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Was hat Schonheit mit Chaos zu tun?

Vergleich der Mandel brot-Iteration mit elnem chaotischen Drehpendel

Udo Backhaus (Universitét Osnabrtick), H.- Joachim Schlichting, (Universitét GH Essen)

1. Problemstellung

In den letzten Jahren Ubte die Untersuchung der
Mandel brot-Menge eine wachsende Faszination auf
Wissenschaftler und Laien, auf Theoretiker, Kiinst-
ler und Computer-Freaks aus. Diese Faszination be-
ruht zum grofRen Teil auf der merkwiirdigen Schon-
heit der dabei erzeugten Bilder, die in vielen, auch
populdren, Ausstellungen, auf Tagungen und in
prachtvollen Bildbanden gezeigt werden /4;5/. Ein
weiterer Grund ist sicher die grof3e Diskrepanz zwi-
schen der unbeschreiblichen Komplexitét der Bilder
und der Einfachheit des zugrunde liegenden Algo-
rithmus.

Die Schonheit der von den Bildern der Mandelbrot-
Menge und ihrer Abkémmlinge wird haufig mit
chaotischem Verhalten in Verbindung gebracht. Der
dabel unterstellte Zusammenhang zwischen der
Schonheit rein mathematischer Gebilde und dem
komplexen Verhalten physikalischer Systeme bleibt
jedoch in vielen Féllen unaufgeklart und ruft beim
Adressaten Ratlosigkeit hervor./3/

Wir wollen deshalb am konkreten Beispiel eines
einfachen dynamischen Systems Beziehungen zwi-
schen den Mandelbrot-Bildern und chaotischem
Verhalten aufzeigen und damit demonstrieren, in-
wieweit die Schonheit der Bilder die Tiefenstruktur
chaotischer Vorgange berihrt.

Die Mandel brot-Iteration

Bilder der Mandelbrot-Menge und ihrer Abkdmm-
linge spiegeln das Langzeitverhalten einer gewissen
Klasse von Iterationsfolgen. Das sind Zahlenfolgen,
bei denen jedes Glied nach einer festen Vorschrift
aus seinem Vorganger berechnet wird:

Xn+1 = Fa(xn)y n=0,1,2,.. (1)

Das Langzeitverhalten solcher Folgen hangt von
gewissen, die Bildungsvorschrift F charakterisie-
renden, Konstanten a und vom Anfangswert X, ab.

Die Mandelbrot-Iteration ist die komplexe Iterati-
onsfolge

Zw1= Flz)=Zv ¢ mitz,c | (2)
oder reell geschrieben

(mitx=R(2),y=1(2))

(Xn+1, Yne2) = FCaCy (Xns V)

= (X" =Y * G, 2y + C,) (3

Das Verhalten dieser Folge héngt von vier Bedin-
gungen ab: den beiden Parametern c, und c, und
den beiden Anfangswerten x, und yo.

Was aber haben solche Untersuchungen diskreter

Bild 1. Drehpendel mit Unwucht. Experimentell leicht
zu variierende Parameter: Zusatzmasse m, Anregungs-
frequenz Q, Anregungsamplitude f, Dampfungsstrom-
stérkel.

Iterationsfolgen mit der Untersuchung physikali-
scher Systeme zu tun?

Diskretisierung physikalischer  dynami-
scher Systeme

In der Physik wird die zeitliche Entwicklung von
Systemen durch Bewegungsgleichungen beschrie-
ben. Diese sind wegen der kontinuierlichen Abhan-
gigkeit der Systeme von der Zeit Differentiaglei-
chungen. In der Praxis jedoch ist die Messung und
Beschreibung physikalischer Systeme fast immer
diskret: beim Messen wegen des endlichen zeitli-
chen und rédumlichen Aufldsungsvermdgens der Re-
gistriergeréte, bei der Berechnung wegen der nume-



rischen Integration. Nur die wenigsten Bewegungs-
gleichungen sind namlich analytisch zu l6sen. Bei
der numerischen Behandlung handelt se sich um ei-
ne Art mathematischer Riickkopplung: Man fittert
den mathematischen Ausdruck, der das Systemver-
halten beschreibt (die Bewegungsgleichung), immer
wieder mit seinem eigenen Ergebnis (einem neuen
Systemzustand) und ,,hangelt” sich auf diese Weise
an der Trajektorie des Systems entlang.

Mandelbrot - Iteration
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der Regel beinhaltet sie einen umfangreichen Algo-
rithmus, mit dessen Hilfe aus einem Zustand der
Folgezustand berechnet werden kann.

Als Beispiel betrachten wir ein Drehpenddl (Bild 1),
das durch eine Zusatzmasse unwuchtig, d. h. nicht-
linear gemacht wurde /1/. Sein Verhalten ergibt sich
aus der Summe der angreifenden Drehmomente;

0 [D°p/0t° + B [DP/0t = -D(¢ - ) + mgr sin ¢

Drehpendel- Iteration
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Bild 2: Einen ersten Uberblick (iber das Verhalten der Mandelbrot- Iteration bzw. des Drehpendels gewinnt man, indem man
nur einen Parameter varriert (-2.0 < cx < 0.25 bzw. 510 mA < | <530 mA) und dartiber die Folgenglieder auftrégt, nachdem

das Einschwingverhalten abgeklungen ist.

Die Diskretisierung eines Bewegungsablaufes kann
as eine Art stroboskopischer Betrachtung ange-
sehen werden. Die mit dieser Stroboskopierung
verbundene Moglichkeit, das Verhalten des Systems
nur zu bestimmten Zeitpunkten zu registrieren und
dann damit Uberflissige Informationen auszublen-
den, kann auch Vorteile haben. Sie fuhrt dann zu
vertieften Erkenntnissen tber das System, wenn sie
synchron mit dem Rhythmus des Systems erfolgt.
Das ist schwierig bei den sogenannten autonomen
Systemen, die ihre zeitliche Struktur selbst organi-
sieren. Dagegen ist es leicht bei periodisch ange-
triebenen Systemen, denen ein fester Zeittakt von
aulBen aufgepragt wird. Auf solche angetriebenen
Systeme werden wir unsim folgenden beschranken.

Die stroboskopische Betrachtung eines Systems lie-
fert eine Folge von Zustdnden (&o,64,...) mit & =
&(iAt) und damit eine Iterationsabbildung I:

&1 = 1(&n) n=0,1.2,.. (4

Experimentell ergibt sich der Folgezustand dadurch
aus einem beliebigen Zustand, dal? sich das System
unter dem Einfluf? der Anregung weiter entwickelt —
und zwar genau fur die Dauer einer Anregungsperi-
ode. Mathematisch 1813t sich die Iterationsabbildung
nur in den seltensten Féllen geschlossen angeben; in

Bei harmonischer Anregung (¢ = a; cos Qt) erhalt
man daraus folgende Bewegungsgl eichung:

0%9/0t” = p (1) (DY/0t - Q°d + rpsind + f cos Qt
©)

Das Verhalten hangt also von vielen Parametern ab,
von denen wir ale bis auf die Dampfungsstromstar-
ke | und die Anregungsamplitude f konstant halten
wollen. Der Zustand des Rades ist vollsténdig be-
stimmt durch den Ausschlag ¢ und die Phase der
Anregung Qt. Dadurch die Stroboskopabbildung
die Anregungsphase jedesmal denselben Wert hat,
hat man also wie bei der Mandelbrot-Iteration eine

Folge von Zahlenpaaren (¢, @), die auRer von
den Anfangswerten von zwei Parametern abhangt:

(¢n+1, ¢n+1) = Fl,f (¢n , ¢n ) = stroboskopische
Registrierung im Takt
der Anregung [50 (6)
Integrationsschritten

Experimentell kann das Rad untersucht werden, in-
dem man z.B. eine Lichtschranke periodisch durch
die Anregungsstange verdunkelt. Mit dem so er-
zeugten Impuls kann entweder (zu Demonstrations-
zwecken) ein Stroboskop angesteuert oder die
Melwertaufnahme (z.B. mit einem Computer)



getriggert werden. Numerisch untersuchen wir das
System, indem wir die Bewegungsgleichung mit ei-
nem Runge-Kutta-Verfahren 4. Ordnung mit einer
festen Schrittweite von 50 Schritt/Anregungs-
periode numerisch integrieren. Der Algorithmus der
Iterationsabbildung besteht dann also aus 50 Inte-
grationsschritten, von denen jeder selbst aus vier
Schritten besteht.
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Auf diese Weise entsteht eine weitgehende formale
Ubereinstimmung zwischen der Mandelbrot-
Iteration (3) und der stroboskopischen Registrie-
rung des Drehpendels (6). Zu dem Vergleich zwi-
schen den Systemen ermutigt jedoch nicht nur diese
formale Ubereinstimmung, sondern vielmehr die
experimentelle Erfahrung, dal? man an beiden Sy-
stemen sehr dhnliche Verhaltensweisen beobachten

Bild 3: : Mandelbrot- Menge (links) und ,, Drehpendel- Menge" (rechts): In der Parameterebene (links: -2.0 < ¢, < 0.25, -1.25
< cy < 1.25; rechts: 50 mA < | <600 mA, 1.0 < f < 2.0 sind die Punkte geférbt, die bel festen Anfangsbedingungen nicht zu

dem jeweils unerwiinschten Verhalten fuhren.
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Bild 4: Zusammenhang zwischen dem Feigenbaumdia
gramm der Mandelbrot- Iteration und der Mandelbrot-
Menge.

kann wie z.B. Periodenverdopplung und chaotisches
Verhalten.

Vergleich von Mandelbrot-Iteration und
nichtlinearem Drehpendel

Bel beiden Systemen werden folgende Fragestel-

lungen verfolgt:

« Wie hangt das System(end)verhalten — bei festen
Anfangsbedingungen — von den Systempara-
metern ab?

Welchen Einflu3 haben — bei festen Systempara-
metern — die Anfangswerte auf das Verhalten?

Variation der Systemparameter bei festen
Anfangswerten

Halt man zunéchst nicht nur die Anfangswerte fest
(X0 = 0, Yo = 0 bzw. ¢ = 10°, ¢p = 0), sondern auch
einen der Systemparameter (c, = 0 bzw. f = 1.7),
dann zeigt sich in einem Diagramm zum ersten Mal
eine weitgehende Analogie zwischen beiden Syste-
men (Bild 2). Den Diagrammen liegt eine Uberra-
schende vielfaltige Dynamik zugrunde, die die stati-
sche Darstellung alerdings nur unvollkommen wie-
dergeben kann. Ihre Veranschaulichung gelingt bes-
ser, wenn man mit dem Computer Tone erzeugt, de-
ren Hohe ein Ma3 firr den ,,Mef3wert” (z.B. propor-
tional zum Realteil x bzw. zur Audenkung ¢ ist.
Dann zeigt sich u. a., dal3 die Systeme im mittleren
Bereich zwischen den zwei Zusténden hin- und her-
springen (Periodenverdopplung) und dal3 die Folge



der Systemzustéande im linken Diagrammbereich
(bei negativen c,-Werten bzw. kleiner Dampfung)
scheinbar véllig regellosist (Chaos).

Allerdings zeigt das Diagramm fir das Drehpendel
nur einen kleinen Ausschnitt aus seinen Verhal-
tensmoglichkeiten /s. 1/. Die beiden Feigenbaum-
Diagramme in Bild 2 unterscheiden sich darlber
hinaus hinsichtlich ihrer Stabilitét. Bei der Mandel-
brot-Iteration verschwindet das chaotische Verhal-
ten, sowie ¢, = 0 gewahlt wird: Die Zahlenfolge
wachst dann schnell Uber ale Grenzen. Beim nicht-

verhalten an dem jeweils ,, unerwiinschten” Verhal-
ten zu messen:

Mandelbrot-Iteration: Drehpendd:

oo - Attraktor chaotischer Attraktor

Fur welche Parameterwerte tritt nun das uner-
winschte Verhalten ein? gibt die Antwort auf diese
Frage: Sie zeigt links die Mandelbrot-Menge. Das
ist die Menge aler Parameterwerte (c,, ¢,), fir die

Bild 5: Zwei VergroRRerungen des Randes der Mandelbrot Menge. Keine VergroflRerung dieses Randes zeigt eine glatte Kur-

ve: Der Rand ist ein Fraktal.

Periode . e
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Bild 6: Nach der Periodizitét des Endverhaltens geféarbte Mandelbrot- Meng bzw. ,, Drehpendel- Menge*: Je dunkler die Far-

bung, desto hoher die Periodizitét.

linearen Drehpendel dagegen andert sich das Dia
gramm bel Variation von f stetig; das Feigenbaum-
Diagramm ist strukturell stabil.

Nur beim Drehpendel tritt also Chaos as stabiles
Verhalten auf (chaotischer Attraktor). Dafir kann
(wegen der Dampfung des Rades) nur die Mandel-
brot-Iteration unter bestimmten Bedingungen unbe-
grenzt wachsen. Fir den weiteren Vergleich der
beiden Systeme liegt es deshalb nahe, das System-

die Mandelbrot-Iteration mit Anfangswert zo = 0
nicht divergiert. Entsprechend zeigt das rechte Bild
die Menge aller Parameterpaare (I, f), fur die die
Schwingungen des Rades nicht chaotisch werden.
(Den Zusammenhang zwischen Feigenbaum-
Diagramm und Mandelbrot-Menge veranschaulicht
Bild 4. Fir das Drehpendel kann man stattdessen
das entsprechende (winzige) Parameterintervall in
Bild 6 erkennen.)



Bild 7: Menge der Anfangswerte, die bei festen Parame-
tern (links: ¢, =0.28008, cy = - 0.008688, rechts: f = 1.7,
| =280 mA) nicht zum erwiinschten fuhren.

2. Variation der Anfangswerte bei festen Pa-
rametern

Untersucht man bei festen Parametern alle An-
fangswerte darauf, ob sie zu dem jewells uner-
winschten Verhalten fuhren oder nicht und férbt sie
entsprechend, dann ergeben sich fir die beiden Sy-
steme Diagramme wie in Bild 7. Fir die Mandel-
brot-Menge heif3en diese Mengen, die fir jedes Paar
von Parametern anders aussehen, gefillte Julia-
Mengen. Deshalb nannten wir die beim chaotischen
Drehpendel entstehende entsprechende Figur Julia
und flgten nachtréaglich Augen, Mund und Nase
hinzu. Die ,, Sommersprossen” allerdings haben eine
physikalische Bedeutung: Wahrend das Rad chao-

ol

Bild 8: In der Ebene der Anfangswerte sind die Punkte entsprechend dem Endverhalten geférbt, zu dem sie fihren. Bel | =
540 mA (links) gibt es vier unterschiedliche regulére Endverhalten, bei | = 513 mA (Mitte) koexistieren ein regulérer und ein
chaotischer Attraktor, bei | = 505 mA (rechts) zwei verschiedene chaotische Attraktoren.

Die Mandelbrot-Menge ist ein Gebilde von unvor-
stellbarem Formenreichtum /s. Bild 5/, deren Reiz
durch die Einfachheit des Erzeugungsalgorithmus
noch gesteigert wird. Bild 3 zeigt, dai3 die Mandel-
brot-Iteration fur grofRe c-Werte (auf jeden Fall fur
(¢ > 2.0) divergiert. Beim Drehpendel tritt bei
mittleren Dampfungsstromstérken chaotisches Ver-
halten auf; bei kleiner Dampfung schwingt das Rad
so heftig, daf’ es von der Potentialschwelle bei ¢ =
0° kaum etwas bemerkt, bei groRer Dampfung
schwingt es mit kleiner Amplitude um eine der bei-
den Gleichgewichtslagen herum. Erwartungsgemaid
wird der chaotische Bereich mit zunehmender An-
regungsamplitude groRer, verschwindet aber bei
kleiner Anregung.

Um den Darstellungen der Mandelbrot-Menge oder
der ,Drehpendel-Menge” Informationen Uber die
Dynamik des Endverhaltens enthehmen zu kdnnen,
farbt man alle Parameterpunkte entsprechend der
Periodizitdt des Endverhaltens, zu dem sie fuhren
(Bild 6). Eindrucklicher ist es auch hier, die Dyna-
mik durch Tone zu veranschaulichen.

tisch, also scheinbar vdllig regellos schwingt, er-
zeugen die beim Stroboskopblitz registrierten Sy-
stemzustande eine wohl definierte Figur, den chao-
tischen Attraktor: Das Verhaten des Rades ist
zwar im Detail nicht vorhersagbar. Trotzdem ist si-
cher, da3 die Systemzustdnde immer auf dieser Fi-
gur liegen werden. Der chaotische Attraktor ist ein
Fraktal: Registriert man gentigend viele Zustdnde
und vergroRert Teile der Figur immer stérker, dann
findet man eine unendlich feine Schichtenstruktur.

Férbte man wie in Bild 6 die geflllte Julia=Menge
entsprechend der Periodizitét des sich einstellenden
Endverhaltens, so bek@me sie doch eine einheitliche
Farbe: Alle Anfangswerte in der gefillten Julia
Menge fuihren zu demselben Endverhalten. Nicht so
beim Drehpendel: Dort kénnen, bel unveranderten
Parametern, verschiedene Anfangsbedingungen zu
unterschiedlichen Endverhalten fihren (koexistie-
rende Attraktoren). Bild 8 zeigt entsprechende
Variationen unserer Julia. Bei aller Verschiedenheit
des Endverhaltens bleiben sich die Bilder doch in
ihrer Gestalt dhnlich. Diese Ahnlichkeit geht zuriick
auf das Potential, in dem das Rad schwingt und das
alein durch die ricktreibende Feder und die Zu-
satzmasse bestimmt ist (Bild 9).



Bild 9: Einzugsbereiche der beiden Gleichgewichts-
punkte bei nicht angetriebenem Drehpendel (I = 535
mA).

SchlufZbemerkung

Mit der Gegeniiberstellung der Mandelbrot-Iteration
und der diskretisierten Registrierung des nichtlinea-
ren Drehpendels sollten beispielhaft die Gemein-
samkeiten beider Arten von Untersuchungen de-
monstriert und damit die Antwort auf die eingangs
gestellte Frage gegeben werden, was Schonheit mit
Chaos zu tun hat bzw. inwiefern Chaos schdn sein
kann. Bei aler Verschiedenheit zwischen beiden
Systemen sind doch die Fragestellungen, unter de-
nen man die Systeme betrachtet, und die Untersu-
chungsmethoden, mit denen man sie untersucht,
dieselben. Beide Systeme zeigen unter dieser Per-
spektive dhnliches Verhalten. Anders als man es
normalerweise von Untersuchungen physikalischer
Systeme gewohnt ist, manifestiert sich dieses Ver-
halten in schénen Bildern. Daher lassen sich die
schonen Bilder des mathematischen Mandelbrot-
Systems mit dem chaotischen Verhalten eines phy-
sikalischen Systems in Verbindung bringen und die
Schonheit als Ausdruck des Chaos anzusehen. Uber
ihren &sthetischen Reiz hinausgehend haben diese
Bilder fur die Erschliefung dynamischer Systeme
eine reale Bedeutung: Die menschliche Fahigkeit
zur Mustererkennung vermag Strukturen in Vor-
géngen zu entdecken, die auf den ersten Blick (d.h.
bei der Betrachtung des Systems im realen An-
schauungsraum) nicht zu erkennen sind. Erst mit
Methoden, wie sie bei der Untersuchung der Man-
delbrot-Menge angewendet werden, kodnnen die
komplexen Signale in Bilder verwandelt und damit
einer weitergehenden Analyse zugénglich gemacht
werden.
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