Kornelia Möller

Naturwissenschaftliches Lernen –
eine (neue) Herausforderung für den Sachunterricht?

Naturwissenschaftliches Lernen in der Grundschule:
Eine neue Idee?

„Das anspruchsvollere Lernen auf allen Schul-
stufen ... (ist) gegenwärtig vorherrschende(s)
Ziel(e) der Bildungsreform“

„Die Kinder dürfen in ihrer kognitiven Ent-
vwicklung nicht zurückgehalten werden“

„Die Anfänge der Naturwissenschaften ...
müssen in elementariserter Form Eingang in
den Primarbereich finden“

Aussagen wie diese passen gut in die gegenwärtige Diskussion um eine Implementierung naturwissenschaftlicher Inhalte in die Primarstufe. Politiker, Pädagogen, Psychologen, Fachdidaktiker wie auch Vertreter der Deutschen Industrie sind sich heute überraschend einig, bereits in der Primarstufe, auch schon im Kindergarten, eine naturwissenschaftliche Bildung zu fordern.

Auch die wirtschaftlichen, politischen und wissenschaftlichen Hintergründe der damaligen wie der heutigen Situation gleichen sich:

1 Der vorliegende Beitrag bildete ebenso die Grundlage eines Vortrages im Rahmen einer Ringvorlesung an der Pädagogischen Hochschule Heidelberg im Wintersemester 2005/06.
2 Die oben aufgeführten Zitate stammen aus diesem Dokument. Sie finden sich dort auf den Seiten (in der angegebenen Reihenfolge) 132, 134, 134.
Bildungspolitische Überlegungen, insbesondere die Sorge um die nationale Leistungsfähigkeit, waren und sind ein Anstoß für neue Entwicklungen. Damals löste der Sputnikschock eine tiefgreifende Reform des Bildungssystems aus, heute übernimmt der PISA-Schock diese Rolle.

Heute wie früher spricht man den frühen Bildungsstufen, im Elementar- wie im Primarbereich, ein besonders großes Reformpotenzial zu.

Damals wie heute war bzw. ist der politisch-ökonomische Druck groß, über schnelle Reformen eine Verbesserung der als defizitär empfundenen Bildungssituation zu erreichen.

Die naturwissenschaftliche Bildung spielte in der Reform der 1970er Jahre wie in der heutigen Situation eine besondere Rolle im Maßnahmenbündel.

4 Der Strukturplan des deutschen Bildungsrates nennt dieses Werk im Vorwort als entscheidende Grundlage der Überlegungen (S. 15).
wirkliches Verstehen wurde dabei nicht erreicht. Schwartz (1977, 13) fasst die Kritik zusammen: Der wissenschaftsorientierte Unterricht hatte sich in vielen Köpfen zu einem wissenschaftsbestimmten Sachunterricht entwickelt, „der vornehmlich als Vorgriff auf die Systematik der alten Schulfächer in der Sekundarstufe I gesehen und gründlich missverstanden wurde. Die sich daraus ergebende Addition der Fächer ... führte zu ... Stofffülle ..., zu Überforderung und zu einem bisher nicht gekannten Leistungsdruck.“

Festzuhalten bleibt: Die naturwissenschaftsorientierten, durch amerikanische Konzeptionen beeinflussten, lernzielorientierten Curricula der ersten Generation gaben der Entwicklung des naturwissenschaftlich-technischen Lernbereichs wichtige Im-

Unser Ansatz heute: Multikriteriale Zielerreichung im naturwissenschaftlichen Sachunterricht

Hinsichtlich der zu verfolgenden Ziele für das frühe naturwissenschaftliche Lernen besteht heute international weitgehende Einigkeit. Vorrangiges Ziel einer grundlegenden naturwissenschaftlichen Bildung ist nicht die Vermittlung systematisch

5 Vgl. z.B. die Ausführungen von Karen Worth (2005)
organisierten Wissens, etwa mit der Absicht, möglichst viel Wissen für weiterführendes Lernen zur Verfügung zu stellen. Es geht vielmehr darum, dass Kinder

- Interesse und Freude am Nachdenken über Phänomene aus Natur und Technik empfinden und daran interessiert sind, naturwissenschaftliche und technische Fragen und Probleme zu ergründen
- Selbstvertrauen entwickeln, etwas herausfinden und verstehen zu können
- Bereitschaft und Freude entwickeln, sich auf forschendes Denken einzulassen und Herausforderungen im Denken anzunehmen („science is hard fun“)
- Fähigkeit entwickeln, über naturwissenschaftlich-technische Fragen zu kommunizieren
- beginnen, ein Verständnis von Wissenschaft und wissenschaftlichem Arbeiten (nature of science) aufzubauen und entsprechende Verfahren (wie das Experimentieren) zu erlernen
- ein konzeptuelles Basiswissen erwerben, das sie zum Vorhersagen und Erklären von Phänomenen nutzen können.

Grundvoraussetzung für nachhaltige Lernprozesse, die über kurzfristiges Memoriere-
ren hinausgehen. Auf der anderen Seite gilt: Ohne gründliches Verstehen und kog-
nitives Durchdringen des Gelernten kann kein Erleben von Kompetenz, also auch
kein Selbstvertrauen aufgebaut werden; auch eine nachhaltige Förderung von
Interesse ist auf Verstehen und Kompetenzerleben angewiesen.

Wie sollen naturwissenschaftliche Lernumgebungen
gestaltet werden?

Unter Wissenserwerb wird hier nicht allein die Akkumulation von Fakten, sondern
vielmehr der Erwerb theoriegeleiteter Begriffe und Konzepte verstanden (Carey
1985). Das Erlernen solcher Konzepte wird insbesondere in der naturwissen-
schaftsdidaktischen Forschung als „Conceptual Change“ beschrieben, da der Auf-
bau naturwissenschaftlicher Konzepte schon vorhandenen Vorstellungen häufig
entgegen steht und Veränderungen von sog. Prä- oder Alltagskonzepten erfordert
(Duit 1999, Duschl/Hamilton 1998). Deshalb sind aktive Umstrukturierungspro-
zesse notwendig, um die erforderlichen Konzeptveränderungen herbei zu führen
(Vosniadou/Ioannides/Dimitrakopoulou 2001). Naturwissenschaftliche Phänomene
regen Kinder oft spontan zur Bildung von Erklärungen an; viele dieser häufig
robusten Vorstellungen sind aber inadäquat oder unvollständig. Ziel ist es, Kinder
auf inadäquate, nicht belastbare Vorstellungen aufmerksam zu machen und ihnen
Möglichkeiten zur Konstruktion adäquater, physisch-chemischer Erklärungen zu bieten.
Das konzeptive Verständnis ist dabei sicherlich von den quantifizierbaren Begrif-
fen des Fachwissenschafters noch weit entfernt; Ziel ist es jedoch, ein qualitatives,
physikalisch angemessenes Verständnis aufzubauen (vgl. ausführlicher Möller
1999 und Möller et al. 2002).

In der fachdidaktischen Diskussion kristallisiert sich in der Tradition Martin
Wagenscheins ein sog. konstruktiv-genetischer Unterricht als Conceptual Change-
fördernd heraus (Köhnlein 1999), der auch unter dem Begriff eines konstruktivistis-
tisch orientierten, auf verstehendes, kooperatives und problemorientiertes Lernen

Lerntheoretisch liegen diesen Ansätzen die Annahmen zugrunde,
• dass Wissen aktiv vom Lernenden konstruiert werden muss und nicht „ver-mit-
telt“ werden kann,
• dass der Lernende im Lernprozess aktiv involviert sein muss,
• dass Wissensaufbau durch soziale Interaktion gefördert wird und
• dass problemhaltige Lernsituationen die Anwendbarkeit des erworbenen
Wissens fördern. (Gerstenmaier/Mandl 1995)

Das hohe Maß an Selbststeuerung und Komplexität, das sich hieraus bei anwen-
dungsorientierten Fragestellungen ergibt, birgt insbesondere für jüngere, leistungs-
chwächere Schüler und bei anspruchsvollen Inhalten allerdings die Gefahr der

Folgende Merkmale kennzeichnen solche konstruktivistisch-genetischen Lernumgebungen, die auf konstruktivistisch orientierten Sichtweisen zum Wissenserwerb basieren:

- Die Lernenden sind aktiv am Lernprozess beteiligt, z.B. durch motivierende Fragestellungen, durch Möglichkeiten, eigenen Fragen und Denkweisen nachzugehen und zu experimentieren.
- Die Lehrkraft aktiviert vorhandene Vorstellungen, greift diese auf und konfrontiert sie ggf. mit Evidenz.
- Die Lernenden werden ermutigt, eigene Ideen zu formulieren und diese zu überprüfen. Eigenen Lernwegen wird Raum gegeben.
- Im gemeinsamen Gespräch werden Vermutungen und mögliche Erklärungen diskutiert und geprüft.
- Der Unterricht greift anwendungsbezogene, für Kinder interessante Fragestellungen auf.
- Arbeitsweisen und Lernprozesse werden reflektiert.

In der OHNE-Gruppe bestimmten die Kinder die Reihenfolge der zu besprechenden Aspekte im Klassengespräch. Die Lehrperson half hier bei der Organisation und der Einhaltung der Gesprächsregeln, beschränkte sich ansonsten auf Tipps für die Strukturierung, forderte Vergleiche, Begründungen, Präsentationen und das Hinterfragen heraus und fasste wesentlich seltener als in MIT den Stand der Schülererkenntnisse zusammen. Die Kinder erhielten allerdings individuelle Rückmeldungen von der Lehrperson in ihren Forschermappen.

Insgesamt entsprach der Unterricht in der Gruppe OHNE in etwa einem Werkstattunterricht, wie er in vielen Grundschulklassen verbreitet ist, während der

6 Die Bezeichnung OHNE wurde als Abkürzung gewählt. „OHNE“ bedeutet, dass der Unterricht in dieser Gruppe mit geringer Strukturierung, dennoch aber als konstruktiv-genetischer Unterricht geplant wurde.
Unterricht in der MIT-Gruppe eher an einem genetisch orientierten Unterricht mit
unterstützender, sokratischer Gesprächsführung durch die Lehrkraft orientiert war.
Mit Hilfe einer Videoaufzeichnung und einer anschließenden Videoauswertung
wurde nachgewiesen, dass der Unterricht in den beiden Klassen den genannten
Merkmalen entsprach.

Beide Gruppen wurden von derselben Lehrperson unterrichtet, um lehrkraft-
bedingte Effekte auszuschließen. Die sozioökonomischen Klassenbedingungen und
die Vorerfahrungen der Klassen waren in beiden Gruppen vergleichbar.

Das genaue Design der Untersuchung und das Ergebnis des Screenings im Hin-
blick auf die Frage, ob die beschriebene Variation auch tatsächlich realisiert wurde,
sind bereits an anderer Stelle veröffentlicht (vgl. Jonen et al 2003; Möller et al.
2002).

Der Unterricht zur Frage „Wie kommt es, dass ein
großes Schiff aus Metall nicht untergeht?“

Der Unterricht enthielt die folgenden Teilaspekte, die hier in der Reihenfolge be-
schrieben werden, wie sie im MIT-Unterricht erarbeitet wurden.

Zunächst wurde die Frage gestellt, wie es kommt, dass ein großes schweres
Schiff aus Metall nicht untergeht, obwohl eine kleine Stecknadel aus Metall sinkt. 8
Hier einige typische Antworten der Kinder:
- Vär leich wegen den Luft
- Wegen der vorm (Form)
- Weil das Flach ist und aus Eisen gemacht ist!
- Auf dem Schiff ist ein Kapiten. Das Schiff tragt schwere sache. Zum beischbil
 Fische, Öl und Kole
- Weil Störopor in das Schiff gelegt wirt und viel Luft ist.
- So ein Schiff hat einen Motor und der Motor treibt das Schiff.
- Weil in dem Schiff ganz viel Luft ist, und Luft schwimmt.
- Weil vielleicht im Schiff Luft drin ist oder weil es bestimmte Motoren hat.

Auffällig ist die häufige Angabe mehrerer Gründe, die additive Aneinanderreiheung
von Gedanken, das häufige Nennen der Form des Schiffes und die besondere Rolle,
die der Luft zugesprochen wird. Fast allen Antworten ist zudem gemeinsam, dass
die Kinder nicht die Rolle des Wassers erwähnen, sondern glauben, dass der Motor,

7 Eine aufgrund von weiteren Evaluationen leicht veränderte Fassung dieses Unterrichts ist im
Spectra-Verlag veröffentlicht worden. Hier werden die Schritte des Unterrichts genau be-
schrieben, Stationenkarten und Arbeitsblätter zur Verfügung gestellt sowie die erforderlichen
Materialien in einer Klassenkiste für 32 Kinder angeboten. (Möller 2005)
8 Wir fragen nicht, warum das große Schiff schwimmt, sondern, warum es nicht untergeht, weil
wir in unseren Untersuchungen festgestellt haben, dass die Kinder mit Schwimmen – analog
t zu ihrer eigenen Erfahrung – das nach vorne Bewegen, also den Vortrieb im Wasser, ver-
stehen. Insofern ist die Antwort, „der Motor macht das“, nicht falsch. Im Englischen wird
zwischen swimming, floating and sinking unterschieden, wodurch die genannte Zweideutig-
keit ausgeschlossen werden kann.
die Luft im Schiff oder der Kapitän dafür sorgen, dass das Schiff nicht untergeht. Dass es das Wasser ist, das für das Nicht-Sinken des Schiffes verantwortlich ist, wird im Mittelpunkt des folgenden Unterrichts stehen.

Nach ersten Diskussionen über mögliche Gründe fährt der Unterricht fort mit der Frage, welche Vollkörper im Wasser nach dem Eintauchen nach oben steigen und welche sinken. Vollkörper sind Körper, die keine Einwölbung haben, in die also kein Wasser gefüllt werden kann. Die Kinder stellen zunächst Vermutungen zu verschiedenen Gegenständen an, überprüfen diese anschließend im Versuch (s. Abb. 2) und markieren dann überraschende Ergebnisse. Dass Wachs schwimmt, überrascht Kinder (vor allem, wenn es sich um einen großen und schweren Wachsklotz handelt), weil der Wachsklotz keine Luft enthält und sie glauben, dass die Luft das Nicht-Sinken bewirkt (Abb. 2). Haben Gegenstände Löcher, so glauben Kinder, dass das Wasser diesen Gegenstand herunterdrückt, auch wenn die Platte mit Löchern aus Styropor oder Holz besteht. Dass eine kleine Nadel sinkt, aber ein schwerer Holzklotz nach oben steigt, wird ebenfalls häufig nicht vorher gesehen. Die Kinder vermuten auch, dass eine dünne Eisenplatte nach oben steigt, weil das Wasser sie wegen der breiten Fläche tragen kann, und dass ein Schwamm untergeht, weil er sich mit Wasser voll saugt. Sie beobachten auch, dass gleiche Gegenstände aus verschiedenen Materialien (z.B. Messer aus Holz, Messer aus Plastik) sich unterschiedlich verhalten.

Abbildung 2: Kinder überprüfen ihre Vermutungen bei Vollkörpern mit Löchern

Wir formulieren die Frage in der genannten Art, weil ansonsten die Oberflächenspannung bei einigen Gegenständen, wie z.B. bei der Stecknadel und bei der dünnen Metallplatte, das Ergebnis verfälschen würde. Der Einfluss der Oberflächenspannung kann in einem gesonderten Unterricht thematisiert werden.

In einem nächsten Schritt erfahren sie anhand verschiedener Versuche im Schwimmbad, was das Wasser mit Gegenständen macht, wenn diese in das Wasser eingetaucht werden. Viele Kinder denken, dass das Wasser Gegenstände und auch Menschen nach unten zieht. Dabei verwechseln sie zwei unterschiedlich wirkende Kräfte: Die Gewichtskraft, die alles nach unten fallen lässt und die im Wasser wirkende Auftriebskraft, die alles im Wasser Eingetauchte nach oben drückt. Ob im Wasser eingetauchte Gegenstände sinken oder nicht, hängt von der Größe dieser beiden entgegengesetzten Kräfte ab: Ist die Auftriebskraft größer, so wird der in das Wasser eingetauchte Gegenstand nach oben gedrückt und schwimmt (dann sind beide Kräfte im Gleichgewicht), ist die Gewichtskraft größer als die Auftriebskraft, so sinkt der Gegenstand. Im Schwimmbad sollen die Kinder nun zunächst die nach oben drückende Kraft des Wassers erfahren, indem Bälle und Töpfe wie auch Bottiche in das Wasser eingetaucht werden. Sie spüren dabei, wie das Wasser beim Eintauchen gegen den Gegenstand drückt. Beim großen Bottich ist das Drücken so stark, dass sogar ein Kind vom Wasser getragen wird.
Abbildung 3: Das Wasser drückt so stark, dass der Bottich mit Kind nicht untergeht.

Beim Hochheben schwerer Gegenstände spüren die Kinder, dass man im Wasser weniger Kraft aufbringen muss als außerhalb des Wassers. Sind die Gegenstände oder wir selbst im Wasser eingetaucht, so werden Gegenstände scheinbar leichter – das Wasser trägt also mit.

Zurück im Klassenraum werden die Experimente noch einmal im „Kleinen“, im Wasserbecken, wiederholt. Genau wird nun beobachtet, was mit einem Gegenstand passiert, der langsam in das Wasser eingetaucht wird und dann wieder langsam herausgezogen wird. Bei der Knetkugel an der Angel spüren die Kinder, dass diese allmählich schwerer wird beim Herausziehen; bei der Knetkugel am Gummiband beobachten sie, wie sich das Gummiband beim Herausziehen verlängert.

In einem letzten Schritt wird nun das „Nach-oben-Steigen“ oder Sinken von Gegenständen nach dem Eintauchen in das Wasser mit Hilfe eines Kräftespiels zwischen zwei wirkenden Faktoren erarbeitet: Das Wasser drückt alles nach

Mit diesem Ergebnis haben die Kinder ein Verständnis erreicht, das sicherlich dem mancher Erwachsener überlegen ist. Dass es sich hierbei nicht um auswendig gelernte Sätze handelt, beweist die Verschiedenartigkeit der Erklärungen, die nach dem Unterricht abgegeben werden (Tabelle 1). Deutlich zeigt die Gegenüberstellung, dass die Kinder individuell unterschiedliche Konzeptveränderungen vollzogen haben und dass einige Kinder eher eine Erklärung über die Dichte bevor-

<table>
<thead>
<tr>
<th>Tabelle 1: Antworten von Kindern vor und nach dem Unterricht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vör leich wegen den Luft</td>
</tr>
<tr>
<td>Wegen der vorm (Form)</td>
</tr>
<tr>
<td>Weil das Flach ist und aus Eisen gemacht ist!</td>
</tr>
<tr>
<td>Auf dem Schiff ist ein Kapiten. Das Schiff tragt schwere sache. Zum beischbil Fische, Öl und Kole</td>
</tr>
<tr>
<td>Weil Störopor in das Schiff gelegt wirt und viel Luft ist.</td>
</tr>
<tr>
<td>So ein Schiff hat einen Motor und der Motor treibt das Schiff.</td>
</tr>
<tr>
<td>Weil vielleicht im Schiff Luft drin ist oder weil es bestimmte Motoren hat.</td>
</tr>
</tbody>
</table>

Was hat der Unterricht bewirkt?

Ergebnisse bzgl. der kognitiven Leistungen bei den geschlossenen und den offenen Antworten:

Bei den offenen Antworten zeigte sich, dass Fehlkonzepte von den Kindern im Posttest signifikant seltener verwendet wurden, während physikalisch angemessene Konzepte signifikant häufiger genannt wurden. Die Gruppe mit stärkerer Strukturierung war zudem der Gruppe mit geringerer Strukturierung im Hinblick auf die Nutzung physikalischer Konzepte signifikant überlegen (Jonen et al. 2003).

Außerdem lernten die leistungsschwächeren Kinder im Unterricht mit stärkerer Strukturierung mehr hinzu als im Unterricht mit geringerer Strukturierung. Die leistungsstärkeren Schüler unterschieden sich dagegen nicht in beiden Unterrichtsformen, was darauf hindeutet, dass Kinder mit guten Lernvoraussetzungen gleichermassen von beiden Unterrichtsformen profitieren (Möller et al. 2002).

In den offenen Antworten zeigte sich in bezug auf die Langzeitwirkung, dass die Gruppe mit stärkerer Strukturierung signifikant weniger Fehlkonzepte und signifikant mehr anspruchsvolle wissenschaftliche Konzepte produzierte als die Gruppe mit geringerer Strukturierung im Unterricht. Zurückzuführen ist dieser Effekt in der OHNE-Gruppe auf das signifikante Ansteigen von Fehlkonzepten nach dem Unterricht bis zur Follow-up-Messung nach einem Jahr. Mit anderen Worten: Durch den Unterricht abgebaute Fehlkonzepte erschienen in der OHNE-Gruppe nach einem Jahr wieder, während die MIT-Gruppe nachhaltig Fehlkonzepte abbauen konnte (Hardy et al. 2006).
Ergebnisse bzgl. motivationaler und selbstbezogener Wirkungen:

Weitere Analysen zeigten, dass dieser Effekt vor allem durch die leistungsschwächeren Schüler zustande kam, die sich im MIT-Unterricht signifikant stärker kompetent und engagiert, höher motiviert und erfolgszuversichtlicher einschätzten als im OHNE-Unterricht, während sich für die leistungsstärkeren Kinder kein Unterschied in den Unterrichtsgruppen ergab (Blumberg et al. 2004).

Zusammenfassung der Ergebnisse

Die Ergebnisse zeigen, dass ein anspruchsvoller, auf den Erwerb physikalischer Konzepte ausgerichteter Unterricht keineswegs eine Überforderung für Grundschulkinder darstellt, wenn er Kindern Gelegenheit gibt, Ideen zu entwickeln und zu überprüfen, wichtige Erfahrungen zu machen und Fragestellungen zu bearbeiten, die Kinder interessieren. Auch in motivationaler Hinsicht stellt ein Unterricht, wie der hier geschilderte, keine Überforderung dar, was vor allem durch die hohe Lernzufriedenheit bestätigt wird. Andererseits zeigen die Ergebnisse, dass ein auf Selbst-Konstruktion von Wissen angelegter Unterricht auf unterstützende und strukturierende Maßnahmen angewiesen ist. Dieses trifft insbesondere für leistungsschwächere Schüler zu. Strukturierende Maßnahmen in schülerorientierten Lernumgebungen scheinen sich bei anspruchsvollen Inhalten positiv auf den nachhaltigen Abbau von Fehlkonzepten, auf den Aufbau wissenschaftsnaher Vor-

Zur unterstützenden Rolle der Lehrkraft in einem konstruktivistisch orientierten Unterricht

- Gliederungsmaßnahmen, welche die Komplexität des Lerngegenstandes reduzieren und den Aufbau adäquater Vorstellungen erleichtern,
- die Auswahl geeigneter Experimente,
- Fokussierungshilfen, welche die Aufmerksamkeit der Schüler auf wichtige Aspekte lenken sollen,
- Impulse, welche Denkanstöße vermitteln,
- Problematisierungshilfen, welche auf ungelöste Fragen oder Widersprüche aufmerksam machen,
- Aufforderungen zum Mitteilen und Überprüfen von Vermutungen,
- Aufforderungen zum Begründen von Aussagen und zum Reflektieren von Lernwegen,
- Zusammenfassungen und Hervorhebungen wichtiger Schüleräußerungen und
- die Nutzung von advanced organizern, um die Aufmerksamkeit von Schülern auf wichtige Aspekte zu richten.

Ein auf kognitive Konstruktion ausgerichteter Unterricht, der ein kognitives und motivationales Engagement der Lernenden anstrebt und eigenes Forschen und Entdecken ermöglichen möchte, ist also nur erfolgreich, wenn eine entsprechende Unterstützung durch die Lehrkraft erfolgt. Zu glauben, dass Handeln und Experimentieren der Lernenden allein zu verstandenem Wissen führe und man Kinder unbehelligt forschen lassen sollte, um ihre kognitive Kreativität und ihr Interesse zu fördern, ist naïv.

Der in unserer Studie evaluierter Unterricht ist deshalb nicht nur für die Lernenden anspruchsvoll. Auch von der Lehrkraft erfordert ein solcher Unterricht eine Reihe anspruchsvoller Kompetenzen – sowohl im fachlichen wie auch im didaktisch-methodischen Bereich. Die Lehrerbildung in allen Phasen sollte sich hier gefordert sehen. \[11\]

Literatur
