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Die Einführung der Entropie als Irreversibilitätsmaß – 
Begriffsbildung und Anwendung auf einfache Beispiele1 

Von UDO BACKHAUS und HANS-JOACHIM SCHLICHTING 

 

                                                           
1 In: Der Mathematisch und Naturwissenschaftliche Unterricht 34/5 (1981), 282 -291  

Im Unterschied zur üblichen Entropieeinführung 
wird hier ein Begriffsapparat entwickelt, mit dem es 
möglich ist, die Entropie ohne Kenntnis der Ther-
modynamik idealer Gase als Maß für die Unum-
kehrbarkeit (Irreversibilität) natürlicher Vorgänge 
zu begreifen. Die Autoren hoffen, dadurch ein Ver-
ständnis der Entropie in der Schule zu ermöglichen, 
das der übergreifenden Bedeutung dieses Konzep-
tes gerecht wird. 

1. Einleitung 
Trotz ihrer großen Bedeutung in allen Naturwissen-
schaften wird die Entropie in der Schule bisher nur 
selten überhaupt erwähnt. Ihre Behandlung gilt als 
zu schwierig. Das mag daran liegen, daß die bishe-
rigen Vorschläge zur Einführung ausgehen von der 
Eigenschaft der Entropie, bei reversiblen Vorgän-
gen unverändert zu bleiben. Dadurch wird nicht nur 
das Verständnis der überragenden Stellung der Ent-
ropie erschwert, sondern insbesondere der Bezug 
dieser Größe zur Lebenswelt verschleiert: Schließ-
lich gibt es in der Natur keine reversiblen Prozesse. 

In einem vorangegangenen Aufsatz [I] haben wir 
deshalb dafür plädiert, die Entropie als eine Größe 
einzuführen, die geeignet ist, Ordnung in eine große 
Klasse alltäglich erfahrbarer Phänomene zu bringen. 
Wir gingen dabei aus von der offensichtlichen Un-
umkehrbarkeit spontaner Prozesse. Die Beobach-
tung, daß verschiedene solcher Prozesse sich gegen-
seitig dazu veranlassen können, entgegen der spon-
tanen Richtung abzulaufen, nahmen wir als Hinweis 
für die unterschiedliche Stärke der Unumkehrbar-
keit, für die ein quantitatives Maß entwickelt wurde. 
Die Messung der Irreversibilität eines Prozesses be-
stand schließlich aus der Untersuchung, wie oft die-
ser einen anderen irreversiblen Prozeß »zurückspu-
len« kann. 
Die dabei benutzten Ausdrücke - insbesondere 
»Prozeß«, Irreversibilität eines Prozesses«, »mehr-
maliges Ablaufen« und »Zurückspulen von Prozes-
sen« - bedürfen noch der Erläuterung, zumal sich 
ihre Bedeutung zum Teil entscheidend vom übli-

chen Sprachgebrauch unterscheidet. Ziel dieses 
Aufsatzes ist deshalb die Entwicklung eines Beg-
riffsapparates (in Anlehnung an R. GILES [2]), eine 
Präzisierung der Argumentationskette und die An-
deutung der Beziehungen zum üblichen Vorgehen. 
Dabei zeigt sich, daß höhere Mathematik und die 
Kenntnis der Thermodynamik idealer Gase erst bei 
der Behandlung der absoluten Temperatur benötigt 
werden, also keine Voraussetzung für die Entropie-
einführung darstellen. 

2. Präzisierung der Begriffe 
2.1 Vereinigung von Zuständen 
Um das mehrfache Ablaufen von Prozessen be-
schreiben zu können, muß zunächst die Summe 
zweier Zustände erklärt werden: 

Zwei Systeme A und B können betrachtet werden 
als ein einziges System C. Befinden sich die Einzel-
systeme in den Zuständen a und b, dann schreibt 
man für den Zustand des zusammengesetzten Sys-
tems c = a ⊗  b (Abb. 1). 

2.2 Übergehen eines Zustandes in einen ande-
ren 
Wenn sich der Zustand eines Systems A innerhalb 
eines gewissen Zeitintervalls ändert, sagt man, ein 
natürlicher Prozeß habe stattgefunden. Im allgemei-
nen wechselwirkt A in dieser Zeit mit anderen Sys-
temen. Man betrachtet dann A als Teil eines größe-
ren isolierten Systems I. Dabei ist es möglich, daß 
fortgelassen: bei einigen Teilen von I Anfangs- und 
Endzustand übereinstimmen. 

Man sagt, ein System sei an einem Prozeß beteiligt, 
wenn sich Anfangs- und Endzustand unterscheiden. 

Wenn es einen natürlichen Prozeß gibt, an dem 
nur ein System A mit den Zuständen a1 und a2 
beteiligt ist, dann schreiben wir a1 → a2 und 
sagen »a1 geht über in a2«. 
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Um schreiben zu können a1 → a2 muß also entwe-
der A während des Prozesses isoliert bleiben, oder, 
wenn das nicht der Fall ist, dürfen sich die Zustände 
der Umgebung vor und nach dem Prozeß nicht un-
terscheiden. Wenn also a1 → a2 gilt, dann haben die 
Zustände a1 und a2 insbesondere dieselbe Energie 
und dieselben Teilchenzahlen (bzw. Mengen). 

Es muß hier betont werden, daß die Relation »→« 
nur eine Beziehung zwischen Zuständen darstellt, 
nicht aber der Kennzeichnung irgendwelcher »Pro-
zeßrealisierungen« dient: man schreibt nämlich 
schon a1 → a2 wenn es eine Prozeßrealisierung gibt, 
unabhängig davon, ob es noch andere gibt. 

2.3 Prozesse 
Ein (formaler) Prozeß ist ein geordnetes Paar von 
Zuständen. Prozesse schreiben also nicht bestimmte 
Realisierungen vor, sondern lediglich Anfangs- und 
Endzustände, d. h. Zustandsänderungen. Wir 
schreiben sie deshalb als Zustandspaare in eckige 
Klammern und kennzeichnen sie mit kleinen grie-
chischen Buchstaben. Zustände werden durch kleine 
lateinische Buchstaben gekennzeichnet und – wenn 
nötig - durch einen Index für das betrachtete System 
und Angabe der zugehörigen Werte der Zustands-
größen in Klammern näher erläutert. 

Beispiel 
Bei der isenergetischen Expansion eines Gases (G) 
ändert sich nur das Volumen V, nicht aber Energie 
E und Menge n des Gases. Dieser Prozeß wird des-
halb folgendermaßen beschrieben: 

 ( ) ( ), , , , ,G Ga E V n a E V V nα ′= + ∆   . 

Die konstanten Zustandsgrößen werden oft auch 
fortgelassen: 

 ( ) ( ),G Ga V a V Vα ′= + ∆   . 

Prozesse werden unterschieden nach ihrem Verhal-
ten gegenüber»→«: Ein Prozeß α = [a, b] heißt 

natürlich, wenn a → b 
 natürlich reversibel, wenn a → b und b → a, und 
natürlich irreversibel, wenn a → b und b   a. 

Prozesse werden in naheliegender Weise addiert: 

Befinden sich am Anfang eines Prozesses die Sys-
teme A und B in den Zuständen a und b und zum 
Schluß in den Zuständen a‘ und b‘, dann haben die 
Systeme die Prozesse α= [a, a‘] und β = [b, b‘] 
durchlaufen. Den Gesamtprozeß bezeichnen wir mit 
 [ ],a b a bα β ′ ′⊕ = ⊗ ⊗ . 

Beispiel 
Bei dem Prozeß α: »Dissipation mechanischer E-
nergie« ändert sich der Anfangszustand am eines 
mechanischen Systems in den Endzustand ám durch 
Abnahme der Anfangsenergie Em um einen gewis-
sen Betrag ∆E. Gleichzeitig verändert sich der Zu-
stand eines thermischen Systems von bt nach b‘t da-
durch, daß ohne Formveränderung seine Energie E 
um ∆E - und damit seine Temperatur ϑ um ∆ϑ - 
zunimmt. Der Prozeß α kann also zerlegt werden in 
zwei Teilprozesse, nämlich den Prozeß αm: »Ener-
gieabnahme eines mechanischen Systems« und den 
Prozeß αt: »isochore Energiezunahme eines thermi-
schen Systems«: 

( ) ( ) ( ), ,m m t m ma E b E a E Eα ϑ ′= ⊗ − ∆  

 ( ) ,tb E E ϑ ϑ′⊗ + ∆ + ∆   

( ) ( ),m m m ma E a E E′= − ∆    

 ( ) ( ) , ,t tb E b E Eϑ ϑ′⊕ + ∆ + ∆    

m tα α= ⊕ . 

Läuft ein natürlich irreversibler Prozeß mit einem 
anderen Prozeß zusammen ab, so kann es vorkom-
men, daß der Gesamtprozeß weniger irreversibel ist 
als der Einzelprozeß - im Grenzfall verschwinden-
der Irreversibilität sogar reversibel. 

Beispiel: Isotherme (isenergetische) Expansion ei-
nes idealen Gases. 

a) Der Prozeß ist natürlich irreversibel, weil er al-
lein ablaufen kann (freie Expansion) und nicht 
allein zurückläuft: 

 ( ) ( ), , , ,G Ga E V a E V Vϑ ϑ′→ + ∆ . 

b) Bei gleichzeitigem Entzug von Wärme ans ei-
nem Wärmebad der Temperatur ϑ und Zufuhr 
von Energie auf ein mechanisches System kann 
der Gesamtprozeß natürlich reversibel sein: 

 ( ) ( ), ,G wa E V Eϑϑ ω⊗  

 ( ) ( ) , ,m Gm E a E V V ϑ′⊗ ↔ + ∆  

 ( ) ( ) w mE E m E Eϑω⊗ ′ ′− ∆ ⊗ + ∆ . 

 
Abb. 1: Addition von Zuständen 
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»Reversibelmachen eines Prozesses α« bedeutet das 
Auffinden anderer Prozesse, die zusammen mit α 
einen natürlich reversiblen Prozeß bilden. 

2.4 Messung der natürlichen Irreversibilität 

Wir hatten einen Prozeß α stärker irreversibel ge-
nannt als einen Prozeß β, wenn α β »zurückspulen« 
kann (in Zeichen: » α → β «)Nun läßt sich genau 
beschreiben, was damit gemeint ist: 

Der Prozeß, zu dessen Beginn ein System A im An-
fangszustand von α und ein System B im Endzu-
stand von β vorliegt und nach dessen Ablauf A den 
Endzustand von α, B aber den Anfangszustand von 
β angenommen hat, ist natürlich, läuft also von al-
lein ab; oder kürzer: α, bildet zusammen mit der 
Umkehrung von β (sie wird mit - β bezeichnet) ei-
nen natürlichen Prozeß: 

 Def
[ ] [ ], ,   a a b b a b a bα β α β′ ′ ′ ′→ ⇔ → ⇔ ⊗ → ⊗ ⇔ !

ist ein natürlicher Prozeß. 

Die Definition nimmt damit folgende Form an: 

Messung der natürlichen Irreversibilität 

1) ( ) ( )   I Iα β α β α β′ ′= ⇔ ↔ ⇔ !  ist na-
türlich reversibel, 

2) ( ) ( )   I z I z zα β α β α β′ ′= ⋅ ⇔ ↔ ⋅ = ⋅!  
ist natürlich reversibel, *z ∈ ! . 

Zur Verdeutlichung wenden wir dieses Meßverfah-
ren noch einmal auf die isotherme Dissipation me-
chanischer Energie an. Sie wurde schon in [1] aus-
führlich diskutiert mit dem Ergebnis, daß die natür-
liche Irreversibilität (sie wurde in [1] nur mit »Irre-
versibilität« bezeichnet) solcher Prozesse proporti-
onal zur »verlorenen« mechanischen Energie, ist. 
Mit dem jetzt erreichten Argumentationsniveau läßt 
sich eine vollständige Begründung für dieses Er-
gebnis geben, das damals aufgrund der alleinigen 
Betrachtung des mechanischen Systems aufgestellt 
wurde: 

Beispiel 
Sei α der Prozeß »Isotherme Dissipation der me-
chanischen Energie ∆E in einem Wärmebad der 
Temperatur ϑ«: 

[ ( ) ( ) ( ),m m w m ma E E a E Eϑα ω ′= ⊗ − ∆  

 ( )] wE Eϑω′⊗ + ∆ . 

Der Prozeß β unterscheide sich von α nur durch 
den doppelt so großen Energieumsatz: 

[ ( ) ( ) ( ), 2m m w m ma E E a E Eϑβ ω ′′= ⊗ − ∆  

 ( )] 2wE Eϑω′′⊗ + ∆ . 

Daß β α genau zweimal zurückspulen kann, kann 
man sich folgendermaßen überlegen: Wenn α 
zweimal zurückläuft, wird dem Wärmebad genauso 
viel Energie entzogen, wie ihm beim Ablaufen von 
β zugeführt wurde. Insgesamt ist dann das Wärme-
bad gar nicht beteiligt, und der zusammengesetzte 
Prozeß ist die Energieübertragung zwischen zwei 
mechanischen Systemen. Ein solcher Prozeß ist na-
türlich reversibel, läuft also in beiden Richtungen 
»von selbst« ab. Das heißt aber gerade, daß β α 
zweimal zurückspulen kann und daß α zweimal ab-
laufen muß, um β zurückspulen zu können. Formal 
sieht dieser Gedankengang folgendermaßen aus: 

 2β α↔  

[ ] [ ], 2 ,m m m ma a a aϑ ϑ ϑ ϑω ω ω ω′′ ′′ ′ ′⇔ ⊗ ⊗ ↔ ⊗ ⊗  

2 2 2 2m m m ma a a aϑ ϑ ϑ ϑω ω ω ω′ ′ ′′ ′′⇔ ⊗ ⊗ ⊗ ↔ ⊗ ⊗ ⊗
Da das Zusammenfügen zweier Wärmebäder glei-
cher Temperatur wieder ein Wärmebad ergibt, kann 
diese Aussage folgendermaßen vereinfacht werden: 

( )2 2 2m wa E Eϑω′ ⊗ + ∆  

( )2 2m m wa a E Eϑω′′↔ ⊗ ⊗ + ∆  

( )2 m ma E E′⇔ − ∆  

( ) ( )2m m m ma E E a E′′↔ − ∆ ⊗  

Die letzte Aussage beinhaltet die Reversibilität des 
Energieaustausches zwischen mechanischen Syste-
men, ist also richtig - und damit auch die Behaup-
tung. 

Verallgemeinerung der Argumentation ergibt: 

Die natürliche Irreversibilität der Dissipation 
mechanischer Energie ist bei konstanter Tempe-
ratur proportional zur dissipierten Energie. Die 
Proportionalitätskonstante nimmt mit wachsen-
der Temperatur monoton ab.  

Der zweite Teil der Aussage ergab sich schon früher 
[1]. 

3. Erweiterung der Irreversibilitätsmessung 
auf adiabatische Prozesse 
Bisher wurden die Irreversibilitäten von Gesamt-
prozessen gemessen, wie z. B. der Temperaturannä-
herung zwischen zwei Körpern aufgrund von Wär-
meleitung. Da es sehr viele solcher Prozesse gibt, 
müßten sehr viele Messungen durchgeführt werden, 
um für alle angeben zu können, wie stark unum-
kehrbar sie sind. Ökonomischer wäre es, wenn man 
den Zustandsänderungen der beteiligten Systeme 
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einzeln Irreversibilitäten zuordnen und die Irrever-
sibilität des Gesamtprozesses additiv aus denen der 
Zustandsänderung der beteiligten Systeme zusam-
mensetzen könnte: um beispielsweise den Aus-
tausch der Energie ∆E zwischen zwei Körpern A 
und B aufgrund von Wärmeleitung für je fünf ver-
schiedene Anfangstemperaturen ϑA und ϑB der bei-
den Körper zu untersuchen, brauchte man dann statt 
der bisher erforderlichen 25 Messungen (für die 
möglichen Kombinationen der Anfangstemperatu-
ren) nur deren zehn (nämlich fünf für jeden Kör-
per). Hier tritt jedoch folgende Schwierigkeit auf: 
Bisher können Irreversibilitäten nur von natürli-
chen, und das heißt insbesondere isenergetischen, 
Prozessen bestimmt werden. Die Zustandsänderun-
gen der an solchen natürlichen Prozessen beteiligten 
Systeme sind aber i. a. nicht isenergetisch. Im Ge-
genteil: Die meisten natürlichen Vorgänge bestehen 
in einem Energieaustausch zwischen Systemen. 

Formal haben wir also folgende Situation: Die Zer-
legung 

 [ ] [ ] [ ]1 1 2 2 1 2 1 2, , ,I a b a b I a a I b b′ ′ ′⊗ ⊗ = +  

ist i. a. nicht möglich. 

3.1 Mechanische Systeme und Prozesse 
Das Ziel ist also die Bestimmung der Irreversibilität 
von mit Energieänderung verbundenen Prozessen. 
Es stellt sich damit die Frage, wie man die Energie 
eines Systems ändern kann, ohne daß außerhalb et-
was Unumkehrbares passiert. 

Dafür kann sich aber bereits an dieser Stelle ein Ge-
fühl entwickelt haben, z. B. anhand folgender Expe-
rimente [3]: 

1. Bei dem Vergleich der Irreversibilitäten iso-
thermer Druckänderungen von (idealen) Gasen 
werden zunächst durch die Expansion eines 
Gases Gewichtsstücke gehoben, die dann ihrer-
seits die Kompression eines anderen Gases be-
wirken.  

2. Zum Vergleich der Irreversibilitäten chemi-
scher Reaktionen kann man diese in elektro-
chemischen Zellen ablaufen lassen, mit einer 
Reaktion also elektrische Energie gewinnen, 
mit der die zweite zurückgespult wird. 

Bei vielen Irreversibilitätsmessungen wird also die 
Energie zunächst auf ein mechanisches (bzw. elekt-
risches) System übertragen und dann von diesem 
wieder abgegeben. 

Das führt auf die Betrachtung (bzw. die Wiederho-
lung) der Eigenschaften mechanischer (bzw. elektri-
scher) Systeme mit folgenden Eigenschaften  

1. Natürliche Prozesse mechanischer Systeme 
sind reversibel. 

2. Zu jedem mit Energieänderung verbundenen 
mechanischen Prozeß kann man einen zweiten 
mechanischen Prozeß finden, so daß beide zu-
sammen »von selbst« ablaufen, nach 1 also re-
versibel sind. 

3. Die Übertragung von Energie von einem belie-
bigen System A auf ein mechanisches System 
M ist umkehrbar in folgendem Sinne: Energie, 
die im Rahmen eines natürlichen Prozesses von 
A auf M übertragen wurde, kann so wieder von 
M an A abgegeben werden, daß der zusammen-
gesetzte Prozeß natürlich ist. Oder einfacher 
ausgedrückt: Ein mechanisches System kann al-
le ihm übertragene Energie »von allein« wieder 
abgeben. 

Die so eingeführten mechanischen Systeme stellen 
eine Idealisierung an bestimmten Systemen gemach-
ter Erfahrungen dar. In der Praxis können Systeme 
als mechanisch betrachtet werden, wenn die durch 
sie (z. B. durch Reibung) verursachten Irreversibili-
täten im Rahmen der angestrebten Genauigkeit ver-
nachlässigt werden können. 

3.2 Meßverfahren für die (adiabatische) Irre-
versibilität 
Diese Eigenschaften mechanischer Systeme legen es 
nahe, die beim Irreversibilitätsvergleich mit Ener-
gieänderungen verbundenen Prozesse notwendige 
Energieanpassung mit Hilfe von mechanischen Pro-
zessen vorzunehmen. Ausgedrückt als Meßverfah-
ren für die (adiabatische) Irreversibilität (der Zusatz 
»adiabatisch« wird meist fortgelassen): 

1. Gleichheit: Zwei Prozesse sind gleich irrever-
sibel, wenn sie sich mit Hilfe einer Zustandsän-
derung eines mechanischen Systems gegensei-
tig zurückspulen können. 

 Formal: [ ] [ ]1 2 1 2, ,I a a I b b= ⇔  

Es gibt einen mechanischen Prozeß µ mit Anfangs-
zustand m1 und Endzustand m2, so daß gilt: 

 1 2 1 2 1 2a b m a b m⊗ ⊗ ↔ ⊗ ⊗ ⇔  

  α β µ⊕!  ist natürlich reversibel. 

2. Vielfachheit: Ein Prozeß α heißt doppelt so ir-
reversibel wie ein Prozeß β, wenn α β mit Hil-
fe eines mechanischen Prozesses zweimal zu-
rückspulen kann und wenn umgekehrt β zwei-
mal ablaufen muß, um α mittels eines mechani-
schen Prozesses zurückspulen zu können. 

 Formal: [ ] [ ]1 2 1 2, 2 ,I a a I b b= ⇔  

Es gibt einen mechanischen Prozeß µ mit Anfangs-
zustand m1 und Endzustand m2 so daß gilt: 
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1 2 1 2 1 22 2a b m a b m⊗ ⊗ ↔ ⊗ ⊗  

oder allgemein: 

[ ] [ ]1 2 1 2, ,I a a z I b b= ⋅ ⇔  

Es gibt einen mechanischen Prozeß µ, mit dem gilt: 
  zα β µ⋅ ⊕!  ist natürlich reversibel. 

Da mit dem bisherigen Verfahren die natürlichen 
Irreversibilitäten aller natürlichen Prozesse und ih-
rer Umkehrungen gemessen werden konnten (vgl. 
[1]), können mit Hilfe des neuen Meßverfahrens of-
fenbar alle die Prozesse (bzw. ihre Umkehrungen) 
miteinander verglichen werden, die zusammen mit 
einem mechanischen Prozeß »von selbst« ablaufen. 
Solche Prozesse nennen wir adiabatisch: 

Ein Prozeß heißt adiabatisch ((adiabatisch) irre-
versibel, (adiabatisch) reversibel), wenn er zusam-
men mit einem mechanischen Prozeß einen natürli-
chen (natürlich irreversiblen, natürlich reversiblen) 
Prozeß bildet. 

Diese Definition der Adiabasie deckt sich fast, aber 
nicht ganz mit der üblichen: so ist nach dieser Defi-
nition die isochore Temperaturerhöhung eines Sys-
tems ein adiabatischer Prozeß, während die Eigen-
schaft der Adiabasie üblicherweise von der Art der 
Energiezufuhr abhängt. Dieser leichte Bedeutungs-
wandel ist nötig, damit Prozesse weiterhin eindeutig 
durch Anfangs- und Endzustand charakterisiert 
sind. 

Mit den eingeführten Bezeichnungen kann die De-
finition der (adiabatischen) Irreversibilität folgen-
dermaßen aufgeschrieben werden: 

Irreversibilitätsmessung 

1) ( ) ( )      I Iα β α β> ⇔ !  ist irreversibel, 

2) ( ) ( )   I z I zα β α β= ⋅ ⇔ ⋅! ist reversibel. 

3.3 Folgerungen aus dem Meßverfahren 
Die, folgenden Eigenschaften der Irreversibilität ~3 
folgen direkt aus der Definition: 

1. Aufgrund der Eigenschaften mechanischer Sys-
teme läuft das neue Meßverfahren darauf hin-
aus, allen mechanischen Zustandsänderungen - 
auch denen, die mit Energieänderung verbun-
den sind - die Irreversibilität Null zuzuordnen. 

2. Verabredet man für beide Meßverfahren den-
selben Einheitsprozeß, dann stimmen für jeden 
natürlichen Prozeß beide Irreversibilitätsmaße 
überein. 

3. Aus 1 und 2 folgt: Die Irreversibilität eines adi-
abatischen Prozesses ist gleich der natürlichen 

Irreversibilität des zugehörigen natürlichen 
Prozesses. 

Die Bedeutung der Irreversibilität soll am Beispiel 
der mit Temperaturerhöhung verbundenen Dissipa-
tion mechanischer Energie erläutert werden: 

Beispiel 
Sei α der Prozeß »Dissipation der mechanischen 
Energie ∆E an einem Körper der Anfangstempera-
tur ϑ0«, bei dem sich also die Energie eines mecha-
nischen Systems M zugunsten einer entsprechenden 
isochoren Energiezunahme (und damit Temperatur-
erhöhung) eines thermischen Systems T verringert: 

( )[ ( ) ( )0 1 0, , ,ma E m E a E Eα ϑ ϑ ϑ= ⊗ + ∆ + ∆  

 ( )]1 mm E E⊗ − ∆  

 ( ) ( )[ ]0 1 0, , ,a E a E Eϑ ϑ ϑ= + ∆ + ∆  

 ( ) ( )[ ]1,m mm E m E E⊕ − ∆  

 t mα α= ⊕ . 

1) Die Zustandsänderung von T bildet also zu-
sammen mit der Energieabnahme von M den 
natürlich irreversiblen Prozeß »Dissipation me-
chanischer Energie«. Mit anderen Worten: 

Die Temperaturerhöhung eines Körpers ist ein ir-
reversibler Prozeß. 

2) Der Prozeß β unterscheide sich von α nur 
durch einen größeren Energieumsatz 

( )E E ϑ ϑ′ ′∆ > ∆ ⇒ ∆ > ∆ : 

 ( ) ( )[ ]0 2 0, , ,a E a E Eβ ϑ ϑ ϑ′ ′= + ∆ + ∆  

 ( ) ( )[ ]2,m mm E m E E ′⊕ − ∆  

 t mβ β= ⊕ . 

β kann α offenbar zurückspulen: wenn nämlich zu-
nächst die Energie ∆E‘ von M auf T und anschlie-
ßend ∆E von Tauf M übertragen wird, dann ist im 
Endeffekt die Energie ∆E‘ - ∆E > 0 in T dissipiert 
worden. βt kann also αt durch den mechanischen 
Prozeß   m mβ α! (»Energieabnahme von M um 
∆E‘ - ∆E«) zurückspulen, d. h. βt ist stärker 
irreversibel als α. 

Formal ergibt sich dieses Ergebnis folgendermaßen: 

( )[ ( )0 1 0  , , ,a E a E Eβ α ϑ ϑ ϑ= ⊗ + ∆ + ∆!  

 ( ) ( )]2 0 0, ,a E E a Eϑ ϑ ϑ′ ′+ ∆ + ∆ ⊗  

 ( )[ ( )1 ,m mm E m E E⊕ ⊗ − ∆  
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 ( ) ( )]2 m mm E E m E′− ∆ ⊗  

 [ ( ) (1 0 2, , ,a E E a E Eϑ ϑ ′= + ∆ + ∆ + ∆  

 )] [ ( )0 1 ,mm E Eϑ ϑ+ ∆ ⊕ − ∆  

 ( )]2 mm E E ′− ∆  

 ( ) ( )m    .t t mβ α β α= ⊕! !  

  β α! stellt also die natürlich irreversible Dissi-
pation der Energie ∆E' - ∆ E dar; d. h. aber gerade, 
daß   t tβ α!  irreversibel ist und damit βt stärker 
irreversibel als αt. 

Bei fester Anfangstemperatur ist die Temperaturer-
höhung eines Körpers um ∆ϑ umso stärker irrever-
sibel, je größer ∆ϑ ist. 

3) Der Prozeß γ unterscheide sich von α durch 
den doppelt so großen Energieumsatz (und da-
mit durch eine doppelt so große Temperaturer-
höhung von T). Nach 2) ist γ stärker irreversi-
bel als α. Daß γ aber weniger als doppelt so ir-
reversibel ist, kann man sich folgendermaßen 
überlegen: Wenn (x zweimal in natürlicher 
Richtung und γ einmal entgegengesetzt dazu 
abläuft, kann man erreichen, daß M an dem Ge-
samtprozeß gar nicht beteiligt ist. Drei Exemp-
lare von T liegen anfänglich mit den Tempera-
turen ϑ0, ϑ0 und ϑ0 + 2∆ϑ und schließlich mit 
ϑ0, ϑ0 + ∆ϑ und ϑ0 + ∆ϑ vor. Diese Zustands-
änderung läuft durch Wärmeleitung von selbst 
ab, an der ein Exemplar von T mit der Anfangs-
temperatur ϑ0 nicht beteiligt ist. Der Prozeß αt 
kann also γt durch zweimaliges Ablaufen zu-
rückspulen (sogar ohne Hilfe eines mechani-
schen Prozesses!). D. h. 2αt ist stärker irrever-
sibel als γt und damit ist γt weniger als zweimal 
so stark irreversibel wie αt. Das ist auch das, 
was man anschaulich erwartet: Dissipation ei-
ner bestimmten Energiemenge (hier: 2 ∆E) ist 
umso irreversibler, je kleiner die bewirkte 
Temperaturerhöhung ist. 

Formal: ( )2   2   2   t t m mα γ α γ α γ= ⊕! ! !  

 ( )[ (0 3 02 , 2 ,a E a E Eϑ ϑ= ⊗ + ∆  

 ) (1 0 2 , 2 ,E Eϑ α ϑ+ ∆ + ∆  

 ) ( )] [ ( )0 , 2m ma E Eϑ ϑ+ ∆ ⊗ ⊕  

 ( ) (3 1 2 , 2m mm E E m E⊗ − ∆  

 ) ( )].mE m E−∆ ⊗  

2   α γ! stellt also den Temperaturausgleich zwi-
schen gleichen Körpern mit den Temperaturen ϑ0 
und ϑ0 + 2∆ϑ verbunden mit einem Energieaus-
tausch zwischen mechanischen Systemen dar. 
2   α γ!  ist also natürlich irreversibel und damit 

2   t tα γ!  irreversibel. 

In diesem Spezialfall kann man auch kürzer argu-
mentieren: 2   t tα γ!  ist ein Temperaturausgleichs-

prozeß und damit natürlich irreversibel. 2   t tα γ!  
ist deshalb insbesondere (adiabatisch) irreversibel. 
Das Ergebnis ist außerdem eine Folge von 4). 

Verallgemeinerung der Argumentation ergibt: 

Bei fester Anfangstemperatur ist die Irreversibilität 
der Temperaturerhöhung eines Körpers eine kon-
vexe Funktion von ∆ϑ. 

4. Schon früher hatten wir gesehen, daß die natür-
liche Irreversibilität der Energiedissipation mit 
abnehmender Temperatur wächst [1]. Der Satz 
war zwar nur für die isotherme Dissipation for-
muliert worden, die Ableitung war jedoch all-
gemeiner. Der Sachverhalt kann jetzt folgen-
dermaßen formuliert werden: 

Die Erhöhung der Temperatur eines Körpers um 
∆ϑ ist umso stärker irreversibel, je niedriger die 
Anfangstemperatur des Körpers ist. 

Die wesentlichen Charakteristika des bekannten 
Verhaltens 

 0

0

ln
T T

S C
T

+ ∆
∆ =  

haben sich so ohne Mathematik allein aufgrund der 
Eigenschaften mechanischer Systeme und der natür-
lichen Irreversibilität der Wärmeleitung ergeben. 

3.4 Isochore Temperaturerhöhung idealer Gase 
Um die Tragfähigkeit der bisherigen Begriffsbil-
dung zu demonstrieren, soll anhand eines bekannten 
Beispieles gezeigt werden, wie quantitative Ergeb-
nisse abgeleitet werden können. Bei dem Beispiel 
müssen die Kenntnis des 1. Hauptsatzes der Ther-
modynamik und der Eigenschaften idealer Gase so-
wie einige mathematische Fertigkeiten vorausge-
setzt werden. Es wird sich jedoch zeigen, daß die in 
den folgenden Kapiteln angestellten Überlegungen 
unabhängig vom Ergebnis dieses Abschnittes sind. 

Bestimmt werden soll die Irreversibilität der isocho-
ren Temperaturerhöhung eines idealen Gases 
[a0(θ,V), ah (θh,V)]. Dabei wird zur Beschreibung 
die Ideale-Gas-Temperatur θ benutzt. Als 
Vergleichsprozeß diene [a0 (θ0, V), a1 (θ1 V)]. Ge-
nauer soll also bestimmt werden: 
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Das Berechnungsverfahren lehnt sich eng an die 
bisherige Argumentation an: Es wird untersucht, 
wie oft die eine Temperaturerhöhung die andere mit 
Hilfe eines mechanischen Systems zurückspulen 
kann. Dazu wird die Größe einer Gasmenge 2 (ε • n 
Mole im Volumen ε • V) bestimmt, die durch die 
Erwärmung einer vorgegebenen Menge 1 desselben 
Gases (n Mole im Volumen V) von θ0 auf θh abge-
kühlt werden kann von θ1 auf θ0. 

Das gestellte Problem könnte auch gelöst werden 
durch die Berechnung einer periodisch arbeitenden 
Wärmekraftmaschine. Wir beschränken uns hier je-
doch auf die Erwähnung dieses Verfahrens, weil es 
zwar die Verbindung zur üblichen Entropieeinfüh-
rung sichtbar machte - und dadurch den meisten Le-
sern vielleicht zunächst vertrauter erschiene -, es 
sich aber nicht so nahtlos in die hier entwickelte 
Argumentationskette eingliederte. 

Die, Mengen 1 und 2 eines idealen Gases seien adi-
abatisch in einen Zylinder eingeschlossen. Durch 
ein mechanisches System M sei mittels eines be-
weglichen Kolbens das Volumen von 1 veränder-
bar, während das Volumen von 2 aufgrund einer 
starren Trennwand zwischen 1 und 2 konstant bleibt 
(Abb. 2). Im folgenden wird der Anfangszustand 

 ( ) ( ) "0 0 1 1 1

System 1 2

, ,
MSystem

a V a V mθ ε θ⊗ ⋅ ⊗
#$%$& #$%$&

 

schrittweise quasistatisch - und damit reversibel - 
überführt in den Endzustand 

 ( ) ( )0 0 4, ,h ha V a V mθ ε θ⊗ ⋅ ⊗ . 

1. Schritt (Abb. 2a) 
1 und 2 sind durch eine adiabatische Wand ge-
trennt, System 1 wird durch M so weit komprimiert, 
daß sich seine Temperatur auf θ1 erhöht: 

 ( ) ( )0 0 1 0 1 2, ,a V m a V mθ θ′ ′⊗ ↔ ⊗  

Für V' gilt nach der entsprechenden Adiabatenglei-

chung pC

C
χ

υ
= =


 Adibatenkoeffizient, Cp und Cν 

= molare Wärmekapazitäten bei isobarer bzw. iso-
chorer Erwärmung) 

 

1

1
0

1

V V
χθ

θ

−

′ =
 
  

  (3.1) 

2. Schritt (Abb. 2b) 

Die Trennwand wird wärmedurchlässig gemacht. 
System 1 expandiert so weit, bis die Temperatur 
von 1 und 2 auf θ0 abgenommen hat. 2 erfährt dabei 
eine isochore Abkühlung, 1 eine polytrope Expan-
sion: 

 ( ) ( ) ( )0 1 1 1 2 0 0, , ,a V a V m a Vθ ε θ θ′ ′ ′′ ′′⊗ ⋅ ⊗ ↔  

 ( )0 0 3,a V mε θ⊗ ⋅ ⊗ . 

V‘‘ kann durch Anwendung des 1. Hauptsatzes auf 
System 1 berechnet werden (R = Cp, - Cν universel-
le Gaskonstante): 

 dU dQ dW= +  

nC d n C d pdVυ υθ ε θ⇔ = − ⋅ ⋅ −  

 
nR

n C d dV
Vυ

θ
ε θ= − ⋅ ⋅ −  

( ) ( ) ( )1 ln ln 0C d Rd Vυε θ⇔ + + =  

( )1
0

1

ln ln 0

R

CV

V

υ εθ

θ

+′′
⇔ + =

′
   

 

1 1

1 1
0 1V V

χ χ

ε εθ θ
− −

+ +′′ ′⇔ ⋅ =  

1

1 1
1 1

0 0

V V V

ε ε

χ χθ θ

θ θ

+

− −

′′ ′⇔ = =
   
      

. (3.2) 

Bei der Ableitung wurde die Zustandsgleichung für 
ideale Gase (p • V = n • R • θ) verwendet. 

3. Schritt (Abb. 2c) 
Beide Systeme sind jetzt wieder adiabatisch ge-
trennt. System 1 wird durch M komprimiert, bis sich 
die Temperatur auf θh erhöht hat: 

 ( ) ( )0 3 0 0 4, ,a V m a V mθ θ′′ ′′ ′′′ ′′′⊗ ↔ ⊗  

Da 1 adiabatisch komprimiert wird, gilt: 

 

1

1
0

h

V V
χθ

θ

−

′′′ ′′=
 
  

 (3.2) 

 

1

1 1
1 0

0 h

V

ε

χ χθ θ

θ θ

− −

=
   
      

. (3.3) 

Soll System 1 eine isochore Erwärmung erfahren 
haben, muß gelten: V V′′ =  
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1

1 1
1 0 1 0

0 0

1 ln ln 0
h h

ε

χ χθ θ θ θ
ε

θ θ θ θ

− −

⇔ = ⇔ + =
       
              

0

1

0

ln

ln

hθ
θ

ε
θ
θ

⇔ =

 
  
 
  

. (3.4) 

Mit diesem ε haben wir insgesamt 

( ) ( ) ( )0 0 1 1 1, , ,h ha V a V m a Vθ ε θ θ⊗ ⋅ ⊗ ↔  

 ( )0 0 4,a V mε θ⊗ ⋅ ⊗ . 

Für die (adiabatische) Irreversibilität der isochoren 
Erwärmung eines idealen Gases gilt also 

 [ ] [ ]0 0 1, ,hI a a I a aε= ⋅  

 
( ) ( )

( )
0 0 1

1 0

0

, ,

ln ,
ln

h

h

I Iθ θ θ θ
θ θ θ
θ

⇔ =
 
  

 (3.4) 

 ( )0

0

, lnI
θ

θ θ
θ

⇔ ! . (3.5) 

4. Einführung der Entropie 
Im letzten Kapitel war die Bestimmung der Unum-
kehrbarkeit dadurch vereinfacht worden, daß statt 
komplizierter Gesamtprozesse die Zustandsände-
rungen der beteiligten Systeme betrachtet wurden. 
Eine weitere Vergrößerung der Übersichtlichkeit 
kann folgendermaßen erreicht werden: 

Um die Irreversibilität beliebiger Prozesse eines 
Systems bestimmen zu können, genügt es, die Irre-
versibilitäten der Zustandsänderungen mit einem 
bestimmten Anfangszustand zu kennen: 

[ ] [ ] [ ] [ ] [ ]
0 0 0 0

, , , , ,I b c I b a I a c I a c I a b= + = −  

  (4.1) 

Dieser Umstand beruht entscheidend darauf, daß die 
Irreversibilität so eingeführt wurde, daß sie nur von 
Anfangs- und Endzustand eines Prozesses, nicht a-
ber vom »Weg« abhängt. Man kann also nach 
(4.1) die Irreversibilität ausdrücken als Diffe-
renz der Werte einer Zustandsfunktion: 

 [ ] ( ) ( ), :I b c S c S b= −   (4.2) 

Die Zustandsfunktion S heißt Entropie. Da gemäß 
(4.2) nur Entropiedifferenzen definiert sind, ist S 
für jedes System nur bis auf eine additive Konstante 
bestimmt, selbst wenn I durch Wahl der Einheit 
festgelegt ist. Das bedeutet, daß der Wert von S für 
einen beliebigen Zustand willkürlich vorgegeben 
werden kann (Vergleich von (4.1) und (4.2) legt 
nahe: 

 ( ) [ ] ( ) )0 0: , 0S c I a c S a= ⇒ = . 

Bisher können nur Prozesse miteinander verglichen 
werden, die zusammen mit einem mechanischen 
Prozeß ablaufen können (also adiabatische Prozes-
se), d. h. insbesondere solche geschlossener Syste-
me: Teilchenaustausch ist bisher ausgeschlossen. 
Um zu einer naheliegenden Verallgemeinerung zu 
kommen, muß man sich klarmachen, daß aus der 
Additivität der Irreversibilität - fast - die der Entro-

 
Abb. 2: Zurückspulen der Temperaturerhöhung von θ0 auf θ1  durch die Temperaturerhöhung von θ0 auf θh mit 
Hilfe eines mechanischen Systems:a) Adiabatische Kompression von System 1. b) Isochore Abkühlung von Sys-
temen 2 und polytrope Expansion von System . c) Adiabatische Kompression von System I.
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pie folgt: Für adiabatische beliebige Prozesse 
[ ]

1 2
,a aα =  und [ ]1 2,b bβ =  gilt nämlich: 

 ( ) ( ) ( )I I Iα β α β⊕ = +  

( ) ( ) ( ) ( ) ( )2 1 1 2 1 2S a b S a b S a S a S b⇔ ⊗ − ⊗ = − +

 ( )1S b−  

( ) ( ) ( ) ( ) ( )2 2 2 2 1 1 1S a b S a S b S a b S a⇔ ⊗ − − = ⊗ −

 ( )1S b− . 

Da die beiden Seiten von verschiedenen Variablen 
abhängen, kann die Gleichung nur richtig sein, 
wenn für beliebige Zustände gilt: 

 ( ) ( ) ( ) .S a b S a S b const⊗ = + +  

Da die Entropie aber sowieso nur bis auf eine, Kon-
stante definiert ist, können wir diese auch so wäh-
len, daß gilt 

 ( ) ( ) ( )S a b S a S b⊗ = +  

Die Bedeutung dieser Wahl kann man sich folgen-
dermaßen klarmachen: Die Entropie ist für jedes 
System bis auf eine Konstante bestimmt; diese kann 
für jedes System beliebig gewählt werden. Glei-
chung (4.3) bedeutet nun, daß mit der Festle-
gung des Entropienullpunktes für ein System dieser 
damit auch für alle Vielfachen dieses Systems be-
stimmt ist: 

( ) ( )0 0 0 0 0 0, , 0 , , 0S E V N S nE nV nN= ⇔ =  (4.4) 

Aufgrund der Einführung und der schon durchge-
führten Überlegungen und Experimente können be-
reits folgende wichtige Aussagen über die Entropie 
gemacht werden: 

Eigenschaften der Entropie 
(a) Die Entropie nimmt bei natürlichen Prozessen 

zu, oder: Die Entropie kann in abgeschlosse-
nen Systemen nicht abnehmen. 

(b) Die Entropie nimmt bei adiabatischen Prozes-
sen zu oder: In einem adiabatisch abgeschlos-
senen System kann die Entropie nicht abneh-
men. 

(c) Der Entropiezuwachs ist ein Maß für die Irre-
versibilität eines Prozesse 

(Diese Aussagen gelten definitionsgemäß.) 

Einfache Schlußfolgerungen stellen folgende Aus-
sagen dar: 

(d)  Isometrische Energiezufuhr führt zu 
Entropieerhöhung: 

 0 0
S S

E ϑ

∂ ∂
> ⇔ >

∂ ∂
 (4.5) 

(e) Für die isotherme Dissipation mechanischer 
Energie (und damit für Wärmebäder) gilt 

 ( )S c Eϑ∆ = ⋅ ∆ , (4.6) 

wobei c (ϑ) eine monoton fallende Funktion 
der Temperatur ist. 

(f) Für isochore Temperaturänderungen idealer 
Gase gilt wegen (3.5) 

 ( )0

0

lnS
θ

θ θ
θ

∆ → !  (4.7) 

Allerdings ist noch nicht ohne weiteres der Zusam-
menhang mit der üblichen Definition der Entropie 
über die Gleichung 

 rdQ
dS

T
=  (4.8) 

zu erkennen. Da eine ausführliche Darstellung den 
Rahmen dieser Arbeit sprengen würde (siehe dazu 
[4]), müssen hier einige kurze Andeutungen genü-
gen: 

Gleichung (4.6) und die in ähnlicher Weise ausge-
wertete Irreversibilität der Wärmeleitung legen es 
nahe, als Maß für die mit einer Energieänderung 
einhergehende Entropieänderung eines Systems ei-
ne neue Größe einzuführen - die absolute Tempera-
tur T -, die so zu einer aus Energie und Entropie ab-
geleiteten Größe wird. Gleichung (4.8) ist dann ei-
ne direkte Folge der Temperaturdefinition. Ihre 
große praktische Bedeutung erhält die Gleichung 
jedoch erst durch den Zusammenhang zwischen ab-
soluter Temperatur und Temperatur des idealen Ga-
ses: aus (4.7) folgt nämlich die Proportionalität der 
beiden Temperaturbegriffe, so daß nach geeigneter 
Wahl der Entropieeinheit beide identifiziert werden 
können. 

Aufgrund dieses Vorgehens stellt der Ausdruck 
(4.8) die Präzisierung eines Meßverfahrens dar, 
das gezielt zur Beschreibung bestimmter Phänome-
ne entwickelt wurde, während sein Zusammenhang 
mit diesen Erfahrungen sonst meist - wenn über-
haupt - erst nachträglich anhand von Beispielen 
deutlich gemacht wird. 

5. Schlußbemerkungen 
Die Entropie wurde, ausgehend von alltäglichen 
Phänomenen wie Reibung und Wärmeleitung, ohne 
Verwendung höherer Mathematik als eine Größe 
eingeführt, deren Änderung die Unumkehrbarkeit 
von Prozessen beschreibt. Darüber hinaus wurde die 
Bedeutung der idealen Gase für die Entwicklung 
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des Entropiebegriffes angedeutet: zwar ist zum Ver-
ständnis von (4.8) eine genaue Kenntnis des Ver-
haltens idealer Gase nötig; bei der Ableitung der 
Begriffe »Irreversibilität« und »Entropie« und vieler 
darauf beruhender Folgerungen braucht diese 
Kenntnis aber nicht vorausgesetzt zu werden. Die-
ser Umstand macht es möglich, einen wichtigen Teil 
der Argumente bereits in der Sekundarstufe I zu 
entwickeln. 

Mit der klassischen Darstellung der Thermodyna-
mik vertraute Leser werden die explizite Erwähnung 
des 2. Hauptsatzes vermissen. Seine Bedeutung sei 
deshalb noch kurz verdeutlicht: 

Die folgenden zwei Aussagen bilden die entschei-
dende empirische Basis der hier entwickelten Ar-
gumentation: 

1. Von zwei beliebigen natürlich irreversiblen Pro-
zessen kann mindestens einer den anderen 
zurückspulen. 

2. Natürlich irreversible Prozesse können sich 
nicht beliebig häufig zurückspulen. Mit anderen 
Worten: Ein Prozeß muß mindestens teilweise 
ablaufen, um einen irreversiblen Prozeß 
zurückzuspulen. 

Auf Aussage 1 beruht die Universalität der Irrever-
sibilitätsmessung; Aussage 2 stellt sicher, daß die 
Messung immer zu endlichen Ergebnissen führt. 

Aufgrund dieser Aussagen kann der Entropiebegriff 
entwickelt werden. Um den entstehenden Begriffs-
apparat aber auf die Wirklichkeit anwenden zu kön-
nen, müssen Aussagen darüber gemacht werden, 
welche Prozesse irreversibel sind. Der 2. Hauptsatz 
stellt das Ergebnis entsprechender Untersuchungen 
dar: Danach ist eine ganz bestimmte Klasse von 
Prozessen irreversibel. In traditionellen Darstellun-
gen kann man nachlesen, wie daraus die Irreversibi-
lität anderer Prozeßklassen gefolgert werden kann 
(Äquivalenz verschiedener Formulierungen des 2. 
Hauptsatzes). 

Ist man nicht so sehr an einem axiomatischen Auf-
bau interessiert - und diesen Standpunkt nehmen wir 
in diesem Aufsatz ein, weil wir ihn in der Schule für 
angemessen halten -, kann man von der »offensicht-
lichem( Unumkehrbarkeit bestimmter Prozesse aus-
gehen. In diesem Sinne haben wir hier die Irreversi-
bilität von Dissipations- und Wärmeleitungsvorgän-
gen vorausgesetzt. 

Zur Darstellung weiterer Anwendbarkeit der Begrif-
fe fehlte leider der Platz. Sie soll deshalb in zwei 
abschließenden Bemerkungen angedeutet werden: 

1 . Zum Einstieg in die chemische Thermodynamik 
bietet sich die Elektrochemie an: die Irreversibi-
lität chemischer Reaktionen wird dadurch vergli-

chen, daß diese sich in elektrochemischen Zellen 
gegenseitig zurückspulen. 

2. Zentrale Aussage der Veranschaulichung des 
Entropiebegriffes durch Ordnungsvorstellungen 
ist folgender Satz: »Spontane Entstehung von 
Ordnung wird immer kompensiert durch Entste-
hung von Unordnung«. Die Verbindung zum hier 
verwendeten Begriff des Zurückspulens ist of-
fensichtlich. 
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