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Es kann nicht mehr darum gehen,
ins Innere der Dinge einzudringen, sondern darum,
ihre FINITEN Erscheinungsformen zu erschlief3en,
das heifdt, ihre wahrnehmbaren, greifbaren
- oder zahlbaren Formen.
Paul Valéry

Komplexe Signale

Der Mensch wird tagtéglich mit einer Vielzahl an Wahrnehmungen konfrontiert und reagiert
sténdig auf Reize verschiedenster Herkunft. Viele der Signale kénnen wir dabei ohne Schwierig-
keiten erfassen: ein Gesprach mit dem Nachbarn, der Brief eines alten Bekannten, die Nachrich-
tensendung im Radio oder die Reportage in der Zeitung. Aber ebenso existieren eine Vielzahl
von Signalen aus Natur und Technik, die uns fremdartig oder unverstéandlich, ja sogar rein zufal-
lig erscheinen: ein Buch oder eine Zeitung in fremder Sprache, der Gesang eines Vogels oder
eines Pottwals, das nachtliche Rauschen eines Fernsehgerdtes oder das Piepsen eines versehent-
lich angerufenen Faxgerétes, die Fehlermeldungen einer unbekannten Computeroberfléche, das
Plétschern eines Baches oder das Rascheln der Blétter eines Baumes.

Diese Signale haben eines gemeinsam: Sie sind komplex und fir uns zunéchst unverstandlich, so
dal’ wir sie oftmals sogar as zuféllig bzw. stochastisch oder einfach as Rauschen bezeichnen.
Trotzdem 183 sich die Komplexitét in vielen Féllen insofern reduzieren, as beispielsweise aus
dem Gesang des Vogels eine Nachtigall und aus dem Rascheln der Blétter eine Pappel erkannt
werden kann. Eine derartige Entscheidung féllt alerdings nicht immer so leicht. Manche fir uns
unbekannte Signale enthalten weder eine erkennbare Regelmaidigkeit noch einen Hinweis auf
ihre Herkunft.

Wir wollen daher im folgenden der Frage nachgehen, in wie weit beliebigen komplexen Signalen
‘anzusehen’ ist, ob sie einen rein zufadligen Charakter besitzen oder von einem i.e.S. sinnvall
agierenden System ausgehen bzw. einen deterministischen Ursprung haben. Dabei wird es vor
allem darum gehen, in den komplexen Signalen gestalthafte Zusammenhénge bzw. morphol ogi-
sche Muster zu erkennen. Das aus der klassischen Physik vertraute Aufdecken funktionaler Zu-
sammenhange spielt hier eine untergeordnete Rolle.

Wiemif3t man Komplexitat ?

Bei der Erfassung und Charakterisierung komplexer Phanomene spielen typische AuRerungen
(Signale) der zugrundeliegenden Systeme eine wesentliche Rolle. Oft zeigen die aus experimen-
tellen Untersuchungen ermittelten Zeitserien von Mef3daten ein derart irreguléres bzw. komple-
xes Verhalten, dal3 der Unterscheidung von Signalen, die von einem deterministischen System
herrihren und solchen, die rein zufélliger Natur sind, eine besondere Bedeutung zukommt. Laft
sich einem solchen Signal eine deterministische (chaotische) Herkunft nachweisen, so kann ver-
sucht werden, aus dem ermittelten zeitlichen Verhalten der Mel3grofie ein Modell zur mathemati-
schen bzw. physikalischen Beschreibung des Systems zu erstellen.



Dabei geht man von dem Uberraschenden Befund der Chaosphysik aus, dal3 extrem einfache Sy-
steme, also solche, die mit sehr wenigen - alerdings nichtlinearen - Differentialgleichungen be-
schrieben werden, zu vollig irreguldrem chaotischen Verhalten in der Lage sind, das sich auf den
ersten Blick nicht von stochastischem Verhalten zu unterscheiden scheint.

Sollte es nun umgekehrt gelingen, unbekannten irreguldren Signalen 'anzusehen’, dal3 sie von
derart einfachen Systemen herrihren (ohne die Systeme im einzelnen kennen zu muissen), so
hétte man ein Verfahren zur Unterscheidung von stochastischen und chaotischen Signalen zur
Hand.

Ein derartiges Verfahren soll im weiteren vorgestellt werden. Mit ihm gelingt es, den 'Grad an
Komplexitét' von verschiedenen irregularen Signalen zu bestimmen.

Stochastisches Verhaten ist rein zufélig und in sofern vallig uninteressant, als man dartiber
nichts anderes sagen kann, als was es selbst offenbart. Chaotisches Verhalten ist zwar ebenfals
irreguléar und vom Zufall bestimmt, weist aber gewisse zeitliche Korrelationen (d.h. Zusammen-
hange zwischen aufeinanderfolgenden Mef3punkten) auf, wenn auch - anders als bei klassisch
deterministischem Vorgangen - nur mehr oder weniger stark begrenzt.

Die zeitlichen und rédumlichen 'Strukturen' komplexer Systeme werden im Rahmen der nichtli-
nearen Physik seit etwa zwei Jahrzehnten mit Hilfe neuer Theorien und Methoden erforscht. Die
auf diesem Gebiet sehr erfolgreiche Chaosforschung versucht dabei u.a., Gesetzmaldigkeiten auf-
zuspuren, die in den komplexen Signalen verborgen sind.

Chaotische Systeme zeigen insbesondere sensitive Abhangigkeit der Langzeitentwicklung von
den Anfangsbedingungen. Obwohl beispielsweise die Gesetze der klassischen Mechanik es er-
lauben wirden, die Bahn einer Kugel beim Roulette-Spiel exakt zu beschreiben, so kommt es
doch zu einer Selbstverstéarkung der Ungenauigkeiten in den Anfangsbedingungen, die das Spie-
lergebnis al's zuféllig erscheinen lassen.! Ein Ziel der Chaosforschung ist die Entwicklung geeig-
neter Methoden und Verfahren, die es erlauben, das globale Verhalten unabhangig von der
Kenntnis der Anfangsbedingungen zu beschreiben.

Der Theorie der Fraktale kommt dabel eine besondere Bedeutung zu: Ein zeitlich irregulér er-
scheinendes Signal wird in ein geometrisches Objekt umgewandelt. Eingebettet in einen mehr-
dimensionalen Zustandsraum kann es ggf. erstaunlich geordnete Strukturen zeigen und mittels
geeigneter Kenngrofien wie beispielsweise der fraktalen Dimension charakterisiert werden.

Fourieranalyse, L eistungsspektrum und Autokorrelation

Auf der Suche nach mathematisch-physikalischen Werkzeugen zur Analyse von Zeitreihen stof3t
man auf zwei 'klassische’ Methoden, das Lestungsspektrum und die Autokorrelationsfunktion,
die zudem mathematisch (Wiener-Khintchine-Theorem) miteinander verkntpft sind (siehe [3]).
Bel der Betrachtung des Zeitverlaufs eines Mel3signals erscheint es zunéchst einfach, zwischen
reguldrem und irregulérem Verhaten zu unterscheiden. Stéf man auf ein irreguldres Signal,
ergibt sich alerdings das Problem, nachzuweisen, ob es sich dabel um einen Einschwingvorgang,
eine regulére Bewegung mit sehr langer Periode, ein quasiperiodisches oder gar einen chaoti-
schen Vorgang handelt.

Durch Auswertung einer Zeitmef3reihe mit der Fourieranalyse kann dabei als erster Schritt regu-
lares und irreguléres Verhalten unterschieden werden: Ein diskretes Leistungsspektrum kann als

! Das Roulette, "Wiirfel"-Spiele und auch das klassische Magnetpendel stellen im eigenlichen Sinne
gar keine dynamischen Sytem dar: ohne auReren Antrieb kommen derartige Systeme aufgrund von
Reibung schnell zur Ruhe - sie besitzen einen (im fraktalen Sinne) null-dimensionalen Fixpunkt-
Attraktor. Das 'Verhalten' dieser Systeme beschréankt sich auf einen Einschwingvorgang (transientes
Chaos) in die Ruhelage.



Leistungsspektren der Rauschklassen charakteristisch fir ein periodisches oder
guasiperiodisches Signal angesehen wer-
den. Ein kontinuierliches Leistungsspek-
trum weist auf irreguléres Verhalten hin.
Bis heute ist jedoch noch kein Verfahren
bekannt, das es erlaubt, aus einem Lei-
stungsspektrum direkt abzulesen, ob eine
stochastische Anregung oder die nichtli-
neare Charakteristik eines deterministi-
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Abb.1: Leistungsspektren verschiedener Rauschklassen.  \/erhalt sich der analysierte Datensatz im
Leistungsspektrum wie ein weil3es Rauschen, bedeutet dies eine vollige Unkorreliertheit des Si-
gnals; und die Interpretation des untersuchten Signals als eine Zufallsfolge von Ereignissen liegt
nahe.
Zeigt das Leistungsspektrum andere Arten von Korrelationen (etwa ein sog. 1/f -Verhalten, das
viele nattrrliche Systeme kennzeichnet (vgl. Abb.1, aus [3]), so neigt man dazu, als Ursprung des
Signals ein deterministisches (chaotisches), d.h. ein i.e.S. sinnvoll agierendes, System anzuneh-
men. Allerdings konnen u.U. auch numerisch erzeugte Zufallsreihen ein 1/f -Verhaten aufweisen
[4]. Daher kann das Leistungsspektrum nur als ein erster Schritt auf dem Wege der Analyse eines
unbekannten, irreguléren Signals dienen.

Die Autokorrelationsfunktion erfal3t demgegeniber direkt die zeitliche Korrelation einer Zeitrei-
he bzw. Funktion mit sich selbst: Es wird jewells der Zusammenhang ein und derselben Mef3-
grofRe zu verschiedenen Zeitpunkten t und t+ 7 untersucht und als eine Funktion der Differenz 1
dargestellt. Diese Funktion spiegelt so gesehen das 'Erinnerungsverméogen’ des Systems wieder:
Besteht die Autokorrelationsfunktion aus nur einer einzigen 'Spitze' bei = 0 und verschwindet
sie fur alle anderen 1 -Werte, so &3t sich die analysierte Mefdreihe auf vollkommen zufalliges,
stochastisches Verhalten  zu- Autokorrelationsfunktionen der Rauschklassen
rickfihren. Es besteht von weiles Rauschen 1/f-Rauschen
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Funktion abfdllt, desto weniger innere Zusammenhange existieren innerhalb des Signals, desto
naher liegt die Interpretation als eine Zufallsfolge. Eine eindeutige Unterscheidung zwischen rein
zufélligen und deterministisch-chaotischen Signalen ist daher auch mit diesem Analyseverfahren
nicht immer moglich.

Trajektorien - Bahnen im Zustandsraum

Betrachten wir ein komplexes System, so kann der jeweilige Zustand zur Zeit t durch einen Satz
von zeitabhangigen Parametern bzw. Variablen x(t), y(t), ... beschrieben werden. Man kann die-
sen Satz von Zustandsvariablen auch als einen Zustandsvektor darstellen:

X = R, y....C

Jeder Zustand des Systems |al3t sich in dem durch diese Zustandsvektoren aufgespannten mehr-
dimensionalen Vektorraum eindeutig darstellen. Er entspricht jeweils einem Punkt im Zustands-
raum. Fir das Aufspannen eines Zustandsraumes ist es daher notwendig, alle beschreibenden
Variablen des Systems gleichzeitig zu kennen. Die zeitliche Verénderung des Systemzustandes
ergibt sich dann als eine Punktfolge von Zusténden, aus denen sich Kurven ergeben, die soge-
nannten Trajektorien. Die Variablen werden also nicht mehr Uber der Zeit, sondern quasi zeitver-
setzt gegeneinander aufgetragen: Aus der Zeitserie entsteht eine geometrische Punktfolge. Ein
gedanklicher Spaziergang léngs einer solchen Traektorie im Zustandsraum lief3e die zeitliche
Abfolge des Signals erkennen.

Der eigentliche Vortell der Darstellung eines Signals in einem Zustandsraum erweist sich vor
allem bel chaotischen Systemen: Die Trajektorien dissipativer dynamischer Systeme, zu denen
i.a. auch natiirliche Systeme gezahlt werden?, laufen auf einen Attraktor zu und bleiben auf ihm.
Im Falle einer chaotischen Dynamik fihrt dies i.a. zu seltsamen Attraktoren, fraktalen Gebilden
im Zustandsraum, die sehr komplizierte aber zugleich geordnet erscheinende geometrische For-
men annehmen konnen. Thre innere Ordnung wird dann offenbar, wenn man sie beispielsweise
mit den diffusen 'Punktwolken’ vergleicht, die bel der entsprechenden Darstellung stochastischer
Prozesse entstehen (vgl. Abb.6). Eine Untersuchung der geometrischen Strukturen des Attraktors
sollte daher auch Aufschlul? Gber das Systemverhalten geben.

Leider verfligt man i.a. nicht Gber die Kenntnis aler Variablen. In vielen Fallen liegt sogar nur
die Zeitserie einer Variablen vor. Aber auch in diesen Fédlen ist die Methode der Zustands-
raumdarstellung anwendbar, da aufgrund der nichtlinearen Kopplung der Variablen sich das
Verhalten jeder Variablen in jeder anderen widerspiegelt. Man gewinnt die fehlenden Variablen
entweder durch die zeitlichen Ableitungen x(t), X(t),...* oder die sogenannten Delay-Variablen

(s.u.).
Rekonstruktion eines Zustandsraumes

Die Schwankungen in den Mef3grof3en eines Signals enthalten Informationen tber die wechsel-
wirkenden Prozesse und Uber die inneren Kopplungen des Systems. Insbesondere kann man da-

% Die folgenden Betrachtungen beziehen sich daher immer auf dissipative Systeme.
% Diese Darstellung heiRt dann auch Phasenraumportrait oder -darstellung.



von ausgehen, dal? auch eine Verknlipfung der Variablen untereinander besteht. Ein Parameter
wird sich nicht unabhangig von der Dynamik eines anderen verhalten, jede Variable enthalt auf-
grund der Wechselwirkung bzw. gegenseitiger (physikalischer) Beeinflussung mit den Ubrigen
Variablen Informationen Uber die Gesamtdynamik des Systems.

Bereitsim Jahre 1981 hat der Mathematiker F. Takens[1] ein Theorem aufgestellt und bewiesen,
das besagt, dal3 sich im Prinzip aus der genauen Kenntnis einer einzelnen der beschreibenden
Variablen Informationen Uber das gesamte System gewinnen |&3t.*

So entwickelten sich in den letzten zehn Jahren Verfahren zur Rekonstruktion eines kinstlichen
Zustandsraumes ([2],[5]) die bei der Messung von nur einer Variablen die Darstellung und Ent-
wicklung einer Pseudo-Trajektorie ermoglichen. Als besonders erfolgreich hat sich die Einfuh-
rung von Delay- bzw. zeitverzdgerten Variablen erwiesen.

Die zeitliche Entwicklung einer einzelnen Reihe von Mef3werten einer einzigen Variablen er-
moglicht die Konstruktion eines Zustandsvektors: Aus einem einzigen Zeitsignal werden die
'héheren’ Variablen aus zeitverschobenen Mef3werten des originalen Signals erzeugt. Der folgen-
de Algorithmus soll dieses Verfahren anhand der Rekonstruktion eines drei-dimesionalen Zu-
standsraumes verdeutlichen:

1. Gegeben sei eine Meldreihe von n (aquidistanten) Mefl3werten x(ta),....X(ty).
2. Einfuhrung von Delay-Variablen:

X =X(t), y =x(t +71), z =x(t +2 @).

Der Zustandsvektor X, steht dann fiir einen Punkt im Zustandsraum mit den
Koordinaten (x;, Vi, z) bzw.:

Xi :Q’yiazig

3. Rekonstruktion eines 3-dimensionalen Zustandsraumes aus den Zeitreihen
der drei 'neuen’ Variablen:

X(t) @ x(t), ..., x(t,)
X(t) @ x(t, +71),...,x(t, +71)
X(t) : x(t, +200), ..., x(t, +2 1)

Es handelt sich bei diesem Verfahren zur Gewinnung weiterer Variablen lediglich um eine Ver-
schiebung der Mef3werte um eln festes Zeitintervall T.

Dies soll im folgenden an einem Beispiel erlautert werden: Der Attraktor einer harmonischen
(ungedamfpten) Schwingung (z.B. die Bewegung eines Massepunktes an einem (linearen) Fe-
derpendel) |43t sich in einem zwei-dimensionalen Phasenraum (die beschreibenen Variablen
seien der Ort x und die Geschwindigkeit v) im ldealfall als Kreis darstellen. Es sei nun experi-
mentell nur moglich, eine der beiden Variablen mefdtechnisch zu erfassen, beispielsweise den Ort

* Eine solche MefgréRe sollte geniigend genau (At — 0) und lang (t — ) aufgenommen werden.

In der praktischen Anwendung dieser Idee werden allerdings geringere Anforderungen an das Daten-
material gestellt.



X(t): Die gemessene Zeitserie kdnnte dann in der Form x(t) = sin(awt) angeben werden. Versucht
man jetzt, aus diesem Signa einen Pseudo-Zustandsraum zu rekonstruieren, indem x(t) gegen
X(t+ 1) aufgetragen wird, so gelingt bel geeigneter Wahl von 1 sogar eine exakte Rekonstruktion:
Wird die Verzogerungszeit T so gewahlt, dald sie einem Viertel der Schwingungsperiode Tc ent-

spricht®, so gilt:
X(t+71) :sin@m+ Tg'tsinm +a)rg=sinGl + a@TC@

Mit w = i—n ergibt sich dann:

C

X(t +71) = sinl +%ng=cosmbg=v.

Wahlt man in diesem Beispiel eine andere Verzégerungszeit 1, so ergeben sich fir fast alle 7im
rekonstruierten Zustandsraum mehr oder weniger ‘'schone’ Ellipsen (lediglich fir ganzzahlige
Vielfache von T entarten die Ellipsen). Die Struktur des rekonstruierten Attraktors (d.h. seine
topologischen Eigenschaften) ist in diesem Fall offensichtlich weitgehend unabhangig von der
Wahl der Verzégerungszeit.
Waéhrend die Zusammenhéange bei diesem einfachen Beispiel leicht einsichtig gemacht werden
koénnen, sind die Verhdtnisse bei chaotischen Attraktoren sehr viel komplizierter und anschau-
lich nicht so leicht zuganglich. Eine wichtige Voraussetzung fir die erfolgreiche Rekonstruktion
von Zustandsrdumen stellt die Erhaltung der topologischen Strukturen der Attraktoren dar; so
durfen sich beispielsweise die Trajektorien auch im Pseudo-Zustandsraum nicht schneiden.
Obwohl das Verfahren der Rekonstruktion in vielerlei Hinsicht willkirlich erscheint, zeigt es
sich doch, dai3 bel der Wahl eines ausreichend grof3en Zustandsraumes die topologischen Eigen-
schaften der Pseudo-Trajektorien mit denen im Original-Zustandsraum i.a. stark korreliert sind,
ja sogar prinzipiell 'gleichwertig’ sind: Dies bedeutet, dal3 bei der Rekonstruktion die geometri-
schen Invarianten der Dynamik, wie z.B. die fraktale Dimension oder die Lyapunov-Exponenten,
mit Sicherheit dann erhaten bleiben, wenn die Dimension des Zustandsraumes entsprechend
grol3 gewahlt wird (vgl. [1], [5]).
Die Gulte dieses Rekonstruktionsverfahren héngt nun im allgemeinen allerdings auch von der
Wahl von 1 ab. Zur Bestimmung einer optimalen Delay-Zeit wurden daher verschiedenste Ver-
fahren entwickelt (vgl. [5],[6.]). Als eine gunstige Wahl der Verzogerungszeit erweist sich bei-
spielsweise der Zeitwert, bel dem die Autokorrelationsfunktion ihr erstes Minimum oder ihre
erste Nullstelle besitzt.

I nformationen aus dem Zustandsraum
Im Abstrakten ereignet sich heute das Wesentliche.
Robert Musil

Die Betrachtung eines Attraktors im Zustandsraum 183 Korrelationen erkennen, die alein mit
Hilfe der oben beschriebenen Methoden der Signalanalyse mittels Leistungsspektrum und Auto-
korrelationsfunktion nicht auffindbar wéren. Die Attraktor-Darstellung im Zustandsraum gibt
uns somit weitere, wertvolle Informationen Gber die Herkunft des untersuchten Signals.

Im folgenden soll nun die 'praktische’ Anwendung des oben skizzierten Algorithmus zur Rekon-
struktion eines Zustandsraumes anhand eines weiteren Beispiels gezeigt werden.
Gegeben sai eine Reihe von Mel3werten (aus Abb.3.) :

® Auch fur komplizierte Zeitreihen hat es sich bewahrt, als Delay-Zeit einen Bruchteil einer kleinsten
charakteristischen Periode Te zu wahlen.



xt): 16.8, 161, 132, 9.2, 51, 1.5 -1.3,

Wahlen wir als Verzogerungs-Zeit beispielsweise 1 = 2[At, so kdnnen zur Rekonstruktion des
dreidimensionalen Pseudo-Zustandsraumes aus obiger Mefreihe sukzessive eine Reihe entspre-
chend zeitverzogerter Zustandsvektoren gebildet werden: Zu jedem x(t)-Wert wird der jewells
zweite der folgenden Mel3werte als y(t)-Wert und jeder vierte der nachfolgenden Mef3werte als
Z(t)-Wert zugeordnet und dann jeweils zu einem dreier-Tupel zusammengeschl ossen.
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ADbb.3: Experimentelle Zeitserie von (aquidistanten) Mef3werten.

Anhand dieses Verfahrens gewinnt man eine Reihe von Vektoren :

X, =(16.8,13.2, 5.1),
X, =(16.1, 9.2, 15),
X, =(13.2, 5.1,-1.3),

Werden diese Pseudo-Zustandsvektoren der Reihe nach in einen dreidimensionalen Zustands-
raum eingebettet (Abb.4), so entsteht ein im geometrischen Sinne raumlich orientiertes Gebilde,
eine im Raum leicht gekriimmte Linie, eine Pseudo-Trajektorie. Uberl&3t man die Bildung der-
artiger Zustandsvektoren bzw. Tragektorien dem Computer, so kdnnen binnen kirzester Zeit auch
langere (eindimensionale) Datenreihen 'geometrisiert’ werden: Die aus der Zeitreihe aus Abb.3
rekonstruierten Traektorien laufen schnell auf ein kompaktes Gebilde im 3D-Raum zu, dem
sogenannten Lorenz-Attraktor (Abb.5).

LO3D" ~— 'LO33D" ~—

- 5
10 - 10
15 7 z 15 7

Abb.5: Teilstick der rekonstruierten Abb.4: Aus der Zeitreihe aus Abb.3 erwéachst
‘Trajektorie’ aus den ersten Mef3werten der der Lorenz-Attraktor.
Zeitreihe aus Abb.3.



Spétestens jetzt stellt sich die Frage nach der Herkunft obiger Zeitreihe: Dieser Datensatz wurde
bei Simulationen zur Dynamik des Lorenz-Systems (ein System von drei gekoppelten Differenti-
algleichungen, vgl. [7]) gewonnen. Zur Erstellung von Abb.3 wurden die numerisch berechneten
Werte der X-Komponente (inkl.. 'Einschwingvorgang', vgl.Abb. 4 u. 5) gespeichert.

Waéhrend bel der Simulation des Lorenz-Systems drei Differentialgleichung integriert werden
muissen, um die geometrische Gestalt des Lorenz-Attraktors sichtbar zu machen, reicht bel dem
hier vorgestellten Verfahren die Kenntnis der Dynamik von nur einer Zustandsvariablen zur er-
folgreichen Rekonstruktion des Attraktors aus (s.0.).

Fur die experimentelle Erforschung unbekannter Systeme oder solchen, deren Variablen nur un-
vollstéandig zuganglich sind, eréffnen sich mit Hilfe dieses Rekonstruktionsverfahren neue Mdg-
lichkeiten der Aufnahme und Weiterverarbeitung von Meldsignalen, da gerade bel komplexen
Systemen oftmals nur eine relevante Zustandsgrofe mefitechnisch erfaldoar ist (vgl.[7]).

Attraktoren - Fraktaleim Zustandsraum

Habe ich zu viele Faden in meinem Knaul verflochten ?
An welchem muf3 ich ziehen, um einen verniinftigen
Schiufd in die Hand zu bekommen ?

Italo Calvino

Wahlt man den hier beschriebenen Weg der Zeit-
reithenanalyse und erzeugt aus einem gemesse-
nen Datensatz eine entsprechende Trajektorie im
rekonstruierten Zustandsraum, so entsteht aus
dem ehemals irreguléren Zeitsignal mit determi-
nistisch-chaotischer Herkunft ein kompaktes,
geordnetes geometrisches Objekt, das zudem
einen ganz bestimmten und réaumlich begrenzten
Bereich des Zustandsraumes® belegt (Abb.3). Im
Vergleich dazu ergibt sich bei der Analyse einer
Folge von Zufallszahlen eine diffuse Wolke von
Zustandsvektoren, die rekonstruierte Trajektorie Abb.6: 2D-Zustandsraum einer Reihe von
fallt in einer wild gezackten 'Kurve' (fast) den Zufallszahlen (500 Werte)

gesamten Einbettungsraum aus (Abb.6).

Die unterschiedliche Herkunft der Zeitreihen manifestiert sich hier in einem sehr verschiedenar-
tigen Erscheinungsbild im Zustandsraum - die inneren Korrelationen eines determinstisch-
chaotischen Signals erzwingen eine Art 'Agglomeration’ der Trajektorien, sie erzeugen ein geo-
metrisch-geordnetes Gebilde, den Attraktor.

Wenn wir hier von den geometrisch 'sichtbaren” Strukturen von Attraktoren in zwei- oder drei-
dimensionalen euklidischen Raumen sprechen, so kénnen die gezeigten Uberlegungen natiirlich
auch auf hoherdimensionale Zustandsraume Ubertragen werden. Insbesondere lassen sich auch
dann die 'chaotischen’ Strukturen anhand einer Projektion der Trgektorien auf niedrigdimensio-
nale Unterrdume visualisieren.

® Den (euklidischen) N-dimensionalen Zustandsraum, in dem der Attraktor eingebettet wird, nennt man
auch Einbettungsraum und entsprechend N seine Einbettungsdimension. Zur Bestimung einer optima:
len Einbettungsdimension (s.u.) sind gerade in den letzten Jahren eine Vielzahl neuer Verfahren ent-
wickelt worden. Eine allgemein zufriedenstellende Lésung dieses Problems existiert allerdings bis
heute nicht (vgl.[6]).



Hat man einen chaotischen Attraktor erfolgreich rekonstruiert, so kann dessen fraktale Dimensi-
on berechnet werden. Die fraktal-geometrische Mal3zahl, die insbesondere raumliche Korrelatio-
nen bzw. Dichteverteilungen von chaotischen Attraktoren mathematisch erfal3bar macht, ist die
Korrelationsdimension.

Da die fraktale Dimension nicht unabhéngig vom gewahlten Einbettungsraum ist, wird zur ihrer
praktischen Berechnung oftmals ein von Grassberger und Procaccia [8] vorgeschlagenes analyti-
sches Verfahren verwendet, indem quas gleichzeitig die fraktale Dimension und die optimale
Einbettungsdimension’ (s.0.) des Attraktors ermittelt werden.

Bestimmung der Attraktordimension
Um die raumlichen Korrelationen von n Punkten eines Attraktor quantitativ zu erfassen, stellen
wir uns zunéchst die Frage nach der Wahrscheinlichkeit, dal3 zwei beliebig aus der Datenmenge

herausgegriffene Vektoren X ; und f(k einen Abstand voneinander haben, der kleiner ist als eine
vorgegebene Zahl r. Hierzu muf3 man unter den n[{n-1) mdglichen Kombinationen

A %10 %10 X |, die jeweils mit der Wahrscheinlichkeit ni angetroffen wer-

2

den,
digjenigen auswahlen, die die Bedingung |Xj - Xk| <r erfiillen. Bezeichnet man diese Wahr-

scheinlichkeit mit C(r), so ergibt sich:
C8r)=n—12><@nzahl daPaHedj,Xklmit|Xj —Xk|<rt b#kg
Formal kann man diese Beziehung mit Hilfe der sog. Heaviside-Funktion © beschreiben:

1 lomlx _ i
C(r)_F;e(e—|xj —xku
. fallsx > 0,
Mt ©)=P riisx<o

Die GroRe C(r) kann daher auch - Xz
as ein Mal} dafir angesehen
werden, wie dicht die Daten-
punkte des Attraktors den Zu-
standsraum belegen, in dem sie
eingebettet sind (vgl. Abb.7); sie
macht eine Aussage uber raumli- 7 T
che Korrelationen eines Attrak-
tors und wird daher auch als
Korrelationsintegral — bzw.
summe bezeichnet.

X()

Abb.7: Zur Bestimmung des Korrelationsintegral s werden alle be-

7 Der optimale Einbettungsraum muSGERAREE) G SQeisAslierien; HmsraH g ReiSiein

Attraktors 'Uberschneidungsfrei’ einbetten lassen. punktes ausgezahlt.




Bel der praktischen Bestimmung dieser Korrelationssumme gentigt es, auf eine zuféllig vertellte
Auswahl von nur m (m<<n) Referenzvektoren zu stitzen (<10% des Datensatzes, vgl. [5]), es
ergibt sich dann:

C(r):m—lmlzi Ze(&—|>‘<j —Xku

Handelt es bei dem mittels diesem Verfahren analysierten Datensatz um ein deterministisch-
chaotisches Signal, das sich im Zustandsraum als fraktaler Attraktor darstellt, so verhélt sich bel
genuigend grof3er Anzahl von Mel3werten das Korrelationsintegral C(r) fur kleine r-Werte wie
C(r)OrP. Der Exponent D, die Korrelationsdimension, gibt dann die Dimensiondlitét des At-
traktors an und |&f3t sich wie folgt berechnen:

D :“mInC(r)
r-0 Inr

Bel doppelt-logarithmischer Auftragung von C(r) gegen r sollte sich im Grafen (in einem be-
stimmten Bereich von r) eine Gerade mit der Steigung D ergeben (vgl. Abb.8). Der numerische
Wert von D hangt allerdings von der Wahl der Einbettungsdimension des Zustandsraumes ab - in
einem zu 'klein' gewahlten Zustandsraum 183 sich auch kein 'vollstandiger' Attrakter 'einbetten'’.
Der Wert von D macht nur dann einen Sinn, wenn er fir Einbettungsdimensionen grof3er als die
Attraktordimension D unabhéngig von der Wahl des Zustandsraumes wird, also ab einer be-
stimmten, 'optimalen’ Einbettungsdimension an konstant bleibt.
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Abb.9: Korrelationsintegral e fiir verschieden Abb.8: Die fraktale Dimension des L orenz-
dimensional e Einbettungen (n=2 bis n=10) des Attraktors erreicht fur verschieden dimensionale
Lorenz-Attraktors. Einbettungen (n=2 bis n=10) einen ‘ S&ttigungs-

wert’ von D = 205.

In der Praxis bestimmt man die fraktale Dimension aus einer gegebenen Zeitreihe, indem man
fur zunehmende Dimensionen N entsprechende Zustandsréume rekonstruiert und dann jeweils
die Korrelationsintegrale C(r) und die Korrelationsdimensionen D ermittelt (vgl. Abb.8). Errei-
chen bel der Erhdhung der Einbettungsdimension N die Korrelationensdimensionen D eine Sétti-
gung (vgl. Abb.9), so ergibt sich die fraktale Dimension des Attraktors aus dem Wert der in Sét-
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tigung befindlichen Korrelationsdimension. Wachsen die Dimensionen allerdings mit der Ein-
bettungsdimension linear an (vgl.Abb.9: Winkelhalbierende), so 183 sich kein endlichdimensio-
naler Zustandsraum bzw. Attraktor rekonstruieren. In diesem Fall kann dal3 Signal und damit
auch das untersuchte System al's stochastisch bezeichnet werden.

Fraktale Strukturen komplexer Phanomene

Mit Hilfe des hier vorgestellte Verfahrens, mit dem aus den Zeitserien beliebiger natrlicher und
physikalischer Systeme eine Rekonstruktion des zugehdrigen Attraktors vorgenommen und zu-
gleich die fraktale Dimension bestimmt werden kann, lassen sich nun folgende Aussagen treffen:

0 Fir ein stochastisches Signal 183t sich kein niedrigdimensionaler Zustandsraum rekonstruie-
ren, die Korrelationsdimension wachst mit zunehmender Einbettungsdimension (linear) an
(theoretisch sogar bisins Unendliche).

O Fur einen deterministisch-chaotischen Attraktor ist der Wert der Korrelationsdimension gro-
[3er as Eins und gebrochen (fraktal), d.h. nicht ganzzahlig. In diesem Fall handelt es sich bei
dem analysierten System um ein dissipatives System deterministisch-chaotischer Herkunft.

[0 Die Dimension des optimalen Einbettungsraumes gibt die Minimalzahl von Variablen an, die
notig sind, um das von dem Attraktor reprasentierte komplexe System hinreichend zu be-
schreiben.

O Diefraktale Dimension, d.h. zum einen die Grof3e des Zahlenwertes an sich und zum anderen
die Relation zur Grof3e der Einbettungsdimension, gibt Auskunft Gber den 'Grad an Komple-
xitét' der untersuchten Zeitreihe bzw. des zugrundeliegenden komplexen Systems.

Neben den Aussagen zur Komplexitdt des analysierten System hat man hier also auch ein Ver-
fahren zur Unterscheidung von stochastischen und chaotischen Signalen gewonnen: die Existenz
eines chaotischen Attraktors und insbesondere seine Fraktalitét konnen als Abgrenzung zur Sto-
chastizitét verstanden werden. Stochastische Zeitreihen konnen in keinen endlich-dimensionalen
Raum Uberschneidungsfrel eingebettet werden, ihre fraktale Dimension wéchst linear mit der
Einbettungsdimension - und zwar ganzzahlig. Die Komplexitét eines solchen Systems kann in
diesem Sinne als ‘'maximal’ bezeichnet werden, wahrend die Existenz eines niedrigdimensionalen
Attrakors einen sehr viel geringeren Grad an Komplexitét der zugrundeliegenden Systemdyna-
mik zum Ausdruck bringt.

In diesem Sinne lassen sich auch die erstaunlich niedrigen fraktalen Attraktor-Dimensionen er-
kléren, die bei Zeitreihenanalysen nattrlicher Signale auftreten (wie z.B. Klimadaten, vgl.[9])
und somit einen relativ niedrigen Komplexitatsgrad der analysierten Systeme aufzeigen: Ein ge-
ringer Grad an Komplexitéat deutet zugleich an, dal3 die Zeitreithen von einem "sinnvoll" arbei-
tenden System herrihren.

Dies spiegelt auch die physikalische Bedeutung des Attraktors wieder: Die rekonstruierten Tra-
jektorien eines stochastischen Signals (wenn man hier Uberhaupt von Trajektorien sprechen
kann) laufen im Zustandsraum nicht auf einen Attraktor zu, sie verhalten sich flachenfillend. Ein
endlich dimensionaler (optimaler) Einbettungsraum existiert nicht, das rekonstruierte 'Objekt’
besitzt eine unendlich grof3e fraktale Dimension. Zur Beschreibung der Dynamik eines solch
komplexen Systems bendtigten wir eine unendliche Anzahl von Variablen bzw. von Differenti-
algleichungen.
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