A Tutorial on Program Analysis

Markus Müller-Olm Dortmund University

Thanks!

Helmut Seidl

(TU München)

and

Bernhard Steffen

(Universität Dortmund)

for discussions, inspiration, joint work, ...

Purposes of Automatic Analysis

- Optimizing compilation
- Validation/Verification
 - Type checking
 - Functional correctness
 - Security properties
 - . . .
- Debugging

Spring School on Security, Marseille, April 25-29, 2005

Fundamental Limit

Rice's Theorem [Rice,1953]:

All non-trivial semantic questions about programs from a universal programming language are undecidable.

Spring School on Security, Marseille, April 25-29, 2005

Two Solutions

Weaker formalisms

- analyze abstract models of systems
- e.g.: automata, labelled transition systems,...

Model checking

Approximate analyses

- yield sound but, in general, incomplete results
- e.g.: detects some instead of all constants

Flow analysis Abstract interpretation Type checking

Spring School on Security, Marseille, April 25-29, 2005

Overview

- Introduction
- Fundamentals of Program Analysis
- Interprocedural Analysis
- Analysis of Parallel Programs
- Invariant Generation
- Conclusion

Apology for not giving detailed credit!

Spring School on Security, Marseille, April 25-29, 2005

10

Credits

- Pioneers of Iterative Program Analysis:
 - Kildall, Wegbreit, Kam & Ullman, Karr, ...
- Abstract Interpretation:
 - Cousot/Cousot, Halbwachs, ...
- Interprocedural Analysis:
 - Sharir & Pnueli, Knoop, Steffen, Rüthing, Sagiv, Reps, Wilhelm, Seidl, ...
- Analysis of Parallel Programs:
 - Knoop, Steffen, Vollmer, Seidl, ...
- And many more:
 - Apology ...

Overview

- Introduction
- Fundamentals of Program Analysis
- Interprocedural Analysis
- Analysis of Parallel Programs
- Invariant Generation
- Conclusion

Spring School on Security, Marseille, April 25-29, 2005

12

From Programs to Flow Graphs

THE STATE OF

Spring School on Security, Marseille, April 25-29, 2005

Dead Code Elimination

Goal:

find and eliminate assignments that compute values which are never used

Fundamental problem:

undecidability

 \rightarrow use approximate algorithm:

e.g.: ignore that guards prohibit certain execution paths

Technique:

1) perform live variables analyses:

variable x is live at program point u iff there is a path from u on which x is used before it is modified

2) eliminate assignments to variables that are not live at the target point

Spring School on Security, Marseille, April 25-29, 2005

14

Live Variables y live y:=17 x=x+42 y (y<99) x:=10 y (y<99) x:=x+1 y:=11 x dead x:=y+1 11

Live Variables Analysis

Remarks

- Forward vs. backward analyses
- (Separable) bitvector analyses
 - forward: reaching definitions, available expressions, ...
 - backward: live/dead variables, very busy expressions, ...

Spring School on Security, Marseille, April 25-29, 2005

Partial Order

Partial order (L,⊑):

set *L* with binary relation $\sqsubseteq \subseteq L \times L$ s.t.

$$\forall x \in L: x \sqsubseteq x$$

⊑ is antisymetric:

$$\forall x, y \in L: x \sqsubseteq y \Rightarrow \neg(y \sqsubseteq x)$$

 \bullet \sqsubseteq is transitive

$$\forall x,y,z \in L: \quad (x \sqsubseteq y \land y \sqsubseteq z) \Rightarrow x \sqsubseteq z$$

For a subset $X \subseteq L$:

- $\sqcup X$: least upper bound (*join*), if it exists
- $\sqcap X$: greatest lower bound (*meet*), if it exists

Complete Lattice

- Complete lattice (*L*,⊑):
 - a partial order (L, \sqsubseteq) for which $\sqcup X$ exists for all $X \subseteq L$.
- In a complete lattice (L, \sqsubseteq) :
 - $\sqcap X$ exists for all $X \subseteq L$: $\sqcap X = \sqcup \{ x \in L \mid x \sqsubseteq X \}$
 - least element \bot exists: $\bot = \sqcup L = \sqcap \emptyset$
 - greatest element \top exists: $\top = \sqcup \emptyset = \sqcap L$
- Example:
 - for any set A let $P(A) = \{X \mid X \subseteq A\}$.
 - $(P(A),\subseteq)$ is a complete lattice.
 - $(P(A), \supseteq)$ is a complete lattice.

Interpretation in Approximate Program Analysis

x ⊑ *y*:

- x is more precise information than y.
- y is a correct approximation of x.

 $\sqcup X$ for $X \subseteq L$:

the most precise information consistent with all informations $x \in X$.

Remark:

often dual interpretation in the literature!

Example:

lattice for live variables analysis:

• (P(Var),⊆) with Var = set of variables in the program

Specifying Live Variables Analysis by a Constraint System

Compute (smallest) solution over $(L, \sqsubseteq) = (P(Var), \subseteq)$ of:

 $V^{*}[fin] \supseteq init$, for fin, the termination node

 $V^{\#}[u] \supseteq f_e(V^{\#}[v]),$ for each edge e = (u, s, v)

where init = Var,

 $f_e: P(Var) \to P(Var), f_e(x) = x \setminus kill_e \cup gen_e, with$

- kill_e = variables assigned at e
- gen_e = variables used in an expression evaluated at e

Specifying Live Variables Analysis by a Constraint System

Remarks:

- Every solution is "correct".
- The smallest solution is called MFP-solution; it comprises a value MFP[u] \in L for each program point u.
- 3. (MFP abbreviates "maximal fixpoint" for traditional reasons.)
- 4. The MFP-solution is the most precise one.

Data-Flow Frameworks

- Correctness
 - generic properties of frameworks can be studied and proved
- Implementation
 - efficient, generic implementations can be constructed

Spring School on Security, Marseille, April 25-29, 2005

Questions

- Do (smallest) solutions always exist ?
- How to compute the (smallest) solution?
- How to justify that a solution is what we want?

Spring School on Security, Marseille, April 25-29, 2005

26

Questions

- Do (smallest) solutions always exist ?
- \sim How to compute the (smallest) solution ?
- > How to justify that a solution is what we want?

Spring School on Security, Marseille, April 25-29, 2005

Knaster-Tarski Fixpoint Theorem

Definitions:

Let (L, \sqsubseteq) be a partial order.

- $f: L \rightarrow L$ is monotonic iff $\forall x, y \in L: x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$.
- $x \in L$ is a *fixpoint* of f iff f(x)=x.

Fixpoint Theorem of Knaster-Tarski:

Every monotonic function f on a complete lattice L has a least fixpoint lfp(f) and a greatest fixpoint gfp(f).

More precisely,

```
lfp(f) = \sqcap \{ x \in L \mid f(x) \sqsubseteq x \} 

gfp(f) = \sqcup \{ x \in L \mid x \sqsubseteq f(x) \} 

greatest post-fixpoint
```


Smallest Solutions Exist Always

- Define functional $F: L^n \rightarrow L^n$ from right hand sides of constraints such that:
 - σ solution of constraint system iff σ pre-fixpoint of F
- Functional *F* is monotonic.
- By Knaster-Tarski Fixpoint Theorem:
 - F has a least fixpoint which equals its least pre-fixpoint.

Spring School on Security, Marseille, April 25-29, 2005

30

Questions

- ⊃ Do (smallesi) solutions always exist?
- How to compute the (smallest) solution?
- > How to justify that a solution is what we want?

Spring School on Security, Marseille, April 25-29, 2005

```
Workset-Algorithm

W = \emptyset;

forall (program points v) { A[v] = \bot; W = W \cup \{v\}; }

A[fin] = init;

while W \neq \emptyset {

v = Extract(W);

forall (u, s with e = (u, s, v) edge) {

t = f_e(A[v]);

if \neg (t \sqsubseteq A[u]) {

A[u] = A[u] \sqcup t;

W = W \cup \{u\};

}

}

Spring School on Security, Marseille, April 25-29, 2005
```


Invariants of the Main Loop

- a) $A[u] \subseteq MFP[u]$ f.a. prg. points u
- b1) $A[fin] \supseteq init$
- b2) $v \notin W \implies A[u] \supseteq f_e(A[v])$ f.a. edges e = (u, s, v)

If and when worklist algorithm terminates:

A is a solution of the constraint system by b1)&b2)

$$\Rightarrow$$
 $A[u] \supseteq MFP[u]$ f.a. u

Hence, with a): A[u] = MFP[u] f.a. u

Spring School on Security, Marseille, April 25-29, 2005

35

How to Guarantee Termination

- Lattice (L, □) has finite heights
 - ⇒ algorithm terminates after at most #prg points · (heights(L)+1) iterations of main loop
- Lattice (*L*,⊑) has no infinite ascending chains
 - ⇒ algorithm terminates
- Lattice (*L*,⊆) has infinite ascending chains:
 - ⇒ algorithm may not terminate; use widening operators in order to enforce termination

Spring School on Security, Marseille, April 25-29, 2005

Widening Operator

 $\nabla: L \times L \to L$ is called a *widening operator* iff

- 1) $\forall x,y \in L: x \sqcup y \sqsubseteq x \triangledown y$
- 2) for all ascending chains $(I_n)_n$, the ascending chain $(w_n)_n$ defined by $w_0 = I_0$, $w_{i+1} = w_i \nabla I_i$ for i > 0 stabilizes eventually.

Workset-Algorithm with Widening

```
W = \varnothing;

forall (program points v) { A[v] = \bot; W = W \cup \{v\};}

A[fin] = init;

while W \neq \varnothing {

v = Extract(W);

forall (u, s \text{ with } e = (u, s, v) \text{ edge}) {

t = f_e(A[v]);

if \neg(t \sqsubseteq A[u]) {

A[u] = A[u] \nabla t;

W = W \cup \{u\};

}

}
```

Spring School on Security, Marseille, April 25-29, 2005

Invariants of the Main Loop

```
a) A[u] \subseteq MEP[u] f.a. prg. points u
b1) A[fin] \supseteq init
b2) v \notin W \Rightarrow A[u] \supseteq f_e(A[v]) f.a. edges e = (u, s, v)
```

With a widening operator we enforce termination but we loose invariant a).

Upon termination, we have:

A is a solution of the constraint system by b1)&b2)

 \Rightarrow $A[u] \supseteq MFP[u]$ f.a. u

Compute a sound upper approximation (only)!

Spring School on Security, Marseille, April 25-29, 2005

39

Example of a Widening Operator: Interval Analysis

The goal

Find save interval for the values of program variables, e.g. of *i* in:

```
for (i=0; i<42; i++)
  if (0≤i ∧ i<42) {
    A1 = A+i;
    M[A1] = i;
}</pre>
```

..., e.g., in order to remove the redundant array range check.

Example of a Widening Operator: Interval Analysis

The lattice...

$$(L,\sqsubseteq) = \left(\left\{ [I,u] \mid I \in \mathbb{Z} \cup \{-\infty\}, u \in \mathbb{Z} \cup \{+\infty\}, I \le u \right\} \cup \{\emptyset\}, \subseteq \right)$$

... has infinite ascending chains, e.g.:

$$[0,0]\subset [0,1]\subset [0,2]\subset ...$$

A widening operator:

$$\begin{split} [I_0,u_0] & \triangledown \ [I_1,u_1] = [I_2,u_2], \text{ where} \\ I_2 &= \begin{cases} I_0 & \text{if } I_0 \leq I_1 \\ -\infty & \text{otherwise} \end{cases} & \text{and } u_2 = \begin{cases} u_0 & \text{if } u_0 \geq u_1 \\ +\infty & \text{otherwise} \end{cases}$$

A chain of maximal length arising with this widening operator:

$$\emptyset \subset [3,7] \subset [3,+\infty] \subset [-\infty,+\infty]$$

Analyzing the Program with the Widening Operator

	1		2		3	
	1	и	1	и	1	и
0	$-\infty$	+∞	$-\infty$	+∞		
1	0	0	0	$+\infty$		
2	0	0	0	$+\infty$		
3	0	0	0	$+\infty$		
4	0	0	0	$+\infty$	di	ito
5	0	0	0	$+\infty$		
6	1	1	1	+∞		
7	Ţ		42	+∞		
8			42	+∞		

⇒ Result is far too imprecise!

Example taken from: H. Seidl, Vorlesung "Programmoptimierung", WS 04/05

Remedy 1: Loop Separators

- Apply the widening operator only at a "loop separator" (a set of program points that cuts each loop).
- We use the loop separator {1} here.

	1		2		3	
	1	и	1	и	l	и
0	-∞	+∞	$-\infty$	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	41		
3	0	0	0	41		
4	0	0	0	41	d	ito
5	0	0	0	41		
6	1	1	1	42		
7						
8	1		42	$+\infty$		

Identify condition at edge from 2 to 3 as redundant!

Remedy 2: Narrowing

- Iterate again from the result obtained by widening
 - --- Iteration from a prefix-point stays above the least fixpoint! ---

	0			1	2	
	l	и	1	и	1	и
0	$-\infty$	+∞	$-\infty$	+∞	$-\infty$	+∞
1	0	+∞	0	$+\infty$	0	42
2	0	+∞	0	41	0	41
3	0	+∞	0	41	0	41
4	0	+∞	0	41	0	41
5	0	+∞	0	41	0	41
6	1	+∞	1	42	1	42
7	42	+∞	Ţ		Ţ	
8	42	+∞	42	+∞	42	42

We get the exact result in this example!

Remarks

- Can use a work-list instead of a work-set
- Special iteration strategies
- Semi-naive iteration

Spring School on Security, Marseille, April 25-29, 2005

46

Questions

- → Do (smallest) solutions always exist?
- > How to compute the (smallest) solution?
- How to justify that a solution is what we want?
 - MOP vs MFP-solution
 - Abstract interpretation

Spring School on Security, Marseille, April 25-29, 2005

Questions

- Do (smallest) solutions always exist?
- > How to compute the (smallest) solution?
- How to justify that a solution is what we want?
 - MOP vs MFP-solution
 - Abstract interpretation

Spring School on Security, Marseille, April 25-29, 2005

Meet-Over-All-Paths Solution

Forward Analysis

$$\mathsf{MOP}[u] \coloneqq \bigsqcup\nolimits_{p \in \mathsf{Paths}[\mathit{entry}, u]} \mathsf{F}_p(\mathit{init})$$

Backward Analysis

$$MOP[u] := \bigsqcup_{p \in Paths[u,exit]} F_p(init)$$

• Here: "Join-over-all-paths"; MOP traditional name

Spring School on Security, Marseille, April 25-29, 2005

Coincidence Theorem

Definition:

A framework is positively-distributive if $f(\sqcup X) = \sqcup \{ f(x) \mid x \in X \} \text{ for all } \emptyset \neq X \subseteq L, f \in F.$

Theorem:

For any instance of a positively-distributive framework:

MOP[u] = MFP[u] for all program points u.

Remark:

A framework is positively-distributive if a) and b) hold:

(a) it is distributive: $f(x \sqcup y) = f(x) \sqcup f(y)$ f.a. $f \in F$, $x,y \in L$

(b) it is effective: L does not have infinite ascending chains.

Remark:

All bitvector frameworks are distributive and effective.

Spring School on Security, Marseille, April 25-29, 2005

5

Lattice for Constant Propagation

Spring School on Security, Marseille, April 25-29, 2005

Constant Propagation Framework & Instance

lattice L $Var \rightarrow (\mathbb{Z} \cup \{\bot, \top\}), = Var \rightarrow ConstVal$

 $\rho \sqsubseteq \rho' :\Leftrightarrow \forall x : \rho(x) \sqsubseteq \rho'(x)$

pointwise join \sqcup

 \top $\top (x) = \top$ f.a. $x \in Var$

control flow program graph

initial value

function space $\{f: D \to D \mid f \text{ monotone}\}\$

 $f_i(d) = \begin{cases} d[x \mapsto [e]^{CP}(d)] & \text{if } i \text{ annotated with } x \coloneqq e \\ d & \text{otherwise} \end{cases}$ f_{i}

Spring School on Security, Marseille, April 25-29, 2005

Correctness Theorem

Definition:

A framework is monotone if for all $f \in F$, $x,y \in L$:

$$x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$$
.

Theorem:

In any monotone framework:

 $MOP[i] \sqsubseteq MFP[i]$ for all program points i.

Remark:

Any "reasonable" framework is monotone.

Spring School on Security, Marseille, April 25-29, 2005

Questions

- → Do (smallest) solutions always exist?
- \sim How to compute the (smallest) solution ?
- How to justify that a solution is what we want?
 - > MOP vs MFP-solution
 - Abstract interpretation

Spring School on Security, Marseille, April 25-29, 2005

Abstract Interpretation

constraint system for Reference Semantics on concrete lattice (D,⊑)

MFP

constraint system for Analysis on abstract lattice (D#,⊑#)

MFP#

Often used as reference semantics:

sets of reaching runs:

$$(\mathsf{D},\sqsubseteq) = (\mathsf{P}(\mathsf{Edges}^{\star}),\subseteq) \quad \text{ or } \quad (\mathsf{D},\sqsubseteq) = (\mathsf{P}(\mathsf{Stmt}^{\star}),\subseteq)$$

sets of reaching states (collecting semantics):

$$(D,\sqsubseteq) = (P(\Sigma^*),\subseteq)$$
 with $\Sigma = Var \rightarrow Val$

Spring School on Security, Marseille, April 25-29, 2005

6

Transfer Lemma

Situation:

complete lattices (L,\sqsubseteq) , (L',\sqsubseteq') montonic functions $f:L\to L$, $g:L'\to L'$, $\alpha:L\to L'$

Definition:

Let (L,\sqsubseteq) be a complete lattice.

 $\alpha: L \to L$ is called *universally-disjunctive* iff $\forall X \subseteq L: \alpha(\sqcup X) = \sqcup \{ \alpha(x) \mid x \in X \}$.

Remark:

- $\ (\alpha,\gamma) \text{ is called } \textit{Galois connection} \ \text{iff} \quad \forall \ x \in L, \ x^{'} \in L^{'} \colon \ \alpha(x) \sqsubseteq^{'} y \ \Leftrightarrow \ x \sqsubseteq \ \gamma(y).$
- α is universally-disjunctive iff $\exists \gamma: L' \to L : (\alpha, \gamma)$ is Galois connection.

Transfer Lemma:

Suppose α is universally-disjunctive. Then:

- (a) $\alpha \circ f \sqsubseteq g \circ \alpha \Rightarrow \alpha(lfp(f)) \sqsubseteq lfp(g)$.
- (b) $\alpha \circ f = g \circ \alpha \Rightarrow \alpha(lfp(f)) = lfp(g)$.

Abstract Interpretation

Assume a universally-disjunctive abstraction function $\alpha: D \to D^{\#}$.

Correct abstract interpretation:

```
Show \alpha(o(x_1,...,x_k)) \sqsubseteq^\# o^\#(\alpha(x_1),...,\alpha(x_k)) f.a. x_1,...,x_k \in L, operators o Then \alpha(MFP[u]) \sqsubseteq^\# MFP^\#[u] f.a. u
```

Correct and precise abstract interpretation:

```
Show \alpha(o(x_1,...,x_k))=o^\#(\alpha(x_1),...,\alpha(x_k)) f.a. x_1,...,x_k\in L, operators o Then \alpha(MFP[u])=MFP^\#[u] f.a. u
```

Use this as guideline for designing correct (and precise) analyses!

Abstract Interpretation

Constraint system for reaching runs:

$$R[st] \supseteq \{\varepsilon\},$$
 for st , the start node $R[v] \supseteq R[u] \cdot \langle \{e\} \rangle$, for each edge $e = (u, s, v)$

Operational justification:

Let $\underline{R}[u]$ be components of smallest solution over Edges*. Then

$$\underline{R}[u] = R^{op}[u] =_{def} \{ r \in Edges^* \mid st \xrightarrow{r} u \}$$
 f.a. u

Prove:

a)
$$\mathsf{R}^{\mathsf{op}}[\mathsf{u}]$$
 satisfies all constraints $\Rightarrow \ \underline{\mathsf{R}}[\mathsf{u}] \subseteq \mathsf{R}^{\mathsf{op}}[\mathsf{u}]$ f.a. u b) $\mathsf{w} \in \mathsf{R}^{\mathsf{op}}[\mathsf{u}] \Rightarrow \mathsf{w} \in \underline{\mathsf{R}}[\mathsf{u}]$ (by induction on $|\mathsf{w}|$) $\Rightarrow \ \mathsf{R}^{\mathsf{op}}[\mathsf{u}] \subseteq \underline{\mathsf{R}}[\mathsf{u}]$ f.a. u

Abstract Interpretation

Constraint system for reaching runs:

$$R[st] \supseteq \{\varepsilon\},$$
 for st , the start node $R[v] \supseteq R[u] \cdot \langle \{e\} \rangle$, for each edge $e = (u, s, v)$

Derive the analysis:

Replace

$$\begin{array}{lll} \{\epsilon\} & \text{by init} \\ (\bullet \) \cdot \{\langle \ e \rangle\} & \text{by} & f_e \end{array}$$

Obtain abstracted constraint system:

$$R^{\#}[st] \supseteq init$$
, for st , the start node $R^{\#}[v] \supseteq f_e(R^{\#}[u])$, for each edge $e = (u, s, v)$

Abstract Interpretation

MOP-Abstraction:

Define
$$\alpha_{\mathsf{MOP}} : \mathsf{Edges}^* \to \mathsf{L}$$
 by
$$\alpha_{\mathsf{MOP}}(R) = \sqcup \big\{ f_r(\mathit{init}) \mid r \in R \big\} \quad \text{where } f_\varepsilon = \mathit{Id}, \ f_{s_{\langle e \rangle}} = f_e \circ f_s$$

Remark:

For all monotone frameworks the abstraction is correct:

$$\alpha_{MOP}(\underline{R}[u]) \sqsubseteq \underline{R}^{\#}[u]$$
 f.a. prg. points u

For all universally-distributive frameworks the abstraction is correct and precise:

$$\alpha_{MOP}(\underline{R}[u]) = \underline{R}^{\#}[u]$$
 f.a. prg. points u

Justifies MOP vs. MFP theorems (cum grano salis).

Overview

- Introduction
- Fundamentals of Program Analysis
- Interprocedural Analysis
- Analysis of Parallel Programs
- Invariant Generation
- Conclusion

Spring School on Security, Marseille, April 25-29, 2005

Constraint System for Feasible Paths

Operational justification:

$$\underline{\underline{S}}(u) = \left\{ \begin{array}{ll} r \in \mathsf{Edges}^* \, \big| \, \mathit{St}_p \xrightarrow{\quad r \ } u \, \right\} & \text{for all } u \text{ in procedure } p \\ \underline{\underline{S}}(p) = \left\{ \begin{array}{ll} r \in \mathsf{Edges}^* \, \big| \, \mathit{St}_p \xrightarrow{\quad r \ } \varepsilon \, \right\} & \text{for all procedures } p \end{array} \right.$$

 $\underline{R}(u) = \{ r \in \text{Edges}^* \mid \exists \omega \in \text{Nodes}^* : st_{Main} \xrightarrow{r} u\omega \} \text{ for all } u$

Same-level runs:

$$S(p) \supseteq S(r_p)$$
 r_p return point of p

$$S(st_p) \supseteq \{\varepsilon\}$$
 st_p entry point of p

 $S(v) \supseteq S(u) \cdot \{\langle e \rangle\}$ e = (u, s, v) base edge

 $S(v) \supseteq S(u) \cdot S(p)$ e = (u, p, v) call edge

Reaching runs:

 $R(st_{{\it Main}}) \ \supseteq \ \{ {\it E} \}$ $st_{{\it Main}}$ entry point of ${\it Main}$

R(v) $\supseteq R(u) \cdot \{\langle e \rangle\}$ e = (u, s, v) basic edge

R(v) $\supseteq R(u) \cdot S(p)$ e = (u, p, v) call edge

 $R(st_p) \supseteq R(u)$ e = (u, p, v) call edge, st_p entry point of p

Context-Sensitive Analysis

Idea:

Phase 1: Compute summary information for each procedure...

... as an abstraction of same-level runs

Phase 2: Use summary information as transfer functions for procedure calls...
... in an abstraction of reaching runs

Summary information:

1) Functional approach:

Use (monotonic) functions on data flow informations!

2) Relational approach:

Use relations (of a representable class) on data flow informations!

3) etc...

Functional Approach for Availability of Single Expression Problem

Observations:

Just three montone functions on lattice *L*:

Functional composition of two such functions $f,g:L\rightarrow L$:

$$h \circ f = \begin{cases} f & \text{if } h = \mathbf{i} \\ h & \text{if } h \in \{g, \mathbf{k}\} \end{cases}$$

Analogous: precise interprocedural analysis for all (separable) bitvector problems in time linear in program size.

Formalization of Functional Approach

Abstractions:

```
 \begin{split} & \text{Abstract same-level runs with } \alpha_{\textit{Funct}} : \text{Edges}^* \to (\textit{L} \to \textit{L}) : \\ & \alpha_{\textit{Funct}}(R) = \; \bigsqcup \big\{ \; f_r \, \big| \, r \in R \; \big\} \qquad \text{for } R \subseteq \text{Edges}^* \end{split}   \text{Abstract reaching runs with } \alpha_{\textit{MOP}} : \text{Edges}^* \to \textit{L} : \\ & \alpha_{\textit{MOP}}(R) \; = \; \bigsqcup \big\{ \; f_r(\textit{init}) \, \big| \, r \in R \; \big\} \qquad \text{for } R \subseteq \text{Edges}^* \end{split}
```

1. Phase: Compute summary informations, i.e., functions:

```
S^{\#}(p) \ \supseteq \ S^{\#}(r_p) r_p return point of p S^{\#}(st_p) \ \supseteq \ id st_p entry point of p S^{\#}(v) \ \supseteq \ f_e \circ S^{\#}(u) e = (u, s, v) base edge S^{\#}(v) \ \supseteq \ S^{\#}(p) \circ S^{\#}(u) e = (u, p, v) call edge
```

2. Phase: Use summary informations; compute on data flow informations:

```
\begin{array}{lll} R^{\#}(st_{\textit{Main}}) \; \sqsupseteq \; & \textit{init} & & st_{\textit{Main}} \; & \textit{entry point of Main} \\ R^{\#}(v) \; \; \sqsupset \; \; f_{e}(R^{\#}(u)) & & e = (u,s,v) \; \textit{basic edge} \\ R^{\#}(v) \; \; \sqsupset \; \; S^{\#}(p)(R^{\#}(u)) & & e = (u,p,v) \; \textit{call edge} \\ R^{\#}(st_{p}) \; \; \sqsupset \; \; R^{\#}(u) & & e = (u,p,v) \; \textit{call edge, } st_{p} \; \textit{entry point of } p \end{array}
```

Functional Approach

Theorem:

Correctness: For any monotone framework:

 $\alpha_{MOP}(\underline{R}[u]) \sqsubseteq \underline{R}^{\#}[u]$ f.a. u

Completeness: For any universally-distributive framework:

 $\alpha_{MOP}(\underline{R}[u]) = \underline{R}^{\#}[u]$ f.a. u

Alternative condition:

framework positively-distributive & all prog. point dyn. reachable

Remark:

- a) Functional approach is effective, if L is finite...
- b) ... but may lead to chains of length up to $|L| \cdot \text{height}(L)$ at each program point.

Extensions

 Parameters, return values, local variables can be handled also

Spring School on Security, Marseille, April 25-29, 2005

Overview

- Introduction
- Fundamentals of Program Analysis
- Interprocedural Analysis
- Analysis of Parallel Programs
- Invariant Generation
- Conclusion

Interleaving- Operator ⊗ (Shuffle-Operator)

Example:

$$\langle a,b\rangle \otimes \langle x,y\rangle = \left\{ \begin{array}{l} \langle a,b,x,y\rangle \\ \langle a,x,b,y\rangle, \langle a,x,y,b\rangle \\ \langle x,a,b,y\rangle, \langle x,a,y,b\rangle, \langle x,y,a,b\rangle \end{array} \right\}$$

Constraint System for Same-Level Runs

Operational justification:

```
 \underline{\underline{S}}(u) = \left\{ \begin{array}{ll} r \in \mathsf{Edges}^* \, | \, St_p \frac{r}{-} \to u \, \right\} & \text{for all } u \text{ in procedure } p \\ \underline{\underline{S}}(p) = \left\{ \begin{array}{ll} r \in \mathsf{Edges}^* \, | \, St_p \frac{r}{-} \to \varepsilon \, \right\} & \text{for all procedures } p \end{array} \right.
```

Same-level runs:

```
\begin{array}{lll} S(p) & \supseteq & S(r_p) & r_p \text{ return point of } p \\ S(st_p) \supseteq & \{\varepsilon\} & st_p \text{ entry point of } p \\ S(v) & \supseteq & S(u) \cdot \left\langle \{e\} \right\rangle & e = (u,s,v) \text{ base edge} \\ S(v) & \supseteq & S(u) \cdot S(p) & e = (u,p,v) \text{ call edge} \\ S(v) & \supseteq & S(u) \cdot (S(p_0) \otimes S(p_1)) & e = (u,p_0 \mid\mid p_1,v) \text{ parallel call edge} \end{array}
```

Constraint System for Reaching Runs

Operational justification:

```
\underline{R}(u,q) = \left\{ \begin{array}{ll} r \in \mathsf{Edges}^* \, \big| \, \exists c \in \mathsf{Config} : st_q \overset{r}{\longrightarrow} c, \, \, \mathsf{At_u}(c) \, \right\} \\ & \text{for progam point u and procedure q} \\ \underline{P}(q) = \left\{ \begin{array}{ll} r \in \mathsf{Edges}^* \, \big| \, \exists c \in \mathsf{Config} : st_q \overset{r}{\longrightarrow} c \, \right\} \end{array} \right.
```

Reaching runs:

```
R(u,q) \supseteq S(u) u program point in procedure q R(u,q) \supseteq S(v) \cdot R(u,p) e = (v,p,\_) call edge R(u,q) \supseteq S(v) \cdot (R(u,p_i) \otimes P(p_{1-i})) e = (v,p_0 \mid | p_1,\_) parallel call edge, i = 0,1
```

Interleaving potential:

 $P(p) \supseteq R(u,p)$ u program point and p procedure

Interleaving- Operator ⊗ (Shuffle-Operator)

Example:

$$\langle a,b\rangle \otimes \langle x,y\rangle = \left\{ \begin{cases} \langle a,b,x,y\rangle \\ \langle a,x,b,y\rangle, \langle a,x,y,b\rangle \\ \langle x,a,b,y\rangle, \langle x,a,y,b\rangle, \langle x,y,a,b\rangle \end{cases} \right\}$$

Only new ingredient:

interleaving operator \otimes must be abstracted!

Case: Availability of Single Expression

Abstract shuffle operator:

⊗#	i	g	k
i	i	g	k
g	g	g	k
k	k	k	k

The lattice:

Main lemma:

lemma:
$$\forall f_j \in \{g, \mathbf{k}, i\}: \ \overrightarrow{f_n \circ ... \circ f_{j+1}} \circ \underbrace{f_j}_{\in \{g, \mathbf{k}\} \vee j=1} \circ ... \circ f_1 = f_j$$

Treat other (separable) bitvector problems analogously...

⇒ precise interprocedural analyses for all bitvector problems!

Bitvector Problems

Problem of this algorithm:

Complexity: quadratic in program size:

quadratically many constraints for reaching runs!

Solution: linear-time "search for killers"-algorithm.

Formalization of "Search for Killers"-Algorithm

Kill Potential:

```
KP(p) \supseteq T if p contains reachable edge e with f_e = k
KP(p) \supseteq KP(q) if p calls q, q \mid \mid _-, or _- \mid \mid q at some reachable edge
```

Possible Interference:

```
PI(p) \supseteq PI(q) if q contains reachable call to p PI(p_i) \supseteq PI(q) \sqcup KP(p_{i-j}) if q contains reachable parallel call p_0 || p_i, i = 0,1
```

Weaken data flow information in 2nd phase if killer can run in ||:

```
\begin{array}{lll} R^{\#}(st_{\mathit{Main}}) \; \boxminus \; & \mathit{init} & st_{\mathit{Main}} \; & \mathit{entry} \; \mathit{point} \; \mathit{of} \; \mathit{Main} \\ \\ R^{\#}(v) \; \; \sqsupset \; f_{e}(R^{\#}(u)) & e = (u,s,v) \; \mathit{basic} \; \mathit{edge} \\ \\ R^{\#}(v) \; \; \sqsupset \; S^{\#}(p)(R^{\#}(u)) & e = (u,p,v) \; \mathit{call} \; \mathit{edge} \\ \\ R^{\#}(st_{p}) \; \; \sqsupset \; R^{\#}(u) & e = (u,p,v) \; \mathit{call} \; \mathit{edge} \; , st_{p} \; \mathit{entry} \; \mathit{point} \; \mathit{of} \; p \\ \\ R^{\#}(v) \; \; \sqsupset \; PI(p) & v \; \mathit{reachable} \; \mathit{prg.} \; \mathit{point} \; \mathit{in} \; p \\ \end{array}
```

Beyond Bitvector-Analysis: Analysis of Transitive Dependences

- Analysis problem:
 - Is there an execution from u to v mediating a dependence from x to y?

```
• a:=x ... b:=a ... c:=b ... y:=c
```

- Anwendungen:
 - program slicing
 - faint-code-elimination
 - copy constants
 - information flow

Complexity Results

In parallel programs:

[MO/Seidl, STOC 2001]

analysis of transitive dependences is ...

- undecidable, interprocedurally
- PSPACE-complete, intraprocedurally
- already NP-complete for programs without loop

under assumption

"Basic statements are executed atomically"

Spring School on Security, Marseille, April 25-29, 2005

Analysis of Transitive Dependences in Parallel Programs

$$x := 1;$$

 $x := 0;$
 $a := 0;$
 $x := 0;$
 $x := 0;$
 $x := 0;$

Nevertheless: a is constantly 0!

Algorithmic Potential

In parallel programs:

[MO, TCS 2004]

• transitive dependences are computable (in exponential time), even interprocedurally, if (unrealistic) assumption

"Basic statements are executed atomically"

is abandoned!

Technique:

- a (complex) domain of "dependence traces"
- abstract operators ;[#] and ⊗[#] which are precise and correct abstractions of ; and ⊗ relative to a non-atomic semantics.

Spring School on Security, Marseille, April 25-29, 2005

Analysis of Transitive Dependences in Parallel Programs

atomic execution

non-atomic execution

$$a := x$$
 $x := 1;$
 $x := 0;$
 $a := 0;$
write(a)

$$p := x$$
 $x := 1;$ $x := 0;$ $a := 0;$ $write(a)$

a ist constantly 0!

a is not constantly 0!

Overview

- Introduction
- Fundamentals of Program Analysis
- Interprocedural Analysis
- Analysis of Parallel Programs
- Invariant Generation
- Conclusion

Spring School on Security, Marseille, April 25-29, 2005

Finding Invariants...

... through Linear Algebra

- Linear Algebra
 - vectors
 - vector spaces, sub-spaces, bases
 - linear maps, matrices
 - vector spaces of matrices
 - Gaussian elimination
 - ...

Spring School on Security, Marseille, April 25-29, 2005

Applications

- definite equalities: x = y
- constant propagation: x = 42
- discovery of symbolic constants: x = 5yz+17
- complex common subexpressions: $xy+42 = y^2+5$
- loop induction variables
- program verification!
- ..

A Program Abstraction

Affine programs:

- affine assignments: $x_1 := x_1 - 2x_3 + 7$
- unknown assignments: $X_i := ?$ abstract too complex statements!
- non-deterministic instead of guarded branching

Spring School on Security, Marseille, April 25-29, 2005

The Challenge

Given an affine program

(with procedures, parameters, local and global variables, ...) over R:

(R the field \mathbb{Q} or \mathbb{Z}_p , a modular ring \mathbb{Z}_m the ring of integers \mathbb{Z} , an effective PIR,...)

determine all valid affine relations:

 $a_0 + \sum a_i x_i = 0$

5x+7y-42=0

determine all valid polynomial relations (of degree \leq d):

 $p(x_1,...,x_k) = 0$ $p \in R[x_1,...,x_n]$

 $5xy^2+7z^3-42=0$

... and all this in polynomial time (unit cost measure) !!!

Finding Invariants in Affine Programs

Intraprocedural:

• [Karr 76]: affine relations over fields

[Granger 91]: affine congruence relations over Z

• [Gulwani/Necula 03]: affine relations over random \mathbb{Z}_p , p prime

[MO/Seidl 04]: polynomial relations over fields

Interprocedural:

• [Horwitz/Reps/Sagiv 96]: linear constants

[MO/Seidl 04]: polynomial relations over fields

• [Gulwani/Necula 05]: affine relations over random \mathbb{Z}_p , p prime

• [MO/Seidl 05]: polynomial relations over modular rings \mathbb{Z}_m $m \in \mathbb{Z}$

and PIRs

Use a Standard Approach for Interprocedural Generalization of Karr?

Functional approach [Sharir/Pnueli, 1981], [Knoop/Steffen, 1992]

- Idea: summarize each procedure by function on data flow facts
- Problem: not applicable

Call-string approach [Sharir/Pnueli, 1981]

- Idea: take just a finite piece of run-time stack into account
- Problem: not exact

Relational analysis [Cousot², 1977]

- Idea: summarize each procedure by approximation of I/O relation
- Problem: not exact (next slide)

Spring School on Security, Marseille, April 25-29, 2005

Relational Analysis is Not Strong Enough

True relational semantics of P:

Best affine approximation:

Towards the Algorithm ...

Concrete Semantics of an Execution Path

• Every execution path π induces an **affine transformation** of the program state:

$$[[x_{1} := x_{1} + x_{2} + 1; x_{3} := x_{3} + 1]](v)$$

$$= [[x_{3} := x_{3} + 1]]([[x_{1} := x_{1} + x_{2} + 1]](v))$$

$$= [[x_{3} := x_{3} + 1]]([[x_{1} := x_{1} + x_{2} + 1]](v))$$

$$= [[x_{3} := x_{3} + 1]]([[x_{1} := x_{1} + x_{2} + 1]](v))$$

$$= ([x_{1} := x_{3} + 1]]([x_{1} := x_{1} + x_{2} + 1]](v)$$

$$= ([x_{1} := x_{3} + 1]]([x_{1} := x_{1} + x_{2} + 1]](v)$$

$$= ([x_{1} := x_{3} + 1]]([x_{1} := x_{1} + x_{2} + 1]](v)$$

$$= ([x_{1} := x_{3} + 1]]([x_{1} := x_{1} + x_{2} + 1]](v)$$

$$= ([x_{1} := x_{3} + 1]]([x_{1} := x_{1} + x_{2} + 1]](v)$$

$$= ([x_{1} := x_{3} + 1]]([x_{1} := x_{1} + x_{2} + 1]](v)$$

$$= ([x_{1} := x_{3} + 1]]([x_{1} := x_{1} + x_{2} + 1]](v)$$

$$= ([x_{1} := x_{3} + 1]]([x_{1} := x_{1} + x_{2} + 1]](v)$$

$$= ([x_{1} := x_{3} + 1]]([x_{1} := x_{1} + x_{2} + 1]](v)$$

Affine Relations

• An affine relation can be viewed as a vector:

$$5 + x_1 - 2x_2 - x_3 = 0 \quad \text{corresponds to} \quad a = \begin{pmatrix} 5 \\ 1 \\ -2 \\ -1 \end{pmatrix}$$

WP of Affine Relations

• Every execution path π induces a linear transformation of affine post-conditions into their weakest pre-conditions:

$$\begin{bmatrix} x_1 := x_1 + x_2 + 1; & x_3 := x_3 + 1 \end{bmatrix}^T (a)
= \begin{bmatrix} x_1 := x_1 + x_2 + 1 \end{bmatrix}^T ([[x_3 := x_3 + 1]]^T (a))
= \begin{bmatrix} x_1 := x_1 + x_2 + 1 \end{bmatrix}^T \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

Observations

• Only the zero relation is valid at program start:

0:
$$0+0x_1+...+0x_k=0$$

• Thus, relation $a_0+a_1x_1+...+a_kx_k=0$ is valid at program point v

iff

 $M a = \mathbf{0}$ for all $M \in \{ \llbracket \pi \rrbracket^T \mid \pi \text{ reaches } v \}$

 $M a = \mathbf{0}$ for all $M \in Span \{ \llbracket \pi \rrbracket^T \mid \pi \text{ reaches } v \}$

 $Ma = \mathbf{0}$ for all M in a generating system of $Span\{ [\![\pi]\!]^T \mid \pi \text{ reaches } v \}$

- Matrices M form the R-module $R^{(k+1)\times(k+1)}$.
- Sub-modules form a complete lattice of height $O(w \cdot k^2)$.

Algorithm for Computing Affine Relations

1) Compute a generating system *G* with:

Span $G = \text{Span } \{ \llbracket \pi \rrbracket^\mathsf{T} \mid \pi \text{ reaches } v \}$

by a precise abstract interpretation.

2) Solve the linear equation system:

Ma = 0 for all $M \in G$

- ⇒ Need algorithms for:
 - 1) Keeping generating systems in echelon form.
 - 2) Solving (homogeneous) linear equation systems.

.

Theorem

- 1) The R-modules of matrices Span $\{ [\![\pi]\!]^T \mid \pi \text{ reaches } v \}$ can be computed using arithmetic in R.
- 2) The R-modules $\{a \in \mathbb{R}^{k+1} \mid \text{affine relation } a \text{ is valid at } v\}$ can be computed using arithmetic in R.
- 3) The time complexity is linear in the program size and polynomial in the number of variables (unit cost measure!):

e.g.
$$\mathcal{O}(n \cdot k^8)$$
 for $R=\mathbb{Q}$

(n size of the program, k number of variables)

 We do not know how to avoid exponential growth of number sizes in interprocedural analysis for R ∈ {ℚ,ℤ}.
 However: we can avoid exponential growth in intra-procedural algorithms!

Extensions

- Local variables, value parameters, return values
- Computing polynomial relations of degree ≤ d
- Affine pre-conditions

Precise Analysis through Algebra

- Algebra
 - Polynomial rings, ideals, Gröbner bases, ...
 - Hilbert's Basis Theorem ensures termination.
- Polynomial programs (over Q):
 - Polynomial assignments: x := xy − 5z
 - Negated polynomial guards: $\neg (xy 3z = 0)$
 - The rest as for affine programs!
- Intraprocedural computation of "polynomial constants"

[MO/Seidl 2002]

 Intraprocedural derivation of all valid polynomial relations of degree ≤ d [MO/Seidl 2003]

A Polynomial Program

After *n* iterations at 2:

$$x = \sum_{i=0}^{n} q^{i} = \frac{q^{n+1} - 1}{q - 1} \quad \text{(Horner's method)}$$

$$y = q^{n+1}$$

$$\Rightarrow \quad x \cdot (q - 1) = y - 1$$

$$\Rightarrow \quad x \cdot q - x - y + 1 = 0$$

At 3:

$$x-y+1=0$$

Computing Polynomial Relations

Conclusion

- Program analysis very broad topic
- Provides generic analysis techniques
- Some topics not covered:
 - Analyzing pointers and heap structures
 - Automata-theoretic methods
 - (Software) model checking
 - ...

