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Gleichgewicht auf zwei Radern

WILFRIED SUHR | H. JOACHIM SCHLICHTING

Auf zwei Rddern stets das Gleichgewicht zu halten, ist nicht
immer einfach. Wie wir es einhalten kénnen sagen uns die
Gesetze der Physik, die wir uns beim Fahren freilich nicht
bewusst machen. Ubung macht auch hier den Meister.

> Einfaches
Modellfahrrad,
das der Beschrin-
kung auf kleine
Winkel geniigt.
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enn man einen lissig dahinfahrenden, sich elegant in

die Kurve legenden Fahrradfahrer erlebt, erscheint
das Einregeln in solche Gleichgewichtslagen eine der natiir-
lichsten und leichtesten Ubungen zu sein. Erinnert man
sich jedoch daran, welche Mithen und halsbrecherischen
Aktionen notig waren, um das Radfahren zu erlernen, so
ahnt man, dass sich diese Leichtigkeit einem komplexen
und subtilen Zusammenspiel ganz unterschiedlicher Ein-
flussfaktoren verdankt.

Im Folgenden stellen wir die wesentlichen physikali-
schen Prinzipien des Gleichgewichts an einem einfachen
Fahrradmodell dar und liefern die Voraussetzungen fiir ein
zumindest qualitatives physikalisches Verstindnis.

Den meisten Radfahrern diirfte kaum bewusst sein, was
sie im Einzelnen tun, wenn sie Rad fahren. Wem ist bei-
spielsweise klar, dass man den Lenker nach links und nicht
nach rechts einschligt, wenn das Fahrrad nach links zu kip-
pen droht?

Auf den ersten Blick vermuten wir, dass ein Objekt mit
nur zwei Auflagepunkten, dass schon im statischen Fall ei-
ne dufderst falltrichtige Angelegenheit ist, dies erst recht in
Bewegung sein sollte. Wie wir alle wissen, ist das Gegenteil
der Fall. Wihrend es akrobatischer Fihigkeiten bedarf, ein
Fahrrad im Stand im Gleichgewicht zu halten, gelingt dies
nach einiger Ubung in Bewegung fast jedem.

Fahrlagenbeschreibung
Betrachten wir ein Rad auf einer vollkommen ebenen Un-
terlage (Abbildung 1). Dann wird die Fahrlage durch die
beiden Ebenen festgelegt, die jeweils die kreisrunde Um-
fangslinie von Vorder- und Hinterrad enthalten. Beide Ebe-
nen schneiden sich entlang der Lenkachse, so dass sich ih-
re Stellung zueinander durch den Lenkwinkel ¢ angeben
lasst. Bei gerade stehendem Lenker sei ¢ = 0°. Wie stark die
Hinterradebene gegentiber dem Lot geneigt ist, gibt der
Kippwinkel k an. Da die Unterlage in allen Richtungen die-
selben Eigenschaften hat, ist die Kenntnis der Fahrtrichtung
fiir unsere Untersuchung unerheblich. Zur Festlegung der
Fahrlage benotigt man daher nur noch die geometrischen
Abmessungen des Fahrrades. Hier beginnt allerdings das ei-
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gentliche Problem aller Fahrradphysik, denn die Punkte, an
denen die Rider den Boden beriihren, verlagern sich in
komplizierter Weise, je nach Grofle von Lenk- und Kipp-
winkel. Handhabbar wird diese Problematik erst durch ei-
ne Beschrinkung der Betrachtungen auf sehr kleine Winkel
¢ und K.

Aufgrund dieser Einschrinkung gelten die nachfolgen-
den Aussagen also nur fiir eine nahezu aufrechte Fahrlage,
bei der die Bahnradien von Kurvenfahrten sehr grof3 sind.
Wir erhalten dadurch ein einfach verwendbares Fahrrad-
modell, auf das sich typische Fahrrider entsprechend Ab-
bildung 1 reduzieren lassen. In diesem Modell haben die Ri-
der nur noch winzige Durchmesser. Kleine Lenkerein-
schlige ¢ und Rahmenneigungen x lassen die iiblichen
FahrradmaRle, wie Steuerkopfwinkel §, Radstand O und
Nachlauf N, daher fast unverindert. Die Massen aller Fahr-
radkomponenten, inklusive der Fahrermasse, werden in ei-
nem einzigen Schwerpunkt zusammengefasst. Dieser hat
den Abstand s vom Auflagepunkt des Hinterrades und er-
reicht in aufrechter Fahrlage die Hohe b.

Ungestorte Kreise

Ein Fahrrad befindet sich in einer Gleichgewichtslage, wenn
es hinsichtlich all seiner Bewegungsmoglichkeiten keine
Beschleunigung erfihrt. Zur Ermittlung seiner Gleichge-
wichtslagen sind nur drei seiner Bewegungsmoglichkeiten
maggeblich:

@ Verdrehung der Vorder- gegentiber der Hinterradebene,

durch Verinderung des Lenkwinkels ¢;

ABB. 1 MODELLFAHRRAD
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@ wihrend des seitlichen Kippens erfolgende Drehung um
diejenige Linie, die beide Radauflagepunkte auf der Un-
terlage verbindet. Diese Linie bezeichnen wir im Fol-
genden als Kippachse;

@ horizontale Verschiebung des Fahrrades auf der Unterla-
ge, gebunden an die Rollrichtung der Rider.

Ein Gleichgewichtszustand wird nur dann erhalten bleiben,

wenn dabei ¢ und k konstant bleiben. Dadurch bedingt

wird (mit Ausnahme von der Geradeausfahrt) das Fahrrad
dabei um einen Bahnmittelpunkt herum auf einem Kreis
fahren. Da wir zusitzlich annehmen, dass die Rider vollig
ohne Widerstand rollen, hat diese Kreisfahrt ein konstantes

Tempo. Damit kommen nur solche Gleichgewichtslagen in

Frage, bei denen sich das Fahrrad stationir auf einer Kreis-

bahn bewegt. Bleibt noch zu kliren, was die Kipp- oder

Lenkbewegung indern kann.

Eine Beschleunigung dieser Drehbewegungen wird
durch Drehmomente hervorgerufen, die jeweils in Richtung
von Kipp- oder Lenkachse wirken. Die Suche nach einer
Gleichgewichtslage entspricht also der Suche nach einer
Kombination von ¢ und k, bei der diese beiden Drehmo-
mente gleichzeitig verschwinden. Da sich beide Drehmo-
mente aber aus unterschiedlichen Beitrigen zusammenset-
zen, ist dies nur moglich, wenn sich alle jeweils in Richtung
von Kipp- oder Lenkachse wirkenden Beitrige gegenseitig
autheben. Zur Bestimmung von moglichen Gleichge-
wichtslagen werden wir dementsprechend eine Bilanz die-
ser einzelnen Beitrige zum jeweiligen Gesamtdrehmoment
aufstellen. Beabsichtigt ist eine rein qualitative Betrachtung,
weshalb bewusst auf Details der Berechnung verzichtet
wird. Eine ausfiihrliche Darstellung liefert [1] und ist auf
www.phiuz.de unter ,Special Features/Zusatzmaterial zu
den Heften* erhiltlich.

Beitrdge zum Gleichgewicht
Auf das Fahrrad einwirkende Krifte konnen in Bezug zur
Kipp- oder Lenkachse Drehmomente ausiiben. Dabei ist der
Abstand zwischen der Drehachse und der Wirkungslinie
einer Kraft ein bestimmender Faktor fiir das erzeugte
Drehmoment. Je nach Neigung des Fahrrads oder Einschlag

ABB. 2 KREISFAHRT
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des Lenkers konnen sich diese Abstinde aber dndern.

Wir wollen nun darstellen, wie dabei die Kipp- und
Lenkmomente von ¢ und x abhingen.

Maf3geblich fiir das Gleichgewicht bei einer
stationidren Kreisfahrt in unserem Modell sind
nur drei Krifte (Abbildung 2): die im Schwer-
punkt angreifende Gewichtskraft F; und die je-
weils vom Boden auf das Vorder- und Hinterrad
ausgeiibten Haltekrifte Fy und Fy (blaue Vek-
torpfeile). Um die Grofe dieser beiden Halte-
krifte zu bestimmen, teilen wir sie jeweils in ei-
ne lotrechte und eine horizontale Komponente
auf. Der Schwerpunkt kann nur dann auf gleicher
Hohe bleiben, wenn die lotrecht wirkende Ge-
wichtskraft durch eine gleich grofde, entgegenge-
setzte Kraft ausgeglichen wird. Fiir diesen Ausgleich
miissen die an den Auflagepunkten der Rider angrei-
fenden lotrechten Komponenten der Haltekrifte sorgen,
so dass Fyg + Fyg = - Fg. Sie werden als statische Krifte
bezeichnet, da sie fiir ein mogliches statisches Gleichge-
wicht unerlisslich sind, bei dem sich das Fahrrad nicht be-
wegt (rote Vektorpfeile).

Durch die Bewegung des Fahrrads auf einer Bahn kom-

men dynamische Krifte hinzu, die horizontal zum Bahn-  Aufzwei Réidern
mittelpunkt gerichtet sind (rote Vektorpfeile). Zusammen 905 Gleichge-

. . .. . wicht zu halten,
ergeben die an beiden Beriihrungspunkten der Rider an- verlangt auch
greifenden Krifte die Zentripetalkraft F; = Fyy + Fyz, die  Genpijes Einiges an
die Masse des Fahrrades auf eine Kreisbahn mit dem Radi-  Geschicklichkeit
us R zwingt. Die statischen und dynamischen Krifte an bei-  ab (Grafik: R.
den Radauflagepunkten konnen zu einer Gesamtkraft —/Vengenmayr fir
Fges = Fg + Fz addiert werden, wie es die gestrichelten Pfei- ;Z;j’k i unserer

le in Abbildung 2 andeuten. Da die Wirkungslinie von Fge
die Kipplinie schneidet, bewirkt sie kein Kippmoment, das
die Neigung des Rades indern konnte.

Zu Beginn der Aufstellung aller wirksamen Drehmo-
mente, betrachten wir zunichst ein Fahrrad im Stand, bei
dem also nur die statischen Krifte wirken. Wiirde der Fah-
rer bei geradem Lenker und ohne Neigung genau mittig auf
dem Fahrrad sitzen, so dass ¢ = Kk = w = 0 ist, dann hiitten
wir bereits eine Gleichgewichtslage gefunden, bei der we-
der ein Kipp- noch ein Lenkmoment auftritt (zv steht fiir die
Verschiebung des Schwerpunktes, Abbildung 3).

In einem ersten Schritt neigen wir nun das Rad leicht
um den Kippwinkel k, wobei die Gewichtskraft ein Kipp-
moment K; = C;kund die Haltekraft am Vorderrad das Lenk-
moment L; = C;k hervorrufen. Im zweiten Schritt beginnen
wir wieder mit der anfinglichen Gleichgewichtslage und
schlagen nun den Lenker um einen kleinen Winkel ¢ ein.
Dies verschiebt die Kippachse gegeniiber der Wirkungslinie
der Gewichtskraft, wie Abbildung 3 veranschaulicht. Eine
zusitzliche seitliche Verschiebung w des Schwerpunktes
kann durch entsprechende Gewichtsverlagerung des Fah-

rers auftreten. Insgesamt ergibt sich damit ein Kippmoment
< Das Modell-

fahrrad bei einer
stationdren
Kreisfahrt.

K, = C3¢ + Csw. Bei eingeschlagenem Lenker bewirkt die
Haltekraft am Vorderrad das Lenkmoment L, = Cs¢.
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Aufsicht auf ein
lotrecht stehen-
des Modelifahr-
rad mit nach
links eingeschla-
genem Lenker.
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ABB. 3

LENKEREINSCHLAG

Da erfahrungsgemifl das Gleichgewichthalten auf ei-
nem stehenden Fahrrad kaum moglich ist, muss die
wihrend der Fahrt leicht zu haltende Balance demnach von
dynamischen Kriften herriihren, die erst durch die Bewe-
gung des Fahrrades mit der Bahngeschwindigkeit v hinzu-
kommen. Um die im Schwerpunkt konzentrierte Fahrrad-
masse auf einem Kreis mit dem Radius zu bewegen, muss
sie stets mit der Zentripetalkraft F, = mv?/R zum Kreismit-
telpunkt hin beschleunigt werden. Weil stirkerer Lenkein-
schlag zu engeren Kreisbahnen fiihrt, kann fiir kleine Lenk-
winkel die Proportionalitit 1/R ~ ¢ angenommen werden.
Ubertrigt man diese Proportionalitit auf die Bestimmungs-
gleichung fiir die Zentripetalkraft, so zeigt sich, dass
F;, ~ v? ¢. Der Zentripetalkraft entgegengerichtet ist eine
gleich grole Gegenkraft, die auf Hohe des Schwerpunkts
am Rahmen angreift. Thr Beitrag zum Kippmoment ist
K3 = Csv?¢. Die das Vorderrad gegen seitliches Verrutschen
abstiitzende Kraft Fy; ist eine Komponente der Zentripe-
talkraft, die daher ebenfalls zu v%¢ proportional ist. Sie {ibt
ein Lenkmoment I3 = C;v%¢ aus.

Aufgrund der Kreiselwirkung tragen die sich wihrend
der Fahrt drehenden Rider zum Kipp- und Lenkmoment
bei. Die dadurch bedingten Drehmomente sind ebenfalls
proportional zu v?¢$, weshalb sie einen Beitrag zum Kipp-
moment Ky = Cgv?¢ und zum Lenkmoment L; = Cov*¢ bei-
steuern.

Mogliche Gleichgewichtslagen
Zu welchen Gleichgewichtslagen es beim Fahrrad kommen
kann, lisst sich nun anhand einer Gesamtbilanz der oben
aufgezihlten Drehmomente diskutieren. Sie treten nimlich
auf, wenn die Summe dieser Kipp- und Lenkmomente
gleichzeitig zu Null wird.

KGesami = C1K + Ciw + [C3 + (Co + Cv*] =0 (D)
Lgesame = C2K + [Cs + (C7 + C9)UZ] ¢0=0 (@)
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Bei einem typischen Cityrad (inklusive Fahrer) sind die in
(1) enthaltenen Konstanten C3 und Cg im Verhiltnis zu C;
und Cj4 sehr klein. Das beim Lenkereinschlag auftretende
statische Moment und das durch Kreiselwirkung hervorge-
rufene Moment liefern also nur einen unbedeutenden Bei-
trag zum Gesamtkippmoment. Fiir grof3e Beitrige sorgen da-
gegen die Neigung des Fahrrades und eine seitliche Ge-
wichtsverlagerung des Fahrers. Im Verhiltnis dazu liegt die
Grofle von Cg im Mittelfeld. Sie bestimmt, wie stark sich die
Zentripetalkraft auf das Kippmoment auswirken kann.

Bei v > 0 wiichst der daran gekoppelte Einfluss des Lenk-
einschlages mit der Fahrgeschwindigkeit quadratisch an.
Bereits bei einer Geschwindigkeit von 12,5 km/h lisst sich
das bei einem bestimmten Neigungswinkel auftretende
Kippmoment durch einen etwa gleich grolen Lenkwinkel
ausgleichen. Bei noch grofleren Geschwindigkeiten nimmt
die Empfindlichkeit der Gleichgewichtslage gegeniiber An-
derungen des Lenkwinkels stark zu. Dies erinnert an die
fahrpraktische Erfahrung, dass man eine enge Schlangen-
linie besser langsam durchfihrt, weil dafiir so starke Lenk-
einschlige notig sind, die bei schneller Fahrt zum Sturz
fiihren wiirden.

Wie die uns vertraute Leichtigkeit des Balancehaltens
bei der Geradeausfahrt schon erahnen lisst, erfiillt diese lot-
rechte Fahrweise mit w = Kk = ¢ = 0 die Gleichungen (1) und
(2). An den leicht geschlingelten Spuren, die nasse Reifen
auf trockenem Fahrbelag bei der Geradeausfahrt hinterlas-
sen, ist aber erkennbar, dass stindig Storungen dieser Gleich-
gewichtslage auftreten. Sie lassen sich durch leichte Lenk-
oder Fahrerbewegungen beheben.

Welche anderen Kombinationen der Variablen w, v, K
und ¢ die Bilanzgleichungen erfiillen, lisst sich ausschnitt-
artig durch die Vorgabe von zwei Variablen als feste Para-
meter ermitteln. Wir legen zum Beispiel die Neigung nach
links mit k¥ = - 1° und zusitzlich eine bestimmte Verschie-
bung w der Fahrradmasse ebenfalls nach links fest, wie es
bei einer Linkskurve geschieht. Dann zeigen die Kurven-
verldufe in Abbildung 4 Paare der Bahngeschwindigkeit v
und des Lenkwinkels ¢, die eine der beiden Bilanzglei-
chungen erfiillen. Erfolgt die seitliche Verschiebung w des
Schwerpunkts schrittweise zwischen 0 cm und -5 cm, so
ergibt dies eine Schar von sechs blauen Kurven fiir Paare
von v und ¢, bei denen das Gesamtkippmoment zu Null
wird. Sie lassen erkennen, dass bei konstanter Geschwin-
digkeit eine stirkere Gewichtsverlagerung einen grofleren
Lenkeinschlag notig macht.

Andererseits ist bei gleichem Lenkeinschlag das Ge-
wicht umso stirker zu verlagern, je schneller man fihrt. Die
einzelne rote Kurve zeigt Paare von v und ¢, bei denen das
Gesamtlenkmoment zu Null wird. Jeder Schnittpunkt die-
ser roten Kurve mit einer blauen ist daher ein Wertepaar fiir
v und ¢, das beide Bilanzgleichungen gleichzeitig erfiillt.
Diese Schnittpunkte kennzeichnen also mogliche Gleich-
gewichtslagen bei konstanter Fahrradneigung.

In der Praxis kommt die vorgegebene geringe Neigung
hauptsichlich beim Durchfahren einer lang gestreckten Kur-
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ve vor. Geschieht dies, wie beispielsweise bei Radrennfah-
rern mit hohem Tempo, so werden sie ihr Gewicht dabei
kaum seitlich verlagern und den Lenker auch nur sehr ge-
ring einschlagen miissen, wie Abbildung 4 zeigt.

Fahrstabilitat
Der soeben gefiihrte Nachweis tiber das Vorhandensein von
Gleichgewichtslagen besagt noch nichts tiber deren Stabi-
litit. Wird eine stationire Radfahrt durch eine winzige
Storung nur leicht aus dem Gleichgewicht gebracht, so gibt
es verschiedenartige Reaktionsweisen, die aus Modellen der
Dynamik des Fahrrades vorhergesagt werden konnen. Be-
schrinkt auf die Geradeausfahrt wurden solche Aussagen
bereits 1899 von Whipple [2], 1910 von Klein und Som-
merfeld [3] und in jingster Zeit recht anschaulich von
Astrom [4] getroffen. Stabilititsaussagen fiir beliebige an-
dere stationire Fahrlagen liefert dagegen ein 1990 vorge-
stelltes Modell von Franke, Suhr und Rief3 [5].

Die Grundaussage all dieser Modelle ist die Prognose
von Eigenstabilitit beim gebriuchlichen Fahrradtyp fiir ei-
nen bestimmten Geschwindigkeitsbereich. Fiir ein Cityrad
liegt dieser Bereich etwa zwischen 4,5 m/s und 6 m/s, ent-
sprechend 16 km/h und 22 km/h. Kleine Storungen der sta-
tiondren Fahrlage werden dabei ohne Eingriffe des Fahrers
gewissermafien weggedimpft. Unterhalb dieses Bereichs
fithren Storungen zu Schlingerbewegungen, die sich bei
sehr geringen Geschwindigkeiten bis zum Sturz aufschau-
keln konnen.

Was fiir die Entstehung von Gleichgewichtslagen nur
von untergeordneter Bedeutung war, ist fiir deren Eigen-
stabilitit von grofiter Wichtigkeit. Gemeint ist die Kreisel-
wirkung der Rider. Andert sich nimlich nach einer Storung
der Kippwinkel, so liefert die Kreiselwirkung des Vorder-
rades ein etwa in Lenkachsrichtung wirkendes Drehmo-
ment, das den Lenker schnell zu der Seite einschligt, zu der
das Fahrrad kippt. Da dies den Bahnradius verkleinert,

ABB. 4 GLEICHGEWICHTSBEDINGUNG
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Lenkwinkel und Fahrgeschwindigkeiten, bei denen die Sum-
me der Lenk- und Kippmomente zu Null wird, wobei Kipp-
winkel und seitliche Gewichtsverlagerung konstant sind.
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nimmt die auf die Fahrradmasse ausgeiibte Zentripetalkraft
zu. Die auf den Rahmen wirkende Gegenkraft der Zentri-
petalkraft erzeugt dabei ein aufrichtendes Kippmoment, das
so lange anwichst, bis es tiberwiegt und das Fahrrad wie-
der aufrichtet. Schwingt dabei das Fahrrad zur anderen Sei-
te Uiber, so wiederholt sich dieser aufrichtende Vorgang mit
umgekehrtem Vorzeichen. So gesehen ist das Radfahren ein
stindiges Pendeln um eine Gleichgewichtslage (anschau-
lich beschrieben in [6]). Dabei wird anfingliches Kippen,
entweder durch Eingriffe des Fahrers oder durch eigensta-
biles Verhalten, mit geeigneten Lenkausschligen beant-
wortet.

Zusammenfassung

Dynamische Krdfte ermdéglichen Gleichgewichtslagen des
Fahrrades, bei denen es stationdre Kreisbahnen durchfdhrt.
Befindet man sich als Radfahrer in solch einer Gleichge-
wichtslage, so geniigen bereits geringfiigige Anderungen des
Lenkeinschlags oder sehr kleine Gewichtsverlagerungen, um
ein leicht gestértes Gleichgewicht wieder herzustellen. Daher
kann unser Balanciergleichgewicht dies in solchen Fahrlagen
ganz beildufig leisten. Welche Gleichgewichtslagen méglich
sind, ergibt sich aus einer Bilanz wirksamer Krdfte und
Drehmomente.

Stichworte
Fahrradfahren, Gleichgewichtsbedingungen, Lenkwinkel,
Kippwinkel, Kippmomente, Kreisfahrt.
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