„Primary Science“ – ein internationaler Überblick

In diesem Beitrag soll ein internationaler Überblick über Lehrpläne, Curricula, theoretische Ansätze und empirische Befunde aus dem Bereich „Primary Science“ gegeben werden. Ein Schwerpunkt liegt auf der Situation in Deutschland, England und den USA.

„Science“ im Primarbereich

<table>
<thead>
<tr>
<th>Länder</th>
<th>Fachbezeichnungen</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australien (Queensland)</td>
<td>Science</td>
<td>11 Jahre (Year 1-10)</td>
</tr>
<tr>
<td>Kanada (Ontario)</td>
<td>Science and Technology</td>
<td>9 Jahre (Grade 1-8)</td>
</tr>
<tr>
<td>Singapur</td>
<td>Science</td>
<td>4 Jahre (Primary 3-6)</td>
</tr>
<tr>
<td>Südafrika</td>
<td>Science</td>
<td>10 Jahre (R-9)</td>
</tr>
<tr>
<td>USA</td>
<td>Science</td>
<td>5 Jahre (K-4)</td>
</tr>
</tbody>
</table>

Abb. 2: Einige weitere Länder mit einem gesonderten Fach Naturwissenschaft (Beispiele)

<table>
<thead>
<tr>
<th>Länder</th>
<th>Fachbezeichnung</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgien (niederl.)</td>
<td>Weiterbildung</td>
<td>6 Jahre</td>
</tr>
<tr>
<td>Belgien (franz.)</td>
<td>Start in die Naturwissenschaften, in die Geschichte und in die Geographie</td>
<td>3 Jahre</td>
</tr>
<tr>
<td>Deutschland</td>
<td>Sachunterricht</td>
<td>4 Jahre</td>
</tr>
<tr>
<td>Frankreich</td>
<td>Entdeckungen der Welt</td>
<td>2 Jahre</td>
</tr>
<tr>
<td>Griechenland</td>
<td>Umweltstudien</td>
<td>4 Jahre</td>
</tr>
<tr>
<td>Irland (Republik)</td>
<td>Sozial-, Umwelt- und Naturwissenschaftliche Erziehung</td>
<td>6 Jahre</td>
</tr>
<tr>
<td>Litauen</td>
<td>Wahrnehmung und Verstehen der Welt</td>
<td>4 Jahre</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>Start in die Naturwissenschaften, in die Geschichte und Geographie</td>
<td>4 Jahre</td>
</tr>
<tr>
<td>Niederlande</td>
<td>Orientierung und die Welt</td>
<td>6 Jahre</td>
</tr>
<tr>
<td>Österreich</td>
<td>Sachunterricht</td>
<td>4 Jahre</td>
</tr>
<tr>
<td>Portugal</td>
<td>Umweltstudien</td>
<td>4 Jahre</td>
</tr>
<tr>
<td>Slowakische Rep.</td>
<td>Grundlegendes Sachlernen</td>
<td>2 Jahre</td>
</tr>
<tr>
<td>Slowenien</td>
<td>Natur- und Gesellschaftswissenschaften</td>
<td>3 Jahre</td>
</tr>
<tr>
<td>Spanien</td>
<td>Kenntnisse der natürlichen, sozialen und kulturellen Umwelt</td>
<td>6 Jahre</td>
</tr>
<tr>
<td>Schweden</td>
<td>Umweltstudien</td>
<td>6 Jahre</td>
</tr>
<tr>
<td>Ungarn</td>
<td>Start in die Naturwissenschaften, in die Geschichte und in die Geographie</td>
<td>4 Jahre</td>
</tr>
<tr>
<td>Zypern</td>
<td>Heimatstudien</td>
<td>2 Jahre</td>
</tr>
</tbody>
</table>

Abb. 3: EU-Länder, in denen die naturwissenschaftlichen Themen in ein Schulbuch integriert sind (im Anlehnung an Blaseio, im Druck)

Naturwissenschaften in der Grundschule – eine neue Initiative?

„Ein Jahrzehnt, nachdem der Strukturplan (1970) die Wissenschaftsorientierung zum Leit- sten der Didaktik erhoben hatte, war die Umkehrung der Pendelbewegung unabsehbar. Nach ihrem Hoch in den USA wurden die auslaufenden Werten eines anti-scientific move-

![Diagramm](image)

![Diagramm](image)

![Diagramm](image)

Abb. 6: Anteile der naturwissenschaftlich orientierten Inhaltsbereiche des Sachunterrichts am Gesamtanteil der Inhalte in deutschen Schulbüchern (nach Blasio 2002)

Auch in den USA setzten sich die in den sechziger und siebziger Jahren entwickelten naturwissenschaftlichen Curricula in den „Elementary Schools“ trotz massiver finanzieller Unter- stützung nicht durch.

Der zweite Versuch einer Implementierung naturwissenschaftlicher Themen in der Grundschule – „Primary Science“ heute

Inzwischen läuft sich auch in Europa die Initiative zur Förderung einer frühen naturwissenschaftlichen Bildung. Einige Beispiele:

- In Frankreich und Schweden beteiligen sich die Nationalen Akademien an der Intensivierung einer frühen naturwissenschaftlichen Bildung: Sie unterstützen große Programme wie „La main à la pâte“ (Jasmin 2005) und „Science and Technology for All (NTA)“ (Schwedien). Auch die Brandenburgische Akademie der Wissenschaften in Berlin hat mit einer Förderung des frühen naturwissenschaftlichen Unterrichts begonnen.

- Im Kanton Bern in der Schweiz werden im neuen Berner Lehrplan für die Volksschule naturwissenschaftliche Themen von Klasse 1 an bis in den Sekundarbereich hinein als aufeinander aufbauendes Curriculum im Lernbereich Natur – Mensch – Mitwelt berücksichtigt.

Inhalte und Ziele von „Primary Science“ heute
An drei Beispielen soll aufgezeigt werden, welche Inhalte und Ziele heute im Bereich „Primary Science“ verfolgt werden.

England:
In dem 1989 verfassten englischen „National Curriculum“ zum Bereich „Science“ werden die Inhaltsbereiche mit Themenfeldern (Programme of Study) sowie die angestrebten Kompetenzen (Attainment Targets) in einem aufeinander aufbauenden Curriculum auf jedem „Key Stage“, also auch auf „Key Stage 1“ (3–6-Jährige Kinder in „Year Group“ 1 und 2) und „Key Stage 2“ (7–11-Jährige Kinder in „Year Group“ 3–6) aufgeführt (vgl. Abb. 7).

<table>
<thead>
<tr>
<th>Programme of Study in Science</th>
<th>Zugeordnete Themenfelder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific enquiry</td>
<td>Ideas and evidence in science; investigative skills</td>
</tr>
<tr>
<td>Life processes and living things</td>
<td>Life processes, humans and other animals, green plants, variation and classification and living things in their environment</td>
</tr>
<tr>
<td>Materials and their properties</td>
<td>Grouping and classifying materials, changing materials and separating mixtures of materials</td>
</tr>
<tr>
<td>Physical processes</td>
<td>Electricity, forces and motion, light and sound and the Earth and beyond</td>
</tr>
</tbody>
</table>

„Pupils should be taught:

- about the forces of attraction and repulsion between magnets, and about the forces of attraction between magnets and magnetic materials
- that objects are pulled downwards because of the gravitational attraction between them and the Earth
- about friction, including air resistance, as a force that slows moving objects and may prevent objects from starting to move
- that when objects [for example, a spring, a table] are pushed or pulled, an opposing pull or push can be felt
- how to measure forces and identify the direction in which they act."

„Pupils recognise that scientific ideas are based on evidence. In their own investigative work, they decide on an appropriate approach [for example, using a fair test] to answer a question. Where appropriate, they describe, or show in the way they perform their task, how to vary one factor while keeping others the same. Where appropriate, they make predictions.”

USA:

„As a result of activities in grades K–4, all students should develop understanding of:

Standard A	Science as Inquiry: Abilities necessary to do scientific inquiry, Understanding about scientific inquiry
Standard B	Physical Science: Properties of objects and materials; Position and motion of objects; Light, heat, electricity, and magnetism
Standard C	Life Science: The characteristics of organisms; Life cycles of organisms; Organisms and environments
Standard D	Earth and Space Science: Properties of earth material; Objects in the sky; Changes in earth and sky
Standard E	Science and Technology: Abilities of technological design; Understanding about science and technology; Abilities to distinguish between natural objects and objects made by humans
Standard F	Science in Personal and Social Perspectives: Personal health; Characteristics and changes in populations; Types of resources; Changes in environments; Science and technology in local challenges
Standard G	History and Nature of Science: Science as an human endeavor
Die in der Tabelle aufgeführten Inhaltsbereiche werden im Hinblick auf die am Ende der jeweiligen Schulstufe erarbeiteten fundamentalen Konzepte und Prinzipien noch präzisiert. Für den Inhaltsbereich „LIGHT, HEAT, ELECTRICITY, AND MAGNETISM“ sollen zum Beispiel zum Ende der „Elementary School“ die folgenden Einziehen erzielt werden sein:

- "Light travels in a straight line until it strikes an object. Light can be reflected by a mirror, refracted by a lens, or absorbed by the object.
- Heat can be produced in many ways, such as burning, rubbing, or mixing one substance with another. Heat can move from one object to another by conduction.
- Electricity in circuits can produce light, heat, sound, and magnetic effects. Electrical circuits require a complete loop through which an electrical current can pass.
- Magnets attract and repel each other and certain kinds of other materials."

(http://www.nap.edu/readroom/books/nse/6c.html/deutschland)

Hinblick auf naturwissenschaftliches und technisches Lernen entwickelt haben. Deutlich wird hiermit ein multidirektionaler Zielansatz formuliert.

Lerntheoretische Grundlagen für einen fröhlichen naturwissenschaftlichen Unterricht – Naturwissenschaftliches Lernen als Veränderung von Konzepten

Versteht man Wissensaufbau als einen aktiven, situierten sowie sozial bedingten Prozess und berücksichtigt Ergebnisse der Conceptual Change Forschung, so lassen sich einige Hinweise für förderliche Unterrichtsmerkmale ableiten:

- Die Lernenden sind aktiv am Lemprozess beteiligt, z. B. durch motivierende Fragestellungen, durch Möglichkeiten, eigenen Fragen und Denkweisen nachzugehen und zu experimentieren.
- Die Lehrkraft aktiviert vorhandene Vorstellungen, greift diese auf und regt zum Überprüfen an.
- Die Lernenden werden ermutigt, eigene Ideen zu verfolgen. Eigener Lernweg wird Raum gegeben.
- Im gemeinsamen Gespräch werden Vermutungen und mögliche Erklärungen diskutiert und gestützt.
- Der Unterricht greift anwendungsbezogene, für Kinder interessante Fragestellungen auf.
- Arbeitsweisen und Lemprozesse werden reflektiert. (vgl. Möller et al. 2006)

Die Rolle der Lehrkraft in einem konstruktivistisch orientierten Unterricht

Maßnahmen, welche die Komplexität reduzieren und den Aufbau adäquater Vorstellungen erleichtern, sind:

- Fokussierungshilfen, welche die Aufmerksamkeit der Schüler auf wichtige Aspekte lenken sollen,
- Impulse, welche Denkanstoßes vermitteln,
- Problematisierungshilfen, welche auf unlösbare Fragen oder Widersprüche aufmerksam machen,
- Aufforderungen zum Mitteilen und Überprüfen von Vermutungen,
- Aufforderungen zum Begründen von Aussagen und zum Reflektieren von Lernwege,
- Zusammenfassungen und Hervorhebungen wichtiger Schüleräußerungen und
- die Nutzung von „Advance Organizers“, um die Einordnung neuer Wissens in vorhan- denes Wissen zu erleichtern.

Wie wirksam sind konstruktivistisch orientierte Lehr-Lernumgebungen im naturwis- senschaftlichen Sachunterricht? — Die Mainzer Schülerstudie

Wie erfolgreich solche konstruktivistisch orientierten Lernumgebungen im Hinblick auf motivationale, selbstbezogene und kognitive Zielbereiche sind, untersuchten wir in einem Projekt zum Aufbau physikalischer Basiskonzepte, das im DFG-Schwerpunktprogramm BFQUA angesiedelt war und in Kooperation mit Elsbeth Stern durchgeführt wurde. Wir stellen dabei auch die Frage, welchen Einfluss strukturierende Markmale in einer konstruktivistisch orientierten Lernsituation haben.

Zum Design der Studie (Möller et al. 2002):

Was hat der Unterricht bewirkt?

- Ergebnisse bezüglich motivationaler und selbstbezogener Wirkungen

Weitere Analysen zeigten, dass dieser Effekt vor allem durch die leistungsschwächeren Schüler zustande kam, die sich im MIT-Unterricht signifikant stärker kompetent und engagiert, höher motiviert und erfolgreichvorsichtiger einschätzten als im OHNE-Unterricht, während sich für die leistungsstärkeren Kinder kein Unterschied in den Unterrichtsgruppen ergab (Blumberg et al. 2004).

Zusammenfassung der Ergebnisse

Die Ergebnisse zeigen, dass ein anspruchsvoller, auf den Erwerb physikalischer Konzepte ausgerichteter Unterricht keineswegs eine Überforderung für Grundschulkinder darstellt, wenn er Kindern Gelegenheit gibt, Ideen zu entwickeln und zu überprüfen, wichtige Erfahrungen zu machen und Fragestellungen zu bearbeiten, die Kinder interessieren. Auch in motivationaler Hinsicht stellt ein Unterricht, wie der hier geschilderte, keine Überforderung dar, was vor allem durch die hohe Lernzufriedenheit bestätigt wird. Andererseits zeigen die

außerdem das Verhältnis von Kindern, die sich in der ersten Hälfte des Jahres als stärker strukturiertes Unterrichtsverhalten zeigten, war nach einem Jahr nicht mehr signifikant unterschiedlich.

Ein Blick in die Unterrichtspraxis: Können bzw. konnten sich konstruktivistisch orientierte Curriculums im naturwissenschaftlichen Unterricht der Primarstufe etablieren?

Konstruktivistisch orientierte Ansätze für den Primarbereich sind in vielen Ländern sowohl auf theoretischer Ebene (Harlen 2005, Worth 2005, Möller 2001) sowie auf praktischer Ebene (z.B. Perspektivnahmen Sachunterricht 2002, "National Science Education Standards", "Ontario Curriculum", Lehrplan Sofia, Berner Lehrplan) vorhanden. Das gilt sowohl für die industriellen Länder wie auch für Entwicklungsländer, in denen konstruktivistische Orientierungen begrifflich häufig unter dem Stichwort "Active Learning" gefasst werden. "Active Learning" soll dabei allerdings nicht verstanden werden als eine Beschränkung auf Aktivismus. In den "National Science Education Standards" wird formuliert: "Learning science is something that students do, not something that is done to them... Hands-on activities are not enough - students also must have ""minds-on" experiences. Science teaching must involve students in inquiry-oriented investigations in which they interact with their teachers and peers..." ("National Science Education Standards, Chapter 2")

Auf welche Schwierigkeiten trifft der Versuch, konstruktivistische Ansätze im naturwissenschaftlichen Unterricht der Grundschule zu etablieren?

Problem 1: Mangel an notwendigen Materialien

Problem 2: Erforderliche Kompetenzen der Lehrkräfte

Problem 3: High State Assessment

Problem 4: Das Lern-Verständnis vieler Curriculumsentwickler

Perspektiven für die Implementierung einer naturwissenschaftlichen Bildung in der Grundschule in Deutschland

Ob sich langfristig ein konstruktivistisch orientierter Unterricht in den Grundschulen implementieren lässt, ist noch nicht absehbar. Was können wir tun?

- Zunächst sollten wir uns - um ein ermeutes „Roll-back“ zu verhindern - in den äußeren Methoden für die ersten Implementierungswelle naturwissenschaftlichen Grundschulunterrichts auseinandersetzen, um Fehler aus den 70ern und 80ern Jahren bei der ersten Implementierung zu vermeiden. Dazu gehört ein kritischer Blick auf die damals entwickelten Curricula und die mit deren Implementierung verbundenen, internationalen Forschungsergebnisse.

Vielleicht gelingt es uns so, einen kognitiv anspruchsvollen und motivierenden Grundschulunterricht in der Zukunft zu etablieren, ohne von einem erneuten „Roll-back“ erfasst zu werden. Vielleicht gelingt es uns auch, das Interesse, das Kompetenzleren wie auch die Entwicklung kognitiver Fähigkeiten von Kindern durch naturwissenschaftlichen Grundschulunterricht nachhaltig zu fördern. Hoffentlich bleibt es uns erspart, irgendwann resigniert zu formulieren: „It is better to have no science than bad science in the Primary School“.

Dieses Zitat stammt von einem englischen Kollegen, der sich benehmt über die derzeitige Qualität des naturwissenschaftlichen Unterrichts in englischen „Primary Schools“ äußerte.

Literatur

121

Konferenzen:

Lehrpläne/ Bildungsstandards:
Australien/ Neuseeland: Curriculum Frameworks und Syllabinse:
http://www.nc.uk.net/webmaster/hyperlinks.aspx?id=6916
Kanada: Ontario Curriculum (Grade 1 to grade 10) (1998):
USA: AAAS: Project 2061:
http://www.project2061.aaas.org/aaa/default.htm
USA: AAAS: Science for all Americans (1989):
http://www.project2061.aaas.org/publications/sfaa/online/sfuscotm.htm
USA: AAAS: Benchmarks for Science Literacy (1993):
http://www.project2061.aaas.org/publications/bi/ee/2004/1icientro.htm
USA: National Science Education Standards (1996)
http://www.nap.edu/readingsroom/books/ada/pdf/index.html
USA: National Content Standards (Kap. 4):
http://www.nap.edu/readingsroom/books/ada/355sci3100nationale
http://www.ep.ch/site/04_smm.pdf
Singapur: Lehrplan Singapur (Science Syllabus Primary P3-5) (2001):
Südafrika: Revised National Curriculum zur Learning area "Natural sciences" South Africa (2002):

Unterrichtswerke/Materialien/Programme u. a.:
FOSS: Science Curriculum Materialien:
http://www.fossweb.com/
Informationen über das Programm „science and technology for all“ = „Naturwissenschaft och Teknik för alla“ (NTA) in Schweden:
gريف/englisch.htm
http://archiviya.aaas.org/ads/2APA_aapseries1
La main is a la patte (France):
http://www.lopenh.fr/
http://www.standards.dfe.gov.uk/leherner2/science/teachernet
Science 5/13: Unit(s) for Teachers. Published for the Schools Council. London/Milwaukee: Macdonald Educational, seit 1972 in vielen Auflagen. Aufführung aller Bände siehe: