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Auf der Suche nach Strukturen komplexer Phänomene

Volkhard Nordmeier, H.-Joachim Schlichting
Universität Essen

Es kann nicht mehr darum gehen,
ins Innere der Dinge einzudringen, sondern darum,
ihre FINITEN Erscheinungsformen zu erschließen,
das heißt, ihre wahrnehmbaren, greifbaren
- oder zählbaren Formen.

                                                   Paul Valéry

Komplexe Signale

Der Mensch wird tagtäglich mit einer Vielzahl an Wahrnehmungen konfrontiert und reagiert
ständig auf Reize verschiedenster Herkunft. Viele der Signale können wir dabei ohne Schwierig-
keiten erfassen: ein Gespräch mit dem Nachbarn, der Brief eines alten Bekannten, die Nachrich-
tensendung im Radio oder die Reportage in der Zeitung. Aber ebenso existieren eine Vielzahl
von Signalen aus Natur und Technik, die uns fremdartig oder unverständlich, ja sogar rein zufäl-
lig erscheinen: ein Buch oder eine Zeitung in fremder Sprache, der Gesang eines Vogels oder
eines Pottwals, das nächtliche Rauschen eines Fernsehgerätes oder das Piepsen eines versehent-
lich angerufenen Faxgerätes, die Fehlermeldungen einer unbekannten Computeroberfläche, das
Plätschern eines Baches oder das Rascheln der Blätter eines Baumes.
Diese Signale haben eines gemeinsam: Sie sind komplex und für uns zunächst unverständlich, so
daß wir sie oftmals sogar als zufällig bzw. stochastisch oder einfach als Rauschen bezeichnen.
Trotzdem läßt sich die Komplexität in vielen Fällen insofern reduzieren, als beispielsweise aus
dem Gesang des Vogels eine Nachtigall und aus dem Rascheln der Blätter eine Pappel erkannt
werden kann. Eine derartige Entscheidung fällt allerdings nicht immer so leicht. Manche für uns
unbekannte Signale enthalten weder eine erkennbare Regelmäßigkeit noch einen Hinweis auf
ihre Herkunft.
Wir wollen daher im folgenden der Frage nachgehen, in wie weit beliebigen komplexen Signalen
'anzusehen' ist, ob sie einen rein zufälligen Charakter besitzen oder von einem i.e.S. sinnvoll
agierenden System ausgehen bzw. einen deterministischen Ursprung haben. Dabei wird es vor
allem darum gehen, in den komplexen Signalen gestalthafte Zusammenhänge bzw. morphologi-
sche Muster zu erkennen. Das aus der klassischen Physik vertraute Aufdecken funktionaler Zu-
sammenhänge spielt hier eine untergeordnete Rolle.

Wie mißt man Komplexität ?

Bei der Erfassung und Charakterisierung komplexer Phänomene spielen typische Äußerungen
(Signale) der zugrundeliegenden Systeme eine wesentliche Rolle. Oft zeigen die aus experimen-
tellen Untersuchungen ermittelten Zeitserien von Meßdaten ein derart irreguläres bzw. komple-
xes Verhalten, daß der Unterscheidung von Signalen, die von einem deterministischen System
herrühren und solchen, die rein zufälliger Natur sind, eine besondere Bedeutung zukommt. Läßt
sich einem solchen Signal eine deterministische (chaotische) Herkunft nachweisen, so kann ver-
sucht werden, aus dem ermittelten zeitlichen Verhalten der Meßgröße ein Modell zur mathemati-
schen bzw. physikalischen Beschreibung des Systems zu erstellen.
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Dabei geht man von dem überraschenden Befund der Chaosphysik aus, daß extrem einfache Sy-
steme, also solche, die mit sehr wenigen - allerdings nichtlinearen - Differentialgleichungen be-
schrieben werden, zu völlig irregulärem chaotischen Verhalten in der Lage sind, das sich auf den
ersten Blick nicht von stochastischem Verhalten zu unterscheiden scheint.
Sollte es nun umgekehrt gelingen, unbekannten irregulären Signalen 'anzusehen', daß sie von
derart einfachen Systemen herrühren (ohne die Systeme im einzelnen kennen zu müssen), so
hätte man ein Verfahren zur Unterscheidung von stochastischen und chaotischen Signalen zur
Hand.
Ein derartiges Verfahren soll im weiteren vorgestellt werden. Mit ihm gelingt es, den 'Grad an
Komplexität' von verschiedenen irregulären Signalen zu bestimmen.
Stochastisches Verhalten ist rein zufällig und in sofern völlig uninteressant, als man darüber
nichts anderes sagen kann, als was es selbst offenbart. Chaotisches Verhalten ist zwar ebenfalls
irregulär und vom Zufall bestimmt, weist aber gewisse zeitliche Korrelationen (d.h. Zusammen-
hänge zwischen aufeinanderfolgenden Meßpunkten) auf, wenn auch - anders als bei klassisch
deterministischem Vorgängen - nur mehr oder weniger stark begrenzt.
Die zeitlichen und räumlichen 'Strukturen' komplexer Systeme werden im Rahmen der nichtli-
nearen Physik seit etwa zwei Jahrzehnten mit Hilfe neuer Theorien und Methoden erforscht. Die
auf diesem Gebiet sehr erfolgreiche Chaosforschung versucht dabei u.a., Gesetzmäßigkeiten auf-
zuspüren, die in den komplexen Signalen verborgen sind.
Chaotische Systeme zeigen insbesondere sensitive Abhängigkeit der Langzeitentwicklung von
den Anfangsbedingungen. Obwohl beispielsweise die Gesetze der klassischen Mechanik es er-
lauben würden, die Bahn einer Kugel beim Roulette-Spiel exakt zu beschreiben, so kommt es
doch zu einer Selbstverstärkung der Ungenauigkeiten in den Anfangsbedingungen, die das Spie-
lergebnis als zufällig erscheinen lassen.1 Ein Ziel der Chaosforschung ist die Entwicklung geeig-
neter Methoden und Verfahren, die es erlauben, das globale Verhalten unabhängig von der
Kenntnis der Anfangsbedingungen zu beschreiben.
Der Theorie der Fraktale kommt dabei eine besondere Bedeutung zu: Ein zeitlich irregulär er-
scheinendes Signal wird in ein geometrisches Objekt umgewandelt. Eingebettet in einen mehr-
dimensionalen Zustandsraum kann es ggf. erstaunlich geordnete Strukturen zeigen und mittels
geeigneter Kenngrößen wie beispielsweise der fraktalen Dimension charakterisiert werden.

Fourieranalyse, Leistungsspektrum und Autokorrelation

Auf der Suche nach mathematisch-physikalischen Werkzeugen zur Analyse von Zeitreihen stößt
man auf zwei 'klassische' Methoden, das Leistungsspektrum und die Autokorrelationsfunktion,
die zudem mathematisch (Wiener-Khintchine-Theorem) miteinander verknüpft sind (siehe [3]).
Bei der Betrachtung des Zeitverlaufs eines Meßsignals erscheint es zunächst einfach, zwischen
regulärem und irregulärem Verhalten zu unterscheiden. Stößt man auf ein irreguläres Signal,
ergibt sich allerdings das Problem, nachzuweisen, ob es sich dabei um einen Einschwingvorgang,
eine reguläre Bewegung mit sehr langer Periode, ein quasiperiodisches oder gar einen chaoti-
schen Vorgang handelt.
Durch Auswertung einer Zeitmeßreihe mit der Fourieranalyse kann dabei als erster Schritt regu-
läres und irreguläres Verhalten unterschieden werden: Ein diskretes Leistungsspektrum kann als

                                                          
1 Das Roulette, "Würfel"-Spiele und auch das klassische Magnetpendel stellen im eigenlichen Sinne
gar keine dynamischen Sytem dar: ohne äußeren Antrieb kommen derartige Systeme aufgrund von
Reibung schnell zur Ruhe - sie besitzen einen (im fraktalen Sinne) null-dimensionalen Fixpunkt-
Attraktor. Das 'Verhalten' dieser Systeme beschränkt sich auf einen Einschwingvorgang (transientes
Chaos) in die Ruhelage.
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charakteristisch für ein periodisches oder
quasiperiodisches Signal angesehen wer-
den. Ein kontinuierliches Leistungsspek-
trum weist auf irreguläres Verhalten hin.
Bis heute ist jedoch noch kein Verfahren
bekannt, das es erlaubt, aus einem Lei-
stungsspektrum direkt abzulesen, ob eine
stochastische Anregung oder die nichtli-
neare Charakteristik eines deterministi-
schen Systems als Ursache für das irregu-
läre Verhalten in Frage kommt. Das Lei-
stungsspektrum gibt uns allerdings Infor-
mationen über den Grad an Korreliertheit
bzw. 'Zufälligkeit' der betrachteten Daten.
Verhält sich der analysierte Datensatz im

Leistungsspektrum wie ein weißes Rauschen, bedeutet dies eine völlige Unkorreliertheit des Si-
gnals; und die Interpretation des untersuchten Signals als eine Zufallsfolge von Ereignissen liegt
nahe.
Zeigt das Leistungsspektrum andere Arten von Korrelationen (etwa ein sog. 1/f -Verhalten, das
viele natürliche Systeme kennzeichnet (vgl. Abb.1, aus [3]), so neigt man dazu, als Ursprung des
Signals ein deterministisches (chaotisches), d.h. ein i.e.S. sinnvoll agierendes, System anzuneh-
men. Allerdings können u.U. auch numerisch erzeugte Zufallsreihen ein 1/f -Verhalten aufweisen
[4]. Daher kann das Leistungsspektrum nur als ein erster Schritt auf dem Wege der Analyse eines
unbekannten, irregulären Signals dienen.

Die Autokorrelationsfunktion erfaßt demgegenüber direkt die zeitliche Korrelation einer Zeitrei-
he bzw. Funktion mit sich selbst: Es wird jeweils der Zusammenhang ein und derselben Meß-
größe zu verschiedenen Zeitpunkten t und t+τ untersucht und als eine Funktion der Differenz τ
dargestellt. Diese Funktion spiegelt so gesehen das 'Erinnerungsvermögen' des Systems wieder:
Besteht die Autokorrelationsfunktion aus nur einer einzigen 'Spitze' bei τ = 0 und verschwindet
sie für alle anderen τ -Werte, so läßt sich die analysierte Meßreihe auf vollkommen zufälliges,
stochastisches Verhalten zu-
rückführen. Es besteht von
Anfang an keinerlei Zusam-
menhang zwischen dem Signal
zum Zeitpunkt t und irgendei-
nem späteren Zeitpunkt t+τ
(Abb.2.a). In der Praxis ergibt
sich als Autokorrelationsfunk-
tion eines irregulären Signals
allerdings eine kontinuierliche
Funktion, die mehr oder weni-
ger schnell auf Funktionswerte
um Null abklingt - eine ein-
deutige Interpretation des Da-
tensatzes bleibt schwierig,
wenn nicht unmöglich (vgl.
Abb.2.b u. 2.c, aus [3]). Aller-
dings gilt hier: Je 'schneller' die
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Funktion abfällt, desto weniger innere Zusammenhänge existieren innerhalb des Signals, desto
näher liegt die Interpretation als eine Zufallsfolge. Eine eindeutige Unterscheidung zwischen rein
zufälligen und deterministisch-chaotischen Signalen ist daher auch mit diesem Analyseverfahren
nicht immer möglich.

Trajektorien - Bahnen im Zustandsraum

Betrachten wir ein komplexes System, so kann der jeweilige Zustand zur Zeit t durch einen Satz
von zeitabhängigen Parametern bzw. Variablen x(t), y(t), ... beschrieben werden. Man kann die-
sen Satz von Zustandsvariablen auch als einen Zustandsvektor darstellen:

r
KX x t y t= ( ), ( ),b g

Jeder Zustand des Systems läßt sich in dem durch diese Zustandsvektoren aufgespannten mehr-
dimensionalen Vektorraum eindeutig darstellen. Er entspricht jeweils einem Punkt im Zustands-
raum. Für das Aufspannen eines Zustandsraumes ist es daher notwendig, alle beschreibenden
Variablen des Systems gleichzeitig zu kennen. Die zeitliche Veränderung des Systemzustandes
ergibt sich dann als eine Punktfolge von Zuständen, aus denen sich Kurven ergeben, die soge-
nannten Trajektorien. Die Variablen werden also nicht mehr über der Zeit, sondern quasi zeitver-
setzt gegeneinander aufgetragen: Aus der Zeitserie entsteht eine geometrische Punktfolge. Ein
gedanklicher Spaziergang längs einer solchen Trajektorie im Zustandsraum ließe die zeitliche
Abfolge des Signals erkennen.
Der eigentliche Vorteil der Darstellung eines Signals in einem Zustandsraum erweist sich vor
allem bei chaotischen Systemen: Die Trajektorien dissipativer dynamischer Systeme, zu denen
i.a.  auch natürliche Systeme gezählt werden2, laufen auf einen Attraktor zu und bleiben auf ihm.
Im Falle einer chaotischen Dynamik führt dies i.a. zu seltsamen Attraktoren, fraktalen Gebilden
im Zustandsraum, die sehr komplizierte aber zugleich geordnet erscheinende geometrische For-
men annehmen können. Ihre innere Ordnung wird dann offenbar, wenn man sie beispielsweise
mit den diffusen 'Punktwolken' vergleicht, die bei der entsprechenden Darstellung stochastischer
Prozesse entstehen (vgl. Abb.6). Eine Untersuchung der geometrischen Strukturen des Attraktors
sollte daher auch Aufschluß über das Systemverhalten geben.
Leider verfügt man i.a. nicht über die Kenntnis aller Variablen. In vielen Fällen liegt sogar nur
die Zeitserie einer Variablen vor. Aber auch in diesen Fällen ist die Methode der Zustands-
raumdarstellung anwendbar, da aufgrund der nichtlinearen Kopplung der Variablen sich das
Verhalten jeder Variablen in jeder anderen widerspiegelt. Man gewinnt die fehlenden Variablen
entweder durch die zeitlichen Ableitungen &( ), &&( ),x t x t K 3 oder die sogenannten Delay-Variablen
(s.u.).

Rekonstruktion eines Zustandsraumes

Die Schwankungen in den Meßgrößen eines Signals enthalten Informationen über die wechsel-
wirkenden Prozesse und über die inneren Kopplungen des Systems. Insbesondere kann man da-

                                                          
2 Die folgenden Betrachtungen beziehen sich daher immer auf dissipative Systeme.
3 Diese Darstellung heißt dann auch Phasenraumportrait oder -darstellung.
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von ausgehen, daß auch eine Verknüpfung der Variablen untereinander besteht. Ein Parameter
wird sich nicht unabhängig von der Dynamik eines anderen verhalten, jede Variable enthält auf-
grund der Wechselwirkung bzw. gegenseitiger (physikalischer) Beeinflussung mit den übrigen
Variablen Informationen über die Gesamtdynamik des Systems.
Bereits im Jahre 1981 hat der Mathematiker F. Takens [1] ein Theorem aufgestellt und bewiesen,
das besagt, daß sich im Prinzip aus der genauen Kenntnis einer einzelnen der beschreibenden
Variablen Informationen über das gesamte System gewinnen läßt.4

So entwickelten sich in den letzten zehn Jahren Verfahren zur Rekonstruktion eines künstlichen
Zustandsraumes ([2],[5]) die bei der Messung von nur einer Variablen die Darstellung und Ent-
wicklung einer Pseudo-Trajektorie ermöglichen. Als besonders erfolgreich hat sich die Einfüh-
rung von Delay- bzw. zeitverzögerten Variablen erwiesen.
Die zeitliche Entwicklung einer einzelnen Reihe von Meßwerten einer einzigen Variablen er-
möglicht die Konstruktion eines Zustandsvektors: Aus einem einzigen Zeitsignal werden die
'höheren' Variablen aus zeitverschobenen Meßwerten des originalen Signals erzeugt. Der folgen-
de Algorithmus soll dieses Verfahren anhand der Rekonstruktion eines drei-dimesionalen Zu-
standsraumes verdeutlichen:

1. Gegeben sei eine Meßreihe von n (äquidistanten) Meßwerten x(t1),...,x(tn).

2. Einführung von Delay-Variablen:

x x t y x t z x ti i i i i i= = + = + ⋅( ), ( ), ( ).      τ τ2

Der Zustandsvektor 
r
X i  steht dann für einen Punkt im Zustandsraum mit den

Koordinaten (xi, yi, zi) bzw.:

r
X x y zi i i i= , ,b g

 3. Rekonstruktion eines 3-dimensionalen Zustandsraumes aus den Zeitreihen
der drei 'neuen' Variablen:

x t x t x tn( ) ( ), , ( ) :  1 K

x t x t x tn( ) ( ), , ( ) :  1 + +τ τK

x t x t x tn( ) ( ), , ( ) :  1 2 2+ ⋅ + ⋅τ τK

Es handelt sich bei diesem Verfahren zur Gewinnung weiterer Variablen lediglich um eine Ver-
schiebung der Meßwerte um ein festes Zeitintervall τ.
Dies soll im folgenden an einem Beispiel erläutert werden: Der Attraktor einer harmonischen
(ungedämfpten) Schwingung (z.B. die Bewegung eines Massepunktes an einem (linearen) Fe-
derpendel) läßt sich in einem zwei-dimensionalen Phasenraum (die beschreibenen Variablen
seien der Ort x und die Geschwindigkeit v) im Idealfall als Kreis darstellen. Es sei nun experi-
mentell nur möglich, eine der beiden Variablen meßtechnisch zu erfassen, beispielsweise den Ort

                                                          
4 Eine solche Meßgröße sollte genügend genau ( )∆t → 0  und lang ( )t → ∞  aufgenommen werden.

In der praktischen Anwendung dieser Idee werden allerdings geringere Anforderungen an das Daten-
material gestellt.
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x(t): Die gemessene Zeitserie könnte dann in der Form x t t( ) sin( )= ω  angeben werden. Versucht
man jetzt, aus diesem Signal einen Pseudo-Zustandsraum zu rekonstruieren, indem x(t) gegen
x(t+τ) aufgetragen wird, so gelingt bei geeigneter Wahl von τ sogar eine exakte Rekonstruktion:
Wird die Verzögerungszeit τ so gewählt, daß sie einem Viertel der Schwingungsperiode TC ent-
spricht5, so gilt:

x t t t t TC( ) sin sin sin+ = + = + = +τ ω τ ω ωτ ω ωb gc h b g b gc h1
4

Mit ω π= 2

TC

 ergibt sich dann:

x t t t v( ) sin cos+ = + = =τ ω π ω1
2b g bg .

Wählt man in diesem Beispiel eine andere Verzögerungszeit τ, so ergeben sich für fast alle τ im
rekonstruierten Zustandsraum mehr oder weniger 'schöne' Ellipsen (lediglich für ganzzahlige
Vielfache von π entarten die Ellipsen). Die Struktur des rekonstruierten Attraktors (d.h. seine
topologischen Eigenschaften) ist in diesem Fall offensichtlich weitgehend unabhängig von der
Wahl der Verzögerungszeit.
Während die Zusammenhänge bei diesem einfachen Beispiel leicht einsichtig gemacht werden
können, sind die Verhältnisse bei chaotischen Attraktoren sehr viel komplizierter und anschau-
lich nicht so leicht zugänglich. Eine wichtige Voraussetzung für die erfolgreiche Rekonstruktion
von Zustandsräumen stellt die Erhaltung der topologischen Strukturen der Attraktoren dar; so
dürfen sich beispielsweise die Trajektorien auch im Pseudo-Zustandsraum nicht schneiden.
Obwohl das Verfahren der Rekonstruktion in vielerlei Hinsicht willkürlich erscheint, zeigt es
sich doch, daß bei der Wahl eines ausreichend großen Zustandsraumes die topologischen Eigen-
schaften der Pseudo-Trajektorien mit denen im Original-Zustandsraum i.a. stark korreliert sind,
ja sogar prinzipiell 'gleichwertig' sind: Dies bedeutet, daß bei der Rekonstruktion die geometri-
schen Invarianten der Dynamik, wie z.B. die fraktale Dimension oder die Lyapunov-Exponenten,
mit Sicherheit dann erhalten bleiben, wenn die Dimension des Zustandsraumes entsprechend
groß gewählt wird (vgl. [1], [5]).
Die Güte dieses Rekonstruktionsverfahren hängt nun im allgemeinen allerdings auch von der
Wahl von τ ab. Zur Bestimmung einer optimalen Delay-Zeit wurden daher verschiedenste Ver-
fahren entwickelt (vgl. [5],[6.]). Als eine günstige Wahl der Verzögerungszeit erweist sich bei-
spielsweise der Zeitwert, bei dem die Autokorrelationsfunktion ihr erstes Minimum oder ihre
erste Nullstelle besitzt.

Informationen aus dem Zustandsraum
Im Abstrakten ereignet sich heute das Wesentliche.

Robert Musil

Die Betrachtung eines Attraktors im Zustandsraum läßt Korrelationen erkennen, die allein mit
Hilfe der oben beschriebenen Methoden der Signalanalyse mittels Leistungsspektrum und Auto-
korrelationsfunktion nicht auffindbar wären. Die Attraktor-Darstellung im Zustandsraum gibt
uns somit weitere, wertvolle Informationen über die Herkunft des untersuchten Signals.

Im folgenden soll nun die 'praktische' Anwendung des oben skizzierten Algorithmus zur Rekon-
struktion eines Zustandsraumes anhand eines weiteren Beispiels gezeigt werden.
Gegeben sei eine Reihe von Meßwerten (aus Abb.3.) :

                                                          
5 Auch für komplizierte Zeitreihen hat es sich bewährt, als Delay-Zeit einen Bruchteil einer kleinsten
charakteristischen Periode TC  zu wählen.



7

x(t) :   16.8,   16.1,   13.2,   9.2,   5.1,   1.5,   -1.3,   . . .

Wählen wir als Verzögerungs-Zeit beispielsweise τ = ⋅2 ∆t , so können zur Rekonstruktion des
dreidimensionalen Pseudo-Zustandsraumes aus obiger Meßreihe sukzessive eine Reihe entspre-
chend zeitverzögerter Zustandsvektoren gebildet werden: Zu jedem x(t)-Wert wird der jeweils
zweite der folgenden Meßwerte als y(t)-Wert und jeder vierte der nachfolgenden Meßwerte als
z(t)-Wert zugeordnet und dann jeweils zu einem dreier-Tupel zusammengeschlossen.

 Anhand dieses Verfahrens gewinnt man eine Reihe von Vektoren :

r
X1 = (16.8, 13.2,  5.1),
r
X 2 = (16.1,   9.2,  1.5),
r
X3 = (13.2,  5.1, -1.3),

. . .

Werden diese Pseudo-Zustandsvektoren der Reihe nach in einen dreidimensionalen Zustands-
raum eingebettet (Abb.4), so entsteht ein im geometrischen Sinne räumlich orientiertes Gebilde,
eine im Raum leicht gekrümmte Linie, eine Pseudo-Trajektorie. Überläßt man die Bildung der-
artiger Zustandsvektoren bzw. Trajektorien dem Computer, so können binnen kürzester Zeit auch
längere (eindimensionale) Datenreihen 'geometrisiert' werden: Die aus der Zeitreihe aus Abb.3
rekonstruierten Trajektorien laufen schnell auf ein kompaktes Gebilde im 3D-Raum zu, dem
sogenannten Lorenz-Attraktor (Abb.5).
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Spätestens jetzt stellt sich die Frage nach der Herkunft obiger Zeitreihe: Dieser Datensatz wurde
bei Simulationen zur Dynamik des Lorenz-Systems (ein System von drei gekoppelten Differenti-
algleichungen, vgl. [7]) gewonnen. Zur Erstellung von Abb.3 wurden die numerisch berechneten
Werte der X-Komponente (inkl.. 'Einschwingvorgang', vgl.Abb. 4 u. 5) gespeichert.
Während bei der Simulation des Lorenz-Systems drei Differentialgleichung integriert werden
müssen, um die geometrische Gestalt des Lorenz-Attraktors sichtbar zu machen, reicht bei dem
hier vorgestellten Verfahren die Kenntnis der Dynamik von nur einer Zustandsvariablen zur er-
folgreichen Rekonstruktion des Attraktors aus (s.o.).
Für die experimentelle Erforschung unbekannter Systeme oder solchen, deren Variablen nur un-
vollständig zugänglich sind, eröffnen sich mit Hilfe dieses Rekonstruktionsverfahren neue Mög-
lichkeiten der Aufnahme und Weiterverarbeitung von Meßsignalen, da gerade bei komplexen
Systemen oftmals nur eine relevante Zustandsgröße meßtechnisch erfaßbar ist (vgl.[7]).

Attraktoren - Fraktale im Zustandsraum

Habe ich zu viele Fäden in meinem Knäul verflochten ?
An welchem muß ich ziehen, um einen vernünftigen
Schluß in die Hand zu bekommen ?

                                             Italo Calvino

Wählt man den hier beschriebenen Weg der Zeit-
reihenanalyse und erzeugt aus einem gemesse-
nen Datensatz eine entsprechende Trajektorie im
rekonstruierten Zustandsraum, so entsteht aus
dem ehemals irregulären Zeitsignal mit determi-
nistisch-chaotischer Herkunft ein kompaktes,
geordnetes geometrisches Objekt, das zudem
einen ganz bestimmten und räumlich begrenzten
Bereich des Zustandsraumes6 belegt (Abb.3). Im
Vergleich dazu ergibt sich bei der Analyse einer
Folge von Zufallszahlen eine diffuse Wolke von
Zustandsvektoren, die rekonstruierte Trajektorie
füllt in einer wild gezackten 'Kurve' (fast) den
gesamten Einbettungsraum aus (Abb.6).
Die unterschiedliche Herkunft der Zeitreihen manifestiert sich hier in einem sehr verschiedenar-
tigen Erscheinungsbild im Zustandsraum - die inneren Korrelationen eines determinstisch-
chaotischen Signals erzwingen eine Art 'Agglomeration' der Trajektorien, sie erzeugen ein geo-
metrisch-geordnetes Gebilde, den Attraktor.
Wenn wir hier von den geometrisch 'sichtbaren' Strukturen von Attraktoren in zwei- oder drei-
dimensionalen euklidischen Räumen sprechen, so können die gezeigten Überlegungen natürlich
auch auf höherdimensionale Zustandsräume übertragen werden. Insbesondere lassen sich auch
dann die 'chaotischen' Strukturen anhand einer Projektion der Trajektorien auf niedrigdimensio-
nale Unterräume visualisieren.

                                                          
6 Den (euklidischen) N-dimensionalen Zustandsraum, in dem der Attraktor eingebettet wird, nennt man
auch Einbettungsraum und entsprechend N seine Einbettungsdimension. Zur Bestimung einer optima-
len Einbettungsdimension (s.u.) sind gerade in den letzten Jahren eine Vielzahl neuer Verfahren ent-
wickelt worden. Eine allgemein zufriedenstellende Lösung dieses Problems existiert allerdings bis
heute nicht (vgl.[6]).
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Abb.6: 2D-Zustandsraum einer Reihe von
Zufallszahlen (500 Werte)
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Hat man einen chaotischen Attraktor erfolgreich rekonstruiert, so kann dessen fraktale Dimensi-
on berechnet werden. Die fraktal-geometrische Maßzahl, die insbesondere räumliche Korrelatio-
nen bzw. Dichteverteilungen von chaotischen Attraktoren mathematisch erfaßbar macht, ist die
Korrelationsdimension.
Da die fraktale Dimension nicht unabhängig vom gewählten Einbettungsraum ist, wird zur ihrer
praktischen Berechnung oftmals ein von Grassberger und Procaccia [8] vorgeschlagenes analyti-
sches Verfahren verwendet, indem quasi gleichzeitig die fraktale Dimension und die optimale
Einbettungsdimension7 (s.o.) des Attraktors ermittelt werden.

Bestimmung der Attraktordimension
Um die räumlichen Korrelationen von n Punkten eines Attraktor quantitativ zu erfassen, stellen
wir uns zunächst die Frage nach der Wahrscheinlichkeit, daß zwei beliebig aus der Datenmenge

herausgegriffene Vektoren 
r
X j  und 

r
X k  einen Abstand voneinander haben, der kleiner ist als eine

vorgegebene Zahl r. Hierzu muß man unter den n n⋅ −( )1  möglichen Kombinationen
r r r r

K
r r

X X X X X Xn n1 2 1 3 1, , , , , ,d id i d i− , die jeweils mit der Wahrscheinlichkeit 
1

2n
 angetroffen wer-

den,

diejenigen auswählen, die die Bedingung 
r r
X X rj k− <  erfüllen. Bezeichnet man diese Wahr-

scheinlichkeit mit C(r), so ergibt sich:

C r
n

X X X X r j kj k j k8
1

2
) ,= × − < ≠Anzahl der Paare  mit                         

r r r rd io t b g

Formal kann man diese Beziehung mit Hilfe der sog. Heaviside-Funktion Θ beschreiben:

C r
n

r X Xj k
j k

n

( )
,

= − −∑1
2

Θ
r re j

mit     
falls 

falls 
Θ( )

,

.
x

x

x
=

>
≤

RST
1 0

0 0

Die Größe C(r) kann daher auch
als ein Maß dafür angesehen
werden, wie dicht die Daten-
punkte des Attraktors den Zu-
standsraum belegen, in dem sie
eingebettet sind (vgl. Abb.7); sie
macht eine Aussage über räumli-
che Korrelationen eines Attrak-
tors und wird daher auch als
Korrelationsintegral bzw. -
summe bezeichnet.
                                                          

7 Der optimale Einbettungsraum muß gerade so groß sein, daß sich die Trajektorien des rekonstruierten
Attraktors 'überschneidungsfrei' einbetten lassen.

Abb.7: Zur Bestimmung des Korrelationsintegrals werden alle be-
nachbarten Punkte in einer definierten Umgebung eines Referenz-

punktes ausgezählt.
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Bei der praktischen Bestimmung dieser Korrelationssumme genügt es, auf eine zufällig verteilte
Auswahl von nur m (m<<n) Referenzvektoren zu stützen (<10% des Datensatzes, vgl. [5]), es
ergibt sich dann:

C r
m n

r X X
j

m

j k
k

n

( ) ≈
⋅

− −
= =

∑ ∑1

1 1

Θ
r re j

Handelt es bei dem mittels diesem Verfahren analysierten Datensatz um ein deterministisch-
chaotisches Signal, das sich im Zustandsraum als fraktaler Attraktor darstellt, so verhält sich bei
genügend großer Anzahl von Meßwerten das Korrelationsintegral C(r) für kleine r-Werte wie
C(r)∼  rD. Der Exponent D, die Korrelationsdimension, gibt dann die Dimensionalität des At-
traktors an und läßt sich wie folgt berechnen:

D
C r

rr
=

→
lim

ln ( )

ln0

Bei doppelt-logarithmischer Auftragung von C(r) gegen r sollte sich im Grafen (in einem be-
stimmten Bereich von r) eine Gerade mit der Steigung D ergeben (vgl. Abb.8). Der numerische
Wert von D hängt allerdings von der Wahl der Einbettungsdimension des Zustandsraumes ab - in
einem zu 'klein' gewählten Zustandsraum läßt sich auch kein 'vollständiger' Attrakter 'einbetten'.
Der Wert von D macht nur dann einen Sinn, wenn er für Einbettungsdimensionen größer als die
Attraktordimension D unabhängig von der Wahl des Zustandsraumes wird, also ab einer be-
stimmten, 'optimalen' Einbettungsdimension an konstant bleibt.

In der Praxis bestimmt man die fraktale Dimension aus einer gegebenen Zeitreihe, indem man
für zunehmende Dimensionen N entsprechende Zustandsräume rekonstruiert und dann jeweils
die Korrelationsintegrale C(r) und die Korrelationsdimensionen D ermittelt (vgl. Abb.8). Errei-
chen bei der Erhöhung der Einbettungsdimension N die Korrelationensdimensionen D eine Sätti-
gung (vgl. Abb.9), so ergibt sich die fraktale Dimension des Attraktors aus dem Wert der in Sät-
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Abb.8: Die fraktale Dimension des Lorenz-
Attraktors erreicht für verschieden dimensionale
Einbettungen (n=2 bis n=10) einen ‘Sättigungs-

wert’ von D ≈ 2 05. .
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Abb.9: Korrelationsintegrale für verschieden
dimensionale Einbettungen (n=2 bis n=10) des

Lorenz-Attraktors.
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tigung befindlichen Korrelationsdimension. Wachsen die Dimensionen allerdings mit der Ein-
bettungsdimension linear an (vgl.Abb.9: Winkelhalbierende), so läßt sich kein endlichdimensio-
naler Zustandsraum bzw. Attraktor rekonstruieren. In diesem Fall kann daß Signal und damit
auch das untersuchte System als stochastisch bezeichnet werden.

Fraktale Strukturen komplexer Phänomene

Mit Hilfe des hier vorgestellte Verfahrens, mit dem aus den Zeitserien beliebiger natürlicher und
physikalischer Systeme eine Rekonstruktion des zugehörigen Attraktors vorgenommen und zu-
gleich die fraktale Dimension bestimmt werden kann, lassen sich nun folgende Aussagen treffen:

  Für ein stochastisches Signal läßt sich kein niedrigdimensionaler Zustandsraum rekonstruie-
ren, die Korrelationsdimension wächst mit zunehmender Einbettungsdimension (linear) an
(theoretisch sogar bis ins Unendliche).

  Für einen deterministisch-chaotischen Attraktor ist der Wert der Korrelationsdimension grö-
ßer als Eins und gebrochen (fraktal), d.h. nicht ganzzahlig. In diesem Fall handelt es sich bei
dem analysierten System um ein dissipatives System deterministisch-chaotischer Herkunft.

  Die Dimension des optimalen Einbettungsraumes gibt die Minimalzahl von Variablen an, die
nötig sind, um das von dem Attraktor repräsentierte komplexe System hinreichend zu be-
schreiben.

  Die fraktale Dimension, d.h. zum einen die Größe des Zahlenwertes an sich und zum anderen
die Relation zur Größe der Einbettungsdimension, gibt Auskunft über den 'Grad an Komple-
xität' der untersuchten Zeitreihe bzw. des zugrundeliegenden komplexen Systems.

Neben den Aussagen zur Komplexität des analysierten System hat man hier also auch ein Ver-
fahren zur Unterscheidung von stochastischen und chaotischen Signalen gewonnen: die Existenz
eines chaotischen Attraktors und insbesondere seine Fraktalität können als Abgrenzung zur Sto-
chastizität verstanden werden. Stochastische Zeitreihen können in keinen endlich-dimensionalen
Raum überschneidungsfrei eingebettet werden, ihre fraktale Dimension wächst linear mit der
Einbettungsdimension - und zwar ganzzahlig. Die Komplexität eines solchen Systems kann in
diesem Sinne als 'maximal' bezeichnet werden, während die Existenz eines niedrigdimensionalen
Attrakors einen sehr viel geringeren Grad an Komplexität der zugrundeliegenden Systemdyna-
mik zum Ausdruck bringt.
In diesem Sinne lassen sich auch die erstaunlich niedrigen fraktalen Attraktor-Dimensionen er-
klären, die bei Zeitreihenanalysen natürlicher Signale auftreten (wie z.B. Klimadaten, vgl.[9])
und somit einen relativ niedrigen Komplexitätsgrad der analysierten Systeme aufzeigen: Ein ge-
ringer Grad an Komplexität deutet zugleich an, daß die Zeitreihen von einem "sinnvoll" arbei-
tenden System herrühren.
Dies spiegelt auch die physikalische Bedeutung des Attraktors wieder: Die rekonstruierten Tra-
jektorien eines stochastischen Signals (wenn man hier überhaupt von Trajektorien sprechen
kann) laufen im Zustandsraum nicht auf einen Attraktor zu, sie verhalten sich flächenfüllend. Ein
endlich dimensionaler (optimaler) Einbettungsraum existiert nicht, das rekonstruierte 'Objekt'
besitzt eine unendlich große fraktale Dimension. Zur Beschreibung der Dynamik eines solch
komplexen Systems benötigten wir eine unendliche Anzahl von Variablen bzw. von Differenti-
algleichungen.
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