeugungsmodus (no burst) ist. Naheliegenderweise scheinen dies
ressourcenschonende Zustände unseres Modells zu sein. Dies betri�t alle Zustände (i, 0, 0)
für i ∈ �. Diese Zustände sind auf zwei verschiedenen Wegen erreichbar:
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• Man ist in einem beliebigen Level i in einem (i, 0, 1)-Zustand. Von dort aus kann
der Zustand (i, 0, 0) des selben Levels mithilfe der mit α parametrisierten Transition
erreicht werden.

• Man be�ndet sich im Grundlevel in Zustand (0, 1, 0). Hier gibt es eine mit r parame-
trisierte Transition in den Zustand (0, 0, 0).

Betrachtet man die Struktur unseres QBD in Abbildung 4.3, so erkennt man außerdem, dass
es nur im Grundlevel eine mit r parametrisierte Transition gibt. Inhaltlich bedeutet dies,
dass das Connection Management in den anderen Leveln nicht ausgeschaltet werden kann.
Nur wenn die Warteschlange abgearbeitet ist, kann das Connection Management wieder
auf released springen. Um unsere Formel zu erfüllen, müssen im Modell also entweder
alle Pakete versandt worden sein, oder das Connection Management darf nie eingeschaltet
worden sein. In beiden Situationen muss anschließend der passende Übergang innerhalb
des Levels geschehen, damit ein Zielzustand erreicht wird.
Wir werden im nächsten Abschnitt darauf eingehen, welche Auswirkungen dies auf die
Wahrscheinlichkeiten haben wird.

5.2.3. Raten sowie Parameter τ , time und maxlevel des Modells
In diesem Abschnitt spezi�zieren wir die Parameter, wie wir sie für unsere Berechnun-
gen nutzen werden. Dies betri�t die Parameter der Wahrscheinlichkeitsfunktion unseres
Modells sowie die Parameter, die für das Prüfen einer Formel nötig sind.

Raten Die Wahl der Parameter der Wahrscheinlichkeitsfunktion, die wir aus [11] über-
nommen haben, sind in Tabelle 5.2 aufgelistet.

Parameter α β r c λ µ
Rate 1 0.04 10 10 100 125

Tabelle 5.2.: Parameter der Raten- bzw. Wahrscheinlichkeitsfunktion des Modells, entnom-
men aus [11].

Die Werte dieser Parameter beein�ussen naheliegenderweise die Interpretation des Mo-
dells. Wir wollen anhand einiger Vergleiche kurz auf die Wirkung dieser Werte eingehen.
Wir verwenden dafür der Einfachheit halber die Notation pα für die Übergangswahrschein-
lichkeit aus einem Zustand s in einen mit der Aktion α erreichbaren Zustand.
Da λ und µ sehr groß sind, kann man schlussfolgern, dass die Wahrscheinlichkeit für
einen Ebenenwechsel sehr hoch ist. Die Wahrscheinlichkeit in ein niedrigeres Level zu
wechseln ist etwas größer als die Wahrscheinlichkeit in ein höheres zu wechseln. Im
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Vergleich: Ist die Wahrscheinlichkeit für eine Transition mit der ursprünglichen Rate µ
eines Zustandes s beispielsweise pµ ≈ 0.1118 (Wert für Zustand (i, 1, 1), τ = 0.001), so
ist die Wahrscheinlichkeit für die λ-Transition in diesem Zustand das 0.8-fache dessen,
also pλ ≈ 0.0895 und für die entsprechende α-Transition nur 1/100: pα ≈ 0.00089. Die
Wahrscheinlichkeiten hingegen, zwischen den Zuständen des Packet Generators und des
Connection Managements zu wechseln, sind deutlich geringer.
Die Parameter r und c beein�ussen die Übergänge des Connection Managements. Der
Wechsel von released zu active unterscheidet sich hier im Wert nur gering von der
Rückrichtung, da r = c gilt. Die unterschiedliche tatsächliche Wahrscheinlichkeit, eine
solche Transition zu wählen, wird durch die Gesamtausgangsrate des Zustandes bedingt.
Man kann jedoch in Abbildung 4.3 erkennen, dass die r -Transitionen nur im Grundle-
vel bestehen. Das Connection Management kann also nur in diesem Level ausgeschaltet
(released) werden.
Die Wahrscheinlichkeiten für diejenigen Transitionen, die zwischen den Zuständen burst
und off des Packet Generators wechseln, sind mit α = 1 und β = 0.04 äußerst gering.
Da diese Raten relativ zueinander betrachtet werden müssen, erkennt man, dass ein β-
Übergang im Vergleich zu einem c-Übergang deutlich unwahrscheinlicher ist, als ein
c-Übergang im Vergleich zu einem λ-Übergang.
Dies ist interessant, wenn man betrachten möchte, wie sich die Wahrscheinlichkeiten
eines (i, 0, 1)-Zustandes im Vergleich zu einem (i, 0, 0)-Zustand verhalten. Für die Zustände
(i, 0, 0) und (i, 0, 1) mit i ∈ {1, . . . ,m} gilt dann:

In (i, 0, 1): pc
pλ
=

(
1 − e−(c+λ+α)·τ

)
· c
c+λ+α(

1 − e−(λ+α+c)·τ
)
· λ
λ+α+c

=
c/(α+λ+c)

λ/(α+λ+c)
=

c

λ
=

1
10 .

In (i, 0, 0):
pβ

pc
=

(
1 − e−(β+c)·τ

)
·

β
β+c(

1 − e−(c+β)·τ
)
· c
c+β

=
β/(β+c)

c/(β+c)
=
β

c
=

1
250 .

Vereinfachend kann man also sagen, dass für den Zustand (i, 0, 1) die λ-Transition in ein
nächstes Level zehnmal so wahrscheinlich ist, wie die c-Transition zum Einschalten des
Connection Managements. Im Zustand (i, 0, 0) jedoch ist es 250-mal so wahrscheinlich,
dass sich das Connection Management einschaltet, als dass der Packet Generator in den
off-Zustand wechselt. Dies hat zur Folge, dass von einem (i, 0, 0)-Zustand aus der Zustand
(0, 0, 0) mit einer hohen Wahrscheinlichkeit erreicht wird. Wir erinnern uns, dass für alle
(i, 0, 0)-Zustände die Eigenschaft "released & !burst" gilt. Von diesen Zuständen aus
ist es also sehr einfach, den (0, 0, 0)-Zustand zu erreichen, der intuitiv der am stärksten er-
wünschte Zustand eines Warteschlangenmodells ist: alle Pakete sind hier abgearbeitet und
weder der Packet Generator, noch das Connection Management verbrauchen Ressourcen.
Dies könnte eine Erklärung dafür sein, weshalb für eine Anwendung in der Realität die
Wahrscheinlichkeit der Eigenschaft, die wir berechnen werden, relevant ist.
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Test-Parameter Da wir im nächsten Kapitel Wahrscheinlichkeiten für verschiedene
Instanzen der Parameter τ , time und maxlevel berechnen werden, wollen wir diese Para-
meter hier erneut erläutern.

maxlevel Der Parameter maxlevel beschreibt die Anzahl der bei der Abstraktion
beibehaltenen Level des ursprünglichen QBDs an. Die Abstraktionsebene
ist demnach die maxlevel-te Ebene. Erst in der (maxlevel+1)-ten Ebene
be�nden wir uns im abstrakten Level. Um möglichst exakte Ergebnisse zu
erhalten sollte dieser Parameter groß gewählt werden, da das ursprüng-
liche Modell unendlich groß war. Wir interessieren uns dafür, ob die
Abstraktion auch für ein niedrigeres maxlevel ausreichend gute Ergebnis-
se liefert.

time Der Parameter time gibt die Zeit an, in der eine bestimmte Zustandsformel
erreicht werden soll.

τ Der Parameter τ bezeichnet die Granulariät der Diskretisierung. Er be-
schreibt also, wie lang, relativ zur Zeiteinheit von time, ein diskreter
Zeitschritt in unserem Modell ist. Pro Zeitschritt kann nur eine Transiti-
on innerhalb des Modells durchgeführt werden. Erst nach Ablauf von τ
kann ein neuer Zustandsübergang statt�nden. Um kontinuierliche Zeit
zu simulieren muss dieser Parameter möglichst klein gewählt werden.

Die entsprechende Formel aus [11] wird unter anderem für die Zeit time ∈ {1, 2} getestet.
Um Wahrscheinlichkeiten für die gleiche Grenzzeit zu berechnen, müssen wir einen neuen
Parameter berechnen: steps steht für die Anzahl diskreter Zeitschritte, innerhalb derer die
Zustandsformel "released & !burst" erfüllt werden soll. Bei einer festen Zeit time und
einer gewählten Granularität τ ist die Anzahl der Zeitschritte der Quotient: steps = time/τ .
Hierbei fällt auf, dass ein zu großes τ die Anzahl der Schritte, die innerhalb des Modells
gemacht werden, stark einschränkt. Betrachtet man beispielsweise eine Abstraktion nach
der 10. Ebene, berechnet Werte für time = 1 und wählt τ = 0.1, so können nur zehn
Schritte innerhalb des Modells gemacht werden. Um das abstrakte Level zu erreichen,
werden jedoch mindestens elf Schritte benötigt. Auch in Bezug auf die MDP-Abstraktion
ist es also relevant, τ entsprechend zu wählen. In den folgenden Berechnungen werden
wir diese Beobachtung berücksichtigen.
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Abbildung 5.1.: Wahrscheinlichkeit pmax und pmin für ein kleiner werdendes τ , also eine
feinere Granularität, bei einer Abstraktion nach 10 Leveln.

5.3. Resultate
Im folgenden Unterkapitel werden wir die unterschiedlichen Auswirkungen der Wahl von
τ und maxlevel auf die Wahrscheinlichkeiten untersuchen. Dafür werden wir pmin und
pmax für eine Reihe von verschiedenen Werten von τ und maxlevel testen; zunächst für
einen festen Wert time = 1.
Intuitiv erwarten wir für ein feineres τ genauere Werte der berechneten Wahrscheinlich-
keiten, da τ gewissermaßen die zeitliche Au�ösung unseres Modells ist. Die Anzahl der
Schritte, also Zustandsübergänge, die wir machen können, hängt demnach von τ ab. Ein
zu groß gewähltes τ schränkt die Anzahl der möglichen Schritte stark ein und könnte
durchaus Ergebnisse produzieren, die signi�kant von der tatsächlichen Wahrscheinlich-
keit abweichen. Diese Tendenz ist bereits in Abbildung 5.1 zu erkennen. Hier wurden
Werte für τ zwischen 0.1 und 0.01 getestet. Während für den größten Wert die errechnete
Wahrscheinlichkeit unter 0.1 liegt, ergeben sich für τ = 0.01 maximale und minimale
Wahrscheinlichkeiten um das Dreifache. Später werden wir genauer untersuchen, für
welche τ wir möglichst korrekte Wahrscheinlichkeitswerte erhalten.
Variieren wir die Anzahl der beibehaltenen Level, also maxlevel, so erhalten wir für eine
höhere Anzahl vermutlich exaktere Werte, da wir so näher an das unendliche Modell
herankommen. Außerdem kann, wie bereits erwähnt, je nach Wahl von τ und time, die
abstrakte Ebene gar nicht oder nur sehr unwahrscheinlich erreicht werden, wenn maxlevel

groß genug ist. Wählen wir maxlevel jedoch kleiner, so erhalten wir ein kleineres Modell,

42 Erreichbarkeit in QBDs mithilfe von MDP-Abstraktion



5.3. Resultate

0.14
0.16
0.18
0.2
0.22
0.24
0.26
0.28
0.3
0.32
0.34
0.36

0 10 20 30 40 50 60 70 80 90 100

W
ah

rs
ch

ei
nl

ic
hk

ei
tp

Abstraktionslevel maxlevel

time = 1, τ = 0.01

max
min

Abbildung 5.2.: Wahrscheinlichkeit pmax und pmin für maxlevel = 0 bis maxlevel = 100 bei
τ = 0.01.

was auch Vorteile haben kann, zum Beispiel für die Laufzeit der Tests. Uns interessiert
daher, wie exakte Werte man durch MDP-Abstraktion bereits bei einer niedrigeren Le-
velanzahl erhalten kann. Das unterschiedliche Verhalten der maximalen und minimalen
Wahrscheinlichkeiten ist in Abbildung 5.2 zu erkennen. Für ein niedriges Abstraktionslevel
gibt es eine hohe Varianz zwischen maximaler und minimaler Wahrscheinlichkeit.
Wir wollen im Folgenden heraus�nden, wie sich diese Werte für verschiedene Kombina-
tionen der Granularität und dem maximalen Level verhalten.

Entwicklung der Wahrscheinlichkeiten bezüglich dem
Abstraktionslevel maxlevel
In diesem Abschnitt betrachten wir den Ein�uss von der Wahl des maximalen bei der
MDP-Abstraktion beibehaltenen Levels auf die Wahrscheinlichkeiten. Dafür berechnen
wir pmax und pmin mit Werten für maxlevel zwischen 0 und 100 und festen Werten für τ .
In Abbildung 5.3 sind diese Ergebnisse für verschiedene τ vergleichend in einem Koor-
dinatensystem dargestellt. Für τ = 0.1 liegt die Wahrscheinlichkeit konstant bei ≈ 0.069,
die maximale und minimale Wahrscheinlichkeit unterscheiden sich nicht. Mit diesem τ
beträgt bei einer Zeit von 1 die Anzahl möglicher Schritte 10. Naheliegenderweise ist es
mit einer so geringen Schrittzahl nicht möglich, ein weiter entferntes abstraktes Level zu
erreichen. Auch die zu erreichende Zustandsmenge ist so nur sehr erschwert zu erreichen.
Für τ = 0.01 unterscheiden sich die maximale und die minimale Wahrscheinlichkeit bis
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Abbildung 5.3.: Maximale und minimale Wahrscheinlichkeit für die Level 5 bis 100 für
verschiedene Werte von τ .

zu einem Abstraktionslevel von 30. Ab hier beträgt die Wahrscheinlichkeit für pmin und
pmax ≈ 0.3063. Für τ = 0.001 erhalten wir eine deutlich höhere Wahrscheinlichkeit von
≈ 0.5283. Die Wahrscheinlichkeitsspanne zwischen pmin und pmax ist hier für niedrige
maxlevel sehr groß, sie reicht von 0.16 bis 0.56 bei einem Abstraktionslevel von 5. Erst
ab einem Abstraktionslevel von 55 erkennt man keinen Unterschied mehr zwischen den
beiden Extremen.
Für die Werte τ = 0.0001,τ = 0.00001 und τ = 0.000001 kann man nur noch einen sehr
geringen Unterschied erkennen. Die Wahrscheinlichkeitsspanne ist auch hier sehr hoch,
für maxlevel = 5 und τ = 10−6 gilt pmin ≈ 0.1586 und pmax ≈ 0.5904. Die Spanne zieht sich
bis zu einem Abstraktionslevel von 60. Dort liegt die Wahrscheinlichkeit bei ≈ 0.5636.
Betrachtet man den Verlauf dieser Werte im Vergleich, so erkennt man, dass für größere
τ ein geringerer Unterschied zwischen der maximalen und der minimalen Wahrschein-
lichkeit liegt. Auch der Punkt, ab dem sich die beiden Wahrscheinlichkeiten nicht mehr
unterscheiden, liegt bei einem deutlich niedrigeren Abstraktionslevel als bei kleinen Wer-
ten für τ . Wir vermuten den Ursprung dessen darin, dass τ indirekt proportional zur
möglichen Schrittanzahl innerhalb des Modells ist.
Im Vergleich ist außerdem zu erkennen, dass sich die konvergierende Wahrscheinlichkeit
für verschiedene τ stark unterscheidet, woraus wir schließen, wie relevant die Wahl von τ
für das Erhalten korrekter Ergebnisse ist.
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τ 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001
ε > 1 > 1 > 1 > 1 0.50625 0.050625 0.0050625

Tabelle 5.4.: Fehlerbetrachtung der Diskretisierung für verschiedene τ bei time = 1.

Betrachtung von Wahrscheinlichkeit und Fehler bezüglich τ

Wir wollen nun auswerten, wie genau sich der Ein�uss von τ auf die Wahrscheinlichkeit
auswirkt und mithilfe der Fehlerabschätzung der Diskretisierung berechnen, ab welchen
Werten für τ wir sicher sein können, dass die Abweichung von der tatsächlichen Wahr-
scheinlichkeit unter einem gewissen Signi�kanzniveau liegt.
Mithilfe der Formel aus Kapitel 3.3 können wir berechnen, wie groß der Fehler bei der
Wahl von τ ist und anhand dessen entscheiden, welche τ klein genug sind, um sinnvolle
Ergebnisse zu erhalten. In Tabelle 5.4 wird klar, dass erst ab τ = 10−6 von exakten Ergeb-
nissen gesprochen werden kann. Diese Ergebnisse weichen maximal um ε = 0.050625
von den Werten ab, die nach der MDP-Abstraktion für unser Modell gelten. Wir wollen
also heraus�nden, wie sich für verschiedene feste Werte von maxlevel der Verlauf von
τ auf die Wahrscheinlichkeiten auswirkt. Dafür wählen wir als maximale Levelanzahl
Werte, bei denen die Abstraktion noch einen Ein�uss auf das Ergebnis hat. Die nächsten
Berechnungen führen wir demnach für maxlevel ∈ {10, 20, 30, 40} aus.
Da wir in Abbildung 5.1 erkennen konnten, dass die Wahrscheinlichkeiten für ein kleiner
werdendes τ ansteigen, wählen wir nun signi�kant kleinere τ .
Für diese Berechnungen ändern wir daher die Skala der Granularität auf eine logarithmi-
sche, um das Verhalten bei einem exponentiell kleiner werdenden τ betrachten zu können.
Dadurch werden wir einen deutlich höhere Genauigkeit für kleinere τ erhalten und können
sehen, ob die Wahrscheinlichkeiten für sehr kleine τ -Werte noch große Veränderungen
aufzeigen. In Abbildung 5.4 sind pmax und pmin bis τ = 0.0001 dargestellt. Hier kann man
sehen, dass die Wahrscheinlichkeiten zu konvergieren scheinen. Approximativ ergeben
sich pmin ≈ 0.3 und pmax ≈ 0.58.
In Abbildung 5.5 kann man die Ergebnisse für ein logarithmisch kleiner werdendes τ für die
Abstraktionslevel 20, 30 und 40 sehen. Erneut ist gut erkennbar, dass die Spanne zwischen
der maximalen und minimalen Wahrscheinlichkeit für größer werdende Abstraktionslevel
schrumpft. Außerdem steige in allen drei Betrachtungen pmin und pmax bis zu τ = 0.001
sehr stark an. Zwischen 0.001 und 0.0001 verändern sich die Werte bei allen vier Tests nur
noch um maximal 0.04, für noch kleiner werdende τ liegt die Veränderung in einem Bereich
von 10−3. Diese Berechnungen veranschaulichen, dass, entgegen unserer Erwartungen, die
Ergebnisse auch für τ = 0.0001 nicht stark von der tatsächlichen Wahrscheinlichkeit abwei-
chen (vgl. Tabelle ??). Wir haben berechnet, dass bereits für τ = 10−6 der maximale Fehler
ε bei 0.050625 liegt. Da die Varianz zwischen τ = 10−6 und τ = 10−4 in allen Berechnungen
im Bereich von 10−3 liegt, können wir festhalten, dass der maximale Fehler für τ = 0.0001
nur bei 0.0150625 liegt. Für ein so großes τ übersteigt dies, aufgrund der ursprünglichen
Fehlerabschätzung, unsere Erwartungen. Wir können also mit einer deutlich geringeren
Granularität arbeiten, was die Laufzeiten vermutlich erheblich verbessert.
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Abbildung 5.4.: Wahrscheinlichkeit pmax und pmin für logarithmisch schrumpfendes τ bis
0.0001 bei einer Abstraktion nach 10 Leveln.

maxlevel pmin pmax

10 ≈ 0.30 ≈ 0.56
20 ≈ 0.49 ≈ 0.57
30 ≈ 0.54 ≈ 0.56
40 ≈ 0.56 ≈ 0.58

(a) τ = 0.0001

maxlevel pmin pmax

10 ≈ 0.30 ≈ 0.58
20 ≈ 0.49 ≈ 0.57
30 ≈ 0.55 ≈ 0.57
40 ≈ 0.56 ≈ 0.56

(b) τ = 0.0000001

Tabelle 5.5.: Approximierte Wahrscheinlichkeiten pmin, pmax für maxlevel = 10 bis
maxlevel = 40.
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Abbildung 5.5.: Wahrscheinlichkeit pmax und pmin für logarithmisch schrumpfendes τ bis
0.0000001 bei einer Abstraktion nach 20, 30 und 40 Leveln.
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Betrachtung für time = 2
Die verschiedenen Tests mit Variation von maxlevel und τ führen wir nun nocheinmal für
time = 2 aus. Wir testen also die Formeln Pmax=? [true U[0,2/τ ] (released ∧ ¬burst)]
und Pmin=? [true U[0,2/τ ] (released ∧ ¬burst)]. Wir wollen versuchen zu erkennen,
ob die Schlüsse, die wir bezüglich der Variation der Parameter maxlevel und τ für time = 1
geschlossen haben, so auch auf eine andere Grenzzeit übertragbar sind.
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Abbildung 5.6.: Wahrscheinlichkeiten pmax und pmin für maxlevel zwischen 0 und 100 und
τ von 0.1 bis 0.0000001.

Variation von maxlevel Zunächst betrachten wir wieder für fest gewählte τ zwischen
0.1 und 0.0000001 den Verlauf der Wahrscheinlichkeiten bezüglich maxlevel. Diese sind in
Abbildung 5.6 dargestellt. Wir beschreiben kurz den Verlauf für jedes τ einzeln.

τ = 0.1: pmin und pmax unterscheiden sich für dieses τ zu Beginn - allerdings nur
bis zu einem Abstraktionslevel von 10 und nur zu einem sehr geringen
Wert vonpmax−pmin ≈ 0.05. Ab dort ist die Wahrscheinlichkeit konstant
≈ 0.112.
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τ = 0.01: Hier ist die Di�erenz zwischen der maximalen und minimalen Wahr-
scheinlichkeit bereits viel ausgeprägter. Die Werte unterscheiden sich
bis zu maxlevel = 40 und der Unterschied beträgt für ein kleines max-

level bereits 0.53. Die Wahrscheinlichkeit konvergiert zu 0.543.

τ = 0.001: Bei diesem τ ist die Spanne nun deutlich größer. Die Wahrschein-
lichkeiten unterscheiden sich für maxlevel 6 10 um über 0.733. Ab
maxlevel = 75 ist die Wahrscheinlichkeit pmax ≈ pmin ≈ 0.808.

τ = 0.0001: Hier ist das Level, ab dem sich pmin und pmax nicht mehr unterscheiden,
wie für alle weiteren getesteten τ bei 70. Der Unterschied von pmin und
pmax beträgt für maxlevel = 0 etwa 0.75. Die Wahrscheinlichkeit für
diese τ konvergiert zu 0.835.

Im Vergleich zu time = 1 ist der Verlauf insgesamt sehr ähnlich. Das Level, ab dem sich die
Wahrscheinlichkeiten nicht mehr unterscheiden, ist allerdings für jedes τ etwas größer
als bei den vorherigen Berechnungen. Eine Übersicht diesbezüglich kann in Tabelle 5.7
eingesehen werden. Diese Abhängigkeit zeigt klar auf, dass in die Wahl von maxlevel auch
die zu prüfende Zeit einbezogen werden muss. Es ist nicht möglich, allgemeingültig einen
ausreichenden Wert für maxlevel zu �nden, da die Qualität der Abstraktion deutlich von
der entsprechenden Formel abhängt.

τ time = 1 time = 2
0.1 5 10
0.01 30 55
0.001 50 75
0.0001 60 70
0.00001 50 80
0.000001 50 75
0.0000001 50 70

Tabelle 5.7.: Vergleich von time = 1 und time = 2 für das Level, ab dem pmin u pmax gilt
für τ = 0.1 bis τ = 0.0000001.

Man erkennt auch, dass sich die Wahrscheinlichkeiten ab τ = 0.0001 kaum verändern.
Dies entspricht den Beobachtungen der vorherigen Tests. Wir betrachten im nächsten
Abschnitt die Wahl von τ noch einmal genauer, um diese Aussage zu veri�zieren.
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Abbildung 5.7.: Verlauf der Wahrscheinlichkeiten pmin und pmax für logarithmisch kleiner
werdende τ bis τ = 10−7 und maxlevel = 10.

Betrachtung für signifikant kleiner werdende τ Als nächstes berechnen wir auch
für time = 2 den Verlauf der Wahrscheinlichkeiten für feste Wertemaxlevel ∈ {10, 20, 30, 40}
und signi�kant kleiner werdende τ . Die Resultate dieser Tests sind in den Abbildungen
5.7, 5.8, 5.9 und 5.10 dargestellt.
Für maxlevel = 10 steigen die Werte zunächst an, entwickeln dann ab τ = 0.08 einen
Unterschied zwischen pmin und pmax und pendeln sich ab τ = 0.0001 auf pmax ≈ 0.82 und
pmin ≈ 0.33 ein.
Das Verhalten für die anderen maxlevel ist ähnlich, wie wir allerdings in Abbildung 5.6
bereits erkennen konnten, ist die Varianz zwischen pmin und pmax für höhere maxlevel

deutlich geringer.
Bei maxlevel = 20 (vlg. Abbildung 5.8) unterscheiden sich die Wahrscheinlichkeiten ab
τ = 0.04. Sie steigen beide weiterhin stark an und entwickeln nur einen Unterschied von
0.2: pmin ≈ 0.64,pmax ≈ 0.84.
Für maxlevel = 30 (vlg. Abbildung 5.9) ist der erreichte Unterschied geringer als 0.1. pmax

konvergiert zu 0.84, pmin zu 0.77. Ab τ = 0.0001 kann man diese Werte erkennen.
Bei einem Abstraktionslevel von 40 erkennt man erst bei τ = 0.01 einen sichtbaren Unter-
schied zwischen den beiden Werten. pmin erreicht hier 0.817, pmax 0.839. Ab τ = 0.0001
erkennt man keine Änderung mehr im Verlauf. Diese Ergebnisse sind in Abbildung 5.10
dargestellt.
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Abbildung 5.8.: Verlauf der Wahrscheinlichkeiten pmin und pmax für logarithmisch kleiner
werdende τ bis τ = 10−7 und maxlevel = 20.

Wir können erneut deutlich erkennen, dass für τ = 0.0001 bereits aussagekräftige Werte
berechnet werden können. Dies vermittelt den Eindruck, dass der Wert von time keine
Bedeutung für die Wahl von τ hat. Da τ die Granularität unserer diskreten Zeit darstellt,
scheint diese Unabhängigkeit plausibel. Um sie zu statistisch zu belegen müssten weitere
Berechnungen durchgeführt werden.

Fazit In den Berechnungen der Erreichbarkeitsformel mit Zeitbeschränkung time = 2
konnten wir erkennen, dass der Wert von time unbedingt für die Wahl des Abstraktionsle-
vels berücksichtigt werden muss. Für eine größere Zeit erreichen die Wahrscheinlichkeiten
pmax und pmin erst später eine Einigung und die Di�erenz der beiden Werte ist für klei-
ne maxlevel deutlich größer. Außerdem haben wir eine vermeintliche Unabhängigkeit
zwischen der Zeit und τ erkannt. Diese könnte in einer weiteren Studie untersucht wer-
den. Dafür sollte eine deutlich größere Varianz von Werten für time betrachtet werden,
insbesondere Zeitwerte die um einige Größenordnungen größer sind, als die von uns
analysierten, könnten aussagekräftige Ergebnisse liefern.
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Abbildung 5.9.: Verlauf der Wahrscheinlichkeiten pmin und pmax für logarithmisch kleiner
werdende τ bis τ = 10−7 und maxlevel = 30.
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Abbildung 5.10.: Verlauf der Wahrscheinlichkeiten pmin und pmax für logarithmisch kleiner
werdende τ bis τ = 10−7 und maxlevel = 40.
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5.4. Laufzeitanalyse
In diesem Abschnitt wollen wir untersuchen, ob und inwiefern die verschiedenen Lösungs-
verfahren unterschiedliche Laufzeiten benötigen. Dafür gehen wir erneut kurz auf die
verschiedenen Engines und Lösungsverfahren ein, bevor für zwei verschiedene Werte für τ
die Laufzeiten der Verfahren bei der Berechnung von Wahrscheinlichkeiten für maximale
Level zwischen 0 und 100 vergleichen.

Engines: [9]

Hybrid Engine Die Hybride Engine verwendet eine Kombination von explizi-
ten und symbolischen Datenstrukturen. Für die Berechnun-
gen wird eine Kombination der Methoden der Sparse und der
MTBDD Engine genutzt. Diese Engine kann mit gut großen
Zustandsmodellen umgehen ist für gewöhnlich am perfor-
mantesten.

Sparse Engine Die Sparse Engine kombiniert auch explizite und symbolische
Datenstrukturen. Sie nutzt sogenannte dünnbesetzte Matrizen
für die Berechnungen. Diese Engine kann im Vergleich zur
Hybrid Engine nur kleinere Modelle verarbeiten, für diese
aber unter Umständen schneller sein.

MTBDD Engine Diese Engine verwendet sogenannte multi-terminal binary

decision diagrams (MTBDD). Auch sie verwendet eine expli-
zite und symbolische Datenstrukturen. Zur Berechnung ver-
wendet sie nur Binäre Entscheidungsdiagramme (BDDs) und
MTBDDs. Die Performanz dieses Verfahrens ist nicht ein-
heitlich. Für Modelle mit einer hohen Regelmäßigkeit in der
Struktur kann diese Engine gute Ergebnisse liefern.

Explicit Engine Diese Engine verwendet keine symbolischen Datenstrukturen.
Für kleinere Modelle kann diese Engine performant sein.
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Lösungsverfahren:

Value Iteration Die Methode der Value Iteration iteriert über den Lösungs-
vektor des Gleichungssystems. In jedem Iterationsschritt
werden die Wahrscheinlichkeiten eines Zustandes aktuali-
siert, indem die Übergangswahrscheinlichkeiten zu anderen
Zuständen mit den Werten dieser Zustände aus dem letzten
Iterationsschritt multipliziert werden. Hier wird immer das
Maximum bzw. Minimum der Ergebnisse für verschiedene
Aktionen gewählt. [5]

Gauss-Seidel Dieses Verfahren ist eine Optimierung von Value Iteration:
für das Berechnen neuer Wahrscheinlichkeiten werden die
aktuellsten gespeicherten Werte jeden Zustandes genutzt. Es
wird dadurch auch weniger Speicher benötigt. [5]

Policy Iteration Diese Methode iteriert über die verschiedenen Scheduler.
Es wird zunächst ein beliebiger gedächtnisloser Scheduler
ausgewählt. In jedem Iterationssschritt wird verglichen, ob
es einen besseren Scheduler geben kann. [5]

Modi�ed Policy Iteration Die Methode Modi�ed Policy Iteration ist eine Variante der
Policy Iteration. Die allgemeine Policy Iteration ist nahelie-
genderweise ein recht umfangreiches Verfahren, da es sehr
viele Scheduler geben kann. Die Modi�ed Policy Iteration
reduziert die Zahl der zu testenden Scheduler und erzielt
dadurch eine Reduktion in der Komplexität. [3]

Die folgenden vier Tests zeigen je die Laufzeit der vier verschieden numerischen Methoden
auf. Da Gauss-Seidel, Policy Iteration und Modi�ed Policy Iteration die Explicit Engine
nutzen, Value Iteration auf der Hybrid Engine jedoch der Standard ist, haben wir für Value
Iteration beide Engines getestet.
In den Tests berechnen wir pmin und pmax der Formel true U[0,time](released ∧ ¬burst)
für time = 1. Als Granularität wählen wir τ ∈ {0.000001, 0.0000001}. Dies sind Werte für
τ , für die mit Sicherheit feststeht, dass der Fehler sehr gering ist (vlg. Tabelle 5.4). Obwohl
wir in späteren Tests erkannt haben, dass auch eine weniger feine Granularität akzeptable
Ergebnisse liefert, werden wir die Laufzeitanalyse mit diesen sehr kleinen Werten für τ
durchführen. So erwarten wir, Unterschiede in der Laufzeit deutlicher hervorzuheben. Die
Ergebnisse für τ = 0.0000001 sind dabei besser als die des größeren Wertes, allerdings
vermuten wir hier eine deutlich längere Laufzeit.
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Abbildung 5.11.: Laufzeit in Sekunden für pmin, time = 1, maxlevel = 0 bis maxlevel = 100,
τ = 0.000001 für verschiedene Lösungsverfahren.

pmin für τ = 0.000001: In Abbildung 5.11 sieht man, dass alle vier Verfahren für die beiden
getesteten Engines eine sehr ähnliche Laufzeit haben. Die Varianz zwischen den Verfahren
liegt selbst für 100 Level nur bei 0.734 Sekunden. In der Abbildung kann man erkennen,
dass Value Iteration auf der Hybrid Engine in diesem Umfeld für eine geringe Levelanzahl
das langsamste Verfahren ist. Alle Verfahren der Explicit Engine haben eine sehr ähnliche
Laufzeit, die sich in unserem Test maximal um 0.096 Sekunden unterscheidet. Ab der
Berechnung von 45 Leveln ändert sich etwas: ab hier ist Value Iteration das schnellste
Verfahren. Eine Au�istung einer Auswahl von Laufzeiten, inklusive des Umbruchs zwischen
40 und 45 Ebenen, ist in Tabelle 5.9 dargestellt.

Level \Verfahren VI GS PI MPI VI (Ex.)
10 0.877 0.621 0.603 0.609 0.618
40 2.009 2.001 2.011 2.097 2.075
45 2.173 2.241 2.274 2.240 2.249
100 4.245 4.979 4.969 4.973 4.952

Tabelle 5.9.: Laufzeit in Sekunden für die Verfahren Value Iteration (Hybrid Engine), Gauss-
Seidel, Policy Iteration, Modi�ed Policy Iteration, Value Iteration (Explicit
Engine) (vlnr.) der Berechnung von pmin mit time = 1 und τ = 0.000001 bei
verschiedenen Abstraktionsleveln.
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Abbildung 5.12.: Laufzeit in Sekunden für pmax , time = 1, maxlevel = 0 bis maxlevel = 100,
τ = 0.000001 für verschiedene Lösungsverfahren.

pmax für τ = 0.000001: In Abbildung 5.12 werden die Laufzeiten für τ = 0.000001 für die
Berechnung von pmax dargestellt. Hier erkennt man auch, dass die verglichenen Verfahren
sehr ähnliche Laufzeiten benötigen. Insbesondere die Verfahren auf der Explicit Engine
unterscheiden sich kaum, die maximale Varianz liegt hier bei 0.214 Sekunden. In diesem
Vergleich erkennt man, dass Value Iteration spürbar länger (im Schnitt 0.575 Sekunden)
für das Berechnen der Ergebnisse braucht, als die anderen Verfahren, dies gilt allerdings
nur für die Hybrid Engine.

pmin für τ = 0.0000001: Abbildung 5.13 zeigt die Laufzeiten bei einer Diskretisierung mit
τ = 10−7. Die Dauer ist gegenüber τ = 10−6 etwa verzehnfacht, wie intuitiv zu erwarten
war. Je nach Level beträgt die Laufzeit zwischen 0 und 50 Sekunden. Die maximale Di�erenz
der vier expliziten Verfahren beträgt 1.107 Sekunden. Die höchste Varianz inklusive Value
Iteration beträgt 6.887 Sekunden bei 100 Leveln. Der Verlauf der Graphen unterscheidet sich
in Bezug auf das relative Verhalten der Verfahren zueinander nicht zu dem des größeren
τ . Auch hier ist Value Iteration auf der Hybrid Engine für wenige Level das schnellste
Verfahren, für viele Level jedoch mit Abstand das langsamste.

pmax für τ = 0.0000001: Der Test für pmax mit τ = 0.0000001 ergibt ähnliche Ergebnisse
wie für τ = 0.000001, die Laufzeiten sind allerdings entsprechend verzehnfacht (vgl.
Abbildung 5.14) Value Iteration auf der Hybrid Engine ist hier durchgängig das langsamste
Verfahren, für 100 Level benötigt diese Methode ≈ 56 Sekunden.
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Abbildung 5.13.: Laufzeit in Sekunden für pmin, time = 1, maxlevel = 0 bis maxlevel = 100,
τ = 0.0000001 für verschiedene Lösungsverfahren.
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Abbildung 5.14.: Laufzeit in Sekunden für pmax , time = 1, maxlevel = 0 bis maxlevel = 100,
τ = 0.0000001 für verschiedene Lösungsverfahren.
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Fazit Zusammenfassend stellen wir fest, dass die Laufzeiten für Modelle dieser Größe und
Granularität nicht allzu stark variieren. Generell kann man jedoch sagen, dass hier Value
Iteration auf der Hybrid Engine für die Berechnung der minimalen Wahrscheinlichkeit
zumindest für großemaxlevel eine gute Wahl ist. Für kleineremaxlevel oder die Berechnung
der minimalen Wahrscheinlichkeit scheint die Explicit Engine schnellere Berechnungen
durchzuführen.

5.5. Vergleich zu Ergebnissen eines anderen
Lösungsansatzes

In diesem Abschnitt wollen wir einen Vergleich zu einem anderen Lösungsansatz ziehen.
In [4] wurde für das von uns betrachtete Problem eine andere Methode eingeführt. Insbe-
sondere wird hier auch auf das Modell aus [11] Bezug genommen, für das auch wir unser
Verfahren untersucht haben.
Im Rahmen der zitierten Arbeit werden auch für die in 5.2.2 eingeführte Erreichbarkeits-

formeln Wahrscheinlichkeiten berechnet. Dafür wird das Modell bis zu einem maximalen
Levelm betrachtet, alle darau�olgenden Level werden abgeschnitten. Im Vergleich: Wir
schneiden unser Modell gewissermaßen auch nach einem maximalen Level ab, ergänzen
aber noch ein abstraktes Level, das nachfolgende Ebenen simuliert. Dadurch bleiben ins-
besondere im m-ten Level die Transitionen erhalten. Schneidet man das Modell ab, so
verändert sich naheliegenderweise in dieser Ebene die Wahrscheinlichkeit für die verblie-
benen Transitionen.
In Abbildung 5.15 vergleichen wir die entsprechenden Resultate für time = 1 mit unseren
Ergebnissen für τ ∈ {0.0001, 0.00001, 0.000001}.
Hier kann man erkennen, dass unsere Berechnungen immer kleinere Werte liefern, als die
in [4] durchgeführten Berechnungen. Um die Unterschiede besser zu erkennen betrach-
ten wir nähere Darstellungen davon in Abbildung 5.16. Hier kann man sehen, dass die
feingranulare Berechnung mit τ = 10−6 sehr nah am berechneten Wert des alternativen
Verfahrens liegt, allerdings gilt dies nur für pmax . Für den Wert τ = 0.0001 haben wir in der
Analyse ausreichende Korrektheit validiert. In der Nahansicht in Abbildung 5.16 jedoch
kann man erkennen, dass er deutlich vom Ergebnis aus [4] abweicht.
Wir vermuten, dass der Grund für unsere minimal niedrigeren Wahrscheinlichkeiten die
maximale Schrittanzahl ist. Da wir die beiden Modelle mit maximalem Level maxlevel

betrachten, hat der MDP ein Level mehr als die CTMC, namentlich das abstrakte Level. Es
ist somit im abgeschnittenen Modell etwas leichter innerhalb einer bestimmten Zeit die
letzte Ebene zu erreichen. Dies löst eine minimale Verschiebung auf der maxlevel-Achse
aus.
Interessant hingegen ist, dass das Abschneiden des QBDs scheinbar nahezu identische
Ergebnisse liefert, wie die Berechnung der maximalen Wahrscheinlichkeit. Aufgrund der
MDP-Abstraktion erwarten wir intuitiv, dass die tatsächliche Wahrscheinlichkeit zwischen
unserem berechneten pmax und pmin liegt. Die in [4] berechnete Wahrscheinlichkeit jedoch
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Abbildung 5.15.: Wahrscheinlichkeiten pmin und pmax für time = 1, maxlevel = 0 bis
maxlevel = 100, τ = 0.0001, τ = 0.00001 und τ = 0.000001 im Vergleich
zu den in [4] berechneten Resultaten durch Abschneiden des QBD.

liegt nicht innerhalb dieser Spanne, sondern nahe der Grenzwahrscheinlichkeit pmax . Dies-
bezüglich kann also keine Verbesserung gegenüber dem Abschneiden erkannt werden.

Fazit Im Vergleich zu den Ergebnissen aus [4] haben wir erkannt, dass in der gewählten
Fallstudie die Abstraktion keine Verbesserung gegenüber dem Abschneiden des QBDs
zur Folge hat. In weiteren Studien wäre zu untersuchen, ob dieses Verhalten eine Regel-
mäßigkeit zeigt. Ob MDP-Abstraktion für andere Formeln oder QBDs eine Verbesserung
gegenüber einfacher berechneten Werten bleibt o�en, kann aber im Rahmen dieser Arbeit
nicht untersucht werden.
Es bliebe außerdem zu untersuchen, inwiefern die beiden Verfahren sich in der Laufzeit
unterscheiden. Mit geeigneten Tests zu aussagekräftigen Werten für time zu verschiedenen
Granularitäten τ könnte man die beiden Verfahren mit Abschneiden bzw. Abstrahieren
des QBDs nach dem Level maxlevel vergleichen und erkennen, ob die Abstraktion ge-
gebenenfalls trotz dem Nachteil der Wahrscheinlichkeitsspanne praktikabler ist als das
Abschneiden des QBDs.
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Abbildung 5.16.: Wahrscheinlichkeiten pmin und pmax für time = 1, maxlevel = 0 bis
maxlevel = 100 im Vergleich zu den in [4] berechneten Resultaten durch
Abschneiden des QBD in detailreicheren Darstellungen für zwei verschie-
dene τ .
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6. Fazit und Ausblick
Im Laufe dieser Arbeit haben wir unendliche Zustandsübergangsmodelle mit einer starken
Struktur, QBDs, vorgestellt. Wir haben zwei Verfahren kennengelernt, mit denen solche
Modelle vereinfacht werden können: Zum einen die MDP-Abstraktion, welche Zustände
in abstrakten Zuständen zusammenfasst und so für eine deutliche Reduktion des Modells
sorgen kann. Dadurch können wir für ein unendliches Modell eine endliche Repräsentation
erhalten. Zum anderen können mit der Diskretisierung kontinuierliche Modelle vereinfacht
werden, indem der kontinuierliche Zeit�uss in einzelne Zeitschritte unterteilt wird. Das so
erhaltene Modell verhält sich demnach diskret bezüglich dieses Zeitschrittes. Insbesondere
ist es erheblich einfacher, Wahrscheinlichkeiten auf Basis des Modells zu berechnen –
allerdings entsteht hierbei ein Fehler, welcher berechnet und in der Analyse berücksichtigt
werden muss.
In der zweiten Hälfte der Arbeit haben wir uns mit einer Fallstudie beschäftigt, um die
Qualität unserer Modelländerungen betrachten zu können. Wir haben die Modellierung des
Kommunikationsprotokolls TCP vorgestellt und Abstraktion und Diskretisierung auf die
CTMC angewendet. Auf dem erhaltenen MDP haben wir mit dem PRISM Model Checker
Berechnungen für die Wahrscheinlichkeiten pmin und pmax einer Erreichbarkeitsformel
durchgeführt. Dabei haben wir die verschiedenen Parameter time, für die Zeit, innerhalb der
die Erreichbarkeitsformel erfüllt werden soll, maxlevel, für das Abstraktionslevel unseres
QBD und τ für die Granularität der Diskretisierung betrachtet.
Wie erwartet verhalten sich die Ergebnisse für besonders feine Werte von τ deutlich besser,
als bei einer groben Granularität. Ein zu großes τ liefert stark abweichende. Für time = 1
haben wir schließen können, dass eine Zeitschrittdauer τ = 0.0001 ausreichend ist, um
aussagekräftige Ergebnisse zu erhalten. Dieses Verhalten haben wir auch für time = 2
beobachten können. In weiterführenden Studien sollte untersucht werden, wie sich τ zu
deutlich längeren Zeiten verhält, um herauszu�nden, ob die Exaktheit der Ergebnisse von
der Zeit time abhängt.
Aus den vielfältigen Tests zur Wahl des Abstraktionslevels haben wir mitgenommen,
dass ein höheres Abstraktionslevel präzisere Resultate liefert. Die Wahrscheinlichkeiten
pmin und pmax konvergieren für große Abstraktionslevel, sodass sich pmin und pmax in der
Genauigkeit von Gleitkommazahlen nicht mehr unterscheiden. Durch den Vergleich zu
den für time = 2 erhaltenen Ergebnissen haben wir festgestellt, dass dieser Punkt der
Gleichheit für eine längere Zeit später eintritt. Daraus schließen wir, dass die Wahl des
Abstraktionslevels von time abhängen muss. Es kann demnach keine allgemeingültige
ausreichende Abstraktion gefunden werden. Um optimale Ergebnisse zu erzielen sollte das
Abstraktionslevel dynamisch oder in Abhängigkeit der zu betrachtenden PCTL-Formeln
gewählt werden.
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6 . Fazit und Ausblick

Im Vergleich unserer Ergebnisse zu Resultaten einer Methode, in welcher der QBD nach
einer bestimmten Ebene simpel abgeschnitten wird, haben wir außerdem keine sichtbare
Verbesserung durch die Abstraktion erkannt. In weiteren Studien wäre es aufschlussreich,
die Laufzeiten dieser beiden Verfahren miteinander zu vergleichen. Außerdem könnten
eine Reihe von diverseren Tests veranschaulichen, ob die durch die Abstraktion erhaltenen
Daten gegebenenfalls doch in einer leicht veränderten Kon�guration einen sichtbaren
Vorteil mit sich bringen.
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A. PRISM �ellcode

1 mdp
2
3 const double e = 2.718281828459045235360287471352662497757247093699959574966;
4 const double tau;
5 const double time;
6 formula ex = pow(e,-tau);
7 const int steps = floor(time / tau);
8
9 const double alpha = 1;

10 const double beta = 0.04;
11 const double r = 10;
12 const double c = 10;
13 const int maxlevel;
14 const int a = maxlevel +1;
15 const double lambda = 100;
16 const double mu = 125;
17
18 module tcp
19 i: [0..a] init 0; // Warteschlange
20 j: [0..1] init 0; // connection management
21 k: [0..1] init 1; // packet generator
22
23
24 // Grundlevel
25 [] i=0 & j=0 & k=0
26 -> (1-pow(ex,beta)) : (k'=1) // von off zu burst
27 + (pow(ex ,beta)): true;
28
29 [] i=0 & j=0 & k=1
30 -> (1-pow(ex,alpha+lambda))*alpha/(alpha+lambda): (k'=0) // von burst zu off
31 + (1-pow(ex,alpha+lambda))*( lambda /(alpha+lambda)): (i'=1) // ins naechste Level
32 + (pow(ex ,alpha+lambda)): true;
33
34 [] i=0 & j=1 & k=0
35 -> (1-pow(ex,beta+r))*(beta/(beta+r)): (k'=1) // von off zu burst
36 + (1-pow(ex,beta+r))*(r/(beta+r)): (j'=0) // von active zu released
37 + pow(ex ,beta+r): true;
38
39 [] i=0 & j=1 & k=1
40 -> (1-pow(ex,alpha+r+lambda))*alpha/(alpha+r+lambda): (k'=0) // von burst zu off
41 + (1-pow(ex,alpha+lambda+r))*(r/(alpha+lambda+r)): (j'=0) // von active zu released
42 + (1-pow(ex,alpha+lambda+r))*( lambda /(alpha+lambda+r)): (i'=1) // ins naechste Level
43 + pow(ex ,alpha+r+lambda): true;
44
45 // Wiederholende Level
46 [] i>0 & i<a & j=0 & k=0
47 -> (1-pow(ex,beta+c))*(beta/(beta+c)) : (k'=1) // von off zu burst
48 + (1-pow(ex,beta+c))*(c/(beta+c)): (j'=1) // von released zu active
49 + pow(ex ,beta+c): true;
50
51 [] i>0 & i<a & j=0 & k=1
52 -> (1-pow(ex,alpha+c+lambda))*alpha/(alpha+c+lambda): (k'=0) // von burst zu off
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53 + (1-pow(ex,alpha+lambda+c))*(c/(alpha+lambda+c)): (j'=1) // von released zu active
54 + (1-pow(ex,alpha+lambda+c))*( lambda /(alpha+lambda+c)): (i'=i+1) // ins naechste Level
55 + pow(ex,alpha+c+lambda): true;
56
57 [] i>0 & i<a & j=1 & k=0
58 -> (1-pow(ex,beta+mu))*(beta/(beta+mu)) : (k'=1) // von off zu burst
59 + (1-pow(ex,mu+beta))*(mu/(mu+beta)): (i'=i-1) // ins vorherige Level
60 + pow(ex,mu+beta): true;
61
62 [] i>0 & i<a & j=1 & k=1
63 -> (1-pow(ex,alpha+lambda+mu))*(alpha/(alpha+lambda+mu)): (k'=0) // von burst zu off
64 + (1-pow(ex,alpha+lambda+mu))*( lambda /(alpha+lambda+mu)): (i'=i+1) // ins naechste Level
65 + (1-pow(ex,alpha+lambda+mu))*(mu/(alpha+lambda+mu)): (i'=i-1) // ins vorherige Level
66 + pow(ex,alpha+lambda+mu): true;
67
68 // Abstraktes Level
69 // default -Transitionen
70 [] i=a & j=0 & k=0
71 -> (1-pow(ex,beta+c))*(beta/(beta+c)): (k'=1) // von off zu burst
72 + (1-pow(ex,beta+c))*(c/(beta+c)): (j'=1) // von released zu active
73 + pow(ex,beta+c): true;
74
75 [] i=a & j=0 & k=1
76 -> (1-pow(ex,alpha+lambda+c))*(alpha/(alpha+lambda+c)): (k'=0) // von burst zu off
77 + (1-pow(ex,alpha+lambda+c))*(c/(alpha+lambda+c)): (j'=1) // von released zu active
78 + (1-pow(ex,alpha+lambda+c))*( lambda /(alpha+lambda+c)): true // im Level bleiben
79 + pow(ex,alpha+lambda+c): true;
80
81 // close -Transitionen
82 [close] i=a & j=1 & k=0
83 -> (1-pow(ex,beta+mu))*(beta/(beta+mu)): (k'=1) // von off zu burst
84 + (1-pow(ex,beta+mu))*(mu/(beta+mu)): (i'= maxlevel) // ins "vorherige" Level (maxlevel)
85 + pow(ex,beta+mu): true;
86
87 [close] i=a & j=1 & k=1
88 -> (1-pow(ex,lambda+alpha+mu))*(alpha/( lambda+alpha+mu)): (k'=0) // von burst zu off
89 + (1-pow(ex,lambda+alpha+mu))*(mu/( lambda+alpha+mu)): (i'= maxlevel) // ins "vorherige"

Level (maxlevel)
90 + (1-pow(ex,lambda+alpha+mu))*( lambda /( lambda+alpha+mu)): true // im abstrakten Level

bleiben
91 + pow(ex,lambda+alpha+mu): true;
92
93 // far -Transitionen
94 [far] i=a & j=1 & k=0
95 -> (1-pow(ex,beta+mu))*(beta/(beta+mu)): (k'=1) // von off zu burst
96 + (1-pow(ex,beta+mu))*(mu/(beta+mu)): true // im abstrakten Level bleiben
97 + pow(ex,beta+mu): true;
98
99 [far] i=a & j=1 & k=1

100 -> (1-pow(ex,lambda+alpha+mu))*(alpha/( lambda+alpha+mu)): (k'=1) // von burst zu off
101 + (1-pow(ex,lambda+alpha+mu))*(( lambda+mu)/( lambda+alpha+mu)): true // im abstrakten

Level bleiben
102 + pow(ex,lambda+alpha+mu): true;
103
104 end module
105
106 // labels
107 label "burst" = k=1;
108 label "off" = k=0;
109 label "active" = j=1;
110 label "released" = j=0;

Listing A.1: PRISM Quellcode des TCP-Modells.
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1 Pmax=? [ true U[0,steps] (" released ")&(!(" burst")) ]

Listing A.2: pmax.props: PCTL-Eigenschaft pmax als PRISM-Eingabe

1 Pmin=? [ true U[0,steps] (" released ")&(!(" burst")) ]

Listing A.3: pmin.props: PCTL-Eigenschaft pmin als PRISM-Eingabe
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Die Programme run_varMaxlevel.sh und run_varTau.sh führen PRISM-Befehle mit
Variation von maxlevel oder τ aus.

1 #!/bin/sh
2 export PATH="${PATH }:/ home/janic/programs/prism/bin/"
3
4 #Fuehrt PRISM Kommandozeilenaufrufe aus mit den angegebenen Parametern time , maxlevel von

m_start bis m_end in Schritten der Groesse m_step , fuer verschiedene Werte von tau
zwischen 10- smallest_exp und 10^- biggest_exp

5
6 #Parametereingabe:
7 #time
8 time="2"
9 #maxlevel

10 m_start="0"
11 m_step="5"
12 m_end="100"
13 #tau
14 smallest_exp =-1
15 biggest_exp =-7
16
17 #Ab hier nichts aendern.
18 mkdir results
19 mkdir output
20
21 for t in `seq ${smallest_exp} -1 ${biggest_exp}`
22 do
23 tau=1E${t}
24 for opt in "max" "min"
25 do
26 filename="${opt}_time${time}_maxlevel${m_start}-${m_step}-${m_end}_tau${tau}"
27 prism ./ctmdp.prism ./p${opt}.props -const tau=${tau},time=${time},maxlevel=${m_start

}:${m_step }:${m_end} -exportresults ./ results/${filename }.txt > ./ output/${
filename }.txt

28 done
29 echo "fuer ${tau} berechnet."
30 done
31 echo "fertig."

Listing B.1: Bash-Code: Programm run_varMaxlevel.sh zur Berechnung von pmax und
pmin mit einem schrittweise angegebenen maxlevel für verschiedene τ .

In run_varMaxlevel.sh (vgl. B.1) werden PRISM-Aufrufe ausgeführt, denen ein festes
τ mitgegeben wird und eine schrittweise Angabe für maxlevel. Im Skript können aber
auch verschieden Werte für τ über die Änderung der Parameter smallest_exp und
biggest_exp eingegeben werden. Für diese Exponenten t werden die PRISM-Aufrufe
mit dem schrittweise veränderten maxlevel für alle τ = 10t , also mit der aktuellen Eingabe
für τ = 10−1, 10−2, . . . , 10−7 berechnet.
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1 #!/bin/sh
2 export PATH="${PATH }:/ home/janic/programs/prism/bin/"
3
4 #Fuehrt PRISM Kommandozeilenaufrufe aus mit den angegebenen Parametern time , logarithmisch

kleiner werdende Werte von tau bis zu 10^- biggest_exp , fuer ggf verschiedene Werte
fuer maxlevel von m_start bis m_end in Schritten der Groesse m_step

5
6 #Parametereingabe:
7 #time
8 time="2"
9 #maxlevel

10 m_start =10
11 m_step =10
12 m_end =40
13 #tau
14 biggest_exp =-7
15
16 #Ab hier nichts aendern.
17 mkdir results
18 mkdir results/helper
19 mkdir output
20
21 for maxlevel in `seq ${m_start} ${m_step} ${m_end}`
22 do
23 for t in `seq -1 -1 ${biggest_exp}`
24 do
25 tb=`expr ${t} + 1`
26 tau_start =1E${t}
27 tau_step =1E${t}
28 tau_end =1E${tb}
29 for opt in "max" "min"
30 do
31 filename="${opt}_time${time}_maxlevel${maxlevel}_tau${tau_start}-${tau_step}-${

tau_end}"
32 prism ./ctmdp.prism ./p${opt}.props -const tau=${tau_start }:${tau_step }:${tau_end},

time=${time},maxlevel=${maxlevel} -exportresults ./ results/helper/${filename }.
txt > ./ output/${filename }.txt

33 done
34 echo "bis ${tau_start} berechnet."
35 done
36 for opt in "max" "min"
37 do
38 cat ./ results/helper/${opt}_time${time}_maxlevel${maxlevel}_* > ./ results/helper/${opt

}_time${time}_maxlevel${maxlevel }.txt
39 grep -v [[: alpha :]] ./ results/helper/${opt}_time${time}_maxlevel${maxlevel }.txt > ./

results/${opt}_time${time}_maxlevel${maxlevel}_log.txt
40 echo "fuer maxlevel=${maxlevel} berechnet und zum plotten zusammengefuegt."
41 done
42 done
43 echo "fertig."

Listing B.2: Bash-Code: Programm run_varTau.sh zur Berechnung von pmax und pmin mit
einem variierenden τ für verschiedene maxlevel.

In run_varTau.sh (vgl. B.2) wird den PRISM-Aufrufen ein fester Wert für maxlevel mitge-
geben. Es können jedoch auch hier verschieden Werte für maxlevel mitgegeben werden.
Die PRISM-Aufrufe werden dann für jeden dieser Werte ausgeführt. Außerdem wird in
der Eingabe ein kleinster und ein größter Exponent für τ erwartet. Das Skript führt dann
die entsprechenden Berechnungen zwischen diesen beiden Werten durch und fügt an-
schließend die Resultate aller τ für ein maxlevel zusammen. Dadurch können mit einem
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geeigneten Tool die logarithmischen Betrachtungen wie in Abbildung 5.4 generiert werden.
Das Programm runPrism.sh (vgl. B.3) wurde verwendet, um für verschiedene Engines
und Lösungsmethoden bei der Berechnung eine Laufzeitausgabe zu speichern. Die Aus-
wahl der Engine bzw. Methode, sowie Werte für time, maxlevel und τ kann beein�usst
werden, indem an der jeweiligen Stelle im Code der gewünschte Wert eingegeben wird.
Das Programm führt automatisch für alle angegebenen Methoden, Engines und Werte für
τ Laufzeitberechnungen durch, time und maxlevel müssen zu Beginn fest gewählt werden.
Mit den Skripten cutMaxlevel.sh und cutTime.sh, die in Listing B.4 und B.5 aufgeführt
sind, werden aus der von PRISM gelieferten Ausgabe die Parameter für maxlevel sowie die
benötigte Sekundenzahl ausgeschnitten und anschließend mit dem pr-Befehl in eine Datei
geschrieben.

1 #!/bin/sh
2 export PATH="${PATH }:/ home/janic/programs/prism/bin/"
3
4 #Fuehrt in PRISM die Berechnungen zur Laufzeitanalyse und schneidet mit den passenden

Skripten cutTime.sh und cutMaxlevel.sh die Ausgabedateien auf die Laufzeitangaben zu.
5
6 #Hier ggf. die Werte fuer time und maxlevel anpassen.
7 time="1"
8 maxlevel="0:5:100"
9 #Hier ggf. die gewuenschten Loesungsverfahren angeben. "valiter" Value Iteration , "gs"

Gauss -Seidel , "politer" Policy Iteration , "modpoliter" Modified Policy Iteration
10 for method in "valiter" "gs" "politer" "modpoliter"
11 do
12 #Hier ggf. die gewuenschten Engines anpassen. "" ist der Standard fuer die jeweilige

Methode , "ex" Explicit , "s" Sparse , "m" MTBDD
13 for engine in "" "ex" "s" "m"
14 do
15 if [ "${engine}" = "" ]
16 then
17 engine_used=""
18 engine_name=""
19 elif [ "${method}" = "valiter" ]
20 then
21 engine_used="-${engine}"
22 engine_name="_${engine}"
23 else
24 continue
25 fi
26
27 #Hier die gewuenschten Werte fuer tau eingeben.
28 for tau in "1E-2" "1E-3"
29 do
30 for opt in "max" "min"
31 do
32 filename="${method}${engine_name}_${opt}_time${time}_maxlevel0 -5-100 _tau${tau}"
33 prism ./ctmdp.prism ./p${opt}.props -${method} ${engine_used} -const tau=${tau},

time=${time},maxlevel=${maxlevel} -exportresults ./logs/${filename }.txt > ./
output/${filename }.txt

34 ./ cutTime.sh ./ output/${filename }.txt ./ output/${filename}_cutTime.txt
35 ./ cutMaxlevel.sh ./ output/${filename }.txt ./ output/${filename}_cutMaxlevel.txt
36 pr -m -t ./ output/${filename}_cutMaxlevel.txt ./ output/${filename}_cutTime.txt >

./ output/${filename}_plot.txt
37 done
38 echo "${method} ${engine }: tau=${tau} berechnet."
39 done
40 done
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41 done
42 echo "fertig."

Listing B.3: Bash-Code: Programm runPrism.sh zur Berechnung von pmax und
pmin für verschiedene Parameter sowie für verschiedene Engines und
Lösungsmethoden, inklusive Ausgabe der Laufzeiten.

1 #!/bin/sh
2
3 cat ${1} | grep "Model const ants: " | cut -d "," -f3 | grep -o -P "[0 -9]{1 ,3}" | awk 'NR %

2 == 0' > ${2}

Listing B.4: Quellcode des cutMaxlevel.sh-Skripts, welches aus der Ausgabe die maxlevel

�ltert.

1 #!/bin/sh
2
3 cat ${1} | grep "Time for model checking: " | grep -o -P '[0 -9]{1 ,5}.[0 -9]{1 ,3} ' > ${2}

Listing B.5: Quellcode des cutTime.sh-Skripts, welches aus der Ausgabe die Laufzeiten in
Sekunden ausgibt.
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