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Was hat Schönheit mit Chaos zu tun?

Vergleich der Mandelbrot-Iteration mit einem chaotischen Drehpendel

Udo Backhaus (Universität Osnabrück), H.- Joachim Schlichting, (Universität GH Essen)

1. Problemstellung

In den letzten Jahren übte die Untersuchung der
Mandelbrot-Menge eine wachsende Faszination auf
Wissenschaftler und Laien, auf Theoretiker, Künst-
ler und Computer-Freaks aus. Diese Faszination be-
ruht zum großen Teil auf der merkwürdigen Schön-
heit der dabei erzeugten Bilder, die in vielen, auch
populären, Ausstellungen, auf Tagungen und in
prachtvollen Bildbänden gezeigt werden /4;5/. Ein
weiterer Grund ist sicher die große Diskrepanz zwi-
schen der unbeschreiblichen Komplexität der Bilder
und der Einfachheit des zugrunde liegenden Algo-
rithmus.

Die Schönheit der von den Bildern der Mandelbrot-
Menge und ihrer Abkömmlinge wird häufig mit
chaotischem Verhalten in Verbindung gebracht. Der
dabei unterstellte Zusammenhang zwischen der
Schönheit rein mathematischer Gebilde und dem
komplexen Verhalten physikalischer Systeme bleibt
jedoch in vielen Fällen unaufgeklärt und ruft beim
Adressaten Ratlosigkeit hervor./3/

Wir wollen deshalb am konkreten Beispiel eines
einfachen dynamischen Systems Beziehungen zwi-
schen den Mandelbrot-Bildern und chaotischem
Verhalten aufzeigen und damit demonstrieren, in-
wieweit die Schönheit der Bilder die Tiefenstruktur
chaotischer Vorgänge berührt.

Die Mandelbrot-Iteration

Bilder der Mandelbrot-Menge und ihrer Abkömm-
linge spiegeln das Langzeitverhalten einer gewissen
Klasse von Iterationsfolgen. Das sind Zahlenfolgen,
bei denen jedes Glied nach einer festen Vorschrift
aus seinem Vorgänger berechnet wird:

xn+1 = Fa(xn), n = 0, 1, 2,... (1)

Das Langzeitverhalten solcher Folgen hängt von
gewissen, die Bildungsvorschrift F charakterisie-
renden, Konstanten a und vom Anfangswert x0 ab.

Die Mandelbrot-Iteration ist die komplexe Iterati-
onsfolge

zn+1 = Fc(zn) = z2
n+ c mit z0, c ⌠ (2)

oder reell geschrieben

(mit x = R(z), y = I (z))

(xn+1, yn+1) = Fcx,cy (xn, yn)

= (xn
2 – yn

2 + cx, 2xnyn + cy) (3)

Das Verhalten dieser Folge hängt von vier Bedin-
gungen ab: den beiden Parametern cx und cy und
den beiden Anfangswerten x0 und y0.

Was aber haben solche Untersuchungen diskreter

Iterationsfolgen mit der Untersuchung physikali-
scher Systeme zu tun?

Diskretisierung physikalischer dynami-
scher Systeme

In der Physik wird die zeitliche Entwicklung von
Systemen durch Bewegungsgleichungen beschrie-
ben. Diese sind wegen der kontinuierlichen Abhän-
gigkeit der Systeme von der Zeit Differentialglei-
chungen. In der Praxis jedoch ist die Messung und
Beschreibung physikalischer Systeme fast immer
diskret: beim Messen wegen des endlichen zeitli-
chen und räumlichen Auflösungsvermögens der Re-
gistriergeräte, bei der Berechnung wegen der nume-

Bild 1: Drehpendel mit Unwucht. Experimentell leicht
zu variierende Parameter: Zusatzmasse m, Anregungs-
frequenz Ω, Anregungsamplitude f, Dämpfungsstrom-
stärke I.
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rischen Integration. Nur die wenigsten Bewegungs-
gleichungen sind nämlich analytisch zu lösen. Bei
der numerischen Behandlung handelt se sich um ei-
ne Art mathematischer Rückkopplung: Man füttert
den mathematischen Ausdruck, der das Systemver-
halten beschreibt (die Bewegungsgleichung), immer
wieder mit seinem eigenen Ergebnis (einem neuen
Systemzustand) und „hangelt” sich auf diese Weise
an der Trajektorie des Systems entlang.

Die Diskretisierung eines Bewegungsablaufes kann
als eine Art stroboskopischer Betrachtung ange-
sehen werden. Die mit dieser Stroboskopierung
verbundene Möglichkeit, das Verhalten des Systems
nur zu bestimmten Zeitpunkten zu registrieren und
dann damit überflüssige Informationen auszublen-
den, kann auch Vorteile haben. Sie führt dann zu
vertieften Erkenntnissen über das System, wenn sie
synchron mit dem Rhythmus des Systems erfolgt.
Das ist schwierig bei den sogenannten autonomen
Systemen, die ihre zeitliche Struktur selbst organi-
sieren. Dagegen ist es leicht bei periodisch ange-
triebenen Systemen, denen ein fester Zeittakt von
außen aufgeprägt wird. Auf solche angetriebenen
Systeme werden wir uns im folgenden beschränken.

Die stroboskopische Betrachtung eines Systems lie-
fert eine Folge von Zuständen (ξ0,ξ1,...) mit ξi =
ξ(i∆t) und damit eine Iterationsabbildung l:

ξn+1 = l(ξn) n = 0,1,2,... (4)

Experimentell ergibt sich  der Folgezustand dadurch
aus einem beliebigen Zustand, daß sich das System
unter dem Einfluß der Anregung weiter entwickelt –
und zwar genau für die Dauer einer Anregungsperi-
ode. Mathematisch läßt sich die Iterationsabbildung
nur in den seltensten Fällen geschlossen angeben; in

der Regel beinhaltet sie einen umfangreichen Algo-
rithmus, mit dessen Hilfe aus einem Zustand der
Folgezustand berechnet werden kann.

Als Beispiel betrachten wir ein Drehpendel (Bild 1),
das durch eine Zusatzmasse unwuchtig, d. h. nicht-
linear gemacht wurde /1/. Sein Verhalten ergibt sich
aus der Summe der angreifenden Drehmomente:

θ ⋅ ∂2ϕ/∂t2 + β ⋅ ∂ϕ/∂t = -D(ϕ - ϕA) + mgr sin ϕ

Bei harmonischer Anregung (ϕA = α1 cos Ωt) erhält
man daraus folgende Bewegungsgleichung:

∂2ϕ/∂t2 = ρ (l) ⋅ ∂ϕ/∂t - Ω0
2ϕ + r0 sin ϕ + f cos Ωt

(5)

Das Verhalten hängt also von vielen Parametern ab,
von denen wir alle bis auf die Dämpfungsstromstär-
ke l und die Anregungsamplitude f konstant halten
wollen. Der Zustand des Rades ist vollständig be-
stimmt durch den Ausschlag ϕ und die Phase der
Anregung Ωt. Dadurch die Stroboskopabbildung
die Anregungsphase jedesmal denselben Wert hat,
hat man also wie bei der Mandelbrot-Iteration eine

Folge von Zahlenpaaren ( )nn ϕϕ &, , die außer von

den Anfangswerten von zwei Parametern abhängt:

( ) ( )nnflnn F ϕϕϕϕ && ,, ,11 =++ =  stroboskopische

 Registrierung im Takt

 der Anregung ⋅ 50 (6)
 Integrationsschritten

Experimentell kann das Rad untersucht werden, in-
dem man z.B. eine Lichtschranke periodisch durch
die Anregungsstange verdunkelt. Mit dem so er-
zeugten Impuls kann entweder (zu Demonstrations-
zwecken) ein Stroboskop angesteuert oder die
Meßwertaufnahme (z.B. mit einem Computer)

Bild 2: Einen ersten Überblick über das Verhalten der Mandelbrot- Iteration bzw. des Drehpendels gewinnt man, indem man
nur einen Parameter varriert (-2.0 ≤ cx ≤ 0.25 bzw. 510 mA ≤ I ≤ 530 mA) und darüber die Folgenglieder aufträgt, nachdem
das Einschwingverhalten abgeklungen ist.
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getriggert werden. Numerisch untersuchen wir das
System, indem wir die Bewegungsgleichung mit ei-
nem Runge-Kutta-Verfahren 4. Ordnung mit einer
festen Schrittweite von 50 Schritt/Anregungs-
periode numerisch integrieren. Der Algorithmus der
Iterationsabbildung besteht dann also aus 50 Inte-
grationsschritten, von denen jeder selbst aus vier
Schritten besteht.

Auf diese Weise entsteht eine weitgehende formale
Übereinstimmung zwischen der Mandelbrot-
Iteration (3) und der stroboskopischen Registrie-
rung des Drehpendels (6). Zu dem Vergleich zwi-
schen den Systemen ermutigt jedoch nicht nur diese
formale Übereinstimmung, sondern vielmehr die
experimentelle Erfahrung, daß man an beiden Sy-
stemen sehr ähnliche Verhaltensweisen beobachten

kann wie z.B. Periodenverdopplung und chaotisches
Verhalten.

Vergleich von Mandelbrot-Iteration und
nichtlinearem Drehpendel

Bei beiden Systemen werden folgende Fragestel-
lungen verfolgt:
•  Wie hängt das System(end)verhalten – bei festen

Anfangsbedingungen – von  den Systempara-
metern ab?

•  Welchen Einfluß haben – bei festen Systempara-
metern – die Anfangswerte auf das Verhalten?

1. Variation der Systemparameter bei festen
Anfangswerten

Hält man zunächst nicht nur die Anfangswerte fest
(x0 = 0, y0 = 0 bzw. ϕ0 = 10°, ϕ0 = 0), sondern auch
einen der Systemparameter (cy = 0 bzw. f = 1.7),
dann zeigt sich in einem Diagramm zum ersten Mal
eine weitgehende Analogie zwischen beiden Syste-
men (Bild 2). Den Diagrammen liegt eine überra-
schende vielfältige Dynamik zugrunde, die die stati-
sche Darstellung allerdings nur unvollkommen wie-
dergeben kann. Ihre Veranschaulichung gelingt bes-
ser, wenn man mit dem Computer Töne erzeugt, de-
ren Höhe ein Maß für den „Meßwert” (z.B. propor-
tional zum Realteil x bzw. zur Auslenkung ϕ ist.
Dann zeigt sich u. a., daß die Systeme im mittleren
Bereich zwischen den zwei Zuständen hin- und her-
springen (Periodenverdopplung) und daß die Folge

Bild 3: : Mandelbrot- Menge (links) und „Drehpendel- Menge“ (rechts): In der Parameterebene (links: -2.0 ≤ cx ≤ 0.25, -1.25
≤ cy ≤ 1.25; rechts: 50 mA ≤ l ≤ 600 mA, 1.0 ≤ f ≤ 2.0 sind die Punkte gefärbt, die bei festen Anfangsbedingungen nicht zu
dem jeweils unerwünschten Verhalten führen.

Bild 4: Zusammenhang zwischen dem Feigenbaumdia-
gramm der Mandelbrot- Iteration und der Mandelbrot-
Menge.
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der Systemzustände im linken Diagrammbereich
(bei negativen cx-Werten bzw. kleiner Dämpfung)
scheinbar völlig regellos ist (Chaos).

Allerdings zeigt das Diagramm für das Drehpendel
nur einen kleinen Ausschnitt aus seinen Verhal-
tensmöglichkeiten /s. 1/. Die beiden Feigenbaum-
Diagramme in Bild 2 unterscheiden sich darüber
hinaus hinsichtlich ihrer Stabilität. Bei der Mandel-
brot-Iteration verschwindet das chaotische Verhal-
ten, sowie cy = 0 gewählt wird: Die Zahlenfolge
wächst dann schnell über alle Grenzen. Beim nicht-

linearen Drehpendel dagegen ändert sich das Dia-
gramm bei Variation von f stetig; das Feigenbaum-
Diagramm ist strukturell stabil.

Nur beim Drehpendel tritt also Chaos als stabiles
Verhalten auf (chaotischer Attraktor). Dafür kann
(wegen der Dämpfung des Rades) nur die Mandel-
brot-Iteration unter bestimmten Bedingungen unbe-
grenzt wachsen. Für den weiteren Vergleich der
beiden Systeme liegt es deshalb nahe, das System-

verhalten an dem jeweils „unerwünschten” Verhal-
ten zu messen:

Mandelbrot-Iteration: Drehpendel:
↔

∞  -  Attraktor chaotischer Attraktor

Für welche Parameterwerte tritt nun das uner-
wünschte Verhalten ein?  gibt die Antwort auf diese
Frage: Sie zeigt links die Mandelbrot-Menge. Das
ist die Menge aller Parameterwerte (cx, cy), für die

die Mandelbrot-Iteration mit Anfangswert z0 = 0
nicht divergiert. Entsprechend zeigt das rechte Bild
die Menge aller Parameterpaare (l, f), für die die
Schwingungen des Rades  nicht chaotisch werden.
(Den Zusammenhang zwischen Feigenbaum-
Diagramm und Mandelbrot-Menge veranschaulicht
Bild 4. Für das Drehpendel kann man stattdessen
das entsprechende (winzige) Parameterintervall in
Bild 6 erkennen.)

Bild 5: Zwei Vergrößerungen des Randes der Mandelbrot Menge. Keine Vergrößerung dieses Randes zeigt eine glatte Kur-
ve: Der Rand ist ein Fraktal.

Bild 6: Nach der Periodizität des Endverhaltens gefärbte Mandelbrot- Meng bzw. „Drehpendel- Menge“: Je dunkler die Fär-
bung, desto höher die Periodizität.
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Die Mandelbrot-Menge ist ein Gebilde von unvor-
stellbarem Formenreichtum /s. Bild 5/, deren Reiz
durch die Einfachheit des Erzeugungsalgorithmus
noch gesteigert wird. Bild 3 zeigt, daß die Mandel-
brot-Iteration für große c-Werte (auf jeden Fall für
 c >  2.0) divergiert. Beim Drehpendel tritt bei
mittleren Dämpfungsstromstärken chaotisches Ver-
halten auf; bei kleiner Dämpfung schwingt das Rad
so heftig, daß es von der Potentialschwelle bei ϕ =
00 kaum etwas bemerkt, bei großer Dämpfung
schwingt es mit kleiner Amplitude um eine der bei-
den Gleichgewichtslagen herum. Erwartungsgemäß
wird der chaotische Bereich mit zunehmender An-
regungsamplitude größer, verschwindet aber bei
kleiner Anregung.

Um den Darstellungen der Mandelbrot-Menge oder
der „Drehpendel-Menge” Informationen über die
Dynamik des Endverhaltens entnehmen zu können,
färbt man alle Parameterpunkte entsprechend der
Periodizität des Endverhaltens, zu dem sie führen
(Bild 6). Eindrücklicher ist es auch hier, die Dyna-
mik durch Töne zu veranschaulichen.

2. Variation der Anfangswerte bei festen Pa-
rametern

Untersucht man bei festen Parametern alle An-
fangswerte darauf, ob sie zu dem jeweils uner-
wünschten Verhalten führen oder nicht und färbt sie
entsprechend, dann ergeben sich für die beiden Sy-
steme Diagramme wie in Bild 7. Für die Mandel-
brot-Menge heißen diese Mengen, die für jedes Paar
von Parametern anders aussehen, gefüllte Julia-
Mengen. Deshalb nannten wir die beim chaotischen
Drehpendel entstehende entsprechende Figur Julia
und fügten nachträglich Augen, Mund und Nase
hinzu. Die „Sommersprossen” allerdings haben eine
physikalische Bedeutung: Während das Rad chao-

tisch, also scheinbar völlig regellos schwingt, er-
zeugen die beim Stroboskopblitz registrierten Sy-
stemzustände eine wohl definierte Figur, den chao-
tischen Attraktor: Das Verhalten des Rades ist
zwar im Detail nicht vorhersagbar. Trotzdem ist si-
cher, daß die Systemzustände immer auf dieser Fi-
gur liegen werden. Der chaotische Attraktor ist ein
Fraktal: Registriert man genügend viele Zustände
und vergrößert Teile der Figur immer stärker, dann
findet man eine unendlich feine Schichtenstruktur.

Färbte man wie in Bild 6 die gefüllte Julia-Menge
entsprechend der Periodizität des sich einstellenden
Endverhaltens, so bekäme sie doch eine einheitliche
Farbe: Alle Anfangswerte in der gefüllten Julia-
Menge führen zu demselben Endverhalten. Nicht so
beim Drehpendel: Dort können, bei unveränderten
Parametern, verschiedene Anfangsbedingungen zu
unterschiedlichen Endverhalten führen (koexistie-
rende Attraktoren). Bild 8 zeigt entsprechende
Variationen unserer Julia. Bei aller Verschiedenheit
des Endverhaltens bleiben sich die Bilder doch in
ihrer Gestalt ähnlich. Diese Ähnlichkeit geht zurück
auf das Potential, in dem das Rad schwingt und das
allein durch die rücktreibende Feder und die Zu-
satzmasse bestimmt ist (Bild 9).

Bild 7: Menge der Anfangswerte, die bei festen Parame-
tern (links: cx  = 0.28008, cy = - 0.008688, rechts: f = 1.7,
I = 280 mA) nicht zum erwünschten führen.

Bild 8: In der Ebene der Anfangswerte sind die Punkte entsprechend dem Endverhalten gefärbt, zu dem sie führen. Bei I =
540 mA (links) gibt es vier unterschiedliche reguläre Endverhalten, bei I = 513 mA (Mitte) koexistieren ein regulärer und ein
chaotischer Attraktor, bei I = 505 mA (rechts) zwei verschiedene chaotische Attraktoren.
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Schlußbemerkung

Mit der Gegenüberstellung der Mandelbrot-Iteration
und der diskretisierten Registrierung des nichtlinea-
ren Drehpendels sollten beispielhaft die Gemein-
samkeiten beider Arten von Untersuchungen de-
monstriert und damit die Antwort auf die eingangs
gestellte Frage gegeben werden, was Schönheit mit
Chaos zu tun hat bzw. inwiefern Chaos schön sein
kann. Bei aller Verschiedenheit zwischen beiden
Systemen sind doch die Fragestellungen, unter de-
nen man die Systeme betrachtet, und die Untersu-
chungsmethoden, mit denen man sie untersucht,
dieselben. Beide Systeme zeigen unter dieser Per-
spektive ähnliches Verhalten. Anders als man es
normalerweise von Untersuchungen physikalischer
Systeme gewohnt ist, manifestiert sich dieses Ver-
halten in schönen Bildern. Daher lassen sich die
schönen Bilder des mathematischen Mandelbrot-
Systems mit dem chaotischen Verhalten eines phy-
sikalischen Systems in Verbindung bringen und die
Schönheit als Ausdruck des Chaos anzusehen. Über
ihren ästhetischen Reiz hinausgehend haben diese
Bilder für die Erschließung dynamischer Systeme
eine reale Bedeutung: Die menschliche Fähigkeit
zur Mustererkennung vermag Strukturen in Vor-
gängen zu entdecken, die auf den ersten Blick (d.h.
bei der Betrachtung des Systems im realen An-
schauungsraum) nicht zu erkennen sind. Erst mit
Methoden, wie sie bei der Untersuchung der Man-
delbrot-Menge angewendet werden, können die
komplexen Signale in Bilder verwandelt und damit
einer weitergehenden Analyse zugänglich gemacht
werden.

Literatur

1 Backhaus, U.; H. J. Schlichting: Auf der Such nach Ord-
nung im Chaos. – In: Der mathematische und naturwis-
senschaftliche Unterricht 43(1991)8. – S. 455

2 Becker, K.-H.; M. Dörfler: Dynamische Systeme und
Fraktale. – Vieweg: Braunschweig 1989

3 Briggs, J.; F. D. Peat: Die Entdeckung des Chaos. – Carl
Hanser: München 1990

4 Peitgen, H.-O.; P. H. Richter: The Beauty of Fractals. –
Springer: Berlin usw. 1986

5 Peitgen, H.-O.; D. Saupe: The Science of Fractal Images.
– Springer: Berlin usw. 1988

Bild 9: Einzugsbereiche der beiden Gleichgewichts-
punkte bei nicht angetriebenem Drehpendel (I = 535
mA).


