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Introduction

The IMSL Fortran Numerical Libraries

The IMSL Libraries consist of two separate, but coordinated Libraries that allow easy user access.
These Libraries are organized as follows:

e MATH/LIBRARY general applied mathematics and special functions
The User’s Guide for IMSL MATH/LIBRARY has two parts:

1. MATH/LIBRARY (Volumes 1 and 2)
2. MATH/LIBRARY Special Functions

e STAT/LIBRARY statistics

Most of the routines are available in both single and double precision versions. Many routines are
also available for complex and complex-double precision arithmetic. The same user interface is
found on the many hardware versions that span the range from personal computer to
supercomputer. Note that some IMSL routines are not distributed for FORTRAN compiler
environments that do not support double precision complex data. The specific names of the IMSL
routines that return or accept the type double complex begin with the letter “Z” and, occasionally,
“DC.”

Getting Started

IMSL MATH/LIBRARY Special Functions is a collection of FORTRAN subroutines and
functions useful in research and statistical analysis. Each routine is designed and documented to be
used in research activities as well as by technical specialists.

To use any of these routines, you must write a program in FORTRAN (or possibly some other
language) to call the MATH/LIBRARY Special Functions routine. Each routine conforms to
established conventions in programming and documentation. We give first priority in development
to efficient algorithms, clear documentation, and accurate results. The uniform design of the
routines makes it easy to use more than one routine in a given application. Also, you will find that
the design consistency enables you to apply your experience with one MATH/LIBRARY Special
Functions routine to all other IMSL routines that you use.
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Finding the Right Routine

The organization of IMSL MATH/LIBRARY Special Functions closely parallels that of the
National Bureau of Standards’ Handbook of Mathematical Functions, edited by Abramowitz and
Stegun (1964). Corresponding to the NBS Handbook, functions are arranged into separate
chapters, such as elementary functions, trigonometric and hyperbolic functions, exponential
integrals, gamma function and related functions, and Bessel functions. To locate the right routine
for a given problem, you may use either the table of contents located in each chapter introduction,
or one of the indexes at the end of this manual. GAMS index uses GAMS classification (Boisvert,
R.F., S.E. Howe, D.K. Kahaner, and J.L. Springmann 1990, Guide to Available Mathematical
Software, National Institute of Standards and Technology NISTIR 90-4237). Use the GAMS index
to locate which MATH/LIBRARY Special Functions routines pertain to a particular topic or
problem.

Organization of the Documentation

This manual contains a concise description of each routine, with at least one demonstrated exam-
ple of each routine, including sample input and results. You will find all information pertaining to
the Special Functions Library in this manual. Moreover, all information pertaining to a particular
routine is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents that lists the routines
included in the chapter. Documentation of the routines consists of the following information:

e IMSL Routine’s Generic Name

e Purpose: a statement of the purpose of the routine. If the routine is a function rather than a
subroutine the purpose statement will reflect this fact.

e Function Return Value: a description of the return value (for functions only).

e Required Arguments: a description of the required arguments in the order of their occurrence.
Input arguments usually occur first, followed by input/output arguments, with output
arguments described last. Futhermore, the following terms apply to arguments:

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through this
argument; cannot be a constant or an expression.

Input or Output Select appropriate option to define the argument as either input or output.
See individual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The routine
returns output through this argument.

e Optional Arguments: a description of the optional arguments in the order of their occurrence.
e Fortran 90 Interface: a section that describes the generic and specific interfaces to the routine.

e Fortran 77 Style Interface: an optional section, which describes Fortran 77 style interfaces, is
supplied for backwards compatibility with previous versions of the Library.
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e ScaLAPACK Interface: an optional section, which describes an interface to a ScaLAPACK
based version of this routine.

e  Description: a description of the algorithm and references to detailed information. In many
cases, other IMSL routines with similar or complementary functions are noted.

e Comments: details pertaining to code usage.

e Programming notes: an optional section that contains programming details not covered
elsewhere.

e Example: at least one application of this routine showing input and required dimension and
type statements.

e  Output: results from the example(s).

e Additional Examples: an optional section with additional applications of this routine showing
input and required dimension and type statements.

Naming Conventions

The names of the routines are mnemonic and unique. Most routines are available in both a single
precision and a double precision version, with names of the two versions sharing a common root.
The root name is also the generic interface name. The name of the double precision specific
version begins with a “D_.” The single precision specific version begins with an “S_". For
example, the following pairs are precision specific names of routines in the two different
precisions: S GAMDF/D_GAMDF (the root is “GAMDF ,” for “Gamma distribution function”) and

S _POIDF/D_POIDF (the root is “POIDF,” for “Poisson distribution function”). The precision
specific names of the IMSL routines that return or accept the type complex data begin with the
letter “C_" or “Z_" for complex or double complex, respectively. Of course the generic name can
be used as an entry point for all precisions supported.

When this convention is not followed the generic and specific interfaces are noted in the
documentation. For example, in the case of the BLAS and trigonometric intrinsic functions where
standard names are already established, the standard names are used as the precision specific
names. There may also be other interfaces supplied to the routine to provide for backwards
compatibility with previous versions of the Library. These alternate interfaces are noted in the
documentation when they are available.

Except when expressly stated otherwise, the names of the variables in the argument lists follow
the FORTRAN default type for integer and floating point. In other words, a variable whose name
begins with one of the letters “1” through “N” is of type INTEGER, and otherwise is of type REAL
or DOUBLE PRECISION, depending on the precision of the routine.

An assumed-size array with more than one dimension that is used as a FORTRAN argument can
have an assumed-size declarator for the last dimension only. In the MATH/LIBRARY Special
Functions routines, the information about the first dimension is passed by a variable with the
prefix “LD” and with the array name as the root. For example, the argument LDA contains the
leading dimension of array A. In most cases, information about the dimensions of arrays is
obtained from the array through the use of Fortran 90’s size function. Therefore, arguments
carrying this type of information are usually defined as optional arguments.
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Where appropriate, the same variable name is used consistently throughout a chapter in the
MATH/LIBRARY Special Functions. For example, in the routines for random number generation,
NR denotes the number of random numbers to be generated, and R or IR denotes the array that
stores the numbers.

When writing programs accessing the MATH/LIBRARY Special Functions, the user should
choose FORTRAN names that do not conflict with names of IMSL subroutines, functions, or
named common blocks. The careful user can avoid any conflicts with IMSL names if, in choosing
names, the following rules are observed:

e Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the
User’s Manual, nor one of these names preceded by aD,S_,D_,C_,orZ_.

e Do not choose a name consisting of more than three characters with a numeral in the second
or third position.

For further details, see the section on “Reserved Names” in the Reference Material.

Using Library Subprograms

The documentation for the routines uses the generic name and omits the prefix, and hence the
entire suite of routines for that subject is documented under the generic name.

Examples that appear in the documentation also use the generic name. To further illustrate this
principle, note the BSINS documentation (see Chapter 6, Bessel Functions, of this manual). A
description is provided for just one data type. There are four documented routines in this subject
area: S_BSJNS, D_BSJINS, C_BSJNS, and Z_BSJNS.

These routines constitute single-precision, double-precision, complex, and complex double-
precision versions of the code.

The appropriate routine is identified by the Fortran 90 compiler. Use of a module is required with
the routines. The naming convention for modules joins the suffix “_int” to the generic routine
name. Thus, the line “use BSINS_INT” is inserted near the top of any routine that calls the
subprogram “BSJNS”. More inclusive modules are also available. For example, the module named
“imsl_libraries” contains the interface modules for all routines in the library.

When dealing with a complex matrix, all references to the transpose of a matrix, A", are replaced
by the adjoint matrix

AT = A" = A"
where the overstrike denotes complex conjugation. IMSL Fortran Numerical Library linear

algebra software uses this convention to conserve the utility of generic documentation for that
code subject. References to orthogonal matrices are replaced by their complex counterparts,

unitary matrices. Thus, an n x n orthogonal matrix Q satisfies the condition QTQ =l,.Annxn
unitary matrix V satisfies the analogous condition for complex matrices, V'V = I

xii e Introduction Using Library Subprograms



Programming Conventions

In general, the IMSL MATH/LIBRARY Special Functions codes are written so that computations
are not affected by underflow, provided the system (hardware or software) places a zero value in
the register. In this case, system error messages indicating underflow should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system error messages
indicating overflow should be examined for programming errors such as incorrect input data,
mismatch of argument types, or improper dimensioning.

In many cases, the documentation for a routine points out common pitfalls that can lead to failure
of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat them accordingly.
This error-handling capability provides automatic protection for the user without requiring the user
to make any specific provisions for the treatment of error conditions. See the section on “User
Errors” in the Reference Material for further details.

Module Usage

Users are required to incorporate a “use” statement near the top of their program for the IMSL
routine being called when writing new code that uses this library. However, legacy code which
calls routines in the previous version of the library without the presence of a “use” statement will
continue to work as before. The example programs throughout this manual demonstrate the
syntax for including use statements in your program. In addition to the examples programs,
common cases of when and how to employ a use statement are described below.

e  Users writing new programs calling the generic interface to IMSL routines must include a use
statement near the top of any routine that calls the IMSL routines. The naming convention for
modules joins the suffix “_int” to the generic routine name. For example, if a new program
is written calling the IMSL routines LFTRG and LFSRG, then the following use statements
should be inserted inserted near the top of the program

USE LFTRG_INT

USE LFSRG_INT
In addition to providing interface modules for each routine individually, we also provide a
module named “imsl_libraries”, which contains the generic interfaces for all routines in

the library. For programs that call several different IMSL routines using generic interfaces, it
can be simpler to insert the line

USE IMSL_LIBRARIES
rather than list use statements for every IMSL subroutine called.

e  Users wishing to update existing programs to call other routines from this library should
incorporate a use statement for the new routine being called. (Here, the term “new routine”
implies any routine in the library, only “new” to the user’s program.) For example, if a call
to the generic interface for the routine LSARG is added to an existing program, then

USE LSARG_INT

should be inserted near the top of your program.
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o  Users wishing to update existing programs to call the new generic versions of the routines
must change their calls to the existing routines to match the new calling sequences and use
either the routine specific interface modules or the all encompassing “imsl_libraries”
module.

e Code which employed the “use numerical_libraries” statement from the previous
version of the library will continue to work properly with this version of the library.

Programming Tips

It is strongly suggested that users force all program variables to be explicitly typed. This is done
by including the line “IMPLICIT NONE” as close to the first line as possible. Study some of the
examples accompanying an IMSL Fortran Numerical Library routine early on. These examples are
available online as part of the product.

Each subject routine called or otherwise referenced requires the “use” statement for an interface
block designed for that subject routine. The contents of this interface block are the interfaces to the
separate routines available for that subject. Packaged descriptive names for option numbers that
modify documented optional data or internal parameters might also be provided in the interface
block. Although this seems like an additional complication, many typographical errors are avoided
at an early stage in development through the use of these interface blocks. The “use” statement is
required for each routine called in the user’s program.

However, if one is only using the Fortran 77 interfaces supplied for backwards compatibility then
the “use” statements are not required.

Optional Subprogram Arguments

IMSL Fortran Numerical Library routines have required arguments and may have optional
arguments. All arguments are documented for each routine. For example, consider the routine
GCIN which evaluates the inverse of a general continuous CDF. The required arguments are P, X,
and F. The optional arguments are 10PT and M. Both 10PT and M take on default values so are not
required as input by the user unless the user wishes for these arguments to take on some value
other than the default. Often there are other output arguments that are listed as optional because
although they may contain information that is closely connected with the computation they are not
as compelling as the primary problem. In our example code, GCIN, if the user wishes to input the
optional argument “10PT” then the use of the keyword “10PT=""in the argument list to assign an
input value to 10PT would be necessary.

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_L IBRARIES
interface module includes backwards compatible positional argument interfaces to all routines
which existed in the Fortran 77 version of the Library. Note that it is not necessary to use “use”
statements when calling these routines by themselves. Existing programs which called these
routines will continue to work in the same manner as before.
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Error Handling

The routines in IMSL MATH/LIBRARY Special Functions attempt to detect and report errors and
invalid input. Errors are classified and are assigned a code number. By default, errors of moderate
or worse severity result in messages being automatically printed by the routine. Moreover, errors
of worse severity cause program execution to stop. The severity level as well as the general nature
of the error is designated by an “error type” with numbers from 0 to 5. An error type 0 is no error;
types 1 through 5 are progressively more severe. In most cases, you need not be concerned with
our method of handling errors. For those interested, a complete description of the error-handling
system is given in the Reference Material, which also describes how you can change the default
actions and access the error code numbers.

Printing Results

None of the routines in IMSL. MATH/LIBRARY Special Functions print results (but error
messages may be printed). The output is returned in FORTRAN variables, and you can print these
yourself.

The IMSL routine UMACH (see the Reference Material section of this manual) retrieves the
FORTRAN device unit number for printing. Because this routine obtains device unit numbers, it
can be used to redirect the input or output. The section on “Machine-Dependent Constants™ in the
Reference Material contains a description of the routine UMACH.

MATH LIBRARY Special Functions Introduction e xv



Xvi e Introduction Printing Results



Chapter 1: Elementary Functions

Routines
Evaluates the argument of a complex number...................... CARG 1
Evaluates the cube root of a real or complex number Yx ....CBRT 2
Evaluates (e * — 1)/x for real or complex X.........cccocvevrennn. EXPRL 4
Evaluates the complex base 10 logarithm, log;y Z............... LOG10 6
Evaluates In(x + 1) for real or complex X ........cccoovvveeernnnn. ALNREL 7

Usage Notes
The “relative” function EXPRL is useful for accurately computing € — 1 near x = 0. Computing
€ — 1 using EXP(X) — 1 near X = 0 is subject to large cancellation errors.

Similarly, ALNREL can be used to accurately compute In(X + 1) near X = 0. Using the routine ALOG
to compute In(X + 1) near X = 0 is subject to large cancellation errors in the computation of 1 + X.

CARG

This function evaluates the argument of a complex number.

Function Return Value

CARG — Function value. (Output)
If z= x + iy, then arctan(y/X) is returned except when both X and y are zero. In this case,
zero is returned.

Required Arguments

Z — Complex number for which the argument is to be evaluated. (Input)

FORTRAN 90 Interface
Generic: CARG (2)

Specific: The specific interface names are S_CARG and D_CARG.
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FORTRAN 77 Interface

Single: CARG (2)
Double: The double precision function name is ZARG.
Description

Arg(2) is the angle 6 in the polar representation z= |Z e ® where
i=+-1

If z= X+ iy, then 6 = tan'(y/X) except when both X and y are zero. In this case, 0 is defined to be
Zero.

Example

In this example, Arg(1 + i) is computed and printed.

USE CARG_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE
COMPLEX Z
! Compute
4 = (1.0, 1.0)
VALUE = CARG(2)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (* CARG(", F6.3, *,", F6.3, ") = ", F6.3)
END

Output

CARG( 1.000, 1.000) = 0.785

CBRT

This funcion evaluates the cube root.
Function Return Value

CBRT — Function value. (Output)

Required Arguments

X — Argument for which the cube root is desired. (Input)
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FORTRAN 90 Interface
Generic: CBRT (X)

Specific: The specific interface names are S_CBRT, D_CBRT, C_CBRT, and Z_CBRT.

FORTRAN 77 Interface
Single: CBRT (X)

Double: The double precision name is DCBRT.
Complex:  The complex precision name is CCBRT .

Double Complex: The double complex precision name is ZCBRT .

Description

The function CBRT(X) evaluates X

of |x| must not overflow.

. All arguments are legal. For complex argument, X, the value

Comments

For complex arguments, the branch cut for the cube root is taken along the negative real axis. The
argument of the result, therefore, is greater than —m/3 and less than or equal to ©/3. The other two
roots are obtained by rotating the principal root by 27t/3 and /3.

Example 1

In this example, the cube root of 3.45 is computed and printed.

USE CBRT_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 3.45
VALUE = CBRT(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" CBRT(", F6.3, ") = ", F6.3)
END

Output

CBRT( 3.450) = 1.511
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Additional Example

Example 2

In this example, the cube root of —3 + 0.0076i is computed and printed.

USE UMACH_INT
USE CBRT_INT
IMPLICIT NONE

! Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
L Compute
4 (-3.0, 0.0076)
VALUE = CBRT(Z)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (* CBRT((’, F7.4, 7,7, F7.4, »)) = (C, &
F6.3, 7,7, F6.3, 7)7)
END

Output

CBRT((-3.0000, 0.0076)) = ( 0.722, 1.248)

EXPRL

This function evaluates the exponential function factored from first order, (EXP(X) — 1.0)/X.
Function Return Value

EXPRL — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
FORTRAN 90 Interface

Generic: EXPRL (X)

Specific: The specific interface names are S_EXPRL, D_EXPRL, and C_EXPRL.
FORTRAN 77 Interface

Single: EXPRL (X)

Double: The double precision function name is DEXPRL.
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Complex:  The complex name is CEXPRL.

Description

The function EXPRL(X) evaluates (€° — 1)/x. It will overflow if € overflows. For complex
arguments, z, the argument Z must not be so close to a multiple of 27i that substantial significance
is lost due to cancellation. Also, the result must not overflow and |32z must not be so large that the
trigonometric functions are inaccurate.

Example 1
In this example, EXPRL(0.184) is computed and printed.

USE EXPRL_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL VALUE, X

! Compute
X = 0.184
VALUE = EXPRL(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (* EXPRL(", F6.3, ") = ", F6.3)
END

Output

EXPRL( 0.184) = 1.098
Additional Example

Example 2

In this example, EXPRL(0.0076i) is computed and printed.

USE EXPRL_INT
USE UMACH_INT

IMPLICIT NONE

DECLARE VARIABLES
INTEGER NOUT
COMPLEX VALUE, Z

COMPUTE
z
VALUE

(0.0, 0.0076)
EXPRL(Z)

PRINT THE RESULTS
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (" EXPRL((", F7.4, ".,", F7.4, ")) = (", &
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F6.3, "," F6.3, ")7)
END

Output

EXPRL(( 0.0000, 0.0076)) = ( 1.000, 0.004)

LOG10

This function extends FORTRAN’s generic log10 function to evauate the principal value of the
complex common logarithm.

Function Return Value

LOG10 — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: LOG10 (2)

Specific: The specific interface names are CLOG10 and ZL0G10.

FORTRAN 77 Interface
Complex: CLOG10 (2)

Double complex: The double complex function name is ZLOG10.

Description

The function LOG10(Z) evaluates log; 4(2) . The argument must not be zero, and |z must not
overflow.

Example
In this example, the log; ((0.0076i) is computed and printed.

USE LOG10_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

! Compute
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z (0.0, 0.0076)
VALUE = LOG10(2)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (* LOG1O((", F7-4, *.,", F7.4, ")) = (", &
F6.3, ",", F6.3, "))

END

Output

LOG10(( 0.0000, 0.0076)) = (-2.119, 0.682)

ALNREL

This function evaluates the natural logarithm of one plus the argument, or, in the case of complex
argument, the principal value of the complex natural logarithm of one plus the argument.

Function Return Value
ALNREL — Function value. (Output)

Required Arguments

X — Argument for the function. (Input)

FORTRAN 90 Interface
Generic: ALNREL (X)

Specific: The specific interface names are S_ALNREL, D_ALNREL, and C_ALNREL.

FORTRAN 77 Interface
Single: ALNREL (X)

Double: The double precision name function is DLNREL.

Complex:  The comlpex name is CLNREL.

Description

For real arguments, the function ALNREL(X) evaluates In(1 + X) for x> —1. The argument X must be
greater than —1.0 to avoid evaluating the logarithm of zero or a negative number. In addition, X
must not be so close to —1.0 that considerable significance is lost in evaluating 1 + X.

For complex arguments, the function CLNREL(Z) evaluates In(1 + z). The argument Z must not be
so close to —1 that considerable significance is lost in evaluating 1 + z If it is, a recoverable error
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is issued; however, z=—1 is a fatal error because In(1 + 2) is infinite. Finally, |2 must not
overflow.

Letp =1z, z=x+iyand r’ =|1 + 2> = (1 + X)>+ y* = 1 + 2x+ p’. Now, if p is small, we may
evaluate CLNREL(Z) accurately by

log(1+2) = logr+iArg(z+1)
= 12 log r* +iArg(z+ 1)
1/2 ALNREL(2x + p?) +iCARG(1 + 2)

Comments
1. Informational error
Type Code
3 2 Result of ALNREL(X) is accurate to less than one-half precision
because X is too near —1.0.
2. ALNREL evaluates the natural logarithm of (1 + X) accurate in the sense of relative error

even when X is very small. This routine (as opposed to the intrinsic ALOG) should be
used to maintain relative accuracy whenever X is small and accurately known.

Example 1
In this example, In(1.189) = ALNREL(0.189) is computed and printed.

USE ALNREL_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 0.189
VALUE = ALNREL(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" ALNREL(", F6.3, ") = ", F6.3)
END

Output

ALNREL( 0.189) = 0.173
Additional Example

Example 2
In this example, In(0.0076i) = ALNREL(-1 + 0.0076i) is computed and printed.
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USE UMACH_INT
USE ALNREL_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

Compute
z
VALUE

(-1.0, 0.0076)
ALNREL (Z)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (" ALNREL((", F8.4, *,", F8.4, ")) = (", &
F8.4, *,", F8.4, ")")
END

Output

ALNREL(( -1.0000, 0.0076)) = ( -4.8796, 1.5708)
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Chapter 2: Trigonometric and
Hyperbolic Functions

Routines

21

2.2

2.3

Trigonometric Functions

Evaluates tan z for complex z..........cccovveeeeeeiiiiciiieee e TAN
Evaluates cot X for real X ......ceeeeviiieeiiiiiiei e CcoT
Evaluates sin x for x a real angle in degrees...........ccccocuuee.. SINDG
Evaluates cos x for x a real angle in degrees..................... COSDG
Evaluates sin™' z for COMPIEX Z........c.ccvevevevevierceeeseeeeeeeenns ASIN
Evaluates cos™ z for COMPIEX Z.......cccvevvevereeeeeeeeiereenaeenns ACOS
Evaluates tan™ z for COMPIEX Z .......ccveveveeeeereeeiereeeenns ATAN
Evaluates tan™'(x/y) for x and y compleX ........c.ccccvevevrueennnn. ATAN2
Hyperbolic Functions

Evaluates sinh z for COmpleX Z ..........ccccoveeeeeeeiiiiiiiiieeeee e, SINH
Evaluates cosh z for complexX z .........cc.ccoceviiiiiiiiiiiiiicenn, COSH
Evaluates tanh z for complex z.............ccccooviiiiiiiiinn, TANH
Inverse Hyperbolic Functions

Evaluates sinh™ x for real or complex X .........ccceevveevrvennnn. ASINH
Evaluates cosh™ x for real or CompleXx X .........cccoceeveveveunnes ACOSH
Evaluates tanh™" x for real or COMPIEX X........coeevrvrverrrnnnen. ATANH

12
13
16
17
18
19
20
21

23
24
25

27
28
30

Usage Notes

The complex inverse trigonometric hyperbolic functions are single-valued and regular in a slit

complex plane. The branch cuts are shown below for z= X+ iy, i.e., x= Rz and y = Jz are the real
and imaginary parts of z respectively.
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sin”'z cos™'zand tanh™'(2) tan 'zand sinh™'z

y

+1

cosh™'z
Branch Cuts for Inverse Trigonometric and Hyperbolic Functions

TAN

This function extends FORTRAN’s generic tan to evaluate the complex tangent.

Function Return Value
TAN — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the tangent is desired.
(Input)

FORTRAN 90 Interface
Generic: TAN (2)

Specific: The specific interface names are CTAN and ZTAN.

FORTRAN 77 Interface
Complex : CTAN (2)

Double complex: The double complex function name is ZTAN.

Description

Let z=x+iy. If [cos Z° is very small, that is, if X is very close to /2 or 37/2 and if y is small, then
tan z is nearly singular and a fatal error condition is reported. If [cos Z° is somewhat larger but still
small, then the result will be less accurate than half precision. When 2X is so large that sin 2X
cannot be evaluated to any nonzero precision, the following situation results. If |y| < 3/2, then
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CTAN cannot be evaluated accurately to better than one significant figure. If 3/2 < |y| <—1/2 In &/2,
then CTAN can be evaluated by ignoring the real part of the argument; however, the answer will be
less accurate than half precision. Here, ¢ = AMACH(4) is the machine precision.

Comments

Informational error

Type
3

Example

Code

2 Result of CTAN(Z) is accurate to less than one-half precision because the
real part of Z is too near /2 or 37/2 when the imaginary part of Z is near
zero or because the absolute value of the real part is very large and the
absolute value of the imaginary part is small.

In this example, tan(1 + i) is computed and printed.

USE TAN_INT
USE UMACH_INT
IMPLICIT  NONE

!

INTEGER  NOUT
COMPLEX  VALUE, Z

!

z = (1.0, 1.0)
VALUE = TAN(Z)

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (= TAN((", F6.3,
",", F6.3, )Y)

F6.3,
END

Output

Declare variables

Compute

Print the results

.7, F6.3, ) = (7, &

TAN(( 1.000, 1.000)) = ( 0.272, 1.084)

COT

This function evaluates the cotangent.

Function Value Return

COT — Function value. (Output)

Required Arguments

X — Angle in radians for which the cotangent is desired. (Input)
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FORTRAN 90 Interface
Generic: COT (X)

Specific: The specific interface names are COT, DCOT, CCOT, and ZCOT.

FORTRAN 77 Interface
Single: CoT (X)

Double: The double precision function name is DCOT.
Complex:  The complex name is CCOT.

Double Complex: The double complex name is ZCOT .

Description

For real x, the magnitude of X must not be so large that most of the computer word contains the
integer part of X. Likewise, X must not be too near an integer multiple of «, although X close to the

origin causes no accuracy loss. Finally, X must not be so close to the origin that COT(X) = 1/X
overflows.

For complex arguments, let z= x + iy. If |sin Z” is very small, that is, if X is very close to a multiple
of m and if |y| is small, then cot z is nearly singular and a fatal error condition is reported. If |sin Z”
is somewhat larger but still small, then the result will be less accurate than half precision. When
|2X| is so large that sin 2X cannot be evaluated accurately to even zero precision, the following
situation results. If |y| < 3/2, then CCOT cannot be evaluated accurately to be better than one
significant figure. If 3/2 < |y| <—1/2 In &/2, where € = AMACH(4) is the machine precision, then
CCOT can be evaluated by ignoring the real part of the argument; however, the answer will be less
accurate than half precision. Finally, |2 must not be so small that cot z~ 1/z overflows.

Comments
1. Informational error for Real arguments:
Type Code
3 2 Result of COT(X) is accurate to less than one-half precision because

ABS(X) is too large, or X is nearly a multiple of m.

Informational error for complex arguments
Type Code

3 2 Result of CCOT(Z) is accurate to less than one-half precision because
the real part of Z is too near a multiple of © when the imaginary part
of Z is zero, or because the absolute value of the real part is very
large and the absolute value of the imaginary part is small

14 e Chapter 2: Trigonometric and Hyperbolic Functions COoT



2. Referencing COT(X) is NOT the same as computing 1.0/TAN(X) because the error
conditions are quite different. For example, when X is near 1/2, TAN(X) cannot be
evaluated accurately and an error message must be issued. However, COT(X) can be
evaluated accurately in the sense of absolute error.

Example 1

In this example, cot(0.3) is computed and printed.

USE COT_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL VALUE, X

1 Compute
X = 0.3
VALUE = COT(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (* COT(", F6.3, ") = ", F6.3)
END

Output

COT( 0.300) = 3.233
Additional Example

Example 2

In this example, cot(1 + i) is computed and printed.

USE COT_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

Compute
z
VALUE

(1.0, 1.0)
CoT(2)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (" cOT((", F6.3, ",", F6.3, ")) = (", &
F6.3, ",", F6.3, "))
END
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Output

COT(( 1.000, 1.000)) = ( 0.218,-0.868)

SINDG

This function evaluates the sine for the argument in degrees.
Function Return Value

SINDG — Function value. (Output)

Required Arguments

X — Argument in degrees for which the sine is desired. (Input)

FORTRAN 90 Interface
Generic: SINDG (X)

Specific: The specific interface names are S_SINDG and D_SINDG.

FORTRAN 77 Interface

Single: SINDG (X)
Double: The double precision function name is DSINDG.
Description

To avoid unduly inaccurate results, the magnitude of X must not be so large that the integer part
fills more than the computer word. Under no circumstances is the magnitude of X allowed to be
larger than the largest representable integer because complete loss of accuracy occurs in this case.

Example
In this example, sin 45° is computed and printed.

USE SINDG_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOUT

REAL VALUE, X

Compute
X =45.0
VALUE = SINDG(X)

Print the results
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CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" SIN(", F6.3, " deg) = ", F6.3)
END

Output

SIN(45.000 deg) = 0.707.

COSDG

This function evaluates the cosine for the argument in degrees.

Function Return Value
COSDG — Function value. (Output)

Required Arguments

X — Argument in degrees for which the cosine is desired. (Input)

FORTRAN 90 Interface
Generic: COSDG (X)

Specific: The specific interface names are S_COSDG and D_COSDG.

FORTRAN 77 Interface
Single: COSDG (X)

Double: The double precision function name is DCOSDG.

Description

To avoid unduly inaccurate results, the magnitude of X must not be so large that the integer part
fills more than the computer word. Under no circumstances is the magnitude of X allowed to be
larger than the largest representable integer because complete loss of accuracy occurs in this case.

Example

In this example, cos 100° computed and printed.

USE COSDG_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
INTEGER NOUT
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REAL VALUE, X
1 Compute
X 100.0
VALUE COSDG(X)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (" COS(", F6.2, " deg) = ", F6.3)
END

Output

COS(100.00 deg) = -0.174

ASIN

This function extends FORTRAN’s generic ASIN function to evaluate the complex arc sine.

Function Return Value

ASIN — Complex function value in units of radians and the real part in the first or fourth
quadrant. (Output)

Required Arguments

ZINP — Complex argument for which the arc sine is desired. (Input)
FORTRAN 90 Interface
Generic: ASIN (ZINP)

Specific: The specific interface names are CASIN and ZASIN.

FORTRAN 77 Interface
Complex: CASIN (ZINP)

Double complex: The double complex function name is ZASIN.

Description

Almost all arguments are legal. Only when |2 > b/2 can an overflow occur. Here, b = AMACH(2) is
the largest floating point number. This error is not detected by ASIN.

See Pennisi (1963, page 126) for reference.

Example

In this example, sin"'(1 — i) is computed and printed.
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USE ASIN_INT
USE UMACH_INT

IMPLICIT NONE

DECLARE VARIABLES
INTEGER NOUT
COMPLEX VALUE, Z

COMPUTE
z
VALUE

(1.0, -1.0)
ASIN(Z)

PRINT THE RESULTS
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (" ASIN((*, F6.3, *.", F6.3, ")) = (", &

F6.3, ",", F6.3, "))
END

Output

ASIN(( 1.000,-1.000)) = ( 0.666,-1.061)

ACOS

This function extends FORTRAN’s generic ACOS function evaluate the complex arc cosine.

Function Return Value

ACOS — Complex function value in units of radians with the real part in the first or second
quadrant. (Output)

Required Arguments

Z — Complex argument for which the arc cosine is desired. (Input)

FORTRAN 90 Interface

Generic: ACOS (2)

Specific: The specific interface names are CACOS and ZACOS.
FORTRAN 77 Interface

Complex:  CACOS (Z)

Double complex: The double complex function name is ZACOS.
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Description

Almost all arguments are legal. Only when |2 > b/2 can an overflow occur. Here, b = AMACH(2) is
the largest floating point number. This error is not detected by ACOS.

Example

In this example, cos (1 — i) is computed and printed.

USE ACOS_INT
USE UMACH_INT

IMPLICIT  NONE
! DECLARE VARIABLES
INTEGER  NOUT
COMPLEX  VALUE, Z
! COMPUTE
z (1.0, -1.0)
VALUE = ACOS(Z)
! PRINT THE RESULTS
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (" ACOS((", F6.3, ".,", F6.3, ")) = (", &
F6.3, ",", F6.3, "))
END

Output

ACOS(( 1.000,-1.000)) = ( 0.905, 1.061)

ATAN

This function extends FORTRAN’s generic function ATAN to evaluate the complex arc tangent.

Function Return Value

ATAN — Complex function value in units of radians with the real part in the first or fourth
quadrant. (Output)

Required Arguments

Z — Complex argument for which the arc tangent is desired. (Input)

FORTRAN 90 Interface
Generic: ATAN (2)

Specific: The specific interface names are CATAN and ZATAN.

20 e Chapter 2: Trigonometric and Hyperbolic Functions ATAN



FORTRAN 77 Interface
Complex: CATAN (2)

Double complex: The double complex function name is ZATAN.

Description

The argument z must not be exactly # i, because tan™' zis undefined there. In addition, z must not
be so close to * i that substantial significance is lost.

Comments
Informational error
Type Code
3 2 Result of ATAN(Z) is accurate to less than one-half precision
because |77 is too close to —1.0.
Example

In this example, tan"'(0.01 — 0.01i) is computed and printed.

USE ATAN_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

Compute
Z
VALUE

(0.01, 0.01)
ATAN(Z)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (* ATAN((", F6.3, *,", F6.3, ")) = (", &
F6.3, ",", F6.3, ")
END

Output

ATAN(( 0.010, 0.010)) = ( 0.010, 0.010)

ATANZ2

This function extends FORTRAN’s generic function ATAN2 to evaluate the complex arc tangent of
a ratio.
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Function Return Value

ATAN2 — Complex function value in units of radians with the real part between —r and .
(Output)

Required Arguments

CSN — Complex numerator of the ratio for which the arc tangent is desired. (Input)

CCS — Complex denominator of the ratio. (Input)

FORTRAN 90 Interface
Generic: ATAN2 (CSN, CCS)

Specific: The specific interface names are CATAN2 and ZATAN2.

FORTRAN 77 Interface
Complex:  CATAN2 (CSN, CCS)

Double complex: The double complex function name is ZATAN2.

Description

Let z = CSN and 2, = CCS. The ratio Z= 7 /2, must not be * i because tan"'(+ i) is undefined.
Likewise, z and z, should not both be zero. Finally, Zmust not be so close to #i that substantial
accuracy loss occurs.

Comments

The result is returned in the correct quadrant (modulo 2m).

Example

In this example,

L (172)+(i/2)
2+i

tan

is computed and printed.

USE ATAN2_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
COMPLEX VALUE, X, Y

1 Compute
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X = (2.0, 1.0)
Y = (0.5, 0.5)
VALUE = ATAN2(Y, X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Y, X, VALUE
99999 FORMAT (" ATAN2((", F6.3, ",", F6.3, "), (", F6.3, ",", F6.3,&
") =(, F6.3, ",", F6.3, "))
END

Output

ATAN2(( 0.500, 0.500), ( 2.000, 1.000)) = ( 0.294, 0.092)

SINH

This function extends FORTRAN’s generic function SINH to evaluate the complex hyperbolic
sine.

Function Return Value

SINH — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the complex hyperbolic
sine is desired. (Input)

FORTRAN 90 Interface

Generic: SINH (2)

Specific: The specific interface names are CSINH and ZSINH.
FORTRAN 77 Interface

Complex: CSINH (2)

Double complex: The double complex function name is ZS INH.

Description

The argument z must satisfy
|57 <1/e

where € = AMACH(4) is the machine precision and 3z is the imaginary part of z.
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Example

In this example, sinh(5 — i) is computed and printed.

USE SINH_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
1 Compute
z (5.0, -1.0)
VALUE = SINH(Z)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (~ SINH((", F6.3, ",", F6.3, ")) = (".&
F7.3, ",", F7.3, 9

END

Output

SINH(( 5.000,-1.000)) = ( 40.092,-62.446)

COSH

The function extends FORTRAN’s generic function COSH to evaluate the complex hyperbolic
cosine.

Function Return Value

COSH — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the hyperbolic cosine is
desired. (Input)

FORTRAN 90 Interface

Generic: COSH (2)

Specific: The specific interface names are CCOSH and ZCOSH.
FORTRAN 77 Interface

Complex: CCOSH (2)

Double complex: The double complex function name is ZCOSH.
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Description

Let € = AMACH(4) be the machine precision. If |37 is larger than

/e

then the result will be less than half precision, and a recoverable error condition is reported. If |37
is larger than 1/¢, the result has no precision and a fatal error is reported. Finally, if |17 is too
large, the result overflows and a fatal error results. Here, Rz and 3z represent the real and
imaginary parts of z respectively.

Example

In this example, cosh(=2 + 2i) is computed and printed.

USE COSH_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

Compute
Z
VALUE

(-2.0, 2.0)
COSH(Z)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (" COSH((", F6.3, ",", F6.3, ")) = (".&
F6.3, *,", F6.3, "))
END
Output

COSH((-2.000, 2.000)) = (-1.566,-3.298)

TANH

This function extends FORTRAN’s generic function TANH to evaluate the complex hyperbolic
tangent.

Function Return Value

TANH — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the hyperbolic tangent is
desired. (Input)
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FORTRAN 90 Interface
Generic: TANH (2)

Specific: The specific interface names are CTANH and ZTANH.

FORTRAN 77 Interface
Complex: CTANH (2)

Double complex: The double complex function name is ZTANH.

Description

Let z=x+iy. If |cosh 7 is very small, that is, if y mod 27 is very close to n/2 or 37/2 and if X is
small, then tanh z is nearly singular; a fatal error condition is reported. If |cosh Z* is somewhat
larger but still small, then the result will be less accurate than half precision. When

2y (z=x +iy) is so large that sin 2y cannot be evaluated accurately to even zero precision, the
following situation results. If |x| < 3/2, then TANH cannot be evaluated accurately to better than one

significant figure. If 3/2 < |y| <—1/2 In (&/2), then TANH can be evaluated by ignoring the
imaginary part of the argument; however, the answer will be less accurate than half precision.

Here, € = AMACH(4) is the machine precision.

Example

In this example, tanh(1 + i) is computed and printed.

USE TANH_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
! Compute
4 (1.0, 1.0)
VALUE TANH(Z)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (* TANH((", F6.3, *,", F6.3, ")) = (",&
F6.3, ",", F6.3, ")")

END

Output

TANH(( 1.000, 1.000)) = ( 1.084, 0.272)
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ASINH

This function evaluates the arc hyperbolic sine.

Function Return Value
ASINH — Function value. (Output)

Required Arguments

X — Argument for which the arc hyperbolic sine is desired. (Input)

FORTRAN 90 Interface
Generic: ASINH (X)

Specific: The specific interface names are ASINH, DASINH, CASINH, and ZASINH.

FORTRAN 77 Interface
Single: ASINH (X)

Double: The double precision function name is DASINH.
Complex:  The complex name is CASINH.

Double Complex: The double complex name is ZASINH.

Description
The function ASINH(X) computes the inverse hyperbolic sine of X, sinh™'x.

For complex arguments, almost all arguments are legal. Only when |Z > b/2 can an overflow
occur, where b = AMACH(2) is the largest floating point number. This error is not detected by
ASINH.

Example 1
In this example, sinh™'(2.0) is computed and printed.

USE ASINH_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X

1 Compute
X =2.0
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VALUE = ASINH(X)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (* ASINH(", F6.3, ") = ", F6.3)
END

Output

ASINH( 2.000) = 1.444
Additional Example

Example 2
In this example, sinh™'(~1 + i) is computed and printed.

USE ASINH_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
1 Compute
Z (-1.0, 1.0)
VALUE = ASINH(Z)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (* ASINH((", F6.3, ",", F6.3, ")) = (", &
F6.3, ",", F6.3, "))

END

Output

ASINH((-1.000, 1.000)) = (-1.061, 0.666)

ACOSH

This function evaluates the arc hyperbolic cosine.
Function Return Value

ACOSH — Function value. (Output)

Required Arguments

X — Argument for which the arc hyperbolic cosine is desired. (Input)
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FORTRAN 90 Interface

Generic: ACOSH (X)

Specific: The specific interface names are ACOSH, DACOSH, CACOSH, and ZACOSH.

FORTRAN 77 Interface

Single: ACOSH (X)
Double: The double precision function name is DACOSH.
Complex:  The complex name is CACOSH.

Double Complex: The double complex name is ZACOSH.

Description

The function ACOSH(X) computes the inverse hyperbolic cosine of X, cosh™'x.

For complex arguments, almost all arguments are legal. Only when |Z > b/2 can an overflow
occur, where b = AMACH(2) is the largest floating point number. This error is not detected by

ACOSH.

Comments

The result of ACOSH(X) is returned on the positive branch. Recall that, like SQRT(X), ACOSH(X) has

multiple values.

Example 1

In this example, cosh™'(1.4) is computed and printed.

99999

USE ACOSH_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOUT

REAL VALUE, X

Compute
X =1.4
VALUE = ACOSH(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
FORMAT (" ACOSH(", F6.3, ") = ", F6.3)
END

Output
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ACOSH( 1.400) = 0.867
Additional Example

Example 2
In this example, cosh™'(1 — i) is computed and printed.

USE ACOSH_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
1 Compute
Z (1.0, -1.0)
VALUE = ACOSH(2)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (* ACOSH((", F6.3, ",", F6.3, ")) = (", &
F6.3, ",", F6.3, "))

END

Output

ACOSH(( 1.000,-1.000)) = (-1.061, 0.905)

ATANH

This function evaluates the arc hyperbolic tangent.
Function Return Value

ATANH — Function value. (Output)

Required Arguments

X — Argument for which the arc hyperbolic tangent is desired. (Input)

FORTRAN 90 Interface
Generic: ATANH (X)

Specific: The specific interface names are ATANH, DATANH, CATANH, and ZATANH

FORTRAN 77 Interface
Single: ATANH (X)
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Double: The double precision function name is DATANH.
Complex:  The complex name is CATANH.

Double Complex: The double complex name is ZATANH.

Description

ATANH(X) computes the inverse hyperbolic tangent of X, tanh™'x. The argument X must satisfy
X <1-ve

where &€ = AMACH(4) is the machine precision. Note that |[X| must not be so close to one that the
result is less accurate than half precision.

Comments
Informational error
Type Code
3 2 Result of ATANH(X) is accurate to less than one-half precision because
the absolute value of the argument is too close to 1.0.
Example

In this example, tanh™'(—1/4) is computed and printed.

USE ATANH_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOUT
REAL VALUE, X
Compute
X = -0.25
VALUE = ATANH(X)
Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* ATANH(®, F6.3, ") = ", F6.3)

END

Output

ATANH(-0.250) = -0.255

Additional Example

Example 2

In this example, tanh™'(1/2 + i/2) is computed and printed.
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USE ATANH_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

Compute
Z
VALUE

(0.5, 0.5)
ATANH(Z)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (" ATANH((", F6.3, ",", F6.3, ")) = (", &
F6.3, ",", F6.3, ")
END

Output

ATANH(( 0.500, 0.500)) = ( 0.402, 0.554)
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Chapter 3: Exponential Integrals
and Related Functions

Routines

Evaluates the exponential integral, Ei(X) .......cccccovvveereriinereinnnen. El
Evaluates the exponential integral, E; (X)........ccccvvvveeeeeeiiicivnnnnnn. El
Evaluates the scaled exponential integrals, integer order,

Er(X) ceree ettt e e nrna e ENE
Evaluates the logarithmic integral, li(X)...........ceevvviieeeeeriiiiiinnnn. ALI
Evaluates the sine integral, Si(X) ........cccoveereeiiniiiiiiieee e Sl
Evaluates the cosine integral, Ci(X) ....cccovvveeriniiiiiiiieeee e Cl
Evaluates the cosine integral (alternate definition).................... CIN
Evaluates the hyperbolic sine integral, Shi(X)........ccccceveeviinnnee. SHI
Evaluates the hyperbolic cosine integral, Chi(X)...........cccceeenee CHI

Evaluates the hyperbolic cosine integral (alternate definition) CINH

34
35

37
38
40
41
43
44
45
47

Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964).

The following is a plot of the exponential integral functions that can be computed by the routines
described in this chapter.

MATH LIBRARY Special Functions

Chapter 3: Exponential Integrals and Related Functions e 33



Function
e’ B, —
e’ Fq---
e’ B, —
1 Ei
E,

50/

Figure 3- 1 Plot of ¢“E(x), E; (x) and Ei(x)

El

This function evaluates the exponential integral for arguments greater than zero and the Cauchy
principal value for arguments less than zero.

Function Return Value

El — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: El (X)
Specific: The specific interface names are S_El and D_EI.

FORTRAN 77 Interface
Single: El (X)
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Double: The double precision function name is DEI.

Description

The exponential integral, Ei(X), is defined to be

Ei(x):—jie’t/t dt forx=0

The argument X must be large enough to insure that the asymptotic formula €9/x does not
underflow, and X must not be so large that € overflows.

Comments
If principal values are used everywhere, then for all X, EI(X) = —E1(—X) and E1(X) = —-E1(—X).

Example
In this example, Ei(1.15) is computed and printed.

USE EI_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X =1.15
VALUE = EI1(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" EI(", F6.3, ") = ", F6.3)
END

Output

EI( 1.150) = 2.304

El

This function evaluates the exponential integral for arguments greater than zero and the Cauchy
principal value of the integral for arguments less than zero.

Function Return Value

E1 — Function value. (Output)
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Required Arguments

X — Argument for which the integral is to be evaluated. (Input)

FORTRAN 90 Interface
Generic: E1 (X)

Specific: The specific interface names are S_E1 and D_E1.

FORTRAN 77 Interface

Single: E1 (X)
Double: The double precision function name is DE1.
Description

The alternate definition of the exponential integral, E; (X), is
EC)= e'/tdt forx=0

The path of integration must exclude the origin and not cross the negative real axis.

The argument X must be large enough that € * does not overflow, and X must be small enough to
insure that € */x does not underflow.

Comments
Informational error
Type Code
2 | The function underflows because X is too large.
Example

In this example, E; (1.3) is computed and printed.

USE E1_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X =1.3
VALUE = E1(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
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99999 FORMAT (" E1(", F6.3, ") = *, F6.3)
END

Output

E1( 1.300) = 0.135

ENE

Evaluates the exponential integral of integer order for arguments greater than zero scaled by
EXP(X).

Required Arguments

X — Argument for which the integral is to be evaluated. (Input)
It must be greater than zero.

N — Integer specifying the maximum order for which the exponential integral is to be
calculated. (Input)

F — Vector of length N containing the computed exponential integrals scaled by EXP(X).
(Output)

FORTRAN 90 Interface
Generic: CALL ENE (X,N, F)

Specific: The specific interface names are S_ENE and D_ENE.

FORTRAN 77 Interface

Single: CALL ENE (X,N,F)
Double: The double precision function name is DENE.
Description

The scaled exponential integral of order n, Ex(X), is defined to be
E.(X) = erf et dt  forx>0

The argument X must satisfy X > 0. The integer n must also be greater than zero. This code is based
on a code due to Gautschi (1974).

Example

In this example, E{10) for n=1, ..., nis computed and printed.
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10
99999

Ou

sub
sub
sub
sub
sub
sub
sub
sub
sub
sub

mmmmmmimimimm

USE ENE_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER N
PARAMETER (N=10)

INTEGER K, NOUT
REAL F(N), X
Compute
X =10.0
CALL ENE (X, N, F)
Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K, X, F(K)
CONTINUE
FORMAT (" E sub ", 12, " (*, F6.3, ") = ", F6.3)
END

tput
1 (10.000) = 0.092
2 (10.000) = 0.084
3 (10.000) = 0.078
4 (10.000) = 0.073
5 (10.000) = 0.068
6 (10.000) = 0.064
7 (10.000) = 0.060
8 (10.000) = 0.057
9 (10.000) = 0.054
10 (10.000) = 0.051

ALI

Thi

s function evaluates the logarithmic integral.

Function Return Value

Re

ALl — Function value. (Output)

quired Arguments

X — Argument for which the logarithmic integral is desired. (Input)
It must be greater than zero and not equal to one.

FORTRAN 90 Interface

Generic: AL1 (X)

Specific: The specific interface names are S_ALI and D_ALI.
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FORTRAN 77 Interface

Single: ALl (X)
Double: The double precision function name is DALI.
Description

The logarithmic integral, li(X), is defined to be

1i(x)=—jxOlt

Olnt

for x>0 and X # 1

The argument X must be greater than zero and not equal to one. To avoid an undue loss of
accuracy, X must be different from one at least by the square root of the machine precision.

The function 1i(X) approximates the function m(X), the number of primes less than or equal to x.
Assuming the Riemann hypothesis (all non-real zeros of {(2) are on the line Rz= 1/2), then

li(x) - m(X) = O(v/X In X)

130

7 Function
- | i) —
150 4 s m(z)
. s
120 e
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Figure 3- 2 Plot of li(x) and 7(x)
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Comments

Informational error

Type Code
3 2 Result of ALI(X) is accurate to less than one-half precision because X is
too close to 1.0.
Example

In this example, 1i(2.3) is computed and printed.

USE ALI_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X =2.3
VALUE = ALI(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* ALI(", F6.3, ") = *, F6.3)
END

Output

ALI( 2.300) = 1.439

Si

This function evaluates the sine integral.
Function Return Value

S| — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: S1 (X)

Specific: The specific interface names are S_S1 and D_SI.
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FORTRAN 77 Interface

Single: SI (X))
Double: The double precision function name is DSI.
Description

The sine integral, Si(X), is defined to be
- [ X sint
sl(x)—jo STt
If
X >1/4e

the answer is less accurate than half precision, while for || > 1 /e, the answer has no precision.
Here, ¢ = AMACH(4) is the machine precision.

Example
In this example, Si(1.25) is computed and printed.

USE SI_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X =1.25
VALUE = SI1(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" SI(", F6.3, ") = ", F6.3)
END

Output

SI( 1.250) = 1.146

Cl

This function evaluates the cosine integral.

Function Return Value

Cl — Function value. (Output)
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Required Arguments

X — Argument for which the function value is desired. (Input)
It must be greater than zero.

FORTRAN 90 Interface
Generic: Cl1 X

Specific: The specific interface names are S_Cl and D_CI.

FORTRAN 77 Interface

Single: cr X
Double: The double precision function name is DCI.
Description

The cosine integral, Ci(X), is defined to be

1—cost
t

0

Ci(x)=y+1nx+j:

where y 20.57721566 is Euler’s constant.

The argument X must be larger than zero. If

x>1/«/§

then the result will be less accurate than half precision. If X > 1/g, the result will have no precision.
Here, € = AMACH(4) is the machine precision.

Example

In this example, Ci(1.5) is computed and printed.

USE CI_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X =1.5
VALUE = CI1(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" CI(", F6.3, ") = ", F6.3)
END
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Output

CI( 1.500) = 0.470

CIN

This function evaluates a function closely related to the cosine integral.
Function Return Value

CIN — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CIN X

Specific: The specific interface names are S_CIN and D_CIN.

FORTRAN 77 Interface

Single: CIN (X
Double: The double precision function name is DCIN.
Description

The alternate definition of the cosine integral, Cin(X), is

1—cost
t

dt

Cin(X) = j .
For
0<|x<+/s
where S= AMACH(1) is the smallest representable positive number, the result underflows. For

|x|>1/\/2

the answer is less accurate than half precision, while for [x| > 1 /g, the answer has no precision.
Here, € = AMACH(4) is the machine precision.
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Comments

Informational error

Type Code
2 1 The function underflows because X is too small.
Example

In this example, Cin(27) is computed and printed.
USE CIN_INT
USE UMACH_INT
USE CONST_INT

IMPLICIT NONE

1 Declare variables

INTEGER NOUT

REAL VALUE, X
L Compute
X = CONST("pi ")
X = 2.0 X
VALUE = CIN(X)

1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" CIN(", F6.3, ") = ", F6.3)
END

Output

CIN( 6.283) = 2.438

SHI

This function evaluates the hyperbolic sine integral.

Function Return Value

SHI— function value. (Output)
SHI equals

j;sinh(t)/t dt

Required Arguments

X — Argument for which the function value is desired.

(Input)
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FORTRAN 90 Interface
Generic: SHI (X)

Specific: The specific interface names are S_SHI1 and D_SHI.

FORTRAN 77 Interface

Single: SHI (X)
Double: The double precision function name is DSHI.
Description

The hyperbolic sine integral, Shi(X), is defined to be

sinht
t

Sth):j: dt

The argument X must be large enough that €”/x does not underflow, and X must be small enough
that € does not overflow.

Example

In this example, Shi(3.5) is computed and printed.

USE SHI_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 3.5
VALUE = SHI(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* SHI(", F6.3, ") = *, F6.3)
END

Output

SHI( 3.500) = 6.966

CHI

This function evaluates the hyperbolic cosine integral.
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Function Return Value
CHI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CHI (X)

Specific: The specific interface names are S_CHI and D_CHI.

FORTRAN 77 Interface

Single: CHI (X)
Double: The double precision function name is DCHI.
Description

The hyperbolic cosine integral, Chi(X), is defined to be

Chi(x) =7 +1In x+j§%dt for x> 0

where y = 0.57721566 is Euler’s constant.

The argument X must be large enough that €”/x does not underflow, and X must be small enough
that € does not overflow.

Comments

When X is negative, the principal value is used.

Example

In this example, Chi(2.5) is computed and printed.

USE CHI_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X =2.5
VALUE = CHI(X)
1 Print the results
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CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" CHI(", F6.3, ") = ", F6.3)
END

Output

CHI(2.500) = 3.524

CINH

This function evaluates a function closely related to the hyperbolic cosine integral.
Function Return Value

CINH — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CINH (X)

Specific: The specific interface names are S_CINH and D_CINH.

FORTRAN 77 Interface

Single: CINH (X)
Double: The double precision function name is DCINH.
Description

The alternate definition of the hyperbolic cosine integral, Cinh(X), is
. x cosht—1
Cinh(x) = j i 7dt

For
0<|x|<2\/§

where S= AMACH(1) is the smallest representable positive number, the result underflows. The
argument X must be large enough that €x does not underflow, and X must be small enough that €"
does not overflow.
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Comments

Informational error

Type Code
2 1 The function underflows because X is too small.
Example

In this example, Cinh(2.5) is computed and printed.

USE CINH_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL VALUE, X

1 Compute
X =2.5
VALUE = CINH(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (" CINH(", F6.3, ") = ", F6.3)
END

Output

CINH( 2.500) = 2.031
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Chapter 4. Gamma Function and
Related Functions

Routines

4.1

4.2

4.3.

4.4,

4.5.

4.6.

Factorial Function

Evaluates the factorial, N! .......cccoooiveeiii e FAC
Evaluates the binomial coefficient, (;‘J ............................... BINOM
Gamma Function

Evaluates the real or complex gamma function, I'(X) ........ GAMMA
Evaluates the reciprocal of the real or complex gamma

L8 o3 1T o TN I I SR GAMR
Evaluates the real or complex function, In [y(X)|................ ALNGAM
Evaluates the log abs gamma function and its sign ......... ALGAMS
Incomplete Gamma Function

Evaluates the incomplete gamma function, y(a,X) ........ccccee... GAMI
Evaluates the complementary incomplete gamma function,

G 15 SRR GAMIC

Evaluates Tricomi's incomplete gamma function, y*(a, x) ....GAMIT

Psi Function

Evaluates the real or complex psi function, y(X) ......ccccccceeueeeee. PSI
Pochhammer’s Function

Evaluates Pochhammer’s generalized symbol, (a).............. POCH
Evaluates Pochhammer’s symbol starting

from the first order ... POCH1
Beta Function

Evaluates the real or complex beta function, g(a,b) ............... BETA
Evaluates the log of the real or complex beta function,

I B(AD) et ALBETA
Evaluates the incomplete beta function, I(a,b) ........cccc..ce.... BETAI
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74
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Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964).

The following is a table of the functions defined in this chapter:

FAC
BINOM

GAMMA
GAMR

ALNGAM
ALGAMS

GAMI

GAMIC

GAMIT
PSI
POCH

POCH1
BETA
CBETA
ALBETA
BETAI

n=rmn+1)

n’/m(n—-m)!,0<m<n

I(x)=[;e't"dt, x=0,-1,-2, ...

1/T(X)

In [T(X)|, X= 0, —1, -2, ...

In |['(X)| and sign I'(x), x =0, -1, -2, ...
y(ax)=[t*"'e'dt,a>0, x>0
I'(a,x)=[;t*"e"dt, x>0

(@ X) = (X/T(@)y(a X), X 0
y(X)=T"(X)/T(x), x=0,-1,-2, ...
(@x=T(a+x/T(a),ifa+x=0,-1,-2, ...
thenamust=0,-1, -2, ...

(@) — 1)/x, ifa+x=0,—1,-2, ... then amust = 0,
BX, %) =TX)CC)T (X +X%), % >0and X >0
B(z,2)=T(z)()T(zy +2),z >0and 2 >0
InB(a, b),a>0,b>0

I«(@a, b) =Bx(a b)/p(a b),0<x<1,a>0,b>0

-1,

-2,...

FAC

This function evaluates the factorial of the argument.

Function Return Value

FAC — Function

value. (Output)

See Comment 1.

Required Arguments

N — Argument for which the factorial is desired. (Input)

FORTRAN 90 Interface

Generic: FAC

Specific: The

Q)

specific interface names are S_FAC and D_FAC.
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FORTRAN 77 Interface

Single: FAC (N)
Double: The double precision function name is DFAC.
Description

The factorial is computed using the relation n! =T'(n+ 1). The function I'(X) is defined in GAMMA.
The argument N must be greater than or equal to zero, and it must not be so large that n! overflows.
Approximately, n! overflows when n"e" overflows.

Comments

1. If the generic version of this function is used, the immediate result must be stored in a
variable before use in an expression. For example:

X
Y

FAC(6)
SQRT(X)

must be used rather than
Y = SQRT(FAC(6)).

If this is too much of a restriction on the programmer, then the specific name can be used
without this restriction.

To evaluate the factorial for nonintegral values of the argument, the gamma function should be
used. For large values of the argument, the log gamma function should be used.
Example

In this example, 6! is computed and printed.

USE FAC_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER N, NOUT

REAL VALUE

Compute
N =6
VALUE = FAC(N)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) N, VALUE

99999 FORMAT (" FAC(", 11, ") = ", F6.2)

END

Output

MATH LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions e 51



FAC(6) = 720.00

BINOM

This function evaluates the binomial coefficient.

Function Return Value

BINOM — Function value. (Output)
See Comment 1.

Required Arguments

N — First parameter of the binomial coefficient. (Input)
N must be nonnegative.

M — Second parameter of the binomial coefficient. (Input)
M must be nonnegative and less than or equal to N.

FORTRAN 90 Interface
Generic: BINOM (N, M)

Specific: The specific interface names are S_BINOM and D_BINOM.

FORTRAN 77 Interface

Single: BINOM (N, M)
Double: The double precision function name is DB INOM.
Description

The binomial function is defined to be

ny n!
[m "~ mi(n—m)!

with n > m2> 0. Also, n must not be so large that the function overflows.

Comments

1. If the generic version of this function is used, the immediate result must be stored in a
variable before use in an expression. For example:

X
Y

BINOM(9, 5)
SQRT(X)
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must be used rather than
Y = SQRT(BINOM(9, 5)).

If this is too much of a restriction on the programmer, then the specific name can be used
without this restriction.

2. To evaluate binomial coefficients for nonintegral values of the arguments, the complete
beta function or log beta function should be used.

Example

9
In this example, (5] is computed and printed.

99999

USE BINOM_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER M, N, NOUT

REAL VALUE
Compute
N =9
M =5
VALUE = BINOM(N, M)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) N, M, VALUE
FORMAT (= BINOM(™, 11, *,", 11, ") = ", F6.2)
END

Output

BINOM(9,5) = 126.00

GAMMA

This function evaluates the complete gamma function.

Function Return Value

GAMMA — Function value. (Output)

Required Arguments

X — Argument for which the complete gamma function is desired. (Input)
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FORTRAN 90 Interface
Generic: GAMMA (X)

Specific: The specific interface names are S_GAMMA, D_GAMMA, and C_GAMMA .

FORTRAN 77 Interface
Single: GAMMA  (X)

Double: The double precision function name is DGAMMA.

Complex:  The complex name is CGAMMA.

Description

The gamma function, I'(2), is defined to be
I'(z)= J‘:tz’le"dt for Rz>0

For R(z) < 0, the above definition is extended by analytic continuation.

zmust not be so close to a negative integer that the result is less accurate than half precision. If R
(2) is too small, then the result will underflow. Users who need such values should use the log
gamma function ALNGAM. When 3(2) = 0, R(2) should be greater than X,;,, so that the result does

not underflow, and R(2) should be less than X, so that the result does not overflow. X,;,, and
Xmax are available by

CALL R9GAML (XMIN, XMAX)

Note that Zmust not be too far from the real axis because the result will underflow.
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Comments
Informational errors
Type Code
2 1 The function underflows because X is too small.
3 2 Result is accurate to less than one-half precision because X is too near a
negative integer.
Example 1

In this example, I'(5.0) is computed and printed.

USE GAMMA_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL VALUE, X

1 Compute
X =5.0
VALUE = GAMMA(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (* GAMMA(", F6.3, ") = ", F6.3)
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END

Output

GAMMA( 5.000) = 24.000

Additional Example

Example 2

In this example, I'(1.4 + 3i) is computed and printed.

USE GAMMA_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

Compute
4
VALUE

(1.4, 3.0)
GAMMA(Z)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (" GAMMA(", F6.3, =,", F6.3, ") = (", &
F6.3, *,", F6.3, ")")
END
Output

GAMMA( 1.400, 3.000) = (-0.001, 0.061)

GAMR

This function evaluates the reciprocal gamma function.

Function Return Value

GAMR — Function value. (Output)

Required Arguments

X — Argument for which the reciprocal gamma function is desired. (Input)

FORTRAN 90 Interface

Generic: GAMR (X)

Specific: The specific interface names are S_GAMR, D_GAMR, and C_GAMR
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FORTRAN 77 Interface
Single: GAMR (X)

Double: The double precision function name is DGAMR.

Complex:  The complex name is CGAMR.

Description
The function GAMR computes 1/T'(z). See GAMMA for the definition of I'(2).

For 3(2) = 0, zmust be larger than X,;,, so that 1/I'(2) does not underflow, and X must be smaller
than X, so that 1/T'(2) does not overflow. Symmetric overflow and underflow limits X,;,, and
Xmax are obtainable from

CALL R9GAML (XMIN, XMAX)

Note that Zmust not be too far from the real axis because the result will overflow there.

Comments

This function is well behaved near zero and negative integers.

Example 1
In this example, 1/T"(1.85) is computed and printed.

USE GAMR_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 1.85
VALUE = GAMR(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" GAMR(", F6.3, ") = ", F6.3)
END

Output

GAMR( 1.850) = 1.058
Additional Example

Example 2

In this example, In I'(1.4 + 3i) is computed and printed.
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USE GAMR_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

1 Compute
4 (1.4, 3.0)
VALUE = GAMR(Z)

1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (* GAMR(®", F6.3, *,", F6.3, ") = (", F7.3, *,", F7.3, "))
END

Output

GAMR( 1.400, 3.000) = ( -0.303,-16.367)

ALNGAM

The function evaluates the logarithm of the absolute value of the gamma function.
Function Return Value

ALNGAM — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
FORTRAN 90 Interface

Generic: ALNGAM (X)

Specific: The specific interface names are S_ALNGAM, D_ALNGAM, and C_ALNGAM.
FORTRAN 77 Interface

Single: ALNGAM (X)

Double: The double precision function name is DLNGAM.

Complex:  The complex name is CLNGAM.
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Description

The function ALNGAM computes In |I'(X)|. See GAMMA for the definition of T'(X).

The gamma function is not defined for integers less than or equal to zero. Also, |X| must not be so
large that the result overflows. Neither should X be so close to a negative integer that the accuracy
is worse than half precision.
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Figure 4- 2 Plot of log//x)/
Comments
Informational error
Type Code
3 2 Result of ALNGAM(X) is accurate to less than one-half precision because
X is too near a negative integer.
Example 1

In this example, In [['(1.85)] is computed and printed.

USE ALNGAM_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT
REAL VALUE, X
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! Compute
X 1.85
VALUE ALNGAM(X)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (* ALNGAM(", F6.3, ") = ", F6.3)
END

Output

ALNGAM( 1.850) = -0.056
Additional Example

Example 2

In this example, In ['(1.4 + 3i) is computed and printed.

USE ALNGAM_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
1 Compute
Z (1.4, 3.0)
VALUE = ALNGAM(Z)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (" ALNGAM(®, F6.3, ",", F6.3, ") = (7,&
F6.3, *,", F6.3, "))

END

Output

ALNGAM( 1.400, 3.000) = (-2.795, 1.589)

ALGAMS

Returns the logarithm of the absolute value of the gamma function and the sign of gamma.

Required Arguments

X — Argument for which the logarithm of the absolute value of the gamma function is
desired. (Input)

ALGM — Result of the calculation. (Output)
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S — Sign of gamma(X). (Output)
If gamma(X) is greater than or equal to zero, S = 1.0. If gamma(X) is less than zero,
S=-1.0.

FORTRAN 90 Interface

Generic: CALL ALGAMS (X, ALGM, S)

Specific: The specific interface names are S_ALGAMS and D_ALGAMS.
FORTRAN 77 Interface

Single: CALL ALGAMS (X, ALGM, S)

Double: The double precision function name is DLGAMS.

Description

The function ALGAMS computes In |['(X)| and the sign of I'(X). See GAMMA for the definition of I'(X).

The result overflows if |X| is too large. The accuracy is worse than half precision if X is too close to
a negative integer.

Comments
Informational error
Type Code
3 2 Result of ALGAMS is accurate to less than one-half precision because X is
too near a negative integer.
Example

In this example, In |I"(1.85)| and the sign of I'(1.85) are computed and printed.

USE ALGAMS_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOUT
REAL VALUE, S, X
Compute
X =1.85
CALL ALGAMS(X, VALUE, S)
Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) X, VALUE

99998 FORMAT (* Log Abs(Gamma(®, F6.3, ")) = ", F6.3)

WRITE (NOUT,99999) X, S

99999 FORMAT (" Sign(Gamma(", F6.3, ")) = ", F6.2)

END
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Output

Log Abs(Gamma( 1.850)) = -0.056
Sign(Gamma( 1.850)) = 1.00

GAMI

This funciton evaluates the incomplete gamma function.

Function Return Value
GAMI — Function value. (Output)

Required Arguments

A — The integrand exponent parameter. (Input)
It must be positive.

X — The upper limit of the integral definition of GAMI. (Input)
It must be nonnegative.

FORTRAN 90 Interface
Generic: GAMI (A, X)

Specific: The specific interface names are S_GAMI and D_GAMI.

FORTRAN 77 Interface

Single: GAMI (A, X)
Double: The double precision function name is DGAMI.
Description

The incomplete gamma function is defined to be
7(ax)= tha’le"dt fora>0and x>0

The function y(a, X) is defined only for a greater than zero. Although y(a, X) is well defined for

X > —oo, this algorithm does not calculate y(a, X) for negative X. For large a and sufficiently large X,
v(a, X) may overflow. y(a, X) is bounded by I'(a), and users may find this bound a useful guide in
determining legal values of a.

Because logarithmic variables are used, a slight deterioration of two or three digits of accuracy
will occur when GAMI is very large or very small.
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99999 FORMAT (" GAMI(®, F6.3, ",", F6.3, ") = ", F6.4)
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Figure 4- 3 Contour Plot of y(a, x)

Example

In this example, y(2.5, 0.9) is computed and printed.

USE GAMI_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOUT

REAL A, VALUE, X
Compute
A =2.5
X = 0.9
VALUE = GAMI(A, X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE

END

Output

GAMI( 2.500, 0.900) = 0.1647
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GAMIC

Evaluates the complementary incomplete gamma function.

Function Return Value
GAMIC — Function value. (Output)

Required Arguments

A — The integrand exponent parameter as per the remarks. (Input)

X — The upper limit of the integral definition of GAMIC. (Input)
If A is positive, then X must be positive. Otherwise, X must be nonnegative.

FORTRAN 90 Interface
Generic: GAMIC (A, X)

Specific: The specific interface names are S_GAMIC and D_GAMIC.

FORTRAN 77 Interface
Single: GAMIC (A, X)

Double: The double precision function name is DGAMIC.

Description

The incomplete gamma function is defined to be
[‘(a, x) = J‘wta—le-tdt

The only general restrictions on a are that it must be positive if X is zero; otherwise, it must not be
too close to a negative integer such that the accuracy of the result is less than half precision.
Furthermore, I'(a, X) must not be so small that it underflows, or so large that it overflows.
Although I'(a, X) is well defined for X > —oo and a > 0, this algorithm does not calculate I'(a, X) for
negative X.

The function GAMIC is based on a code by Gautschi (1979).

Comments
Informational error
Type Code
3 2 Result of GAMIC(A, X) is accurate to less than one-half precision because

A is too near a negative integer.
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Example

In this example, I'(2.5, 0.9) is computed and printed.

USE GAMIC_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL A, VALUE, X
1 Compute
A =2.5
X = 0.9
VALUE = GAMIC(A, X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE

99999 FORMAT (* GAMIC(*, F6.3, *.*, F6.3, ") = *, F6.4)
END

Output

GAMIC( 2.500, 0.900) = 1.1646

GAMIT

This function evaluates the Tricomi form of the incomplete gamma function.

Function Return Value
GAMIT — Function value. (Output)

Required Arguments
A — The integrand exponent parameter as per the comments. (Input)

X — The upper limit of the integral definition of GAMIT. (Input)
It must be nonnegative.

FORTRAN 90 Interface
Generic: GAMIT (A, X)
Specific: The specific interface names are S_GAMIT and D_GAMIT.

FORTRAN 77 Interface
Single: GAMIT (A, X)
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Double: The double precision function name is DGAMIT.

Description

The Tricomi’s incomplete gamma function is defined to be

X 7/(ae X) — X jwta—le—ldt

y*(@,x) = @ r@

X

where y(a, X) is the incomplete gamma function. See GAMI for the definition of y(a, X).

The only general restriction on a is that it must not be too close to a negative integer such that the
accuracy of the result is less than half precision. Furthermore, |y*(a, X)] must not underflow or
overflow. Although y*(a, X) is well defined for x > —oo, this algorithm does not calculate y * (a, X)
for negative X.

A slight deterioration of two or three digits of accuracy will occur when GAMIT is very large or
very small in absolute value because logarithmic variables are used. Also, if the parameter a is
very close to a negative integer (but not quite a negative integer), there is a loss of accuracy which
is reported if the result is less than half machine precision.

The function GAMIT is based on a code by Gautschi (1979).

Comments
Informational error
Type Code
3 2 Result of GAMIT(A, X) is accurate to less than one-half precision because
A is too close to a negative integer.
Example

In this example, v*(3.2, 2.1) is computed and printed.

USE GAMIT_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOUT

REAL A, VALUE, X
Compute
A = 3.2
X =21
VALUE = GAMIT(A, X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE

99999 FORMAT (* GAMIT(®, F6.3, *,", F6.3, ") = ", F6.4)

END
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Output

GAMIT( 3.200, 2.100) = 0.0284

PSI

This function evaluates the logarithmic derivative of the gamma function.

Function Return Value

PSI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: PS1 (X)

Specific: The specific interface names are S_PS1,D_PSI, and C_PSI .

FORTRAN 77 Interface
Single: PSI (X)

Double: The double precision function name is DPSI.

Complex:  The complex name is CPSI .

Description
The psi function, also called the digamma function, is defined to be

_4d _I'®
YO0 =g InT (9=

See GAMMA for the definition of I'(X).

The argument X must not be exactly zero or a negative integer, or y(X) is undefined. Also, X must
not be too close to a negative integer such that the accuracy of the result is less than half precision.

Comments
Informational error
Type Code
3 2 Result of PS1(X) is accurate to less than one-half precision because X is

too near a negative integer.
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Example 1

In this example, y(1.915) is computed and printed.

USE PSI_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL VALUE, X

1 Compute
X = 1.915
VALUE = PSI(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (" PSI(", F6.3, ") = ", F6.3)
END

Output

PSI( 1.915) = 0.366
Additional Example

Example 2
In this example, y(1.9 + 4.3i) is computed and printed.

USE PSI_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

Compute
Z
VALUE

(1.9, 4.3)
PSI1(2)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (* PSI(®, F6.3, *,", F6.3, ") = (*, F6.3, *,", F6.3, "))
END

Output

PSI( 1.900, 4.300) = ( 1.507, 1.255)
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POCH

This function evaluates a generalization of Pochhammer’s symbol.

Function Return Value

POCH — Function value. (Output)
The generalized Pochhammer symbol is I'(a + X)/T'(a).

Required Arguments

A — The first argument. (Input)

X — The second, differential argument. (Input)
FORTRAN 90 Interface

Generic: POCH (A, X)

Specific: The specific interface names are S_POCH and D_POCH.

FORTRAN 77 Interface

Single: POCH (A, X)
Double: The double precision function name is DPOCH.
Description

Pochhammer’s symbol is (&), = (8)(a — 1)...(a—n+ 1) for n a nonnegative integer.
Pochhammer’s generalized symbol is defined to be

_T'(a+x)
(a)x - I"(a)

See GAMMA for the definition of I'(X).

Note that a straightforward evaluation of Pochhammer’s generalized symbol with either gamma or
log gamma functions can be especially unreliable when a is large or X is small.

Substantial loss can occur if a + X or a are close to a negative integer unless |X| is sufficiently
small. To insure that the result does not overflow or underflow, one can keep the arguments a and
a + X well within the range dictated by the gamma function routine GAMMA or one can keep |X|
small whenever a is large. POCH also works for a variety of arguments outside these rough limits,
but any more general limits that are also useful are difficult to specify.
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Comments

1. Informational errors
Type Code
3 2 Result of POCH(A, X) is accurate to less than one-half precision

because the absolute value of the X is too large. Therefore, A + X
cannot be evaluated accurately.

3 2 Result of POCH(A, X) is accurate to less than one-half precision
because either A or A + X is too close to a negative integer.

2. For X a nonnegative integer, POCH(A, X) is just Pochhammer’s symbol.

Example

In this example, (1.6), 5 is computed and printed.

USE POCH_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL A, VALUE, X

1 Compute

A = 1.6
X = 0.8
VALUE = POCH(A, X)

1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE

99999 FORMAT (* POCH(", F6.3, *,", F6.3, ") = ", F6.4)
END

Output

POCH( 1.600, 0.800) = 1.3902

POCH1

This function evaluates a generalization of Pochhammer’s symbol starting from the first order.

Function Return Value

POCH1 — Function value. (Output)
POCHZ(A, X) = (POCH(A, X) — 1)/X.

Required Arguments

A — The first argument. (Input)
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X — The second, differential argument. (Input)

FORTRAN 90 Interface
Generic: POCH1 (A, X)

Specific: The specific interface names are S_POCH1 and D_POCH1.

FORTRAN 77 Interface

Single: POCH1 (A, X)
Double: The double precision function name is DPOCH1.
Description

Pochhammer’s symbol from the first order is defined to be

POCH1(a, x) = (a);_l - i((z)*_xl) /x

where (@)y is Pochhammer’s generalized symbol. See POCH for the definition of (8)y. It is useful in
special situations that require especially accurate values when X is small. This specification is
particularly suited for stability when computing expressions such as

{F(a+ X) T'(b+x)

/ Xx=POCH1(a, x)-POCH1(b, x
I'(a) I'(b) } (2% (5
Note that POCH1(a, 0) = y(a). See PSI for the definition of y(a).

When |x| is so small that substantial cancellation will occur if the straightforward formula is used,
we use an expansion due to fields and discussed by Luke (1969).

The ratio (a)x = I'(a+ X)/T'(a) is written by Luke as (a+ (X — 1)/2)" times a polynomial in
(a+ (x— 1)/2)7. To maintain significance in POCH1, we write for positive a.

@+ (x—1)2)=exp(xIn(@+ (x— 1)/2)) = €= 1 + gEXPRL(Q)
where EXPRL = (€ — 1)/x. Likewise, the polynomial is written P = 1 + xP, (@, X). Thus,
POCH1 (a, X) = ((a)x — 1)/x = EXPRL(q)(a/Xx + gP; (a, X)) + P, (&, X)

Substantial significance loss can occur if a + X or a are close to a negative integer even when |X] is
very small. To insure that the result does not overflow or underflow, one can keep the arguments a
and a + X well within the range dictated by the gamma function routine GAMMA or one can keep |X|
small whenever a is large. POCH also works for a variety of arguments outside these rough limits,
but any more general limits that are also useful are difficult to specify.

Example

In this example, POCH1(1.6, 0.8) is computed and printed.
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USE POCH1_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL A, VALUE, X
1 Compute
A =1.6
X = 0.8
VALUE = POCH1(A, X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (* POCH1("*, F6.3, *,", F6.3, *) = ", F6.4)
END

Output

POCH1( 1.600, 0.800) = 0.4878

BETA

This function evaluates the complete beta function.
Function Return Value

BETA — Function value. (Output)

Required Arguments

A — First beta parameter. (Input)
For real arguments, A must be positive.

B — Second beta parameter. (Input)
For real arguments, B must be positive.

FORTRAN 90 Interface

Generic: BETA (A, B)

Specific: The specific interface names are S_BETA, D_BETA, and C_BETA.
FORTRAN 77 Interface

Single: BETA (A, B)

Double: The double precision function name is DBETA.
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Complex:  The complex name is CBETA.

Description
The beta function is defined to be

_ I()I'(b) _ J']ta—l (l—t)tH gt

Aab) I(@a+b) 7o

See GAMMA for the definition of I'(X).

For real arguments the function BETA requires that both arguments be positive. In addition, the
arguments must not be so large that the result underflows.

For complex arguments, the arguments a and a + b must not be close to negative integers. The
arguments should not be so large (near the real axis) that the result underflows. Also, a + b should
not be so far from the real axis that the result overflows.

Comments
Informational error
Type Code
2 1 The function underflows because A and/or B is too large.
Example 1

In this example, (2.2, 3.7) is computed and printed.

USE BETA_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOUT

REAL A, VALUE, X
Compute
A =2.2
X = 3.7
VALUE = BETA(A, X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE

99999 FORMAT (* BETA(", F6.3, ",", F6.3, ") = *, F6.4)

END

Output

BETA( 2.200, 3.700) = 0.0454

MATH LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions e 73



Additional Example

Example 2
In this example, (1.7 +2.2i, 3.7 + 0.4i) is computed and printed.

USE BETA_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
COMPLEX A, B, VALUE

! Compute
A = (1.7, 2.2)
B = (3.7, 0.4
VALUE = BETA(A, B)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, B, VALUE
99999 FORMAT (" BETA((", F6.3, ",", F6.3, "), (", F6.3, ",", F6.3,&
") = (, F6.3, *,", F6.3, "))
END

Output

BETA(( 1.700, 2.200), ( 3.700, 0.400)) = (-0.033,-0.017)

ALBETA

This function evaluates the natural logarithm of the complete beta function for positive arguments.

Function Return Value

ALBETA — Function value. (Output)
ALBETA returns In B(A, B) = In(T'(A)['(B))/T'(A + B).

Required Arguments

A — The first argument of the BETA function. (Input)
For real arguments, A must be greater than zero.

B — The second argument of the BETA function. (Input)
For real arguments, B must be greater than zero.

FORTRAN 90 Interface
Generic: ALBETA (A, B)

Specific: The specific interface names are S_ALBETA, D_ALBETA, and C_ALBETA.
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FORTRAN 77 Interface
Single: ALBETA (A,B)

Double: The double precision function name is DLBETA.

Complex:  The complex name is CLBETA.

Description
ALBETA computes In B(a, b) = In (b, a). See BETA for the definition of B(a, b).

For real arguments, the function ALBETA is defined for a> 0 and b > 0. It returns accurate results
even when a or b is very small. It can overflow for very large arguments; this error condition is
not detected except by the computer hardware.

For complex arguments, the arguments &, b and a + b must not be close to negative integers (even
though some combinations ought to be allowed). The arguments should not be so large that the
logarithm of the gamma function overflows (presumably an improbable condition).

Comments

Note that In B(A, B) =1n (B, A).

Example 1

In this example, In $(2.2, 3.7) is computed and printed.

USE ALBETA_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOUT

REAL A, VALUE, X
Compute
A =2.2
X = 3.7
VALUE = ALBETA(A, X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE

99999 FORMAT (" ALBETA(", F6.3, ",", F6.3, ") = ", F8.4)

END

Output

ALBETA( 2.200, 3.700) = -3.0928
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Additional Example

Example 2

In this example, In B(1.7 + 2.2i, 3.7 + 0.4i) is computed and printed.

USE ALBETA_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
COMPLEX A, B, VALUE

! Compute
A = (1.7, 2.2)
B = (3.7, 0.4
VALUE = ALBETA(A, B)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, B, VALUE
99999 FORMAT (" ALBETA((", F6.3, *,", F6.3, "), (", F6.3,
") = (, F6.3, *,", F6.3, "))
END

Output

ALBETA(( 1.700, 2.200), ( 3.700, 0.400)) = (-3.280,-2.659)

",", F6.3, &

BETAI

This function evaluates the incomplete beta function ratio.

Function Return Value

BETAI — Probability that a random variable from a beta distribution having parameters PIN

and QIN will be less than or equal to X. (Output)

Required Arguments
X — Upper limit of integration. (Input)
X must be in the interval (0.0, 1.0) inclusive.

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.
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FORTRAN 90 Interface
Generic: BETAI (X, PIN, QIN)

Specific: The specific interface names are S_BETAI and D_BETALI.

FORTRAN 77 Interface
Single: BETAI (X, PIN, QIN)

Double: The double precision function name is DBETAL.

Description

The incomplete beta function is defined to be

ﬂx(p’ q) — 1 J.tifl(l_t)Q*ldt
B(p,a)  B(p, -
for 0<x<1,p>0,g>0

(P, Q)=

See BETA for the definition of B(p, Q).

The parameters p and g must both be greater than zero. The argument X must lie in the range 0 to
1. The incomplete beta function can underflow for sufficiently small X and large p; however, this
underflow is not reported as an error. Instead, the value zero is returned as the function value.

The function BETAI is based on the work of Bosten and Battiste (1974).

Example

In this example, 14 4;(2.2, 3.7) is computed and printed.

USE BETAIL_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL PIN, QIN, VALUE, X
L Compute
X = 0.61
PIN = 2.2
QIN = 3.7
VALUE = BETAI(X, PIN, QIN)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, PIN, QIN, VALUE

99999 FORMAT (" BETAI(", F6.3, ",", F6.3, ",", F6.3, ") = ", F6.4)
END
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Output

BETAI( 0.610, 2.200, 3.700) = 0.8822
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Chapter 5: Error Function and

Related Functions

Routines

5.1. Error Functions

Evaluates the error function, erf X.........cccccevvieeeniiieeens
Evaluates the complementary error function, erfc x.......

Evaluates the scaled complementary error function,

E BITC X oot r e,

Evaluates a scaled function related to erfc,

e erfc (—iz) .................................................................
Evaluates the inverse error function, erf X.....ccveeveeuenn...

Evaluates the inverse complementary error function,

5.2. Fresnel Integrals

Evaluates the cosine Fresnel integral, C(X)......cccccceeeeen..
Evaluate the sine Fresnel integral, S(X).........ccecuveeeeeeenn.

80
82

84

85
86

88
90

91
93

Usage Notes

The error function is

The complementary error function is erfc(X) = 1 — erf(X). Dawson’s function is

e~ J.OX e’dt

The Fresnel integrals are

MATH LIBRARY Special Functions

Chapter 5: Error Function and Related Functions e 79



- Y
C(X)—j0 cos (zt jdt
and
—[Msin | Z¢2
S(X)—_[O sin (2t )dt
They are related to the error function by

o

C(2)+iS(2) :%erf(Tﬂ(l—i)z

ERF

This function evaluates the error function.

Function Return Value
ERF — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: ERF (X)

Specific: The specific interface names are S_ERF and D_ERF.

FORTRAN 77 Interface

Single: ERF (X)
Double: The double precision function name is DERF.
Description

The error function, erf(X), is defined to be
2 ex
erf(X)=—| et dt
=,

All values of x are legal.
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Figure 5- 1 Plot of erf (x)

Example

In this example, erf(1.0) is computed and printed.

USE ERF_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL VALUE, X

! Compute
X =1.0
VALUE = ERF(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (* ERF(", F6.3, ") = ", F6.3)
END

Output

ERF( 1.000) = 0.843
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ERFC

This function evaluates the complementary error function.
Function Return Value

ERFC — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: ERFC (X)

Specific: The specific interface names are S_ERFC and D_ERFC.

FORTRAN 77 Interface

Single: ERFC (X)
Double: The double precision function name is DERFC.
Description

The complementary error function, erfc(X), is defined to be
erfc(X) = ij‘w et dt
Nt

The argument X must not be so large that the result underflows. Approximately, X should be less
than

[—111(\/;5)}”2

where s= AMACH(1) (see the Reference Material section of this manual) is the smallest
representable positive floating-point number.
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Figure 5- 2 Plot of erfc (x)

Comments
Informational error
Type Code
2 | The function underflows because X is too large.
Example

In this example, erfc(1.0) is computed and printed.

USE ERFC_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X =1.0
VALUE = ERFC(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" ERFC(", F6.3, ") = ", F6.3)
END
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Output

ERFC( 1.000) = 0.157

ERFCE

This function evaluates the exponentially scaled complementary error function.

Function Return Value
ERFCE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: ERFCE (X)

Specific: The specific interface names are S_ERFCE and D_ERFCE.

FORTRAN 77 Interface
Single: ERFCE (X)

Double: The double precision function name is DERFCE.

Description
The function ERFCE(X) computes

e’ erfe (x)
where erfc(X) is the complementary error function. See ERFC for its definition.

To prevent the answer from underflowing, X must be greater than

Xy, =—/In(b/2)

where b= AMACH(2) is the largest representable floating-point number.

Comments
Informational error
Type Code
2 1 The function underflows because X is too large.
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Example
In this example, ERFCE(1.0) = " erfc(1.0) is computed and printed.

USE ERFCE_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X =1.0
VALUE = ERFCE(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" ERFCE(", F6.3, ") = ", F6.3)
END

Output

ERFCE( 1.000) = 0.428

CERFE

This function evaluates a scaled function related to ERFC.
Function Return Value

CERFE — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)
FORTRAN 90 Interface
Generic: CERFE (2)

Specific: The specific interface names are C_CERFE and Z_CERFE.

FORTRAN 77 Interface
Complex: CERFE (2)

Double complex: The double complex function name is ZERFE.
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Description
Function CERFE is defined to be

2 . . 2 2 © 2
e erfe(-iz)=—ie” ——=| € dt
=l
Let b = AMACH(2) be the largest floating-point number. The argument z must satisfy

|z|s‘J5

or else the value returned is zero. If the argument z does not satisfy (32)* — (82)* < log b, then b is
returned. All other arguments are legal (Gautschi 1969, 1970).

Example
In this example, CERFE(2.5 + 2.5i) is computed and printed.

USE CERFE_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
! Compute
4 (2.5, 2.5)
VALUE CERFE(2)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (* CERFE(", F6.3, *,", F6.3, ") = (", &
F6.3, ",", F6.3, ")")

END

Output

CERFE( 2.500, 2.500) = ( 0.117, 0.108)

ERFI

This function evaluates the inverse error function.
Function Return Value

ERFI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
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FORTRAN 90 Interface
Generic: ERFI (X)

Specific: The specific interface names are S_ERF1 and D_ERFI.

FORTRAN 77 Interface

Single: ERFI (X)
Double: The double precision function name is DERFI.
Description

Function ERF1(X) computes the inverse of the error function erf X, defined in ERF.

The function ERFI(X) is defined for X < 1. If X,,,x < [X| < 1, then the answer will be less accurate
than half precision. Very approximately,

X ®l=1/e/(47)

where &€ = AMACH(4) is the machine precision.

4.0

2.0 4

0.0 +

-2.0 —
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Figure 5- 3 Plot of erf / (x)
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Comments

Informational error
Type Code

3 2 Result of ERFI(X) is accurate to less than one-half precision because the
absolute value of the argument is too large.

Example

In this example, erf ' (erf(1.0)) is computed and printed.
USE ERFI_INT
USE ERF_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL VALUE, X

L Compute
X = ERF(1.0)
VALUE = ERFI(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (" ERFI(", F6.3, ") = ", F6.3)
END

Output

ERFI( 0.843) = 1.000

ERFCI

This function evaluates the inverse complementary error function.
Function Return Value

ERFCI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: ERFCI (X)

Specific: The specific interface names are S_ERFCI and D_ERFCI.
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FORTRAN 77 Interface

Single: ERFC1 (X)
Double: The double precision function name is DERFCI.
Description

The function ERFCI(X) computes the inverse of the complementary error function erfc X, defined
in ERFC.

The function ERFCI(X) is defined for 0 <X < 2. If X,,,4 < X< 2, then the answer will be less
accurate than half precision. Very approximately,

X = 2= 5 /(470)

where € = AMACH(4) is the machine precision.

4.0

2.0 +
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Figure 5- 4 Plot of erf / (x)

Comments
Informational error
Type Code
3 2 Result of ERFCI(X) is accurate to less than one-half precision because

the argument is too close to 2.0.
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Example

In this example, erfc™' (erfc(1.0)) is computed and printed.
USE ERFCI_INT
USE ERFC_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = ERFC(1.0)
VALUE = ERFCI(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (* ERFCI(*, F6.3, *)
END

", F6.3)

Output

ERFCI( 0.157) = 1.000

DAWS

This function evaluates Dawson’s function.
Function Return Value

DAWS — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: DAWS (X)

Specific: The specific interface names are S_DAWS and D_DAWS.

FORTRAN 77 Interface
Single: DAWS (X)

Double: The double precision function name is DDAWS.
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Description

Dawson’s function is defined to be
e (X e
e L)e dt

It is closely related to the error function for imaginary arguments.

So that Dawson’s function does not underflow, |X must be less than 1/(2s). Here, S= AMACH(1) is
the smallest representable positive floating-point number.

Comments

1. Informational error
Type Code

2 1 The function underflows because the absolute value of X is too large.

2. The Dawson function is closely related to the error function for imaginary arguments.

Example

In this example, DAWS(1.0) is computed and printed.

USE DAWS_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOUT

REAL VALUE, X

Compute
X =1.0
VALUE = DAWS(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* DAWS(", F6.3, ") = *, F6.3)

END

Output

DAWS( 1.000) = 0.538

FRESC

This function evaluates the cosine Fresnel integral.

Function Return Value
FRESC — Function value. (Output)
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Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: FRESC (X)

Specific: The specific interface names are S_FRESC and D_FRESC.

FORTRAN 77 Interface
Single: FRESC (X)

Double: The double precision function name is DFRESC.

Description

The cosine Fresnel integral is defined to be
X T,
C(x) = J.O cos (—2 t ) dt

All values of x are legal.

Example

In this example, C(1.75) is computed and printed.

USE FRESC_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
L Compute
X =1.75
VALUE = FRESC(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" FRESC(", F6.3, ") = ", F6.3)
END

Output

FRESC( 1.750) = 0.322
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FRESS

This function evaluates the sine Fresnel integral.

Function Value Return
FRESS — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: FRESS (X)

Specific: The specific interface names are S_FRESS and D_FRESS.

FORTRAN 77 Interface
Single: FRESS (X)

Double: The double precision function name is DFRESS.

Description

The sine Fresnel integral is defined to be
— "sin | %2
S(X)—_[0 sin (2'[ ]dt
All values of x are legal.

Example

In this example, §1.75) is computed and printed.

USE FRESS_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X =1.75
VALUE = FRESS(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
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99999 FORMAT (* FRESS(®, F6.3, ") = ", F6.3)
END

Output

FRESS( 1.750) = 0.499
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Chapter 6: Bessel Functions

Routines

6.1. Bessel Functions of Order 0 and 1
EVAIUALES J5(X) +eeeiivrrieeeiiiiieeiiiiee s siieee e siee et BSJO 96
EVAIUALES Jj(X) .o ieerriieiiee e ittt e e e s sttt e e e e e e e BSJ1 98
EVAIUALES Y((X) toeiiireeieiiiiiee ettt BSYO 99
EVAIUALES Y[ (X) coeerrereirieeeieiiiieeee e e e s s st e e e e e s s ssrrneee e e e e e e BSY1 101
EVAIUALES 5(X)+eeeeiieriieeiiiiiee et BSIO 102
EVAIUALES ] (X) ..o cevreeeeeie e it e s seeee e e e e BSI1 104
EVAlUAeS Kg(X) «ooiereeeeiiiiieeerieeee ettt BSKO 105
EVAlUALES K| (X) coeiireieeiiiiiiee ettt BSK1 107
EVAIUALES € 15(X) .veeeeeeeeeeeeeeeeeee e BSIOE 108
EVAIUALES €71 (X) vt BSIIE 110
Evaluates €XKp(X) .uvveeeeiirieieiiieeeiniiee et siee e BSKOE 111
EVAlUALES EXK[(X) uvrrrrriieeeiiiiiiiieee e e e s e siiirre e e e e e e s e ssrnrnneee e e BSK1E 112

6.2. Series of Bessel Functions, Integer Order
Evaluates Ji(X), K=0, ..., N =1 .o, BSJINS 113
Evaluates [¢(X), K =0, ..., N = L. BSINS 115

6.3. Series of Bessel Functions, Real Order and Argument
Evaluates J, . (X), K=0, ..., N =1 oo BSJS 118
Evaluates Y, , 1 (X), K=0, ..., N = Lo BSYS 120
Evaluates I, , , (X), K=0, ..., N =1 .o, BSIS 121
Evaluates €71, , (%), K=10, ..., N = Lo, BSIES 123
Evaluates K, , 1 (X), K=0, ..., N = Lo BSKS 124
Evaluates €K, , ((X), K=0, ..., N = Lociiviiiiiiieieeeeee BSKES 126

6.4. Series of Bessel Functions, Real Order and Complex Argument
Evaluates J,  (2), K=0, ..., N =1 o CBJS 128
Evaluates Y, , 1 (2), K=0, ..., N = Lo CBYS 130
Evaluates |, , 1 (2), K=0, ..., N =1 i CBIS 132
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Evaluates K, , (2), K=0, ..., N =1 i

134

Usage Notes

The following table lists the Bessel function routines by argument and order type:

Real Argument Complex Argument
Order Order

Function |0 1 Integer Real |[Integer Real
J,(X) BSJO |[BSJ1 |BSJNS BSJS |BSJINS CBJS
Y, (X) BSYO |[BSY1 BSYS CBYS
1,(X) BSIO |BSI1 |BSINS BSIS |BSINS CBIS
M1, BSIOE | BSI1E BSIES

K,(X) BSKO | BSK1 BSKS CBKS
e*|><| K, (X) BSKOE [ BSK1E BSKES

BSJO

This function evaluates the Bessel function of the first kind of order zero.
Function Value Return

BSJO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSJO (X)

Specific: The specific interface names are S_BSJO and D_BSJO.

FORTRAN 77 Interface

Single: BSJO (X)
Double: The double precision function name is DBSJO.
Description

The Bessel function Jy(X) is defined to be
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J, (%) :%J.: cos(xsin#)d &

To prevent the answer from being less accurate than half precision, |X| should be smaller than

/e

For the result to have any precision at all, |X| must be less than 1/e. Here, € is the machine
precision, € = AMACH(4).

1.0

0.5

\

(z)

0.0 —f-

(

—0.5

—-1.0
-20.0 -10.0

Figure 6- 1 Plot of J,(x) and J, (x)

Example

In this example, Jy(3.0) is computed and printed.

USE BSJO_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
L Compute
X = 3.0
VALUE = BSJO(X)
1 Print the results

CALL UMACH (2, NOUT)
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WRITE (NOUT,99999) X, VALUE
99999 FORMAT (* BSJO(", F6.3, ") = ", F6.3)
END

Output

BSJO( 3.000) = -0.260

BSJ1

This function evaluates the Bessel function of the first kind of order one.

Function Return Value
BSJ1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSJ1 (X)

Specific: The specific interface names are S_BSJ1 and D_BSJ1.

FORTRAN 77 Interface

Single: BSJ1 (X)
Double: The double precision function name is DBSJ1.
Description

The Bessel function J; (X) is defined to be
J (X) = lj.” cos(XsinG —G)d 0
1 P 0

The argument X must be zero or larger in absolute value than 2sto prevent J; (X) from
underflowing. Also, |X| should be smaller than

1/ e

to prevent the answer from being less accurate than half precision. [X| must be less than 1/¢ for the
result to have any precision at all. Here, € is the machine precision, ¢ = AMACH(4), and
S= AMACH(1) is the smallest representable positive floating-point number.
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Comments

Informational error

Type Code
2 1 The function underflows because the absolute value of X is too small.
Example

In this example, J; (2.5) is computed and printed.

USE BSJ1_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 2.5
VALUE = BSJ1(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* BSJ1(", F6.3, ") = ", F6.3)
END

Output

BSJ1( 2.500) = 0.497

BSYO

This function evaluates the Bessel function of the second kind of order zero.
Function Return Value

BSYO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSYO (X)

Specific: The specific interface names are S_BSYO and D_BSYO.
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FORTRAN 77 Interface

Single: BSYO (X)
Double: The double precision function name is DBSYO.
Description

The Bessel function Yj(X) is defined to be
Y, (x)= lJ-”Sin(XsinE’) da_zre—mnh it
0 o -],

To prevent the answer from being less accurate than half precision, X should be smaller than

1/ e

For the result to have any precision at all, |X must be less than 1/e. Here, € is the machine
precision, € = AMACH(4).

1.0

i Y, —
: / /'“‘\i\ o /\ //q/r/n Yl _
0.0/ \XKZC/\\}/é/\\§>M
1/ /
1l
’“Oiw
D Sl
= 1
-2.0 —“J
il
74407\\\\\\\\\\\\\\\\\\\
0.0 5.0 10.0 15.0 20.0

Figure6- 2 Plot of Y,(x) and Y, (x)

Example

In this example, Y;(3.0) is computed and printed.

USE BSYO_INT
USE UMACH_INT
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IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X = 3.0
VALUE = BSYO(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BSYO(", F6.3, ") = ", F6.3)
END

Output

BSYO( 3.000) = 0.377

BSY1

This function evaluates the Bessel function of the second kind of order one.
Function Return Value

BSY1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSY1 (X)

Specific: The specific interface names are S_BSY1 and D_BSY1.

FORTRAN 77 Interface

Single: BSY1 (X)
Double: The double precision function name is DBSY1.
Description

The Bessel function Y;(X) is defined to be

Yl (X) = —%Ksin(&— Xsin@) d@—%jj{e‘ _egt }efmnhtdt
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Y, (X) is defined for X > 0. To prevent the answer from being less accurate than half precision, X
should be smaller than

/e

For the result to have any precision at all, [X must be less than 1/e. Here, ¢ is the machine
precision, € = AMACH(4).

Example
In this example, Y] (3.0) is computed and printed.

USE BSY1_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 3.0
VALUE = BSY1(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* BSY1(", F6.3, ") = ", F6.3)
END

Output

BSY1( 3.000) = 0.325

BSIO

This function evaluates the modified Bessel function of the first kind of order zero.
Function Return Value

BSI10 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSI0O (X)

Specific: The specific interface names are S_BS10 and D_BSI10.
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FORTRAN 77 Interface

Single: BSIO (X)
Double: The double precision function name is DBSIO.
Description

The Bessel function 1y(X) is defined to be

I, (X) =%J‘: cosh(xcosd)d @

The absolute value of the argument X must not be so large that & overflows.

6.0
] | Ip—
, | I, —
,\\\ | i
4.0 -\ /
_| \\ | /
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|
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20 ‘ //
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| | _—
[
0.0 T T
_— |
| / :
— |
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_ / |
|
| |
|
—4.0 e e B o

-30 =20 -1.0 0.0 1.0 2.0 3.0
x

Figure 6- 3 Plot of I(x) and I, (x)

Example

In this example, 1¢(4.5) is computed and printed.

USE BSIO_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
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INTEGER NOUT

REAL VALUE, X
! Compute
X = 4.5
VALUE = BSI0(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* BSIO(", F6.3, ") = *, F6.3)
END

Output

BS10( 4.500) = 17.481

BSI1

This function evaluates the modified Bessel function of the first kind of order one.
Function Return Value

BSI1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSI1 (X)

Specific: The specific interface names are S BS11 and D_BSI1.

FORTRAN 77 Interface

Single: BSI1 (X)
Double: The double precision function name is DBSI1.
Description

The Bessel function |, (X) is defined to be

[, (x) =lj: e**’ cos0d0

T

The argument should not be so close to zero that |; (X) = X/2 underflows, nor so large in absolute
value that & and, therefore, |, (X) overflows.
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Comments

Informational error

Type Code
2 1 The function underflows because the absolute value of X is too small.
Example

In this example, |, (4.5) is computed and printed.

USE BSI1_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 4.5
VALUE = BSI11(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* BSI1(", F6.3, ") = ", F6.3)
END

Output

BSI11( 4.500) = 15.389

BSKO

This function evaluates the modified Bessel function of the second kind of order zero.
Function Return Value

BSKO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSKO (X)

Specific: The specific interface names are S_BSKO and D_BSKO.
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FORTRAN 77 Interface

Single: BSKO (X)

Double:

Description

The Bessel function Ky(X) is defined to be

Ky (%)

= I: cos(xsinht)dt

The double precision function name is DBSKO.

The argument must be larger than zero, but not so large that the result, approximately equal to

J7/(2x) e

Ky —

Figure 6- 4 Plot of K,(x) and K, (x)
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Type Code
2

1 The function underflows because X is too large.
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Example

In this example, Ky(0.5) is computed and printed.

USE BSKO_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.5
VALUE = BSKO(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BSKO(", F6.3, ") = ", F6.3)
END

Output

BSKO( 0.500) = 0.924

BSK1

This function evaluates the modified Bessel function of the second kind of order one.
Function Return Value

BSK1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSK1 (X)

Specific: The specific interface names are S_BSK1 and D_BSK1.
FORTRAN 77 Interface

Single: BSK1 (X)

Double: The double precision function name is DBSK1.
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Description
The Bessel function K, (X) is defined to be
K, (x)= j: sin(xsinht)sinht dt

The argument X must be large enough (> max(1/b, 9)) that K (X) does not overflow, and X must be
small enough that the approximate answer,

J7/(2x) e

does not underflow. Here, Sis the smallest representable positive floating-point number,
S= AMACH(1) , and b = AMACH(2) is the largest representable floating-point number.

Comments
Informational error
Type Code
2 1 The function underflows because X is too large.
Example

In this example, K, (0.5) is computed and printed.

USE BSK1_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.5
VALUE = BSK1(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BSK1(", F6.3, ") = ", F6.3)
END

Output

BSK1( 0.500) = 1.656

BSIOE

This function evaluates the exponentially scaled modified Bessel function of the first kind of order
ZEeTo.
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Function Return Value
BSIOE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSIOE (X)

Specific: The specific interface names are S_BSI10E and D_BSI0E.

FORTRAN 77 Interface
Single: BSIOE (X)

Double: The double precision function name is DBSIOE.

Description

Function BSI0E computes e 1o(X). For the definition of the Bessel function I((X), see BS10.

Example

In this example, BSIOE(4.5) is computed and printed.

USE BSIOE_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOUT

REAL VALUE, X

Compute
X = 4.5
VALUE = BSIOE(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BSIOE(", F6.3, ") = ", F6.3)

END

Output

BSIOE( 4.500) = 0.194
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BSI1E

This function evaluates the exponentially scaled modified Bessel function of the first kind of order
one.

Function Return Value

BSI1E — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSI1E (X)

Specific: The specific interface names are S_BS11E and D_BSI1E.

FORTRAN 77 Interface

Single: BSI1E (X)
Double: The double precision function name is DBSI1E.
Description

Function BS11E computes e I, (X). For the definition of the Bessel function I, (X), see BSJ1. The
function BS11E underflows if [x/2 underflows.

Comments
Informational error
Type Code
2 1 The function underflows because the absolute value of X is too small.
Example

In this example, BS11E(4.5) is computed and printed.

USE BSI1E_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X

L Compute
X = 4.5
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VALUE = BSI1E(X)

1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* BSI1E(", F6.3, ") = ", F6.3)
END

Output

BSI1E( 4.500) = 0.171

BSKOE

This function evaluates the exponentially scaled modified Bessel function of the second kind of
order zero.

Function Return Value
BSKOE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSKOE (X)

Specific: The specific interface names are S_BSKOE and D_BSKOE.

FORTRAN 77 Interface
Single: BSKOE (X)

Double: The double precision function name is DBSKOE.

Description

Function BSKOE computes € K,(X). For the definition of the Bessel function K(X), see BSKO. The
argument must be greater than zero for the result to be defined.

Example

In this example, BSKOE(0.5) is computed and printed.

USE BSKOE_INT
USE UMACH_INT
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IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
L Compute
X = 0.5
VALUE = BSKOE(X)

1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BSKOE(", F6.3, ") = ", F6.3)
END

Output

BSKOE( 0.500) = 1.524

BSK1E

This function evaluates the exponentially scaled modified Bessel function of the second kind of
order one.

Function Return Value

BSK1E — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSK1E (X)

Specific: The specific interface names are S_BSK1E and D_BSK1E.

FORTRAN 77 Interface

Single: BSK1E (X)
Double: The double precision function name is DBSK1E.
Description

Function BSK1E computes €K, (X). For the definition of the Bessel function K| (X), see BSK1. The
answer BSK1E = €K, (X) ~ 1/x overflows if X is too close to zero.
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Example

In this example, BSK1E(0.5) is computed and printed.

USE BSK1E_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 0.5
VALUE = BSK1E(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BSK1E(", F6.3, ") = ", F6.3)
END

Output

BSK1E( 0.500) = 2.731

BSJINS

Evaluates a sequence of Bessel functions of the first kind with integer order and real or complex
arguments.
Required Arguments

X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)
The absolute value of real arguments must be less than 10°.
The absolute value of complex arguments must be less than 10,

N — Number of elements in the sequence. (Input)
It must be a positive integer.

BS — Vector of length N containing the values of the function through the series. (Output)
BS(I) contains the value of the Bessel function of order I — 1 at X for I =1 to N.

FORTRAN 90 Interface
Generic: CALL BSJINS (X, N, BS)

Specific: The specific interface names are S_BSINS, D_BSJINS, C_BSJINS, and
Z_BSJNS.
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FORTRAN 77 Interface
Single: CALL BSJINS (X, N, BS)

Double: The double precision name is DBSINS.
Complex:  The complex name is CBINS.

Double Complex: The double complex name is DCBINS.

Description

The complex Bessel function Ju(2) is defined to be

J.(2) :%J.O” cos(zsind—-no)do

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses backward
recursion with strict error control.

Example 1
In this example, Jn(10.0), n=0, ..., 9 is computed and printed.

USE BSJINS_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER N
PARAMETER  (N=10)

INTEGER K, NOUT
REAL BS(N), X
Compute
X =10.0
CALL BSJINS (X, N, BS)
Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, BS(K)
10 CONTINUE

99999 FORMAT (* J sub =, 12, * (°, F6.3, ") = ", F6.3)

[ SR S Sy S gy

END

Output

sub 0 (10.000) = -0.246
sub 1 (10.000) = 0.043
sub 2 (10.000) = 0.255
sub 3 (10.000) = 0.058
sub 4 (10.000) = -0.220
sub 5 (10.000) = -0.234
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[ SRy SRy Sy

sub 6 (10.000)
sub 7 (10.000)
sub 8 (10.000)
sub 9 (10.000)

-0.014
0.217
0.318
0.292

Additional Example

Examp

le 2

In this example, Jy(10 + 10i), n=0, ..., 10 is computed and printed.

USE BSJNS_INT
USE UMACH_INT

ouT

IMPLICIT  NONE
!
INTEGER N
PARAMETER (N=11)
!
INTEGER K, N
COMPLEX  CBS(

N), Z

Z = (10.0, 10.0)

CALL BSJNS (Z, N, CBS)

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, Z, CBS(K)

10 CONT

99999 FORMAT (= J sub =,

INUE

Declare variables

Compute

Print the results

12, = ((°, F6.3, *,", F6.3, &

")) = (., F9.3, °,%, F9.3, "))
END

Output
J sub 0 ((10.000,10.000)) = (-2314.975, 411.563)
J sub 1 ((10.000,10.000)) = ( -460.681,-2246.627)
J sub 2 ((10.000,10.000)) = ( 2044.245, -590.157)
J sub 3 ((10.000,10.000)) = ( 751.498, 1719.746)
J sub 4 ((10.000,10.000)) = (-1302.871, 880.632)
J sub 5 ((10.000,10.000)) = ( -920.394, -846.345)
J sub 6 ((10.000,10.000)) = ( 419.501, -843.607)
J sub 7 ((10.000,10.000)) = ( 665.930, 88.480)
J sub 8 ((10.000,10.000)) = ( 108.586, 439.392)
J sub 9 ((10.000,10.000)) = ( -227.548, 176.165)
J sub 10 ((10.000,10.000)) = ( -154.831, -76.050)
BSINS

Evaluates a sequence of modified Bessel functions of the first kind with integer order and real or
complex arguments.
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Required Arguments

X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)
For real argument exp(]x|) must not overflow. For complex arguments x must be less
than 10* in absolute value.

N — Number of elements in the sequence. (Input)

BSI — Vector of length N containing the values of the function through the series. (Output)
BSI(1) contains the value of the Bessel function of order I — 1 at X for 1 =1 to N.

FORTRAN 90 Interface

Generic: CALL BSINS (X, N, BSI)

Specific: The specific interface names are S_BSINS, D_BSINS, C_BSINS, and
Z BSINS.

FORTRAN 77 Interface
Single: CALL BSINS (X, N, BSI)

Double: The double precision name is DBSINS.
Complex:  The complex name is CBINS.

Double Complex: The double complex name is DCBINS.

Description

The complex Bessel function |(2) is defined to be
1,(2) =~ [ € cos(n0)do
n T 0

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses backward
recursion with strict error control.

Example 1
In this example, 1,(10.0), n=0, ..., 10 is computed and printed.

USE BSINS_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER N
PARAMETER (N=11)
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INTEGER K, NOUT

REAL BSI(N), X
! Compute
X =10.0
CALL BSINS (X, N, BSI)
1 Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, BSI(K)
10 CONTINUE
99999 FORMAT (" I sub ", 12, " (", F6.3, ") = ", F9.3)

END

Output
I sub 0 (10.000) = 2815.716
I sub 1 (10.000) = 2670.988
I sub 2 (10.000) = 2281.519
I sub 3 (10.000) = 1758.381
I sub 4 (10.000) = 1226.490
I sub 5 (10.000) = 777.188
I sub 6 (10.000) = 449.302
I sub 7 (10.000) = 238.026
I sub 8 (10.000) = 116.066
I sub 9 (10.000) = 52.319
I sub 10 (10.000) = 21.892

Additional Example

Example 2
In this example, 1,(10 + 10i), n=0, ..., 10 is computed and printed.

USE BSINS_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER N
PARAMETER (N=11)

INTEGER K, NOUT
COMPLEX CBS(N), Z
! Compute
Z = (10.0, 10.0)
CALL BSINS (Z, N, CBS)
1 Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, Z, CBS(K)
10 CONTINUE
99999 FORMAT (* I sub ", 12, " ((*, F6.3, ",", F6.3, &
")) = (", F9.3, *,", F9.3, ")7)
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Output
I sub 0 ((10.
I sub 1 ((10.
I sub 2 ((10.
I sub 3 ((10.
I sub 4 ((10.
I sub 5 ((10.
I sub 6 ((10.
I sub 7 ((10.
I sub 8 ((10.
I sub 9 ((10.
I sub 10 ((10.

END

000,10.
000,10.
000,10.
000,10.
000,10.
000,10.
000,10.
000,10.
000,10.
000,10.
000,10.

000))
000))
000))
000))
000))
000))
000))
000))
000))
000))
000))

ANAAAAAAAAAAAAAAAN

-2314.
.627,
-2044.
-1719.
-1302.

-846.

-419.

-2246

-88

975,

245,
746,
871,
345,
501,

.480,
108.
176.
154.

586,
165,
831,

-411.
-460.
-590.
-751.
-880.
-920.
-843.
-665
-439.
=227

-76.

563)
681)
157)
498)
632)
394)
607)

.930)

392)

.548)

050)

BSJS

Evaluates a sequence of Bessel functions of the first kind with real order and real positive
arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)

It must be at least zero and less than one.

X — Real argument for which the sequence of Bessel functions is to be evaluated. (Input)
It must be nonnegative.

N — Number of elements in the sequence. (Input)

BS — Vector of length N containing the values of the function through the series. (Output)
BS(1) contains the value of the Bessel function of order XNU+ 1 — 1 at xfor 1 =1 to N.

FORTRAN 90 Interface

Generic:

Specific:

CALL BSJS (XNU, X, N, BS)

The specific interface names are S_BSJS and D_BSJS.

FORTRAN 77 Interface

Description

Single:

Double:

CALL BSJS (XNU, X, N, BS)

The double precision name is DBSJS.

The Bessel function J,(X) is defined to be
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(x/2)" z oy
J (X)=———————| cos(Xcos@)sin"" 6 d@
/() ﬁr(wl/z)jo ( )

This code is based on the work of Gautschi (1964) and Skovgaard (1975). It uses backward
recursion.

Comments

Workspace may be explicitly provided, if desired, by use of B2JS/DB2JS. The reference is

CALL B2JS (XNU, X, N, BS, WK)
The additional argument is

WK — work array of length 2 * N.

Example

In this example, J,(2.4048256), v =0, ..., 10 is computed and printed.

USE BSJS_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER N
PARAMETER (N=11)

INTEGER K, NOUT

REAL BS(N), X, XNU
1 Compute
XNU = 0.0
X = 2.4048256
CALL BSJS (XNU, X, N, BS)
1 Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, X, BS(K)
10 CONTINUE
99999 FORMAT (" J sub ", F6.3, " (", F6.3, ") = ", F10.3)

END
Output
J sub 0.000 ( 2.405) = 0.000
J sub 1.000 ( 2.405) = 0.519
J sub 2.000 ( 2.405) = 0.432
J sub 3.000 ( 2.405) = 0.199
J sub 4.000 ( 2.405) = 0.065
J sub 5.000 ( 2.405) = 0.016
J sub 6.000 ( 2.405) = 0.003
J sub 7.000 ( 2.405) = 0.001
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J sub 8.000 ( 2.405) = 0.000
J sub 9.000 ( 2.405) = 0.000
J sub 10.000 ( 2.405) = 0.000

BSYS

Evaluates a sequence of Bessel functions of the second kind with real nonnegative order and real
positive arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real positive argument for which the sequence of Bessel functions is to be evaluated.
(Input)

N — Number of elements in the sequence. (Input)

BSY — Vector of length N containing the values of the function through the series. (Output)
BSY(1) contains the value of the Bessel function of order 1 — 1 + XNU at X for I =1
to N.

FORTRAN 90 Interface

Generic: CALL BSYS (XNU, X, N, BSY)

Specific: The specific interface names are S_BSYS and D_BSYS.
FORTRAN 77 Interface

Single: CALL BSYS (XNU, X, N, BSY)

Double: The double precision name is DBSYS.

Description
The Bessel function Y,,(X) is defined to be

Y, (x) = 1 j " sin(xsin 0 —v)d @
T 0

—%J‘: [e“‘ +e™ cos(wr)} et gt

The variable v must satisfy 0 <v < 1. If this condition is not met, then BS; is set to —b. In addition,
X must be in [Xm, Xw] Where Xm= 6(16 %) and Xy = 16°. If X < Xm, then —b (b = AMACH(2), the
largest representable number) is returned; and if X > Xy, then zero is returned.
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The algorithm is based on work of Cody and others, (see Cody et al. 1976; Cody 1969; NATS
FUNPACK 1976). It uses a special series expansion for small arguments. For moderate arguments,
an analytic continuation in the argument based on Taylor series with special rational minimax
approximations providing starting values is employed. An asymptotic expansion is used for large
arguments.

Example

In this example, Y 15625+ v —1(0.0078125), v =1, 2, 3 is computed and printed.

USE BSYS_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER N
PARAMETER  (N=3)

INTEGER K, NOUT

REAL BSY(N), X, XNU

Compute
XNU = 0.015625
X = 0.0078125

CALL BSYS (XNU, X, N, BSY)
Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, X, BSY(K)
10 CONTINUE

99999 FORMAT (" Y sub ", F6.3, " (", F6.3, ") = ", F10.3)

END
Output
Y sub 0.016 ( 0.008) = -3.189
Y sub 1.016 ( 0.008) = -88.096
Y sub 2.016 ( 0.008) = -22901.732

BSIS

Evaluates a sequence of modified Bessel functions of the first kind with real order and real
positive arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be greater than or equal to zero and less than one.

X — Real argument for which the sequence of Bessel functions is to be evaluated. (Input)

N — Number of elements in the sequence. (Input)
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BSI — Vector of length N containing the values of the function through the series. (Output)
BSI(1) contains the value of the Bessel function of order 1 — 1 + XNU at X for 1 =1 to N.

FORTRAN 90 Interface
Generic: CALL BSIS (XNU, X, N, BSI)

Specific: The specific interface names are S_BS1S and D_BSIS.

FORTRAN 77 Interface
Single: CALL BSIS (XNU, X, N, BSI)

Double: The double precision name is DBSIS.

Description

The Bessel function |,(X) is defined to be
1 7 _Xcosf Sin(Vﬂ') ® _—Xcosht—wt
Iv(x)=—J e cos(ve)da——j e dit
o0 V4 0

The input X must be nonnegative and less than or equal to log(b) (b = AMACH(2), the largest
representable number). The argument v = XNU must satisfy 0 <v < 1.

Function BSIS is based on a code due to Cody (1983), which uses backward recursion.

Example

In this example, I,,_(10.0), v=1, ..., 10 is computed and printed.

USE BSIS_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER N
PARAMETER (N=10)

INTEGER K, NOUT

REAL BSI(N), X, XNU
! Compute
XNU = 0.0
X = 10.0
CALL BSIS (XNU, X, N, BSI)
1 Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, X, BSI(K)
10 CONTINUE
99999 FORMAT (" I sub ", F6.3, " (", F6.3, ") = ", F10.3)
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END

Output
I sub 0.000 (10.000) = 2815.717
I sub 1.000 (10.000) = 2670.988
I sub 2.000 (10.000) = 2281.519
I sub 3.000 (10.000) = 1758.381
I sub 4.000 (10.000) = 1226.491
I sub 5.000 (10.000) = 777.188
I sub 6.000 (10.000) = 449.302
I sub 7.000 (10.000) = 238.026
I sub 8.000 (10.000) = 116.066
I sub 9.000 (10.000) = 52.319

BSIES

Evaluates a sequence of exponentially scaled modified Bessel functions of the first kind with
nonnegative real order and real positive arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real positive argument for which the sequence of Bessel functions is to be evaluated.
(Input)
It must be nonnegative.

N — Number of elements in the sequence. (Input)

BSI — Vector of length N containing the values of the function through the series. (Output)
BSI(1) contains the value of the Bessel function of order I — 1 + XNU at X for 1 =1 to N
multiplied by exp(—X).

FORTRAN 90 Interface

Generic: CALL BSIES (XNU, X, N, BSI)

Specific: The specific interface names are S_BSIES and D_BSIES.
FORTRAN 77 Interface

Single: CALL BSIES (XNU, X, N, BSI)

Double: The double precision name is DBSIES.
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Description

Function BSIES evaluates e * I, +k-1(X), for k=1, ..., n. For the definition of | (X), see BSIS. The

algorithm is based on a code due to Cody (1983), which uses backward recursion.

Example

In this example, I, _(10.0), v=1, ..., 10 is computed and printed.

USE BSIES_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER N
PARAMETER (N=10)

INTEGER K, NOUT

REAL BSI(N), X, XNU

Compute
XNU = 0.0
X = 10.0

CALL BSIES (XNU, X, N, BSI)
Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) X, XNU+K-1, X, BSI(K)

10 CONTINUE

99999 FORMAT (" exp(-", F6.3, ") * I sub *, F6.3, &
" (", F6.3, ") =", F6.3)
END

Output
exp(-10.000) * I sub 0.000 (10.000) = 0.128
exp(-10.000) * I sub 1.000 (10.000) = 0.121
exp(-10.000) * I sub 2.000 (10.000) = 0.104
exp(-10.000) * I sub 3.000 (10.000) = 0.080
exp(-10.000) * I sub 4.000 (10.000) = 0.056
exp(-10.000) * I sub 5.000 (10.000) = 0.035
exp(-10.000) * I sub 6.000 (10.000) = 0.020
exp(-10.000) * I sub 7.000 (10.000) = 0.011
exp(-10.000) * I sub 8.000 (10.000) = 0.005
exp(-10.000) * I sub 9.000 (10.000) = 0.002

BSKS

Evaluates a sequence of modified Bessel functions of the second kind of fractional order.

Required Arguments

XNU — Fractional order of the function. (Input)
XNU must be less than one in absolute value.
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X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)
NIN — Number of elements in the sequence. (Input)

BK — Vector of length NIN containing the values of the function through the series.
(Output)

FORTRAN 90 Interface
Generic: CALL BSKS (XNU, X, NIN, BK)

Specific: The specific interface names are S_BSKS and D_BSKS.

FORTRAN 77 Interface
Single: CALL BSKS (XNU, X, NIN, BK)

Double: The double precision name is DBSKS.

Description
The Bessel function K,(X) is defined to be

K, (x) = %e””z {i 3 (xe? )Y ( xezi)} for -7 < arg xs%

Currently, v is restricted to be less than one in absolute value. A total of |n| values is stored in the
array BK. For positive n, BK(1) = K,(X), BK(2) = K, , {(X), ..., BK(n) = K, , ,_; (X). For negative n,
BK(1) = K\(X), BK(2) = K, _1(X), ..., BK(N) = K, 4 11

BSKS is based on the work of Cody (1983).

Comments

1. If NIN is positive, BK(1) contains the value of the function of order XNU, BK(2) contains
the value of the function of order XNU + 1, ... and BK(NIN) contains the value of the
function of order XNU + NIN — 1.

2. If NIN is negative, BK(1) contains the value of the function of order XNU, BK(2) contains
the value of the function of order XNU — 1, ... and BK(ABS(NIN)) contains the value of
the function of order XNU + NIN + 1.

Example

In this example, K,_;(10.0), v=1, ..., 10 is computed and printed.

USE BSKS_INT
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USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NIN
PARAMETER (NIN=10)

INTEGER K, NOUT

REAL BS(NIN), X, XNU
Compute
XNU = 0.0
X =10.0
CALL BSKS (XNU, X, NIN, BS)

Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, NIN
WRITE (NOUT,99999) XNU+K-1, X, BS(K)

CONTINUE
FORMAT (" K sub ", F6.3, " (", F6.3, ") = ", E10.3)
END
tput

0.000 (10.000) = 0.178E-04

1.000 (10.000) = 0.186E-04

2.000 (10.000) = 0.215E-04

3.000 (10.000) = 0.273E-04

4.000 (10.000) = 0.379E-04

5.000 (10.000) = 0.575E-04

6.000 (10.000) = 0.954E-04

7.000 (10.000) = 0.172E-03

8.000 (10.000) = 0.336E-03

9.000 (10.000) = 0.710E-03

BSKES

Evaluates a sequence of exponentially scaled modified Bessel functions of the second kind of
fractional order.

Re

quired Arguments

XNU — Fractional order of the function. (Input)
XNU must be less than 1.0 in absolute value.

X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)
NIN — Number of elements in the sequence. (Input)

BKE — Vector of length NIN containing the values of the function through the series.
(Output)
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FORTRAN 90 Interface
Generic: CALL BSKES (XNU, X, NIN, BKE)

Specific: The specific interface names are S_BSKES and D_BSKES.

FORTRAN 77 Interface
Single: CALL BSKES (XNU, X, NIN, BKE)

Double: The double precision name is DBSKES.

Description
Function BSKES evaluates €K, k_1(X), for k=1, ..., n. For the definition of K,(X), see BSKS.

Currently, v is restricted to be less than 1 in absolute value. A total of |n| values is stored in the
array BKE. For n positive, BKE(1) contains €K, (x), BKE(2) contains €K, , | (X), ..., and BKE(N)
contains €K, , n—1(X). For n negative, BKE(1) contains €K, (X), BKE(2) contains

€K, _1(X), ..., and BKE(|n|) contains €K, ., (X). This routine is particularly useful for

calculating sequences for large X provided n < X. (Overflow becomes a problem if N << X.) N must
not be zero, and X must not be greater than zero. Moreover, |v| must be less than 1.

Also, when |n| is large compared with X, |v + n| must not be so large that

&K,\p () ~ ET(v + n/[2(¢2)" "] overflows.

BSKES is based on the work of Cody (1983).

Comments

1. If NIN is positive, BKE(1) contains EXP(X) times the value of the function of order XNU,
BKE(2) contains EXP(X) times the value of the function of order XNU + 1, ..., and
BKE(NIN) contains EXP(X) times the value of the function of order XNU + NIN — 1.

2. If NIN is negative, BKE(1) contains EXP(X) times the value of the function of order XNU,
BKE(2) contains EXP(X) times the value of the function of order XNU — 1, ..., and
BKE(ABS(NIN)) contains EXP(X) times the value of the function of order
XNU + NIN + 1.

Example

In this example, K, _;,(2.0), v=1, ..., 6 is computed and printed.

USE BSKES_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NIN
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PARAMETER  (NIN=6)

INTEGER K, NOUT

REAL BKE(NIN), X, XNU
Compute
XNU = 0.5
X =2.0
CALL BSKES (XNU, X, NIN, BKE)

Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, NIN
WRITE (NOUT,99999) X, XNU+K-1, X, BKE(K)
CONT INUE

99999 FORMAT (" exp(", F6.3, ") * K sub ", F6.3, &
" (", F6.3, ") =", F8.3)
END
Output
exp( 2.000) * K sub 0.500 ( 2.000) = 0.886
exp( 2.000) * K sub 1.500 ( 2.000) = 1.329
exp( 2.000) * K sub 2.500 ( 2.000) = 2.880
exp( 2.000) * K sub 3.500 ( 2.000) = 8.530
exp( 2.000) * K sub 4.500 ( 2.000) = 32.735
exp( 2.000) * K sub 5.500 ( 2.000) = 155.837

CBJS

Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)

XNU must be greater than —1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated.

(Input)

N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the series. (Output)
CBS(1) contains the value of the Bessel function of order XNU+ 1 — 1 at Zfor 1 =1

to N.

FORTRAN 90 Interface

Generic: CALL CBJS (XNU, Z, N, CBS)

Specific: The specific interface names are S_CBJS and D_CBJS.
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FORTRAN 77 Interface
Single: CALL CBJS (XNU, Z, N, CBS)

Double: The double precision name is DCBJS.

Description
The Bessel function J,(2) is defined to be

3,(2)- % [ cos(zsino-v0)do ——S‘“;V”) [ e

f r
or |arg 7] < >

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

This code computes J,(2) from the modified Bessel function |,(2), CBI1S, using the following

relation, with p = €™

pl,(z/p) forrm/2<argz<rx
Y=,
pl,(p'2) for—nm<argz<rz/2
Comments
Informational errors
Type Code
3 1 One of the continued fractions failed.
4 2 Only the first several entries in CBS are valid.
Example

In this example, Jy3 ., _;(1.2 +0.5i), v=1, ..., 4 is computed and printed.

USE CBJS_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER N
PARAMETER (N=4)

INTEGER K, NOUT

REAL XNU
COMPLEX CBS(N), Z
1 Compute
XNU = 0.3
Z = (1.2, 0.5)
CALL CBJS (XNU, Z, N, CBS)
1 Print the results
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CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
10 CONTINUE
99999 FORMAT (" J sub *, F6.3, * ((", F6.3, ",", F6.3, &
")) = (. F9.3, *,%, F9.3, "))
END

Output

sub 0.300 (( 1.200, 0.500))
sub 1.300 (( 1.200, 0.500))
sub 2.300 (( 1.200, 0.500))
sub 3.300 (( 1.200, 0.500))

0.774, -0.107)
0.400,  0.159)
0.087,  0.092)
0.008,  0.024)

[ SR SR PR Y
AAAAA

CBYS

Evaluates a sequence of Bessel functions of the second kind with real order and complex
arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than —1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated.
(Input)

N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the series. (Output)
CBS(1) contains the value of the Bessel function of order XNU+ 1 — 1 atZfor 1 =1
to N.

FORTRAN 90 Interface

Generic: CALL CBYS (XNU, Z, N, CBS)

Specific: The specific interface names are S_CBYS and D_CBYS.
FORTRAN 77 Interface

Single: CALL CBYS (XNU, Z, N, CBS)

Double: The double precision name is DCBYS.
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Description
The Bessel function Y,,(2) is defined to be

Y,(2) = ij”sin(mne—ve)d 0
T 0
_ %J: [e”‘ +et cos(v;r)]e“i“ht dt
T
for |arg Z| <E

This code is based on the code BESSEC of Barnett (1981) and Thompson and Barnett (1987).

This code computes Y,,(2) from the modified Bessel functions |,(2) and K, (2), CBIS and CBKS,
using the following relation:

Y, (z&"?) =€V (2) —ze’v””sz(Z) for —zr <argz<rm/2
V4

Comments

1. Workspace may be explicitly provided, if desired, by use of C2YS/DC2Y .
The reference is:

CALL C2YS (XNU, Z, N, CBS, FK)
The additional argument is:

FK — complex work vector of length N.

2. Informational errors
Type Code
3 1 One of the continued fractions failed.
4 2 Only the first several entries in CBS are valid.
Example

In this example, Yy3,, (1.2 +0.5i), v=1, ..., 4 is computed and printed.

USE CBYS_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER N
PARAMETER (N=4)

INTEGER K, NOUT
REAL XNU
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COMPLEX CBS(N), Z
Compute
XNU 0.3
Z (1.2, 0.5)
CALL CBYS (XNU, Z, N, CBS)
Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
10 CONTINUE

99999 FORMAT (" Y sub ", F6.3, " ((*, F6.3, ",", F6.3, &
")) = (C, F9.3, °,%, F9.3, "))
END
Output

<< =<=<

sub 0.300 (( 1.200, 0.500))
sub 1.300 (( 1.200, 0.500))
sub 2.300 (( 1.200, 0.500))
sub 3.300 (( 1.200, 0.500))

-0.013, 0.380)
-0.716, 0.338)
-1.048, 0.795)
-1.625, 3.684)

i
AAAA

CBIS

Evaluates a sequence of modified Bessel functions of the first kind with real order and complex
arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than —1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated.
(Input)

N — Number of elements in the sequence. (Input)
CBS — Vector of length N containing the values of the function through the series. (Output)

CBS(1) contains the value of the Bessel function of order XNU + 1 — 1 at Z for 1 =1
to N.

FORTRAN 90 Interface
Generic: CALL CBIS (XNU, Z, N, CBS)
Specific: The specific interface names are S_CBI1S and D_CBIS.

FORTRAN 77 Interface
Single: CALL CBIS (XNU, Z, N, CBS)
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Double: The double precision name is DCBIS.

Description

The modified Bessel function |,(2) is defined to be
I,(2)=e""2] (z&"*) for—rz<argz s%

where the Bessel function J,(2) is defined in BSJS.
This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

For large arguments, z Temme’s (1975) algorithm is used to find I,(2). The I,(2) values are
recurred upward (if this is stable). This involves evaluating a continued fraction. If this evaluation
fails to converge, the answer may not be accurate. For moderate and small arguments, Miller’s
method is used.

Comments
Informational errors
Type Code
3 1 One of the continued fractions failed.
4 2 Only the first several entries in CBS are valid.
Example

In this example, 13 ., _1(1.2+0.5i), v=1, ..., 4 is computed and printed.

USE CBIS_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER N
PARAMETER (N=4)

INTEGER K, NOUT
REAL XNU
COMPLEX CBS(N), Z
Compute
XNU 0.3
Z (1.2, 0.5)
CALL CBIS (XNU, Z, N, CBS)
Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
10 CONTINUE

99999 FORMAT (* I sub ", F6.3, " ((*, F6.3, ",", F6.3, &

")) =, F9.3, 7,7, F9.3, )T
END
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Output

sub 0.300 (( 1.200, 0.500))
sub 1.300 (( 1.200, 0.500))
sub 2.300 (( 1.200, 0.500))
sub 3.300 (( 1.200, 0.500))

1.163, 0.396)
0.447, 0.332)
0.082, 0.127)
0.006, 0.029)

nmn1n
AAAAA

CBKS

Evaluates a sequence of modified Bessel functions of the second kind with real order and complex
arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than —1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated.
(Input)

N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the series. (Output)
CBS(1) contains the value of the Bessel function of order XNU+ I — 1 atZfor I =1
to N.

FORTRAN 90 Interface
Generic: CALL CBKS (XNU, Z, N, CBS)

Specific: The specific interface names are S_CBKS and D_CBKS.

FORTRAN 77 Interface
Single: CALL CBKS (XNU, Z, N, CBS)

Double: The double precision name is DCBKS.

Description

The Bessel function K,(2) is defined to be
T wzii2 [ i12 i12 U
K,(z2)=—¢ iJ (z =Y (z for—-7 <argz<—
(2= 7 [0, (2 ) Y,z )] gz<”

where the Bessel function J,(2) is defined in CBJS and Y,(2) is defined in CBYS.

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).
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For moderate or large arguments, zZ Temme’s (1975) algorithm is used to find K,(2). This involves
evaluating a continued fraction. If this evaluation fails to converge, the answer may not be
accurate. For small z a Neumann series is used to compute K, (2). Upward recurrence of the K,(2)
is always stable.

Comments

Workspace may be explicitly provided, if desired, by use of C2KS/DC2KS. The reference is

CALL C2KS (XNU, Z, N, CBS, FK)

The additional argument is
FK — Complex work vector of length N.

Informational errors

Type Code
3 1 One of the continued fractions failed.
4 2 Only the first several entries in CBS are valid.
Example

In this example, Ky 5, ,_(1.2 +0.5i), v=1, ..., 4 is computed and printed.

USE UMACH_INT
USE CBKS_INT

IMPLICIT NONE

Declare variables
INTEGER N
PARAMETER  (N=4)

INTEGER K, NOUT
REAL XNU
COMPLEX CBS(N), Z
Compute
XNU 0.3
4 (1.2, 0.5)
CALL CBKS (XNU, Z, N, CBS)
Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)

10 CONTINUE
99999 FORMAT (" K sub ", F6.3, " ((*, F6.3, ",", F6.3, &
-)) = (-, F9-3, -,-, F9-3, -)-)
END
Output
K sub 0.300 (( 1.200, 0.500)) = ( 0.246, -0.200)
K sub 1.300 (( 1.200, 0.500)) = ( 0.336, -0.362)
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K sub 2.300 (( 1.200, 0.500))
K sub 3.300 (( 1.200, 0.500))

( 0.587, -1.126)
( 0.719, -4.839)
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Chapter 7: Kelvin Functions

Routines
Evaluates Derg(X) «.veeeeiiieeeeiiiiiee ittt BERO
Evaluates Deig(X) . ..vveeeiiieiee ittt BEIO
EValuateS KEIp(X)...vveeeeirereeeiiiieeeisiteeessiiee e AKERO
Evaluates Keig(X) ... .vveeirrreeeeiiiiiee e AKEIO
Evaluates Der'y(X) «.ooecveieieee ettt BERPO
Evaluates Deig(X) ....vveeeiiieeiieiiieie e BEIPO
Evaluates Ker'p(X)....coocveoeeeeeeeie ettt AKERPO
EVAIUALES KEI'((X) .vvevrereereireireiiisiesiesieseeeee et AKEIPO
Evaluates Der; (X) ....eeeeeiaaiiiiieee e BER1
Evaluates Deij (X) .. .ueeeeeieaiiiiieieeee e BEI1
EVAlUALES KT (X)..uvveeeeeieaeieiiieieeei ettt AKER1
EVAlUALES KEIj (X) cvvvrrrrreeeeiiiiiiiieiee e e s ciiirree e e e e e s s senvnneeeeeeesennnes AKEI1
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Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964). The Kelvin
functions are related to the Bessel functions by the following relations.

ber,X+ibei, x = J,(xe" ')

H . v i/2 i/4
ker, x+ikei x=€""""K (x&"")

The derivatives of the Kelvin functions are related to the values of the Kelvin functions by the
following:

/2ber!x = ber, X+ bei, X
/2beil x = —ber, X+ bei, X
\/Ekero'x = ker, X+ kei, X

V2kei) x = —ker, X+ kei, X
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Plots of bery(X), bein(X), kern(X) and keiy(X) for n=0, 1 follow:

150.0 — :
Function
| beip —
. ber, ---
bei;, —
75.0
. /
2 | B 777\\ /
0.0 —— \ > /‘\
| \ “
oS
—7/5.0 \ I T T T T ] T T T ] T
0.0 2.0 4.0 6.0 8.0 10.0

Figure 7- 1 Plot of ber,(x) and bei,(x)
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0.4

| Function
ker, —
] kei, —
B \ ker, - -
0.2 kei, —
| \ )
> 0.0 s a—

—024 | /

—0.4 R L B s S B B B
0.0 2.5 5.0 7.5 10.0

Figure 7- 2 Plot of ker,(x) and kei,(x)

BERO

This function evaluates the Kelvin function of the first kind, ber, of order zero.

Function Return Value
BERO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
ABS(X) must be less than 119.

FORTRAN 90 Interface
Generic: BERO (X)
Specific: The specific interface names are S_BERO and D_BERO.

FORTRAN 77 Interface
Single: BERO (X)
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Double: The double precision name is DBERO.

Description

The Kelvin function bery(X) is defined to be *J%Jo(xe”‘” *). The Bessel function Jy(X) is defined in
BSJO. Function BERO is based on the work of Burgoyne (1963).

Example

In this example, ber(0.4) is computed and printed.

USE BERO_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.4
VALUE = BERO(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BERO(", F6.3, ") = ", F6.3)
END

Output

BERO( 0.400) = 1.000

BEIO

This function evaluates the Kelvin function of the first kind, bei, of order zero.
Function Return Value

BEI0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
ABS(X) must be less than 119.

FORTRAN 90 Interface
Generic: BEI0 (X)

Specific: The specific interface names are S_BE10 and D_BEIO.
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FORTRAN 77 Interface
Single: BEIO (X)

Double: The double precision name is DBEIO.

Description

The Kelvin function bery(X) is defined to be RJy(x “”4). The Bessel function Jy(X) is defined in
BSJO. Function BERO is based on the work of Burgoyne (1963).

In BE10, X must be less than 119.

Example

In this example, beiy(0.4) is computed and printed.

USE BEIO_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 0.4
VALUE = BEI10(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* BEIO(", F6.3, ") = *, F6.3)
END

Output

BEIO( 0.400) = 0.040

AKERO

This function evaluates the Kelvin function of the second kind, ker, of order zero.

Function Return Value
AKERO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.
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FORTRAN 90 Interface
Generic: AKERO (X)

Specific: The specific interface names are S_AKERO and D_AKERO.

FORTRAN 77 Interface
Single: AKERO (X)

Double: The double precision name is DKERO.

Description

The modified Kelvin function kery(X) is defined to be ‘RKO(Xe“i/ *). The Bessel function Ky(X) is
defined in BSKO. Function AKERO is based on the work of Burgoyne (1963). If X < 0, then NaN
(not a number) is returned. If X > 119, then zero is returned.

Example

In this example, kery(0.4) is computed and printed.

USE AKERO_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 0.4
VALUE = AKERO(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" AKERO(", F6.3, ") = ", F6.3)
END

Output

AKERO( 0.400) = 1.063

AKEIO

This function evaluates the Kelvin function of the second kind, kei, of order zero.

Function Return Value
AKEI0 — Function value. (Output)
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Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative and less than 119.

FORTRAN 90 Interface
Generic: AKEIO (X)

Specific: The specific interface names are S_AKE10 and D_AKEI0.

FORTRAN 77 Interface
Single: AKEIO (X)

Double: The double precision name is DKEIO.

Description

The modified Kelvin function keiy(X) is defined to be SKO(xe"” *). The Bessel function Ky(X) is
defined in BSKO. Function AKE IO is based on the work of Burgoyne (1963).

In AKEI0, X must satisfy 0 < x< 119. If x<0, then NaN (not a number) is returned. [f x> 119,
then zero is returned.

Example

In this example, keiy(0.4) is computed and printed.

USE AKEIO_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.4
VALUE = AKEI0(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" AKEIO(", F6.3, ") = ", F6.3)
END

Output

AKEI0( 0.400) = -0.704
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BERPO

This function evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.

Function Return Value
BERPO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BERPO (X)

Specific: The specific interface names are S_BERPO and D_BERPO.

FORTRAN 77 Interface
Single: BERPO (X)

Double: The double precision name is DBERPO.

Description

The function ber’((X) is defined to be

% ber, (X)

where bery(X) is a Kelvin function, see BERO. Function BERPO is based on the work of Burgoyne
(1963).

If |x| > 119, then NaN (not a number) is returned.

Example
In this example, ber’((0.6) is computed and printed.

USE BERPO_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 0.6
VALUE = BERPO(X)
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1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BERPO(", F6.3, ") = ", F6.3)
END

Output

BERPO( 0.600) = -0.013

BEIPO

This function evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.

Function Return Value
BEIPO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BEIPO (X)

Specific: The specific interface names are S_BEIPO and D_BEIPO.

FORTRAN 77 Interface
Single: BEIPO (X)

Double: The double precision name is DBE I PO.

Description
The function bei’o(X) is defined to be
d
— bei, (X
& bei, (x)

where beiy(X) is a Kelvin function, see BE10. Function BEIPO is based on the work of Burgoyne
(1963).

If|X > 119, then NaN (not a number) is returned.
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Example

In this example, bei’((0.6) is computed and printed.

USE BEIPO_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL VALUE, X

! Compute
X = 0.6
VALUE = BEIPO(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (* BEIPO(", F6.3, ") = ", F6.3)
END

Output

BEIPO( 0.600) = 0.300

AKERPO

This function evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.
Function Return Value

AKERPO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKERPO (X)

Specific: The specific interface names are S_AKERPO and D_AKERPO.
FORTRAN 77 Interface

Single: AKERPO (X)

Double: The double precision name is DKERPO.
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Description

The function ker'((X) is defined to be

% ker, (X)

where kery(X) is a Kelvin function, see AKERO. Function AKERPO is based on the work of
Burgoyne (1963). If x < 0, then NaN (not a number) is returned. If X > 119, then zero is returned.

Example

In this example, ker'(0.6) is computed and printed.

USE AKERPO_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X, AKERPO
! Compute
X = 0.6
VALUE = AKERPO(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" AKERPO(", F6.3, ") = ", F6.3)
END

Output

AKERPO( 0.600) = -1.457

AKEIPO

This function evaluates the derivative of the Kelvin function of the second kind, kei, of order zero.

Function Return Value
AKEIPO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface
Generic: AKEIPO (X)

Chapter 7: Kelvin Functions AKEIPO o 147



Specific: The specific interface names are S_AKEIPO and D_AKEIPO.

FORTRAN 77 Interface
Single: AKEIPO (X)

Double: The double precision name is DKE I PO.

Description

The function kei’o(X) is defined to be

% kei, (X)

where keiy(X) is a Kelvin function, see AKE10. Function AKEIPO is based on the work of Burgoyne
(1963).

If x <0, then NaN (not a number) is returned. If X > 119, then zero is returned.

Example

In this example, kei'((0.6) is computed and printed.

USE AKEIPO_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X, AKEIPO
! Compute
X = 0.6
VALUE = AKEIPO(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" AKEIPO(", F6.3, ") = ", F6.3)
END

Output

AKEIPO( 0.600) = 0.348

BER1

This function evaluates the Kelvin function of the first kind, ber, of order one.

Function Return Value
BER1 — Function value. (Output)

148 e Chapter 7: Kelvin Functions MATH LIBRARY Special Functions



Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BER1 (X)

Specific: The specific interface names are S_BER1 and D_BER1.

FORTRAN 77 Interface
Single: BER1 (X)

Double: The double precision name is DBER1.

Description

The Kelvin function ber, (X) is defined to be RJ; (xe’ i *). The Bessel function J; (X) is defined in
BSJ1. Function BER1 is based on the work of Burgoyne (1963).

If|X > 119, then NaN (not a number) is returned.

Example

In this example, ber; (0.4) is computed and printed.

USE BER1_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
L Compute
X = 0.4
VALUE = BER1(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BER1(", F6.3, ") = ", F6.3)
END

Output

BER1( 0.400) = -0.144
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BEI1

This function evaluates the Kelvin function of the first kind, bei, of order one.

Function Return Value
BEI1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BEI1 (X)

Specific: The specific interface names are S BEI11 and D_BEI1.

FORTRAN 77 Interface
Single: BEI1 (X)

Double: The double precision name is DBEI 1.

Description

The Kelvin function bei; (X) is defined to be 3J, (Xe3“i/4). The Bessel function J; (X) is defined in
BSJ1. Function BEI1 is based on the work of Burgoyne (1963).

If|X > 119, then NaN (not a number) is returned.

Example

In this example, bei; (0.4) is computed and printed.

USE BEI1_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.4
VALUE = BEI1(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BEI1(", F6.3, ") = ", F6.3)
END

150 e Chapter 7: Kelvin Functions MATH LIBRARY Special Functions



Output

BEI1( 0.400) = 0.139

AKER1

This function evaluates the Kelvin function of the second kind, ker, of order one.

Function Return Value
AKER1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKER1 (X)

Specific: The specific interface names are S_AKER1 and D_AKER1.

FORTRAN 77 Interface
Single: AKERL (X)

Double: The double precision name is DKER1.

Description

The modified Kelvin function ker; (X) is defined to be e 2R K, (Xe“i/4). The Bessel function K;(X)
is defined in BSK1. Function AKER1 is based on the work of Burgoyne (1963).

If x <0, then NaN (not a number) is returned. If X > 119, then zero is returned.

Example

In this example, ker; (0.4) is computed and printed.

USE AKER1_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X

! Compute
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X 0.4
VALUE = AKER1(X)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (* AKER1(", F6.3, ") = ", F6.3)
END

Output

AKER1( 0.400) = -1.882

AKEI1

This function evaluates the Kelvin function of the second kind, kei, of order one.
Function Return Value

AKEI1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface
Generic: AKEI1 (X)

Specific: The specific interface names are S_AKEI1 and D_AKEI1.

FORTRAN 77 Interface

Single: AKEI1L (X)
Double: The double precision name is DKEI1.
Description

The modified Kelvin function kei; (X) is defined to be ey K, (Xe“i/ *). The Bessel function K; (X) is
defined in BSK1. Function AKER1 is based on the work of Burgoyne (1963).

If x <0, then NaN (not a number) is returned. If X> 119, then zero is returned.

Example

In this example, kei; (0.4) is computed and printed.

USE UMACH_INT
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USE AKEI1_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL VALUE, X

L Compute
X = 0.4
VALUE = AKEI1(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (" AKEI1(", F6.3, ") = ", F6.3)
END

Output

AKEI1( 0.400) = -1.444
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Chapter 8: Airy Functions

Routines

Real Airy Functions

EVAIUALES AI(X) .o ieerereeiiee e s ittt e e st e e e e Al
Y= [0 F= L= TSR 2T Bl
EVAIUALES AI'(X) .uvrrreeiieeee e iiiiiiieee e e e e e serinrrere e e e e e s seanrrn e e e e e e e s e nanes AID
EVAluAtES Bi'(X)..cocvvrreeeieeeeiiiiiiiieee e e e sesiniee e e e e e BID
Evaluates exponentially scaled Ai(X) .....oeevveeeeviiiivieereeeeeeieinnne, AIE
Evaluates exponentially scaled Bi(X) .....ccevveeeeiiiievienreeeeeeininnnee BIE
Evaluates exponentially scaled Ai'(X) .....covveeeviiiciiieeeeeeeeiiiinns AIDE
Evaluates exponentially scaled Bi'(X) .....ccoeeeerviiivvieenieeensiinnnns BIDE
Complex Airy Functions
EVAlUALES AI(Z) .vevvieeeiee e CAl
Y= LU= (=TS 2T 4 PSR CBI
EVAIUALES AI'(Z) vvvvreeiiee et e e CAID
Evaluates Bi'(Z)....cvvveerieeeiiiiiiiie et CBID
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Al

This function evaluates the Airy function.

Function Return Value

Al — Function value. (Output)

Required Arguments

X — Argument for which the Airy function is desired. (Input)

FORTRAN 90 Interface

Generic:

Specific:

Al (X)

The specific interface names are S_Al and D_Al.
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FORTRAN 77 Interface

Single: Al (X)
Double: The double precision name is DAI.
Description

The Airy function Ai(X) is defined to be

R i 1), [ X 2 5
AI(X)—;JO COS(Xt-th jdt— 3”—2K1/3 (Ex j

The Bessel function K,(X) is defined in BSKS.

If x<—1.31¢%3, then the answer will have no precision. If X <—1.3 1&7', the answer will be less

accurate than half precision. Here, € = AMACH(4) is the machine precision. Finally, x should be less
than X, so the answer does not underflow. Very approximately, X, = {—1.5 In 8}**, where

S= AMACH(1), the smallest representable positive number. If underflows are a problem for large X,
then the exponentially scaled routine AIE should be used.

Comments
Informational error
Type Code
2 1 The function underflows because X is greater than XMAX, where
XMAX = (—=3/2 In(AMACH(1)))*>.
Example

In this example, Ai(—4.9) is computed and printed.

USE AI_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
L Compute
X = -4.9
VALUE = AI(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* AI(", F6.3, ") = ", F6.3)
END

Output

A1(-4.900) = 0.375
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Bl

This function evaluates the Airy function of the second kind.
Function Return Value

Bl — Function value. (Output)

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: BI (X)

Specific: The specific interface names are S_Bl and D_BI.

FORTRAN 77 Interface

Single: BI (X)
Double: The double precision name is DBI.
Description

The Airy function of the second kind Bi(X) is defined to be
o L= 1., 1= . 1.,
13.1(x)_;j0 exp(xt—gt jdt+;j0 sm(xt+§t ]dt

It can also be expressed in terms of modified Bessel functions of the first kind, |,(X), and Bessel
functions of the first kind, J,(X) (see BS1S and BSJS):

Bi(x):\/g[l1/3(§xmj+lm(§xmﬂ for x>0

Bi(x)=,[-> [J1/3(§|x|3/2j—.]1/3(§|x|3/zﬂ for x<0

3

and

Let & = AMACH(4), the machine precision. If x < —1.31&™>*, then the answer will have no precision.
Ifx<-131g"3 , the answer will be less accurate than half precision. In addition, X should not be
so large that exp[(2/3)x”?] overflows. If overflows are a problem, consider using the exponentially
scaled form of the Airy function of the second kind, BIE, instead.
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Example

In this example, Bi(—4.9) is computed and printed.

USE BI_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = -4.9
VALUE = BI(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BI(", F6.3, ") = ", F6.3)
END

Output

BI(-4.900) = -0.058

AID

This function evaluates the derivative of the Airy function.
Function Return Value

AID — Function value. (Output)

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: AID (X)

Specific: The specific interface names are S_AID and D_AID.
FORTRAN 77 Interface

Single: AID (X)

Double: The double precision name is DAID.
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Description

The function Ai'(X) is defined to be the derivative of the Airy function, Ai(X) (see Al).

If x<—1.31g7, then the answer will have no precision. If x < —1.31g""3, the answer will be less

accurate than half precision. Here, € = AMACH(4) is the machine precision. Finally, x should be less
than X, so that the answer does not underflow. Very approximately, X,.x = {—1.5 In S}, where s
= AMACH(1), the smallest representable positive number. If underflows are a problem for large X,
then the exponentially scaled routine AIDE should be used.

Comments
Informational error
Type Code
2 1 The function underflows because X is greater than XMAX, where
XMAX = —3/2 In(AMACH(1)).
Example

In this example, Ai'(—4.9) is computed and printed.

USE AID_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOUT

REAL VALUE, X

Compute
X = -4.9
VALUE = AID(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" AID(", F6.3, ") = ", F6.3)

END

Output

AID(-4.900) = 0.147

BID

This function evaluates the derivative of the Airy function of the second kind.

Function Return Value
BID — Function value. (Output)
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Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: BID (X)

Specific: The specific interface names are S_BID and D_BID.

FORTRAN 77 Interface

Single: BID (X)
Double: The double precision name is DBID.
Description

The function Bi'(X) is defined to be the derivative of the Airy function of the second kind, Bi(X)
(see BI).

If x < —1.31&%?, then the answer will have no precision. If x < —1.31¢™"*, the answer will be less

accurate than half precision. In addition, X should not be so large that exp[(2/3)x*] overflows. If
overflows are a problem, consider using BIDE instead. Here, ¢ = AMACH(4) is the machine
precision.

Example

In this example, Bi'(—4.9) is computed and printed.

USE BID_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = -4.9
VALUE = BID(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BID(", F6.3, ") = ", F6.3)
END

Output

BID(-4.900) = 0.827
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AlE

This function evaluates the exponentially scaled Airy function.

Function Return Value

AIE — Function value. (Output)
The Airy function for negative arguments and the exponentially scaled Airy function,

e gAi(X), for positive arguments where
éf — 3 X3/2
3
Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: AIE (X)

Specific: The specific interface names are S_AIE and D_AIE.

FORTRAN 77 Interface

Single: AIE (X)
Double: The double precision name is DAIE.
Description

The exponentially scaled Airy function is defined to be
Ai(x) ifx<0
& IAi(x) ifx>0

AIE(X):{

Ifx<-131g% , then the answer will have no precision. [f x <—1.3 1g7 3 then the answer will be

less accurate than half precision. Here, € = AMACH(4) is the machine precision.
Example

In this example, AIE(0.49) is computed and printed.

USE AIE_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
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INTEGER NOUT

REAL VALUE, X

! Compute
X = 0.49
VALUE = AIE(X)

1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (* AIE(", F6.3, ") = ", F6.3)
END

Output

AIE( 0.490) = 0.294

BIE

This function evaluates the exponentially scaled Airy function of the second kind.

Function Return Value

BIE — Function value. (Output)
The Airy function of the second kind for negative arguments and the exponentially

scaled Airy function of the second kind, €Bi(X), for positive arguments where

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: BIE (X)

Specific: The specific interface names are S_BIE and D_BIE.

FORTRAN 77 Interface

Single: BIE (X)
Double: The double precision name is DBIE.
Description

The exponentially scaled Airy function of the second kind is defined to be
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Bi(x) ifx<0
BIE(x) =
) e Bi(x) ifx>0

Ifx<-131g% , then the answer will have no precision. [f x <—1.3 1g7" 3 then the answer will be

less accurate than half precision. Here, € = AMACH(4) is the machine precision.

Example

In this example, BIE(0.49) is computed and printed.

USE BIE_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.49
VALUE = BIE(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" BIE(", F6.3, ") = ", F6.3)
END

Output

BIE( 0.490) = 0.675

AIDE

This function evaluates the exponentially scaled derivative of the Airy function.

Function Return Value

AIDE — Function value. (Output)
The derivative of the Airy function for negative arguments and the exponentially scaled
derivative of the Airy function, €°Ai'(X), for positive arguments where

é/:_éxsz

Required Arguments

X — Argument for which the Airy function value is desired. (Input)
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FORTRAN 90 Interface
Generic: AIDE (X)

Specific: The specific interface names are S_AIDE and D_AIDE.

FORTRAN 77 Interface
Single: AIDE (X)

Double: The double precision name is DAIDE.

Description
The exponentially scaled derivative of the Airy function is defined to be
Ai'(x ifx<0
AIDE(x)= ( )z
UAI(X) ifx>0

Ifx<-131g% , then the answer will have no precision. [f x <—-1.3 1g7 3 then the answer will be

less accurate than half precision. Here, € = AMACH(4) is the machine precision.

Example

In this example, AIDE(0.49) is computed and printed.

USE AIDE_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.49
VALUE = AIDE(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" AIDE(", F6.3, ") = ", F6.3)
END

Output

AIDE( 0.490) = -0.284

BIDE

This function evaluates the exponentially scaled derivative of the Airy function of the second kind.
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Function Return Value

BIDE — Function value. (Output)
The derivative of the Airy function of the second kind for negative arguments and the
exponentially scaled derivative of the Airy function of the second kind, €*Bi’(X), for
positive arguments where

2372
§:*§X

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: BIDE (X)

Specific: The specific interface names are S_BIDE and D_BIDE.

FORTRAN 77 Interface
Single: BIDE (X)

Double: The double precision name is DBIDE.

Description

The exponentially scaled derivative of the Airy function of the second kind is defined to be
Bi’(x ifx<0

BIDE(x) = ( ); ,
eP"UBi'(x) ifx>0

Ifx<-131g% , then the answer will have no precision. [f x <—1.3 1g7 3 then the answer will be

less accurate than half precision. Here, € = AMACH(4) is the machine precision.

Example

In this example, BIDE(0.49) is computed and printed.

USE BIDE_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X

! Compute
X = 0.49
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VALUE = BIDE(X)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (" BIDE(", F6.3, ") = ", F6.3)
END

Output

BIDE( 0.490) = 0.430

CAl

This function evaluates the Airy function of the first kind for complex arguments.

Function Return Value

CAl — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the Airy function is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied
to the Ai(2) function value. (Input)
Default: SCALING = . false.

FORTRAN 90 Interface
Generic: CAl (2)

Specific: The specific interface names are C_CAl and Z_CAl.

Description

2
= 2w . The mathematical

The Airy function Ai(2) is a solution of the differential equation—;
v4

development and algorithm, 838, used here are found in the work by Fabijonas et al. Function
CAI returns the complex values of Ai(2).

An optional argument, SCALING, defines a scaling function s( Z) that multiplies the results. This

scaling function is
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Scaling Action
-false. s(z)zl
-true. S(Z)z e[2/3]z32
Comments
Informational error
Type Code
2 1 The real part of (2/3) x Z®® was too large in the region where the

function is exponentially small; function values were set to zero to avoid
underflow. Try supplying the optional argument SCAL ING.

2 2 The real part of (2/3) x Z®® was too large in the region where the
function is exponentially large; function values were set to zero to avoid
underflow. Try supplying the optional argument SCALING.

Example
In this example, Ai(0.49, 0.49) is computed and printed.

USE CAIL_INT
USE UMACH_INT
IMPLICIT NONE
1 Declare variables
INTEGER NOUT
COMPLEX Y, Z, W
! Compute
W = CMPLX(0.49,0.49)
Y CAI(W)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y

1
99998 FORMAT(12x,"CAI(",F6.3 ™, ",F6.3 ™) = ( ",F6.3, ™, ",F6.3," )" )
End

Output

CAI( 0.490, 0.490) = ( 0.219, -0.113 )

CBI

This function evaluates the Airy function of the second kind for complex arguments.

Function Return Value

CBI — Complex function value. (Output)
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Required Arguments

Z — Complex argument for which the Airy function value is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied
to the Ai(2) function value used to compute Bi(2). (Input)
Default: SCALING = . false.

FORTRAN 90 Interface
Generic: CBl1 (2)

Specific: The specific interface names are C_CBI and Z_CBI.

Description

The Airy function of the second kind Bi(2) is expressed using the connection formula
BI(Z) — efiri/()Ai(zefbri/}) + eﬂi/bAi(ZeZIIi/S)

using function CAl for Ai(2).

An optional argument, SCALING, defines a scaling function s( Z) that multiplies the results. This

scaling function is

Scaling Action
-false. S(Z)=1

-true. S(Z):e[zn]z”2

The values for Bi(2) are returned with the scaling for Ai(2).

Comments
Informational error
Type Code
2 1 The real part of (2/3) x Z®"® was too large in the region where the

function is exponentially small; function values were set to zero to avoid
underflow. Try supplying the optional argument SCAL ING.

2 2 The real part of (2/3) x Z®® was too large in the region where the
function is exponentially large; function values were set to zero to avoid
underflow. Try supplying the optional argument SCAL ING.

Example
In this example, Bi(0.49, 0.49) is computed and printed.
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USE CBI_ INT
USE UMACH_INT
IMPLICIT NONE

1 Declare variables
INTEGER NOUT
COMPLEX Y, Z, W

1 Compute
W CMPLX(0.49,0.49)
Y = CBI(W)

1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y

1
99998 FORMAT(12x,"cBI(",F6.3 ", ",F6.3 ") = ( ",F6.3, ™, ",F6.3," )" )
End

Output

CBI( 0.490, 0.490) = ( 0.802, 0.243)

CAID

This function evaluates the derivative of the Airy function of the first kind for complex arguments.

Function Return Value
CAID — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the Airy function value is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied
to the Ai'(2) function value. (Input)
Default: SCALING = . false.

FORTRAN 90 Interface
Generic: C_CAID (©)

Specific: The specific interface names are C_CAID and Z_CAID.
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Description

The function Ai'(2) is defined to be the derivative of the Airy function, Ai(2) (see CAl).

An optional argument, SCAL ING, defines a scaling function s(z) that multiplies the results. This

scaling function is

Scaling Action
-false. s(z):l

.true. S(Z):e[z/ﬂz]’2
Comments
Informational error
Type Code
2 1 The real part of (2/3) x Z®® was too large in the region where the

function is exponentially small; function values were set to zero to avoid
underflow. Try supplying the optional argument SCALING.

2 2 The real part of (2/3) x Z®? was too large in the region where the
function is exponentially large; function values were set to zero to avoid
underflow. Try supplying the optional argument SCAL ING.

Example

In this example, Ai (0.49, 0.49) and Ai'(0.49, 0.49) are computed and printed.

99997
99998

USE CAID_INT
USE CAIL_INT

USE UMACH_INT
IMPLICIT NONE

Declare variables
INTEGER NOUT
COMPLEX Y, Z, W, Z

Compute
W = CMPLX(0.49,0.49)
Y = CAI(W)
Z = CAID(W)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y
WRITE (NOUT,99997) W, Z

FORMAT (12x,"'CAID(",F6.3 ™, ",F6.3 ") = ( ",F6.3, ™, ",F6.3," )")
FORMAT(12x,"CAI(",F6.3 ", ",F6.3 ') = ( ",F6.3, ", ",F6.3," )" )
End
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Output

CAI( 0.490, 0.490) = ( 0.219, -0.113 )
CAID( 0.490, 0.490) = ( -0.240, 0.064 )

CBID

This function evaluates the derivative of the Airy function of the second kind for complex
arguments.

Function Return Value

CBID — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the Airy function value is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied
to the Ai'(2) function value used to compute Bi'(Z). (Input)
Default: SCALING = . false.

FORTRAN 90 Interface
Generic: CBID (2)

Specific: The specific interface names are C_CBID and Z_CBID.

Description

The function Bi'(2) is defined to be the derivative of the Airy function of the second kind, Bi(2),
(see CBI), expressed using the connection formula

BII(Z) — e757ri/6Ai!(Ze727ri/3) + eSiri /6Ail(ze27ri /3)
using function CAID for Ai'(2).

An optional argument, SCALING, defines a scaling function s( Z) that multiplies the results. This

scaling function is
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é9998 FORMAT(12x,"CBID(*",F6.3 ™,

Scaling Action
-false. s(z)zl
.true. S( Z) _ e[2/3]z3 2

The values for Bi'(2) are returned with the scaling for Ai'(2).

Comments
Informational error
Type Code

2 1
2 2
Example

The real part of (2/3) x Z®® was too large in the region where the
function is exponentially small; function values were set to zero to avoid
underflow. Try supplying the optional argument SCAL ING.

The real part of (2/3) x Z®® was too large in the region where the
function is exponentially large; function values were set to zero to avoid
underflow. Try supplying the optional argument SCALING.

In this example, Bi'(0.49, 0.49) is computed and printed.

USE CBID_INT
USE UMACH_INT
IMPLICIT NONE

INTEGER NOUT
COMPLEX Y, Z,
w

Y = CBID(W)

w

CMPLX(0.49,0.49)

CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y

End

Output

CBID( 0.490,

0.490) =

Declare variables

Compute

Print the results

",F6.3 ") =

( 0.411,

( ".F6.3, 7, ",F6.3,7 )" )

0.180 )
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Chapter 9: Elliptic Integrals

Routines

Evaluates the complete elliptic integral of the first kind, K(x) ... ELK 175
Evaluates the complete elliptic integral of the second kind,

=10 IR TTTTTTT ELE 177
Evaluates Carlson’s elliptic integral of the first kind,

RE(X, ¥y Z) ettt ELRF 178
Evaluates Carlson’s elliptic integral of the second kind,

L OV SRR ELRD 179
Evaluates Carlson’s elliptic integral of the third kind,

R (X5 Y5 Z) ettt ELRJ 181
Evaluates a special case of Carlson’s elliptic integral,

RE(X) Yy Z) ettt e ELRC 183

Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964) and Carlson
(1979).

The complete elliptic integral of the first kind is

-1/2

K (m)= J:/2<1— msinze) deo
and the complete elliptic integral of the second kind is
x 1/2
E(m)=[""(1-msin’0) do

Instead of the parameter m, the modular angle o is sometimes used with m= sin’a.. Also used is
the modulus k with K =m.

E(k)=[""(1-K sin’6) *d&

0

1
=R (0,1-Kk2, 1)—§k2RD(0, 1-k, 1)
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Carlson Elliptic Integrals

The Carlson elliptic integrals are defined by Carlson (1979) as follows:
dt

1 0
MR S remaeerveyy

2

i d
R (% y)=2], [(t+x)(t+y)2]m

R (XY, z p)==— - dt -
(o %22) ZL [(t+x)(t+y)(t+2)(t+p) |

_3¢ dt
R % 29=3l, [0t y)(te2) ]

1/2

The standard Legendre elliptic integrals can be written in terms of the Carlson functions as follows

(these relations are from Carlson (1979)):
-1/2
F (4, k)zjj(l—kz sin’ 6’) 1 do
=(sing) R (cos2 $, 1-ksin® ¢, 1)

E(. k)= (1-K* sin'0) do
=(sing) R <0052 $, 1-k’ sin® ¢, 1)—%k2 (sin ¢)3 R, (cos2 $, 1-K*sin” ¢, 1)

M(g. k. n)=["(1+ nsin’6) (1-k*sin’0) " do
=(sing) R (0052 #, 1-K* sin® ¢, 1)—2(sin¢)3 R, (cos2 #, 1-K*sin” ¢, 1,1+ nsin’ ¢)
D(g. k) = ['sin* 0(1-Ksin* 6) " d &
:%(Sin ¢)3 R, (cos2 #, 1-K*sin’ ¢, 1)
K(K)=[""(1-Ksin* 0) "> do
=R (0, 1=K, 1)

E(k)=["(1-K* sin*0) do
1
=R (0, 1-k?, 1)—§k2RD(O,1—k2, 1)
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The function Rc(X, ) is related to inverse trigonometric and inverse hyperbolic functions.

Inx=(x-1) RCKHTXJ x} 0<x <

sin’lx:xF{(l—xz,l) —1<x<1
sinh™'x= xR (1+x,1) —00 < X<
cos'x=+1-% R (.1) 0<x<1
cosh’lx:ma(xz,l) 1<x<o

tan’1X:XF{(l,l+xz) —00 < X< 00
tanh~'x = xR, (1,1-x") ~l<x<1
cot’1x=RC(x2,x2+1) 0< X<
coth"x=RC(x2,x2—1) l<Xx<o

ELK

This function evaluates the complete elliptic integral of the kind K(X).
Function Return Value

ELK — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
X must be greater than or equal to 0 and less than 1.

FORTRAN 90 Interface
Generic: ELK (X)

Specific: The specific interface names are S_ELK and D_ELK.

FORTRAN 77 Interface

Single: ELK )
Double: The double precision name is DELK.
Description

The complete elliptic integral of the first kind is defined to be
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K(x) =] do for0 < x <1

/2
0 [1 — Xsin’ 9]1
The argument X must satisfy 0 < X < 1; otherwise, ELK is set to b = AMACH(2), the largest
representable floating-point number.

The function K(X) is computed using the routine ELRF and the relation

K(X) = Re(0, 1 = %, 1).

3.0
i K(x) —
E(x) -
2.5 /
2.0 -
1.5+ Tt
1.0 T L s e L B —)
0.0 0.25 0.5 0.75 1.0

Figure 9- 1 Plot of K(x) and E(x)

Example

In this example, K(0) is computed and printed.

USE ELK_INT
USE UMACH_INT

99999

IMPLICIT

INTEGER

NONE

NOUT

REAL

X
VALUE

VALUE, X

0.0
ELK(CX)

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

END

FORMAT (" ELK(", F6.3,

D

Declare variables

Compute

Print the results

= ", F6.3)
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Output

ELK( 0.000) = 1.571

ELE

This function evaluates the complete elliptic integral of the second kind E(X).
Function Return Value

ELE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
X must be greater than or equal to 0 and less than or equal to 1.

FORTRAN 90 Interface
Generic: ELE (X)

Specific: The specific interface names are S_ELE and D_ELE.

FORTRAN 77 Interface

Single: ELE (X)
Double: The double precision name is DELE.
Description

The complete elliptic integral of the second kind is defined to be
T 1/2
E(x) = [ [1-xsin* 0] d& for0<x<1

The argument X must satisfy 0 < X < 1; otherwise, ELE is set to b = AMACH(2), the largest
representable floating-point number.

The function E(X) is computed using the routines ELRF and ELRD. The computation is done using
the relation

E(x) =R (0. 1-x, 1)—§RD(O, 1-x 1)

For a plot of E(X), see Figure 9.1.
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Example

In this example, E(0.33) is computed and printed.

USE ELE_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.33
VALUE = ELE(X)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (" ELE(", F6.3, ") = ", F6.3)
END

Output

ELE( 0.330) = 1.432

ELRF

This function evaluates Carlson’s incomplete elliptic integral of the first kind Re(X, Y, Z).

Function Return Value
ELRF — Function value. (Output)

Required Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

FORTRAN 90 Interface
Generic: ELRF (X, Y, 2)

Specific: The specific interface names are S_ELRF and D_ELRF.
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FORTRAN 77 Interface
Single: ELRF (X, Y, 2)

Double: The double precision name is DELRF.

Description

The Carlson’s complete elliptic integral of the first kind is defined to be

_ 1y dt
R (X, Y, Z) - 2.|.0 |:(t+X)(t+y)(t+Z):|l/2

The arguments must be nonnegative and less than or equal to b/5. In addition, X+ Y, X+ Z and
y + zmust be greater than or equal to 5s. Should any of these conditions fail, ELRF is set to b.
Here, b = AMACH(2) is the largest and s= AMACH(1) is the smallest representable floating-point
number.

The function ELRF is based on the code by Carlson and Notis (1981) and the work of Carlson
(1979).

Example
In this example, Re(0, 1, 2) is computed and printed.

USE ELRF_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X, Y, Z
! Compute
X = 0.0
Y =1.0
4 = 2.0
VALUE = ELRF(X, Y, 2)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, Z, VALUE

99999 FORMAT (" ELRF(", F6.3, *,", F6.3, ",", F6.3, ") = ", F6.3)
END

Output

ELRF(C 0.000, 1.000, 2.000) = 1.311

ELRD

This function evaluates Carlson’s incomplete elliptic integral of the second kind Rp(X, Y, Z).

Chapter 9: Elliptic Integrals ELRD e 179



Function Return Value
ELRD — Function value. (Output)

Required Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be positive.

FORTRAN 90 Interface

Generic: ELRD (X, Y, 2)

Specific: The specific interface names are S_ELRD and D_ELRD.
FORTRAN 77 Interface

Single: ELRD (X, Y, 2)

Double: The double precision name is DELRD.

Description

The Carlson’s complete elliptic integral of the second kind is defined to be

3 (e dt
R (X’ Y Z) = 5'[0 312
[(t+x)(t+y)(t+2)' |
The arguments must be nonnegative and less than or equal to 0.69(In €)'’ s* where

€ = AMACH(4) is the machine precision, S= AMACH(1) is the smallest representable positive number.
Furthermore, X + y and Z must be greater than max {3s”*, 3/b**}, where b= AMACH(2) is the largest
floating-point number. If any of these conditions are false, then ELRD is set to b.

The function ELRD is based on the code by Carlson and Notis (1981) and the work of Carlson
(1979).

Example
In this example, Rp(0, 2, 1) is computed and printed.

USE ELRD_INT
USE UMACH_INT
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IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL VALUE, X, Y, Z
L Compute
X = 0.0
Y = 2.0
4 =1.0
VALUE = ELRD(X, Y, 2)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, Z, VALUE

99999 FORMAT (" ELRD(", F6.3, ",", F6.3, ",", F6.3, ") = ", F6.3)

END

Output

ELRD( 0.000, 2.000, 1.000) = 1.797

ELRJ

This function evaluates Carlson’s incomplete elliptic integral of the third kind Ry(X, Y, Z, RHO)

Function Return Value
ELRJ — Function value. (Output)

Required Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

RHO — Fourth variable of the incomplete elliptic integral. (Input)
It must be positive.

FORTRAN 90 Interface
Generic: ELRJ (X, Y, Z, RHO)

Specific: The specific interface names are S_ELRJ and D_ELRJ.
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FORTRAN 77 Interface
Single: ELRI (X, Y, Z, RHO)

Double: The double precision name is DELRJ.

Description

The Carlson’s complete elliptic integral of the third kind is defined to be
3 dt

RJ (X, Y, Z, p) :_.[

22 [(ex)(t+y)(te2)(t+p) |

The arguments must be nonnegative. In addition, X+ Y, X+ z y + Zand p must be greater than or
equal to (59)"* and less than or equal to .3(b/5)", where S= AMACH(1) is the smallest representable
floating-point number. Should any of these conditions fail, ELRF is set to

b = AMACH(2), the largest floating-point number.

The function ELRJ is based on the code by Carlson and Notis (1981) and the work of Carlson
(1979).

Example
In this example, Ry(2, 3, 4, 5) is computed and printed.

USE ELRJ_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL RHO, VALUE, X, Y, Z

! Compute
X
Y
Z
RHO .
VALUE LRI(X, Y, Z, RHO)

1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, Z, RHO, VALUE

99999 FORMAT (* ELRJ(", F6.3, *,", F6.3, *,", F6.3, ",", F6.3, &

") =", F6.3)

mobhwN
DOOOO0O

END

Output

ELRJ( 2.000, 3.000, 4.000, 5.000) = 0.143
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ELRC

This function evaluates an elementary integral from which inverse circular functions, logarithms
and inverse hyperbolic functions can be computed.

Function Return Value
ELRC — Function value. (Output)

Required Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative and satisfy the conditions given in Comments.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be positive and satisfy the conditions given in Comments.

FORTRAN 90 Interface
Generic: ELRC (X, Y)

Specific: The specific interface names are S_ELRC and D_ELRC.

FORTRAN 77 Interface
Single: ELRC (X, Y)

Double: The double precision name is DELRC.

Description
The special case of Carlson’s complete elliptic integral of the first kind is defined to be

lJ’w dt
20 [ x)(eeyy |

The argument X must be nonnegative, y must be positive, and X + y must be less than or equal to
b/5 and greater than or equal to 5s. If any of these conditions are false, then ELRC is set to b. Here,
b = AMACH(2) is the largest and S= AMACH(1) is the smallest representable floating-point number.

R(xy)=

The function ELRC is based on the code by Carlson and Notis (1981) and the work of Carlson
(1979).
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Comments

The sum X + Y must be greater than or equal to ARGMIN and both X and Y must be less than or
equal to ARGMAX. ARGMIN = s* 5 and ARGMAX = b/5, where S is the machine minimum (AMACH(1))
and b is the machine maximum (AMACH(2)).

Example
In this example, R(2.25, 2.0) is computed and printed.

USE ELRC_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL VALUE, X, Y
! Compute
X = 0.0
Y =1.0
VALUE = ELRC(X, Y)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, VALUE
99999 FORMAT (* ELRC(", F6.3, *,", F6.3, ") = ", F6.3)
END

Output

ELRC( 0.000, 1.000) = 1.571
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Chapter 10: Elliptic and Related

Functions

Routines

10.1. Weierstrass Elliptic and Related Functions

LEMNINSCALIC CASE vvvvnniiieiieeieiiee e
Lemninscatic case derivative..........cceuvveeveeeeeeevvvnnnnnn.
EquianharmoniC Case .........cccccevviveieeiiiiie e
Equianharmonic case derivative............ccccoocuveeennnne.

10.2. Jacobi Elliptic Functions

Jacobi function sn(x, m) (real argument)..................
Jacobi function cn(x, m) (real argument) ..................
Jacobi function dn(x, m) (real argument)..................

............. CWPL 188

CWPLD 189

............ CWPQ 190

CWPQD 192

.............. EJSN 193
.............. EJCN 195
.............. EJDN 197

Usage Notes

Elliptic functions are doubly periodic, single-valued complex functions of a single variable that are
analytic, except at a finite number of poles. Because of the periodicity, we need consider only the
fundamental period parallelogram. The irreducible number of poles, counting multiplicities, is the
order of the elliptic function. The simplest, non-trivial, elliptic functions are of order two.

The Weierstrass elliptic functions, (2 ®, ®") have a double pole at z= 0 and so are of order two.

Here, 2o and 2" are the periods.

The Jacobi elliptic functions each have two simple poles and so are also of order two. The period

of the functions is as follows:

Function  Periods

sn(X, M) 4K(m) 2iK’'(m)
cn(X, m) 4K(m) 4iK'(m)
dn(x, m) 2K(m) 4iK’'(m)

The function K(m) is the complete elliptic integral, see ELK, and K'(m) = K(1 — m).
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CWPL

This function evaluates the Weierstrass’ g function in the lemniscatic case for complex argument
with unit period parallelogram.

Function Return Value
CWPL — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CWPL (2)

Specific: The specific interface names are C_CWPL and Z_CWPL.

FORTRAN 77 Interface
Complex: CWPL (2)

Double complex: The double complex name is ZWPL.

Description

The Weierstrass’ g function, ¢ (2) = @(z| ®, ®'), is an elliptic function of order two with periods
2m and 20’ and a double pole at z= 0. CWPL(Z) computes (Z| », ®') with 20 =1 and 20’ =1.

The input argument is first reduced to the fundamental parallelogram of all z satisfying
—1/2<Rz< 1/2 and —1/2 £ 32< 1/2. Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points z= m+ ni, which are the poles of
CWPL. If the argument is a lattice point, then b= AMACH(2) , the largest floating-point number, is
returned. If the argument has modulus greater than 10e™', then NaN (not a number) is returned.
Here, ¢ = AMACH(4) is the machine precision.

Function CWPL is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example
In this example, (0.25 + 0.25i) is computed and printed.

USE CWPL_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
INTEGER NOUT
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COMPLEX VALUE, Z
1 Compute
z (0.25, 0.25)
VALUE = CWPL(Z)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (* CWPL(", F6.3, *,", F6.3, ") = (", &
F6.3, ",", F6.3, "))

END

Output

CWPL( 0.250, 0.250) = ( 0.000,-6.875)

CWPLD

This function evaluates the first derivative of the Weierstrass’ g function in the lemniscatic case
for complex argument with unit period parallelogram.

Function Return Value
CWPLD — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CWPLD (2)

Specific: The specific interface names are C_CWPLD and Z_CWPLD.

FORTRAN 77 Interface
Complex: CWPLD (2)

Double complex: The double complex name is ZWPLD.

Description

The Weierstrass’ ¢ function, $(2) = »(Z| o, ®'), is an elliptic function of order two with periods
2m and 20’ and a double pole at z= 0. CWPLD(Z) computes the derivative of p(z| ®, ®') with
20 =1 and 2w’ =i. CWPL computes @ (Z| ®, ®").

The input argument is first reduced to the fundamental parallelogram of all z satisfying
—1/2<Rz<1/2 and —1/2 < 3z< 1/2. Then, a rational approximation is used.
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All arguments are valid with the exception of the lattice points z= m+ ni, which are the poles of
CWPL. If the argument is a lattice point, then b = AMACH(2), the largest floating-point number, is
returned.

Function CWPLD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example
In this example, (0.25 + 0.25i) is computed and printed.

USE CWPLD_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

Compute
Z
VALUE

(0.25, 0.25)
CWPLD(2)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (* CWPLD(", F6.3, ",", F6.3, ") = (7, &

F6.3, ",", F6.3, ")")
END

Output

CWPLD( 0.250, 0.250) = (36.054,36.054)

CWPQ

This function evaluates the Weierstrass’ g function in the equianharmonic case for complex
argument with unit period parallelogram.

Function Return Value

CWPQ — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CWPQ (2)

Specific: The specific interface names are C_CWPQ and Z_CWPQ.
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FORTRAN 77 Interface
Complex: CWPQ (2)

Double complex: The double complex name is ZWPQ.

Description

The Weierstrass’ g function, ¢ (2) = ¢(Z| o, ®"), is an elliptic function of order two with periods
2m and 20’ and a double pole at z= 0. CWPQ(Z) computes ¢ (Z| ®, ®') with

40 =1-i/3 and 40’ =1+i\/3
The input argument is first reduced to the fundamental parallelogram of all z satisfying

~1/2<Rz<1/2and —/3/4<T3z<3/4
Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points
z= m(l—i«/§)+ n(1+i«/§)

which are the poles of CWPQ. If the argument is a lattice point, then b = AMACH(2), the largest
floating-point number, is returned. If the argument has modulus greater than 10e™', then NaN (not
a number) is returned. Here, ¢ = AMACH(4) is the machine precision.

Function CWPQ is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example

In this example, (0.25 + 0.14437567i) is computed and printed.

USE CWPQ_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
1 Compute
z (0.25, 0.14437567)
VALUE = CWPQ(2)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (" CWPQ(", F6.3, ",", F6.3, ") = (", &
F7.3, ",", F7.3, ")

END

Output

CWPQ( 0.250, 0.144) = ( 5.895,-10.216)
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CWPQD

This function evaluates the first derivative of the Weierstrass’ ¢ function in the equianharmonic
case for complex argument with unit period parallelogram.

Function Return Value
CWPQD — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CWPQD (2)

Specific: The specific interface names are C_CWPQD and Z_CWPQD.

FORTRAN 77 Interface
Complex: CWPQD (2)

Double complex: The double complex name is ZWPQD.

Description

The Weierstrass’ g function, ¢ (2) = @(z| ®, ®'), is an elliptic function of order two with periods
2m and 20’ and a double pole at z= 0. CWPQD(Z) computes the derivative of @ (zZ| ®, ®') with

40 =1-i3 and 40’ =1+i/3
CWPQ computes @ (Z] ®, ®').
The input argument is first reduced to the fundamental parallelogram of all z satisfying
~1/2<Rz<1/2and —\3/4<3z2<3/4

Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points
z= m(l—i«/g)+ n(1+i«/§)

which are the poles of CWPQ. If the argument is a lattice point, then b = AMACH(2), the largest
floating-point number, is returned.

Function CWPQD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).
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Example
In this example, (0.25 + 0.144375671) is computed and printed.

USE CWPQD_INT
USE UMACH_INT

IMPLICIT NONE
1 Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
1 Compute
Z (0.25, 0.14437567)
VALUE CWPQD(2)
1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (* CwPQD(", F6.3, ",", F6.3, ") = (", &
F6.3, ",", F6.3, "))

END

Output

CWPQD( 0.250, 0.144) = ( 0.028,85.934)

EJSN

This function evaluates the Jacobi elliptic function sn(x, m).
Function Return Value
EJSN — Real or complex function value. (Output)
Required Arguments
X — Real or complex argument for which the function value is desired. (Input)

AM — Parameter of the elliptic function (m=k*). (Input)

FORTRAN 90 Interface
Generic: EJSN (X, AM)

Specific: The specific interface names are S_EJSN, D_EJSN, C_EJSN, and Z_EJSN

FORTRAN 77 Interface
Single: EJSN (X, AM)
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Double: The double precision name is DEJSN.
Complex:  The complex name is CEJSN.

Double Complex: The double complex name is ZEJSN.

Description
The Jacobi elliptic function sn(X, M) = sin ¢, where the amplitude ¢ is defined by the following:
¢ déo
0 -2 %
(l —msin 9)

The function sn(x, M) is computed by first applying, if necessary, a Jacobi transformation so that
the parameter, m, is between zero and one. Then, a descending Landen (Gauss) transform is
applied until the parameter is small. The small parameter approximation is then applied.

Comments
Informational errors
Type Code
3 2 The result is accurate to less than one half precision because |X| is too
large.
3 2 The result is accurate to less than one half precision because |REAL (2)|
is too large.
3 3 The result is accurate to less than one half precision because |AIMAG (2)|
is too large.
3 5 Landen transform did not converge. Result may not be accurate. This
should never occur.
Example 1

In this example, sn(1.5, 0.5) is computed and printed.

USE EJSN_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL AM, VALUE, X
! Compute
AM = 0.5
X =1.5
VALUE = EJSN(X, AM)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, AM, VALUE
99999 FORMAT (* EJSN(", F6.3, *,", F6.3, ") = ", F6.3)
END
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Output

EJSN( 1.500, 0.500) = 0.968
Additional Example

Example 2

In this example, sn(1.5 + 0.3i, 0.5) is computed and printed.

USE EJSN_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL AM
COMPLEX VALUE, Z
! Compute
4 = (1.5, 0.3)
AM = 0.5
VALUE = EJSN(Z, AM)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (" EJSN((", F6.3, ",", F6.3, "), ", F6.3, ") = (", &
F6.3, ",", F6.3, ")")
END

Output

EJSN(( 1.500, 0.300), 0.500) = ( 0.993, 0.054)

EJCN

This function evaluates the Jacobi elliptic function cn(X, m).

Function Return Value

EJCN — Real or complex function value. (Output)

Required Arguments

X — Real or complex argument for which the function value is desired. (Input)

AM — Parameter of the elliptic function (m= k?). (Input)

FORTRAN 90 Interface
Generic: EJCN (X, AM)
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Specific: The specific interface names are S_EJCN, D_EJCN, C_EJCN, and Z EJCN.

FORTRAN 77 Interface
Single: EJCN (X, AM)

Double: The double precision name is DEJCN.
Complex:  The complex name is CEJCN.

Double Complex: The double complex name is ZEJCN .

Description
The Jacobi elliptic function cn(X, m) = cos ¢, where the amplitude ¢ is defined by the following:
¢ déo
X= IO ( .2 %
1-msin 6)

The function cn(X, m) is computed by first applying, if necessary, a Jacobi transformation so that
the parameter, m, is between zero and one. Then, a descending Landen (Gauss) transform is
applied until the parameter is small. The small parameter approximation is then applied.

Comments
Informational errors
Type Code
3 2 The result is accurate to less than one half precision because |X| is too
large.
3 2 The result is accurate to less than one half precision because |REAL (2)|
is too large.
3 3 The result is accurate to less than one half precision because |AIMAG (2)|
is too large.
3 5 Landen transform did not converge. Result may not be accurate. This
should never occur.
Example 1

In this example, cn(1.5, 0.5) is computed and printed.

USE EJCN_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL AM, VALUE, X
! Compute
AM = 0.5
X =1.5
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VALUE = EJCN(X, AM)

1 Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, AM, VALUE

99999 FORMAT (* EJCN(®, F6.3, *,", F6.3, ") = ", F6.3)
END

Output

EJCN( 1.500, 0.500) = 0.250
Additional Example

Example 2

In this example, cn(1.5 + 0.3i, 0.5) is computed and printed.

USE EJCN_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER NOUT
REAL AM
COMPLEX VALUE, Z
1 Compute
Z = (1.5, 0.3)
AM = 0.5
VALUE = EJCN(Z, AM)
1 Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (" EJCN((", F6.3, ",", F6.3, "), ", F6.3, ") = (", &
F6.3, ",", F6.3, ")")
END

Output

EJCN(( 1.500, 0.300), 0.500) = ( 0.251,-0.212)

EJDN

This function evaluates the Jacobi elliptic function dn(x, m).
Function Return Value

EJDN — Real or complex function value. (Output)

Required Arguments

X — Real or complex argument for which the function value is desired. (Input)
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AM — Parameter of the elliptic function (m=k*). (Input)

FORTRAN 90 Interface
Generic: EJDN (X, AM)

Specific: The specific interface names are S_EJDN, D_EJDN, C_EJDN, and Z EJDN.

FORTRAN 77 Interface
Single: EJDN (X, AM)

Double: The double precision name is DEJDN.
Complex:  The complex precision name is CEJDN.

Double Complex: The double complex precision name is ZEJDN.

Description

The Jacobi elliptic function dn(x, m) = (1 — msin? ¢)’>, where the amplitude ¢ is defined by the
following:

= I*’L
0 (1 - msinzé’)%

The function dn(x, m) is computed by first applying, if necessary, a Jacobi transformation so that
the parameter, m, is between zero and one. Then, a descending Landen (Gauss) transform is
applied until the parameter is small. The small parameter approximation is then applied.

Comments
Informational errors
Type Code
3 2 The result is accurate to less than one half precision because |X| is too
large.
3 2 The result is accurate to less than one half precision because |REAL (2)|
is too large.
3 3 The result is accurate to less than one half precision because |AIMAG (2)|
is too large.
3 5 Landen transform did not converge. Result may not be accurate. This
should never occur.
Example 1

In this example, dn(1.5, 0.5) is computed and printed.

USE EJDN_INT
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USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL AM, VALUE, X
L Compute
AM = 0.5
X =1.5
VALUE = EJDN(X, AM)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, AM, VALUE
99999 FORMAT (* EJDN(®, F6.3, =,", F6.3, ") = ", F6.3)
END

Output

EJDN( 1.500, 0.500) = 0.729
Additional Example

Example 2

In this example, dn(1.5 + 0.3, 0.5) is computed and printed.

USE EJDN_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT
REAL AM
COMPLEX VALUE, Z

! Compute
z = (1.5, 0.3)
AM = 0.5
VALUE = EJDN(Z, AM)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (" EJDN((", F6.3, ",", F6.3, "), ", F6.3, ") = (", &
F6.3, ",", F6.3, "))
END

Output

EJDN(( 1.500, 0.300), 0.500) = ( 0.714,-0.037)
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Chapter 11: Probability Distribution
Functions and Inverses

Routines

11.1.

11.2.

Discrete Random Variables: Cumulative Distribution Functions and

Probability Density Function

Binomial cumulative distribution function..............cccccceeeenns BINDF
Binomial probability density function ...........cccccvviieiininnnn. BINPR
Geometric cumulative distribution function......................... GEODF
Inverse of Geometric cumulative distribution function......... GEOIN
Geometric probability density function..............ccccuvieeeeen. GEOPR
Hypergeometric cumulative distribution function................. HYPDF
Hypergeometric probability density function........................ HYPPR
Poisson cumulative distribution function.............cccccceeeeeiis POIDF
Poisson probability density function .............ccocccvvveeereennninns POIPR
Discrete uniform cumulative distribution function............... UNDDF
Inverse of discrete uniform cumulative

distribution fuNCtion ...........cccooviviiiiiie e UNDIN
Discrete uniform probability density function..................... UNDPR
Continuous Random Variables: Distribution Functions and Their
Inverses

Kolmogorov-Smirnov one-sided statistic

cumulative distribution function.............cccccveee i, AKS1DF
Kolmogorov-Smirnov two-sided statistic

cumulative distribution function.............ccccociee e, AKS2DF
Lognormal cumulative distribution function ..............c.......... ALNDF
Inverse of the lognormal cumulative distribution function..... ALNIN
Lognormal probability density function ..............cccccceeeeeins ALNPR
Normal (Gaussian) cumulative distribution function ......... ANORDF
Inverse of the normal cumulative distribution function ...... ANORIN
Normal (Gaussian) probability density function............... ANORPR
Beta cumulative distribution function.............cccoccccivenneeenn. BETDF
Inverse of the beta probability density function ................... BETPR
Inverse of the beta cumulative distribution function ............. BETIN
Bivariate normal cumulative distribution function ................ BNRDF
Chi-squared probability density function.............ccccccueeeenne CHIDF

207
209
211
212
213
214
216
218
220
222

223
224

225

228
230
232
233
234
236
237
238
242
241
244
245
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Inverse of the chi-squared cumulative distribution function ...CHIIN 248
Chi-squared cumulative distribution function ....................... CHIPR 250
Noncentral chi-squared cumulative distribution function..... CSNDF 251
Inverse of the noncentral chi-squared cumulative

distribution fUNCLION ......coooviiiiiiee e, CSNIN 254
Exponential distribution cumulative function....................... EXPDF 255
Inverse of the exponential cumulative
distribution fUNCLION ......coooeveeiii e, EXPIN 257
Exponential probability density function..............ccoeevvveeeee. EXPPR 258
Extreme value cumulative distribution function................... EXVDF 259
Inverse of the Extreme value cumulative
distribution fUNCHION ........oviieieeieee e EXVIN 260
Extreme value probability density function...............cc......... EXVPR 261
F cumulative distribution funCtion...........coceveviiiiieiiiiee e FDF 263
Inverse of the F cumulative distribution function........................ FIN 265
F probability density function............ccccceoiiiiiii e, FPR 266
Gamma cumulative distribution function ............cceeeeeeeeniens GAMDF 268
Inverse of the gamma cumulative distribution function........ GAMIN 270
Gamma probability density function............cccccveeeeeeeiiinns GAMPR 272
Rayleigh’s cumulative distribution function .......................... RALDF 273
Inverse of the Rayleigh’s cumulative distribution function ....RALIN 274
Rayleigh’s probability density function ...........cccccceevvnnnnee. RALPR 275
Student’s t cumulative distribution function............ccccoeeeervennen. TDF 276
Inverse of the Student’s t cumulative distribution function......... TIN 278
Student’s t probability density function..............ccccceeiiiiiiiinnen. TPR 279
Noncentral Student’s t cumulative distribution function ......... TNDF 281
Inverse of the noncentral Student’'s t cumulative
distribution fUNCLION ......coooiiiiiee e TNIN 283
Uniform cumulative distribution function ..............ccceeeeeveennens UNDF 285
Inverse of the uniform cumulative distribution function........... UNIN 286
Uniform probability density function ............cccccceveeeviniiinne, UNPR 287
Weibull cumulative distribution function ..............ccoovvvvnnnn... WBLDF 288
Inverse of the Weibull cumulative distribution function ........ WBLIN 290
Weibull probability density function............ccccoceeeviieennn. WBLPR 291
11.3. General Continuous Random Variables
Distribution function given ordinates of density..................... GCDF 292
Inverse of distribution function given ordinates of density ..... GCIN 295
Inverse of distribution function given subprogram ............... GFNIN 298

Usage Notes

Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz
(1969, 1970a, 1970b). These are also good references for the specific distributions.

In order to keep the calling sequences simple, whenever possible, the routines in this chapter are
written for standard forms of statistical distributions. Hence, the number of parameters for any
given distribution may be fewer than the number often associated with the distribution. For
example, while a gamma distribution is often characterized by two parameters (or even a third,
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“location”), there is only one parameter that is necessary, the “shape.” The “scale” parameter can
be used to scale the variable to the standard gamma distribution. For another example, the
functions relating to the normal distribution, ANORDF and ANORIN, are for a normal distribution
with mean equal to zero and variance equal to one. For other means and variances, it is very easy
for the user to standardize the variables by subtracting the mean and dividing by the square root of
the variance.

The distribution function for the (real, single-valued) random variable X is the function F defined
for all real X by

F(X) = Prob(X < X)

where Prob(-) denotes the probability of an event. The distribution function is often called the
cumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values less than
the left endpoint and 1 for values greater than the right endpoint. The routines in this chapter
return the correct values for the distribution functions when values outside of the range of the
random variable are input, but warning error conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random variable takes on
specific values is called the probability function, defined by

p(X) = Prob(X = X)
The “PR” routines in this chapter evaluate probability functions.

The CDF for a discrete random variable is
F(x)=2p(k)

where A is the set such that kK < x. The “DF” routines in this chapter evaluate cumulative
distributions functions. Since the distribution function is a step function, its inverse does not exist
uniquely.
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Figure 11- 1 Discrete Random Variable

In the plot above, a routine like BINPR in this chapter evaluates the individual probability, given
X. A routine like BINDF would evaluate the sum of the probabilities up to and including the
probability at X.

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not be useful because
the probability of any given point is 0. For such distributions, the useful analog is the probability
density function (PDF). The integral of the PDF is the probability over the interval; if the
continuous random variable X has PDF f, then

Prob(a< X <b)= jb

a

f (x)dx
The relationship between the CDF and the PDF is

F(x)=]" f(t)dt

as shown below.
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Figure 11- 2 Probability Density Function

The “DF” routines for continuous distributions in this chapter evaluate cumulative distribution
functions, just as the ones for discrete distributions.

For (absolutely) continuous distributions, the value of F(X) uniquely determines x within the
support of the distribution. The “IN” routines in this chapter compute the inverses of the
distribution functions; that is, given F(X) (called “P” for “probability”), a routine like BETIN
computes X. The inverses are defined only over the open interval (0, 1).
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There are two routines in this chapter that deal with general continuous distribution functions. The
routine GCDF computes a distribution function using values of the density function, and the routine
GCIN computes the inverse. These two routines may be useful when the user has an estimate of a
probability density.

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function or is to be input to
an inverse function, it is often impossible to achieve good accuracy because of the nature of the
representation of numeric values. In this case, it may be better to work with the complementary
distribution function (one minus the distribution function). If the distribution is symmetric about
some point (as the normal distribution, for example) or is reflective about some point (as the beta
distribution, for example), the complementary distribution function has a simple relationship with
the distribution function. For example, to evaluate the standard normal distribution at 4.0, using
ANORIN directly, the result to six places is 0.999968. Only two of those digits are really useful,
however. A more useful result may be 1.000000 minus this value, which can be obtained to six
significant figures as 3.16713E—-05 by evaluating ANORIN at —4.0. For the normal distribution, the
two values are related by @(X) = 1 — ®(—X), where ®(+) is the normal distribution function. Another
example is the beta distribution with parameters 2 and 10. This distribution is skewed to the right;
so evaluating BETDF at 0.7, we obtain 0.999953. A more precise result is obtained by evaluating
BETDF with parameters 10 and 2 at 0.3. This yields 4.72392E-5. (In both of these examples, it is
wise not to trust the last digit.)
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Many of the algorithms used by routines in this chapter are discussed by Abramowitz and Stegun
(1964). The algorithms make use of various expansions and recursive relationships, and often use
different methods in different regions.

Cumulative distribution functions are defined for all real arguments; however, if the input to one
of the distribution functions in this chapter is outside the range of the random variable, an error of
Type 1 is issued, and the output is set to zero or one, as appropriate. A Type 1 error is of lowest
severity, a “note;” and, by default, no printing or stopping of the program occurs. The other
common errors that occur in the routines of this chapter are Type 2, “alert,” for a function value
being set to zero due to underflow; Type 3, “warning,” for considerable loss of accuracy in the
result returned; and Type 5, “terminal,” for incorrect and/ or inconsistent input, complete loss of
accuracy in the result returned, or inability to represent the result (because of overflow). When a
Type 5 error occurs, the result is set to NaN (not a number, also used as a missing value code,
obtained by IMSL routine AMACH(6). (See the section “User Errors” in the Reference Material.)

BINDF

This function evaluates the binomial cumulative distribution function.

Function Return Value

BINDF — Function value, the probability that a binomial random variable takes a value less
than or equal to K. (Output)
BINDF is the probability that K or fewer successes occur in N independent Bernoulli
trials, each of which has a PIN probability of success.

Required Arguments
K — Argument for which the binomial distribution function is to be evaluated. (Input)
N — Number of Bernoulli trials. (Input)
PIN — Probability of success on each independent trial. (Input)
FORTRAN 90 Interface
Generic: BINDF (K, N, PIN)
Specific: The specific interface names are S_BINDF and D_BINDF.
FORTRAN 77 Interface
Single: BINDF (K, N, PIN)

Double: The double precision name is DB INDF.
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Description

Function BINDF evaluates the cumulative distribution function of a binomial random variable with
parameters N and p where N =N and p =PIN. It does this by summing probabilities of the random
variable taking on the specific values in its range. These probabilities are computed by the
recursive relationship
(n_H—_])ppr(x =j-1

10-p)
To avoid the possibility of underflow, the probabilities are computed forward from 0, if K is not
greater than n times p, and are computed backward from n, otherwise. The smallest positive
machine number, ¢, is used as the starting value for summing the probabilities, which are rescaled
by (1 — p)"e if forward computation is performed and by p’e if backward computation is done. For
the special case of p= 0, BINDF is set to 1; and for the case p=1, BINDF is set to 1 if k=nand to
0 otherwise.

Pr(X=j) =

Comments
Informational errors
Type Code
1 3 The input argument, K, is less than zero.
1 4 The input argument, K, is greater than the number of Bernoulli trials, N.
Example

Suppose X is a binomial random variable with n=35 and p = 0.95. In this example, we find the
probability that X is less than or equal to 3.

USE UMACH_INT
USE BINDF_INT

IMPLICIT NONE
INTEGER K, N, NOUT

REAL PIN, PR
!
CALL UMACH (2, NOUT)
K =3
N =5
PIN = 0.95

PR = BINDF(K,N, PIN)
WRITE (NOUT,99999) PR
99999 FORMAT (* The probability that X is less than or equal to 3 is " &
, F6.4)
END

Output

The probability that X is less than or equal to 3 is 0.0226
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BINPR

This function evaluates the binomial probability density function.

Function Return Value

BINPR Function value, the probability that a binomial random variable takes a value equal
to K. (Output)

Required Arguments

K — Argument for which the binomial probability function is to be evaluated. (Input)
N — Number of Bernoulli trials. (Input)

PIN — Probability of success on each independent trial. (Input)

FORTRAN 90 Interface
Generic: BINPR (K, N, PIN)

Specific: The specific interface names are S_BINPR and D_BINPR.

FORTRAN 77 Interface
Single: BINPR (K, N, PIN)

Double: The double precision name is DBINPR.

Description

The function BINPR evaluates the probability that a binomial random variable with parameters n
and p where p =P IN takes on the value k. It does this by computing probabilities of the random
variable taking on the values in its range less than (or the values greater than) k. These
probabilities are computed by the recursive relationship

(n+1-j)p
ja-p

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k is not
greater than n times P, and are computed backward from n, otherwise. The smallest positive
machine number, &, is used as the starting value for computing the probabilities, which are
rescaled by (1 — p)"e if forward computation is performed and by p’e if backward computation is
done.

Pr(X = j) = Pr(X = j-1)

For the special case of p= 0, BINPR is set to 0 if K is greater than 0 and to 1 otherwise; and for the
case p=1, BINPR is set to 0 if K is less than n and to 1 otherwise.

Chapter 11: Probability Distribution Functions and Inverses BINPR e 209



0.32 —

| n=10,p=0.5 —
! n=10,p=0.2 -~
0.24 - |
T0164 11|
A 4o
ooe— |
. B l l l l ‘ |
0.0 Y \ \ Y
0 2 4 6 8 10

Figure 11- 4 Binomial Probability Function

Comments
Informational errors
Type Code
1 3 The input argument, K, is less than zero.
1 4 The input argument, K, is greater than the number of Bernoulli trials, N.
Example

Suppose X is a binomial random variable with N =5 and PIN = 0.95. In this example, we find the
probability that X is equal to 3.

USE UMACH_INT
USE BINPR_INT

IMPLICIT = NONE
INTEGER K, N, NOUT
REAL PIN, PR
CALL UMACH (2, NOUT)
K =3

N =5

PIN = 0.95

PR = BINPR(K,N,PIN)
WRITE (NOUT,99999) PR

99999 FORMAT (" The probability that X is equal to 3 is ", F6.4)

END
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Output

The probability that X is equal to 3 is 0.0214

GEODF

This function evaluates the discrete geometric cumulative probability distribution function.

Function Return Value

GEODF — Function value, the probability that a geometric random variable takes a value
less than or equal to 1X. (Output)

Required Arguments
IX — Argument for which the geometric cumulative distribution function is to be evaluated.
(Input)

PIN — Probability parameter for each independent trial (the probability of success for each
independent trial). PIN must be in the open interval (0, 1). (Input)

FORTRAN 90 Interface
Generic: GEODF (IX, PIN)

Specific: The specific interface names are S_GEODF and D_GEODF.

FORTRAN 77 Interface
Single: GEODF (IX, PIN)

Double: The double precision name is DGEODF.

Description

The function GEODF evaluates the discrete geometric cumulative probability distribution function
with parameter p = PIN, defined

]
F(X|p):ZPQ', g=1-p, O0<p<l.

i=0

The return value is the probability that up to X trials would be observed before observing a success.

Example

In this example, we evaluate the probability function at 1X =3, PIN = 0.25.
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USE UMACH_INT

USE GEODF_INT
IMPLICIT NONE
INTEGER NOUT, IX
REAL PIN, PR

CALL UMACH(2, NOUT)

IX = 3
PIN = 0.25e0
PR = GEODF(IX, PIN)
WRITE (NOUT, 99999) IX, PIN, PR
99999 FORMAT (" GEODF(", 12, ", ", F4.2, ") = ", F10.6)
END

Output

GEODF( 3, 0.25) = 0.683594

GEOIN

This function evaluates the inverse of the geometric cumulative probability distribution function.

Function Return Value

GEOIN — Integer function value. The probability that a geometric random variable takes a
value less than or equal to the returned value is the input probability, P. (Output)

Required Arguments

P — Probability for which the inverse of the discrete geometric cumulative distibution
function is to be evaluated. P must be in the open interval (0, 1). (Input)

PIN — Probability parameter for each independent trial (the probability of success for each
independent trial). PIN must be in the open interval (0, 1). (Input)

FORTRAN 90 Interface

Generic: GEOIN (P, PIN)

Specific: The specific interface names are S_GEOIN and D_GEOIN.
FORTRAN 77 Interface

Single: GEOIN (P, PIN)

Double: The double precision name is DGEOIN.
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Description

The function GEOIN evaluates the inverse distribution function of a geometric random variable
with parameter PIN. The inverse of the CDF is defined as the smallest integer X such that the
geometric CDF is not less than a given valueP, 0<P<1.

Example

In this example, we evaluate the inverse probability function at PIN = 0.25, P = 0.6835.

USE UMACH_INT
USE GEOIN_INT
IMPLICIT NONE
INTEGER NOUT, IX
REAL P, PIN
CALL UMACH(2, NOUT)
PIN = 0.25
P= 0.6835
IX = GEOIN(P, PIN)
WRITE (NOUT, 99999) P, PIN, IX
99999 FORMAT (* GEOIN(, F4.2, =, =, F6.4 *) = ", 12)
END

Output

GEOIN(0.6835, 0.25) = 3

GEOPR

This function evaluates the discrete geometric probability density function.

Function Return Value

GEOPR — Function value, the probability that a random variable from a geometric
distribution having parameter PIN will be equal to 1X. (Output)

Required Arguments

IX — Argument for which the discrete geometric probability density function is to be
evaluated. 1X must be greater than or equal to 0. (Input)

PIN — Probability parameter of the geometric probability function (the probability of success
for each independent trial). PIN must be in the open interval (0, 1). (Input)

FORTRAN 90 Interface
Generic: GEOPR (IX, PIN)

Specific: The specific interface names are S_GEOPR and D_GEOPR.
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FORTRAN 77 Interface

Single: GEOPR (IX, PIN)
Double: The double precision name is DGEOPR.
Description

The function GEOPR evaluates the discrete geometric probability density function, defined

f(Xp)=pa, gq=1-p, 0<p<l, x=0,1,.,HUGE(), where p=PIN,

Example

In this example, we evaluate the probability density function at 1X =3, PIN = 0.25.

USE UMACH_INT
USE GEOPR_INT
IMPLICIT NONE
INTEGER NOUT,
REAL PIN, PR
CALL UMACH(2, NOUT)

IX = 3

PIN = 0.25e0

PR = GEOPR(IX, PIN)

WRITE (NOUT, 99999) IX, PIN, PR
FORMAT (" GEOPR(", 12, ", ", F4.2, ")
END

1X

99999

Output

GEOPR( 3, 0.25) = 0.1055

", F6.4)

HYPDF

This function evaluates the hypergeometric cumulative distribution function.

Function Return Value

HYPDF — Function value, the probability that a hypergeometric random variable takes a

value less than or equal to K. (Output)

HYPDF is the probability that K or fewer defectives occur in a sample of size N drawn

from a lot of size L that contains M defectives.
See Comment 1.

Required Arguments

K — Argument for which the hypergeometric cumulative distribution function is to be

evaluated. (Input)
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N — Sample size. (Input)
N must be greater than zero and greater than or equal to K.

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equal to N and M.

FORTRAN 90 Interface
Generic: HYPDF (K, N, M, L)

Specific: The specific interface names are S_HYPDF and D_HYPDF.

FORTRAN 77 Interface
Single: HYPDF (K, N, M, L)

Double: The double precision name is DHYPDF.

Description

The function HYPDF evaluates the cumulative distribution function of a hypergeometric random
variable with parameters n, |, and m. The hypergeometric random variable X can be thought of as
the number of items of a given type in a random sample of size n that is drawn without
replacement from a population of size | containing mitems of this type. The probability function is

Pr(X = J):%

for j=i,i+1,i+2,...min(n,m)

where | = max(0, n—| +m).

If k is greater than or equal to i and less than or equal to min(n, m), HYPDF sums the terms in this
expression for j going from i up to k. Otherwise, HYPDF returns 0 or 1, as appropriate. So, as to
avoid rounding in the accumulation, HYPDF performs the summation differently depending on
whether or not K is greater than the mode of the distribution, which is the greatest integer less than
or equal to (m+ 1)(n+ 1)/(I +2).

Comments

1. If the generic version of this function is used, the immediate result must be stored in a
variable before use in an expression. For example:

X
Y

HYPDF (K, N, M, L)
SQRT(X)

must be used rather than

Y = SQRT(HYPDF(K, N, M, L))
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If this is too much of a restriction on the programmer, then the specific name can be
used without this restriction.

2. Informational errors
Type Code
1 5  The input argument, K, is less than zero.
1 6  The input argument, K, is greater than the sample size.
Example

Suppose X is a hypergeometric random variable with N = 100, L = 1000, and M = 70. In this
example, we evaluate the distribution function at 7.

USE UMACH_INT

USE HYPDF_INT

IMPLICIT NONE

INTEGER K, L, M, N, NOUT

REAL DF
1

CALL UMACH (2, NOUT)

K =7

N = 100

L = 1000

M =70

DF = HYPDF(K,N,M,L)

WRITE (NOUT,99999) DF
99999 FORMAT (* The probability that X is less than or equal to 7 is " &
, F6.4)
END

Output

The probability that X is less than or equal to 7 is 0.5995

HYPPR

This function evaluates the hypergeometric probability density function.

Function Return Value

HYPPR — Function value, the probability that a hypergeometric random variable takes a
value equal to K. (Output)
HYPPR is the probability that exactly K defectives occur in a sample of size N drawn
from a lot of size L that contains M defectives.
See Comment 1.

Required Arguments

K — Argument for which the hypergeometric probability function is to be evaluated. (Input)
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N — Sample size. (Input)
N must be greater than zero and greater than or equal to K.

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equal to N and M.

FORTRAN 90 Interface
Generic: HYPPR (K, N, M, L)

Specific: The specific interface names are S_HYPPR and D_HYPPR.

FORTRAN 77 Interface
Single: HYPPR (K, N, M, L)

Double: The double precision name is DHYPPR.

Description

The function HYPPR evaluates the probability density function of a hypergeometric random
variable with parameters n, |, and m. The hypergeometric random variable X can be thought of as
the number of items of a given type in a random sample of size n that is drawn without
replacement from a population of size | containing mitems of this type. The probability density
function is

Pr(X =k) = %

where i = max(0, n— | + m). HYPPR evaluates the expression using log gamma functions.

for k=i,i +1,i+2,...min(n,m)

Comments

1. If the generic version of this function is used, the immediate result must be stored in a
variable before use in an expression. For example:

X
Y

HYPPR(K, N, M, L)
SQRT(X)

must be used rather than
Y = SQRT(HYPPR(K, N, M, L))

If this is too much of a restriction on the programmer, then the specific name can be
used without this restriction.
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2. Informational errors

Type Code
1 5 The input argument, K, is less than zero.
1 6  The input argument, K, is greater than the sample size.
Example

Suppose X is a hypergeometric random variable with N =100, L = 1000, and M = 70. In this
example, we evaluate the probability function at 7.

USE UMACH_INT
USE HYPPR_INT

IMPLICIT NONE
INTEGER K, L, M, N, NOUT

REAL PR
1

CALL UMACH (2, NOUT)

K =7

N = 100

L = 1000

M =70

PR = HYPPR(K,N,M,L)

WRITE (NOUT,99999) PR
99999 FORMAT (* The probability that X is equal to 7 is ", F6.4)
END

Output

The probability that X is equal to 7 is 0.1628

POIDF

This function evaluates the Poisson cumulative distribution function.

Function Return Value

POIDF — Function value, the probability that a Poisson random variable takes a value less
than or equal to K. (Output)

Required Arguments
K — Argument for which the Poisson cumulative distribution function is to be evaluated.
(Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.
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FORTRAN 90 Interface
Generic: POIDF (K, THETA)

Specific: The specific interface names are S_POIDF and D_POIDF.

FORTRAN 77 Interface
Single: POIDF (K, THETA)

Double: The double precision name is DPOIDF.

Description

The function POIDF evaluates the cumulative distribution function of a Poisson random variable
with parameter THETA. THETA, which is the mean of the Poisson random variable, must be
positive. The probability function (with 6 = THETA) is

f(x) = e 0x!, forx=0,1,2,...

The individual terms are calculated from the tails of the distribution to the mode of the distribution
and summed. POIDF uses the recursive relationship

f(x+ 1) =f(x)0/(x + 1), forx=0, 1,2, ...k—1,
with f(0) =¢™.

Comments
Informational error
Type Code
1 1 The input argument, K, is less than zero.
Example

Suppose X is a Poisson random variable with 6 = 10. In this example, we evaluate the distribution
function at 7.

USE UMACH_INT

USE POIDF_INT
IMPLICIT NONE
INTEGER K, NOUT

REAL DF, THETA
!
CALL UMACH (2, NOUT)
K =7
THETA = 10.0
DF = POIDF(K,THETA)

WRITE (NOUT,99999) DF
99999 FORMAT (* The probability that X is less than or equal to ", &
"7 is ", F6.4)
END
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Output

The probability that X is less than or equal to 7 is 0.2202

POIPR

This function evaluates the Poisson probability density function.

Function Return Value

POIPR — Function value, the probability that a Poisson random variable takes a value equal
to K. (Output)

Required Arguments

K — Argument for which the Poisson probability density function is to be evaluated. (Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

FORTRAN 90 Interface
Generic: POIPR (K, THETA)

Specific: The specific interface names are S_POIPR and D_POIPR.

FORTRAN 77 Interface
Single: POIPR (K, THETA)

Double: The double precision name is DPOIPR.

Description

The function POIPR evaluates the probability density function of a Poisson random variable with
parameter THETA. THETA, which is the mean of the Poisson random variable, must be positive.
The probability function (with 6 = THETA) is

f(x) = e 0"k, fork=0,1,2,...

POIPR evaluates this function directly, taking logarithms and using the log gamma function.
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Figure 11- 5 Poisson Probability Function
Comments
Informational error
Type Code
1 1 The input argument, K, is less than zero.
Example

Suppose X is a Poisson random variable with 6 = 10. In this example, we evaluate the probability
function at 7.

USE UMACH_INT
USE POIPR_INT
IMPLICIT NONE

INTEGER K, NOUT

REAL PR, THETA
!

CALL UMACH (2, NOUT)

K =7

THETA = 10.0

PR = POIPR(K,THETA)

WRITE (NOUT,99999) PR
99999 FORMAT (* The probability that X is equal to 7 is ", F6.4)
END
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Output

The probability that X is equal to 7 is 0.0901

UNDDF

This function evaluates the discrete uniform cumulative distribution function.

Function Return Value

UNDDF — Function value, the probability that a uniform random variable takes a value less
than or equal to 1X. (Output)

Required Arguments

IX — Argument for which the discrete uniform cumulative distribution function is to be
evaluated. (Input)

N — Scale parameter. N must be greater than 0. (Input)
FORTRAN 90 Interface

Generic: UNDDF (I1X, N)

Specific: The specific interface names are S_UNDDF and D_UNDDF.
FORTRAN 77 Interface

Single: UNDDF (I1X, N)

Double: The double precision name is DUNDDF.

Description
The notation below uses the floor and ceiling function notation, LJ and I_—I .

The function UNDDF evaluates the discrete uniform cumulative probability distribution function
with scale parameter N, defined

F(x|N)=%, 1<X<N.

Example

In this example, we evaluate the probability function at 1X=3,N=15.
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USE UMACH_INT

USE UNDDF_INT

IMPLICIT NONE

INTEGER NOUT, IX, N

REAL PR

CALL UMACH(2, NOUT)

IX = 3

N=5

PR = UNDDF(IX, N)

WRITE (NOUT, 99999) IX, N, PR
99999 FORMAT (" UNDDF(", 12, ", ", 12, ") = ", F6.4)

END

Output

UNDDF( 3, 5) = 0.6000

UNDIN

This function evaluates the inverse of the discrete uniform cumulative distribution function.

Function Return Value

UNDIN — Integer function value. The probability that a uniform random variable takes a
value less than or equal to the returned value is the input probability, P. (Output)

Required Arguments

P — Probability for which the inverse of the discrete uniform cumulative distribution function
is to be evaluated. P must be nonnegative and less than or equal to 1.0. (Input)

N — Scale parameter. N must be greater than 0. (Input)

FORTRAN 90 Interface
Generic: UNDIN (P, N)

Specific: The specific interface names are S_UNDIN and D_UNDIN.

FORTRAN 77 Interface

Single: UNDIN (P, N)
Double: The double precision name is DUNDIN.
Description

The notation below uses the floor and ceiling function notation, LJ and I_—l .
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The function UNDIN evaluates the inverse distribution function of a discrete uniform random
variable with scale parameter N, defined

x=[pN], 0<p<l.

Example

In this example, we evaluate the inverse probability function at P =0.6, N= 5.

USE UMACH_INT
USE UNDIN_INT
IMPLICIT NONE
INTEGER NOUT, N, IX
REAL P
CALL UMACH(2, NOUT)
P =0.60
N=5
IX = UNDINCP, N)
WRITE (NOUT, 99999) P, N, IX
99999 FORMAT (" UNDIN(®, F4.2, ", ", 12 ") = ", 12)
END

Output

UNDIN(0.60, 5) = 3

UNDPR

This function evaluates the discrete uniform probability density function.

Function Return Value

UNDPR — Function value, the probability that a random variable from a uniform distribution

having scale parameter N will be equal to 1X. (Output)

Required Arguments

IX — Argument for which the discrete uniform probability density function is to be
evaluated. (Input)

N — Scale parameter. N must be greater than 0. (Input)
FORTRAN 90 Interface
Generic: UNDPR (IX, N)

Specific: The specific interface names are S_UNDPR and D_UNDPR.
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FORTRAN 77 Interface
Single: UNDPR (IX, N)

Double: The double precision name is DUNDPR.

Description

The discrete uniform PDF is defined for positive integers X in the range 1,..., N, N > 0 . It has the

valuey = f (x| N) :ﬁ, I1<x<N,andy=0, x> N . Allowing values of Xresulting in

y=0, X> N isaconvenience.

Example

In this example, we evaluate the discrete uniform probability density function at IX=3,N=15.

USE UMACH_INT

USE UNDPR_INT

IMPLICIT NONE

INTEGER NOUT, IX, N

REAL PR

CALL UMACH(2, NOUT)

IX = 3

N=5

PR = UNDPR(IX, N)

WRITE (NOUT, 99999) IX, N, PR
99999 FORMAT (" UNDPR(", 12, ", ", 12, ") = ", F6.4)

END

Output

UNDPR( 3, 5) = 0.2000

AKS1DF

This function evaluates the cumulative distribution function of the one-sided Kolmogorov-
Smirnov goodness of fit D' or D™ test statistic based on continuous data for one sample.

Function Return Value
AKS1DF — The probability of a smaller D. (Output)

Required Arguments

NOBS — The total number of observations in the sample. (Input)

D — The D" or D™ test statistic. (Input)

D is the maximum positive difference of the empirical cumulative distribution function
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(CDF) minus the hypothetical CDF or the maximum positive difference of the
hypothetical CDF minus the empirical CDF.

FORTRAN 90 Interface
Generic: AKS1DF (NOBS, D)

Specific: The specific interface names are S_AKS1DF and D_AKS1DF.

FORTRAN 77 Interface
Single: AKS1DF (NOBS, D)

Double: The double precision name is DKS1DF.

Description

Routine AKS1DF computes the cumulative distribution function (CDF) for the one-sided
Kolmogorov-Smirnov one-sample D* or D statistic when the theoretical CDF is strictly
continuous. Let F(X) denote the theoretical distribution function, and let §,(X) denote the empirical
distribution function obtained from a sample of size NOBS. Then, the D statistic is computed as

D" =sup[F(x) - §,(x)]

while the one-sided D~ statistic is computed as

D" =syp[S, (%)~ F(X)]

Exact probabilities are computed according to a method given by Conover (1980, page 350) for
sample sizes of 80 or less. For sample sizes greater than 80, Smirnov’s asymptotic result is used,

that is, the value of the CDF is taken as 1— g2’ , where dis D* or D™ (Kendall and Stuart, 1979,
page 482). This asymptotic expression is conservative (the value returned by AKS1DF is smaller
than the exact value, when the sample size exceeds 80).

Comments

1. Workspace may be explicitly provided, if desired, by use of AK21DF/DK21DF. The
reference is:

AK2DF(NOBS, D, WK)

The additional argument is:

WK — Work vector of length 3 * NOBS + 3 if NOBS < 80. WK is not used if NOBS is greater
than 80.
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2. Informational errors

Type Code
1 2 Since the D test statistic is less than zero, the distribution function is
zero at D.
1 3 Since the D test statistic is greater than one, the distribution function
is one at D.
3. If NOBS < 80, then exact one-sided probabilities are computed. In this case, on the order

of NOBS® operations are required. For NOBS > 80, approximate one-sided probabilities
are computed. These approximate probabilities require very few computations.

4. An approximate two-sided probability for the D = max (D*, D") statistic can be
computed as twice the AKS1DF probability for D(minus one, if the probability from
AKS1DF is greater than 0.5).

Programming Notes

Routine AKS1DF requires on the order of NOBS* operations to compute the exact probabilities,
where an operation consists of taking ten or so logarithms. Because so much computation is
occurring within each “operation,” AKS1DF is much slower than its two-sample counterpart,
function AKS2DF.

Example

In this example, the exact one-sided probabilities for the tabled values of D* or D™, given, for
example, in Conover (1980, page 462), are computed. Tabled values at the 10% level of
significance are used as input to AKS1DF for sample sizes of 5 to 50 in increments of 5 (the last
two tabled values are obtained using the asymptotic critical values of

1.07/~/NOBS

The resulting probabilities should all be close to 0.90.

USE UMACH_INT
USE AKS1DF_INT

IMPLICIT  NONE

INTEGER 1, NOBS, NOUT
REAL D(10)

DATA D/0.447, 0.323, 0.266, 0.232, 0.208, 0.190, 0.177, 0.165, &
0.160, 0.151/

CALL UMACH (2, NOUT)

DO 10 1=1, 10
NOBS = 5*I

WRITE (NOUT,99999) D(1), NOBS, AKS1DF(NOBS,D(I))

é9999 FORMAT (" One-sided Probability for D = ", F8.3, " with NOBS * &

, =", 12, " is ", F8.4)
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10 CONTINUE

END

Output

One-sided
One-sided
One-sided
One-sided
One-sided
One-sided
One-sided
One-sided
One-sided
One-sided

Probability
Probability
Probability
Probability
Probability
Probability
Probability
Probability
Probability
Probability

for
for
for
for
for
for
for
for
for
for

lvlvivivivivivivlvlw)

[eNeoNeoNeoNeoNoNoNoNoNe)

447
.323
.266
.232
.208
-190
177
.165
-160
.151

with
with
with
with
with
with
with
with
with
with

NOBS
NOBS
NOBS
NOBS
NOBS
NOBS
NOBS
NOBS
NOBS
NOBS

5 is 0.9000
10 is  0.9006
15 is 0.9002
20 is  0.9009
25 is  0.9002
30 is 0.8992
35 is 0.9011
40 is 0.8987
45 iIs  0.9105
50 is 0.9077

AKS2DF

This function evaluates the cumulative distribution function of the Kolmogorov-Smirnov
goodness of fit D test statistic based on continuous data for two samples.

Function Return Value
AKS2DF — The probability of a smaller D. (Output)

Required Arguments

NOBSX — The total number of observations in the first sample. (Input)

NOBSY — The total number of observations in the second sample. (Input)

D — The D test statistic. (Input)

FORTRAN 90 Interface

Generic:
Specific:
FORTRAN 77 Interface
Single:

Double:

D is the maximum absolute difference between empirical cumulative distribution
functions (CDFs) of the two samples.

AKS2DF (NOBSX, NOBSY, D)

AKS2DF (NOBSX, NOBSY, D)

The double precision name is DKS2DF.

The specific interface names are S_AKS2DF and D_AKS2DF.
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Description

Function AKS2DF computes the cumulative distribution function (CDF) for the two-sided
Kolmogorov-Smirnov two-sample D statistic when the theoretical CDF is strictly continuous.
Exact probabilities are computed according to a method given by Kim and Jennrich (1973).
Approximate asymptotic probabilities are computed according to methods also given in this
reference.

Let Fr(X) and Gp(X) denote the empirical distribution functions for the two samples, based on
N = NOBSX and m= NOBSY observations. Then, the D statistic is computed as

D= Sl;}p| Fn(x) - Gm(x)|

Comments

1. Workspace may be explicitly provided, if desired, by use of AK22DF/DK22DF. The
reference is:

AK22DF (NOBSX, NOBSY, D, WK)

The additional argument is:

WK — Work vector of length max(NOBSX, NOBSY) + 1.

2. Informational errors
Type Code
1 2 Since the D test statistic is less than zero, then the distribution
function is zero at D.
1 3 Since the D test statistic is greater than one, then the distribution

function is one at D.

Programming Notes

Function AKS2DF requires on the order of NOBSX * NOBSY operations to compute the exact
probabilities, where an operation consists of an addition and a multiplication. For NOBSX * NOBSY
less than 10000, the exact probability is computed. If this is not the case, then the Smirnov
approximation discussed by Kim and Jennrich (1973) is used if the minimum of NOBSX and NOBSY
is greater than ten percent of the maximum of NOBSX and NOBSY, or if the minimum is greater than
80. Otherwise, the Kolmogorov approximation discussed by Kim and Jennrich (1973) is used.

Example

Function AKS2DF is used to compute the probability of a smaller D statistic for a variety of sample
sizes using values close to the 0.95 probability value.

USE UMACH_INT
USE AKS2DF_INT

IMPLICIT  NONE
INTEGER 1, NOBSX(10), NOBSY(10), NOUT
REAL D(10)
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DATA NOBSX/5, 20, 40, 70, 110, 200, 200, 200, 100, 100/

DATA NOBSY/10, 10, 10, 10, 10, 20, 40, 60, 80, 100/

DATA D/0.7, 0.55, 0.475, 0.4429, 0.4029, 0.2861, 0.2113, 0.1796, &
0.18, 0.18/

CALL UMACH (2, NOUT)

DO 10

1I=1, 10

WRITE (NOUT,99999) D(I1), NOBSX(1), NOBSY(1), &
AKS2DF(NOBSX(1),NOBSY (1) ,D(1))

99999 FORMAT (* Probability for D = *, F5.3, ® with NOBSX = ", 13, &
and NOBSY = *, 13, is ", F9.6, *.%)
10 CONTINUE
END
Output
Probability for D = 0.700 with NOBSX = 5 and NOBSY = 10 is 0.980686.
Probability for D = 0.550 with NOBSX = 20 and NOBSY = 10 is 0.987553.
Probability for D = 0.475 with NOBSX = 40 and NOBSY = 10 is 0.972423.
Probability for D = 0.443 with NOBSX = 70 and NOBSY = 10 is 0.961646.
Probability for D = 0.403 with NOBSX = 110 and NOBSY = 10 is 0.928667.
Probability for D = 0.286 with NOBSX = 200 and NOBSY = 20 is 0.921126.
Probability for D = 0.211 with NOBSX = 200 and NOBSY = 40 is 0.917110.
Probability for D = 0.180 with NOBSX = 200 and NOBSY = 60 is 0.914520.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 80 is 0.908185.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 100 is 0.946098.

ALNDF

This function evaluates the lognormal cumulative probability distribution function.

Function Return Value

ALNDF — Function value, the probability that a standard lognormal random variable takes a

value less than or equal to X. (Output)

Required Arguments

X — Argument for which the lognormal cumulative distribution function is to be evaluated.

(Input)

AMU — Location parameter of the lognormal cumulative distribution function. (Input)

SIGMA — Shape parameter of the lognormal cumulative distribution function. SIGMA must

be greater than 0. (Input)
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FORTRAN 90 Interface
Generic: ALNDF (X, AMU, SIGMA)

Specific: The specific interface names are S_ALNDF and D_ALNDF.

FORTRAN 77 Interface
Single: ALNDF (X, AMU, SIGMA)

Double: The double precision name is DLNDF.

Description

The function ALNDF evaluates the lognormal cumulative probability distribution function, defined

as

F(X|,u,a)

Example

In this example, we evaluate the probability distribution function at X =0.7137, AMU = 0.0,

SIGMA=0.5.

USE UMACH_INT

USE ALNDF_INT

IMPLICIT NONE

INTEGER NOUT

REAL X, AMU, SIGMA, PR
CALL UMACH(2, NOUT)

X = 7137
AMU = 0.0
SIGMA = 0.5

PR = ALNDF(X, AMU, SIGMA)

WRITE (NOUT, 99999) X, AMU, SIGMA, PR

99999 FORMAT (" ALNDF(", F6.2, ", ", F4.2,
END

Output

ALNDF(C 0.71, 0.00, 0.50) = 0.2500

", ", F4.2, *) = *, F6.4)
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ALNIN

This function evaluates the inverse of the lognormal cumulative probability distribution function.

Function Return Value

ALNIN — Function value, the probability that a lognormal random variable takes a value less
than or equal to the returned value is the input probability P. (Output)

Required Arguments

P — Probability for which the inverse of the lognormal distribution function is to be
evaluated. (Input)

AMU — Location parameter of the lognormal cumulative distribution function. (Input)

SIGMA — Shape parameter of the lognormal cumulative distribution function. S1GMA must
be greater than 0. (Input)

FORTRAN 90 Interface
Generic: ALNIN (P, AMU, SIGMA)

Specific: The specific interface names are S_ALNIN and D_ALNIN.

FORTRAN 77 Interface

Single: ALNIN (P, AMU, SIGMA)
Double: The double precision name is DLNIN.
Description

The function ALNIN evaluates the inverse distribution function of a lognormal random variable
with location parameter AMU and scale parameter SIGMA. The probability that a standard
lognormal random variable takes a value less than or equal to the returned value is P.

Example

In this example, we evaluate the inverse probability function at P = 0.25, AMU = 0.0, SIGMA = 0.5.

USE UMACH_INT
USE ALNIN_INT
IMPLICIT NONE

INTEGER NOUT

REAL X, AMU, SIGMA, P
CALL UMACH(2, NOUT)
P= .25

AMU = 0.0
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SIGMA = 0.5
X = ALNIN(P, AMU, SIGMA)
WRITE (NOUT, 99999) P, AMU, SIGMA, X
99999 FORMAT (" ALNIN(®, F6.3, ", ", F4.2, ", ", F4.2, ") = ", F6.4)
END

Output

ALNINC 0.250, 0.00, 0.50) = 0.7137

ALNPR

This function evaluates the lognormal probability density function.
Function Return Value

ALNPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the lognormal probability density function is to be evaluated.
(Input)

AMU — Location parameter of the lognormal probability function. (Input)

SIGMA — Shape parameter of the lognormal probability function. SIGMA must be greater
than 0. (Input)

FORTRAN 90 Interface
Generic: ALNPR (X, AMU, SIGMA)

Specific: The specific interface names are S_ALNPR and D_ALNPR.

FORTRAN 77 Interface

Single: ALNPR (X, AMU, SIGMA)
Double: The double precision name is DLNPR.
Description

The function ALNPR evaluates the lognormal probability density function, defined as
7[(IOE(X)*#)Z

2

20

fuwo)=
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Example
In this example, we evaluate the probability function at X = 1.0, AMU = 0.0, SIGMA = 0.5.

USE UMACH_INT

USE ALNPR_INT

IMPLICIT NONE

INTEGER NOUT

REAL X, AMU, SIGMA, PR

CALL UMACH(2, NOUT)

X=1.0

AMU = 0.0

SIGMA = 0.5

PR = ALNPR(X, AMU, SIGMA)

WRITE (NOUT, 99999) X, AMU, SIGMA, PR
99999 FORMAT (" ALNPR(", F6.2, ", ", F4.2, ", ", F4.2, ") = ", F6.4)

END

Output

ALNPR( 1.00, 0.00, 0.50) = 0.7979

ANORDF

This fuction evaluates the standard normal (Gaussian) cumulative distribution function.

Function Return Value

ANORDF — Function value, the probability that a normal random variable takes a value less
than or equal to X. (Output)

Required Arguments

X — Argument for which the normal cumulative distribution function is to be evaluated.
(Input)

FORTRAN 90 Interface

Generic: ANORDF (X)

Specific: The specific interface names are S_ANORDF and D_ANORDF.
FORTRAN 77 Interface

Single: ANORDF (X)

Double: The double precision name is DNORDF.
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Description
Function ANORDF evaluates the cumulative distribution function, ®@, of a standard normal
(Gaussian) random variable, that is,

D(X) = e 2t

1 .[ .
N2t
The value of the distribution function at the point X is the probability that the random variable

takes a value less than or equal to X.

The standard normal distribution (for which ANORDF is the distribution function) has mean of 0
and variance of 1. The probability that a normal random variable with mean and variance ¢” is less
than y is given by ANORDF evaluated at (y — pw)/c.

@(X) is evaluated by use of the complementary error function, erfc. (See ERFC, IMSL
MATH/LIBRARY Special Functions). The relationship is:

D(x) = erfc(—x/+/2.0) /2

)

ANORDF(z)
o
(@)}

|

©
o~
\

0.2

0.0 \\”T"\/'\\\\\\\\\\\\

Figure11- 6 Sandard Normal Distribution Function

Example

Suppose X is a normal random variable with mean 100 and variance 225. In this example, we find
the probability that X is less than 90, and the probability that X is between 105 and 110.

USE UMACH_INT
USE ANORDF_INT
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IMPLICIT NONE
INTEGER NOUT
REAL P, X1, X2

CALL UMACH (2, NOUT)
X1 = (90.0-100.0)/15.0
P = ANORDF(X1)
WRITE (NOUT,99998) P
99998 FORMAT (* The probability that X is less than 90 is *°, F6.4)
X1 = (105.0-100.0)/15.0
X2 (110.0-100.0)/15.0
P ANORDF(X2) - ANORDF(X1)
WRITE (NOUT,99999) P
99999 FORMAT (" The probability that X is between 105 and 110 is ", &
F6.4)

END

Output

The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169

ANORIN

This function evaluates the inverse of the standard normal (Gaussian) cumulative distribution
function.
Function Return Value

ANORIN — Function value. (Output)
The probability that a standard normal random variable takes a value less than or equal

to ANORIN is P.

Required Arguments

P — Probability for which the inverse of the normal cumulative distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

FORTRAN 90 Interface
Generic: ANORIN (P)

Specific: The specific interface names are S_ANORIN and D_ANORIN.

FORTRAN 77 Interface
Single: ANORIN (P)
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Double: The double precision name is DNORIN.

Description
Function ANORIN evaluates the inverse of the cumulative distribution function, @, of a standard
normal (Gaussian) random variable, that is, ANORIN(P) = ®'(p), where

D(X) = et

1 J~ x
N2r
The value of the distribution function at the point X is the probability that the random variable
takes a value less than or equal to X. The standard normal distribution has a mean of 0 and a
variance of 1.

Example

In this example, we compute the point such that the probability is 0.9 that a standard normal
random variable is less than or equal to this point.

USE UMACH_INT
USE ANORIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL P, X

CALL UMACH (2, NOUT)
P=0.9
X = ANORIN(P)
WRITE (NOUT,99999) X
99999 FORMAT (* The 90th percentile of a standard normal is ", F6.4)
END

Output

The 90th percentile of a standard normal is 1.2816

ANORPR

This function evaluates the standard normal probability density function.
Function Return Value

ANORPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the normal probability density function is to be evaluated. (Input)
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FORTRAN 90 Interface
Generic: ANORPR (X)

Specific: The specific interface names are S_NORPR and D_NORPR.

FORTRAN 77 Interface
Single: ANORPR (X)

Double: The double precision name is DNORPR.

Description

The function ANORPR evaluates the normal probability density function, defined as

f (X):;ef[%z), —o< X,

Example

In this example, we evaluate the probability function at X = 0.5.

USE UMACH_INT

USE ANORPR_INT

IMPLICIT NONE

INTEGER NOUT

REAL X, PR

CALL UMACH(2, NOUT)

X = 0.5

PR = ANORPR(X)

WRITE (NOUT, 99999) X, PR

99999 FORMAT (" ANORPR(", F4.2, ") = ", F6.4)

END

Output

ANORPR(0.50) = 0.3521

BETDF

This function evaluates the beta cumulative distribution function.

Function Return Value

BETDF — Probability that a random variable from a beta distribution having parameters PIN
and QIN will be less than or equal to X. (Output)
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Required Arguments

X — Argument for which the beta distribution function is to be evaluated. (Input)

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

FORTRAN 90 Interface
Generic: BETDF (X, PIN, QIN)

Specific: The specific interface names are S_BETDF and D_BETDF.

FORTRAN 77 Interface
Single: BETDF (X, PIN, QIN)

Double: The double precision name is DBETDF.

Description

Function BETDF evaluates the cumulative distribution function of a beta random variable with
parameters PIN and QIN. This function is sometimes called the incomplete beta ratio and, with

p=PIN and = QIN, is denoted by I(p, Q). It is given by

_ F(p+q) X4 P11 _ +\0-1
P = gy Y

where I'(+) is the gamma function. The value of the distribution function Iy(p, g) is the probability
that the random variable takes a value less than or equal to x.

The integral in the expression above is called the incomplete beta function and is denoted by
Bp, q). The constant in the expression is the reciprocal of the beta function (the incomplete
function evaluated at one) and is denoted by A(p, Q).

Function BETDF uses the method of Bosten and Battiste (1974).
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Figure 11- 7 Beta Distribution Function
Comments
Informational errors
Type Code
1 1 Since the input argument X is less than or equal to zero, the distribution
function is equal to zero at X.
1 2 Since the input argument X is greater than or equal to one, the
distribution function is equal to one at X.
Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric distribution.)
In this example, we find the probability that X is less than 0.6 and the probability that X is between
0.5 and 0.6. (Since X is a symmetric beta random variable, the probability that it is less than 0.5 is
0.5.)

USE UMACH_INT
USE BETDF_INT
IMPLICIT NONE
INTEGER NOUT

REAL P, PIN, QIN, X
!

CALL UMACH (2, NOUT)

PIN = 12.0

QIN = 12.0

X =0.6
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P = BETDF(X,PIN,QIN)
WRITE (NOUT,99998) P
99998 FORMAT (" The probability that X is less than 0.6 is ", F6.4)
X =0.5
P = P - BETDF(X,PIN,QIN)
WRITE (NOUT,99999) P
99999 FORMAT (* The probability that X is between 0.5 and 0.6 is ", &
F6.4)
END

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364

BETIN

This function evaluates the inverse of the beta cumulative distribution function.

Function Return Value

BETIN — Function value. (Output)
The probability that a beta random variable takes a value less than or equal to BETIN is
P.

Required Arguments

P — Probability for which the inverse of the beta distribution function is to be evaluated.
(Input)
P must be in the open interval (0.0, 1.0).

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

FORTRAN 90 Interface

Generic: ~ BETIN (P, PIN, QIN)

Specific: The specific interface names are S_BETIN and D_BETIN.
FORTRAN 77 Interface

Single: BETIN (P, PIN, QIN)

Double: The double precision name is DBETIN.
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Description

The function BETIN evaluates the inverse distribution function of a beta random variable with
parameters PIN and QIN, that is, with P =P, p=PIN, and q = QIN, it determines X (equal to
BETIN (P, PIN, QIN)), such that

o_ I(p+Q)
T(PI()

where I'(+) is the gamma function. The probability that the random variable takes a value less than
or equal to X is P.

j P (1—t)" dt

Comments
Informational error
Type Code
3 1 The value for the inverse Beta distribution could not be found in 100

iterations. The best approximation is used.

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric distribution.)
In this example, we find the value X, such that the probability that X < X, is 0.9.

USE UMACH_INT

USE BETIN_INT

IMPLICIT NONE

INTEGER NOUT

REAL P, PIN, QIN, X

CALL UMACH (2, NOUT)
PIN = 12.0

QIN = 12.0

P 0.9

X BETINCP,PIN,QIN)
WRITE (NOUT,99999) X

99999 FORMAT (" X is less than ", F6.4, " with probability 0.9.%)

END

Output

X is less than 0.6299 with probability 0.9.

BETPR

This function evaluates the beta probability density function.

Function Return Value

BETPR — Function value, the value of the probability density function. (Output)
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Required Arguments

X — Argument for which the beta probability density function is to be evaluated. (Input)

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

FORTRAN 90 Interface
Generic: BETPR (X, PIN, QIN)

Specific: The specific interface names are S_BETPR and D_BETPR.

FORTRAN 77 Interface
Single: BETPR (X, PIN, QIN)

Double: The double precision name is DBETPR.

Description

The function BETPR evaluates the beta probability density function with parameters PIN and QIN.
Using X=X, a=PIN and b = QIN, the beta distribution is defined as

1

— (1-x)""x*", ab>0, 0<x<I

f(xab)=

The reciprocal of the beta function used as the normalizing factor is computed using IMSL
function BETA (see Special Functions/Chapter 4, Gamma and Related Funtions).

Example

In this example, we evaluate the probability function at X =0.75, PIN =2.0, QIN =0.5.

USE UMACH_INT

USE BETPR_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, PIN, QIN, PR
CALL UMACH(2, NOUT)

X = .75
PIN = 2.0
QIN = 0.5

PR = BETPR(X, PIN, QIN)
WRITE (NOUT, 99999) X, PIN, QIN, PR

99999 FORMAT (" BETPR(", F4.2, ", ", F4.2, ", ", F4.2, ") = ", F6.4)
END
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Output

BETPR(0.75, 2.00, 0.50) = 1.1250

BNRDF

This function evaluates the bivariate normal cumulative distribution function.

Function Return Value

BNRDF — Function value, the probability that a bivariate normal random variable with
correlation RHO takes a value less than or equal to X and less than or equal to Y.
(Output)

Required Arguments

X — One argument for which the bivariate normal distribution function is to be evaluated.
(Input)

Y — The other argument for which the bivariate normal distribution function is to be
evaluated. (Input)

RHO — Correlation coefficient. (Input)

FORTRAN 90 Interface
Generic: BNRDF (X, Y, RHO)

Specific: The specific interface names are S_BNRDF and D_BNRDF.

FORTRAN 77 Interface
Single: BNRDF (X, Y, RHO)

Double: The double precision name is DBNRDF.

Description

Function BNRDF evaluates the cumulative distribution function F of a bivariate normal distribution
with means of zero, variances of one, and correlation of RHO; that is, with p = RHO, and |p| < 1,

u’ —2puv+V:

1
Foey)=— [ [, :
0ey) zm/l_pzj J Xp( 20— p)

To determine the probability that U < uy and V < v, where (U, \/)T is a bivariate normal random
variable with mean p = (uy, u\/)T and variance-covariance matrix

]dudv
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2
o, o,
Ouw Oy
transform (U, \/)T to a vector with zero means and unit variances. The input to BNRDF would be

X =(Uy — pu)ou, Y = (V) — ny)/oy, and p = oyv/(cyoy).

Function BNRDF uses the method of Owen (1962, 1965). Computation of Owen’s T-function is
based on code by M. Patefield and D. Tandy (2000). For |p| = 1, the distribution function is
computed based on the univariate statistic, Z= min(X, ), and on the normal distribution function
ANORDF.

Example

Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-covariance

matrix
1.0 0.9
09 1.0

In this example, we find the probability that X is less than —2.0 and Y is less than 0.0.

USE BNRDF_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT

REAL P, RHO, X, Y
CALL UMACH (2, NOUT)

X =-2.0

Y =0.0

RHO = 0.9

P = BNRDF(X,Y,RHO)

WRITE (NOUT,99999) P

99999 FORMAT (* The probability that X is less than -2.0 and Y ", &

"is less than 0.0 is ", F6.4)
END

Output

The probability that X is less than -2.0 and Y is less than 0.0 is 0.0228

CHIDF

This function evaluates the chi-squared cumulative distribution function.

Function Return Value

CHIDF — Function value, the probability that a chi-squared random variable takes a value
less than or equal to CHSQ. (Output)
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Required Arguments
CHSQ — Argument for which the chi-squared distribution function is to be evaluated.
(Input)

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

FORTRAN 90 Interface
Generic: CHIDF (CHSQ, DF)

Specific: The specific interface names are S_CHIDF and D_CHIDF.

FORTRAN 77 Interface
Single: CHIDF (CHSQ, DF)

Double: The double precision name is DCHIDF.

Description

Function CHIDF evaluates the cumulative distribution function, F, of a chi-squared random
variable with DF degrees of freedom, that is, with v =DF, and X = CHSQ,

1

FX= 3w

J‘geft/ztv/zfldt

where I'(+) is the gamma function. The value of the distribution function at the point X is the
probability that the random variable takes a value less than or equal to X.

For v> 65, CHIDF uses the Wilson-Hilferty approximation (Abramowitz and Stegun 1964,
equation 26.4.17) to the normal distribution, and routine ANORDF is used to evaluate the normal
distribution function.

For v < 65, CHIDF uses series expansions to evaluate the distribution function. If X < max (v/2, 26),
CHIDF uses the series 6.5.29 in Abramowitz and Stegun (1964), otherwise, it uses the asymptotic
expansion 6.5.32 in Abramowitz and Stegun.
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Figure 11- 8 Chi-Squared Distribution Function
Comments
Informational errors
Type Code
1 1 Since the input argument, CHSQ, is less than zero, the distribution
function is zero at CHSQ.
2 3 The normal distribution is used for large degrees of freedom. However,
it has produced underflow. Therefore, the probability, CHIDF, is set to
ZEero.
Example

Suppose X is a chi-squared random variable with 2 degrees of freedom. In this example, we find
the probability that X is less than 0.15 and the probability that X is greater than 3.0.

USE UMACH_INT
USE CHIDF_INT

IMPLICIT = NONE

INTEGER  NOUT

REAL CHSQ, DF, P
1

CALL UMACH (2, NOUT)

DF = 2.0

CHSQ = 0.15

P = CHIDF(CHSQ,DF)

WRITE (NOUT,99998) P
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99998 FORMAT (* The probability that chi-squared with 2 df is less ", &
"than 0.15 is ", F6.4)
CHSQ = 3.0
P 1.0 - CHIDF(CHSQ,DF)
WRITE (NOUT,99999) P
99999 FORMAT (* The probability that chi-squared with 2 df is greater " &
, "than 3.0 is ", F6.4)

END

Output

The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

CHIIN

This function evaluates the inverse of the chi-squared cumulative distribution function.

Function Return Value

CHIIN — Function value. (Output)
The probability that a chi-squared random variable takes a value less than or equal to
CHIINis P.

Required Arguments

P — Probability for which the inverse of the chi-squared distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

FORTRAN 90 Interface

Generic: CHIIN (P, DF)

Specific: The specific interface names are S_CHIIN and D_CHI IN.
FORTRAN 77 Interface

Single: CHIIN (P, DF)

Double: The double precision name is DCHIIN.
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Description

Function CHI IN evaluates the inverse distribution function of a chi-squared random variable with
DF degrees of freedom, that is, with P =P and v = DF, it determines X (equal to CHI IN(P, DF)),
such that

1

P — xe—[/Ztv/Z—]dt
z“r(v/z)J °

where I'(+) is the gamma function. The probability that the random variable takes a value less than
or equal to X is P.

For v <40, CHI IN uses bisection (if v< 2 or P > 0.98) or regula falsi to find the point at which the
chi-squared distribution function is equal to P. The distribution function is evaluated using routine
CHIDF.

For 40 < v <100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964,
equation 26.4.18) to the normal distribution is used, and routine ANORIN is used to evaluate the
inverse of the normal distribution function. For v > 100, the ordinary Wilson-Hilferty
approximation (Abramowitz and Stegun 1964, equation 26.4.17) is used.

Comments
Informational errors
Type Code
4 1 Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 99-th percentage points of a chi-squared random variable with 2
degrees of freedom and of one with 64 degrees of freedom.

USE UMACH_INT

USE CHIIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL DF, P, X

CALL UMACH (2, NOUT)
P 0.99
DF = 2.0
X CHIIN(P,DF)
WRITE (NOUT,99998) X
99998 FORMAT (* The 99-th percentage point of chi-squared with 2 df * &
, "is ", F7.3)
DF = 64.0
X CHIIN(P,DF)
WRITE (NOUT,99999) X
99999 FORMAT (" The 99-th percentage point of chi-squared with 64 df " &
, "is ", F7.3)

END
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Output

The 99-th percentage point of chi-squared with 2 df is 9.210
The 99-th percentage point of chi-squared with 64 df is 93.217

CHIPR

This function evaluates the chi-squared probability density function.

Function Return Value
CHIPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the chi-squared probability density function is to be evaluated.
(Input)

DF — Number of degrees of freedom of the chi-squared distribution. (Input)

FORTRAN 90 Interface
Generic: CHIPR (X, DF)

Specific: The specific interface names are S_CHIPR and D_CHIPR.

FORTRAN 77 Interface
Single: CHIPR (X, DF)

Double: The double precision name is DCHIPR.

Description

The function CHIPR evaluates the chi-squared probability density function. The chi-squared
distribution is a special case of the gamma distribution and is defined as

f(x|v):F(x|v/2,2): (x)m_]ez, X,v>0.

1
2"°T(v/2)

Example

In this example, we evaluate the probability function at X = 3.0, DF = 5.0.

USE UMACH_INT
USE CHIPR_INT
IMPLICIT NONE
INTEGER NOUT
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REAL X, DF, PR
CALL UMACH(2, NOUT)
X = 3.0
DF = 5.0
PR = CHIPR(X, DF)
WRITE (NOUT, 99999) X, DF, PR
99999 FORMAT (" CHIPR(", F4.2, ", ", F4.2, ") = ", F6.4)
END

Output

CHIPR(3.00, 5.00) = 0.1542

CSNDF

This function evaluates the noncentral chi-squared cumulative distribution function.

Function Return Value

CSNDF — Function value, the probability that a noncentral chi-squared random variable
takes a value less than or equal to CHSQ. (Output)

Required Arguments

CHSQ — Argument for which the noncentral chi-squared cumulative distribution function is
to be evaluated. (Input)

DF —Number of degrees of freedom of the noncentral chi-squared cumulative distribution.
(Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter. (Input)
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

FORTRAN 90 Interface

Generic: CSNDF (CHSQ, DF, ALAM)

Specific: The specific interface names are S_CSNDF and D_CSNDF.
FORTRAN 77 Interface

Single: CSNDF (CHSQ, DF, ALAM)

Double: The double precision name is DCSNDF.
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Description

Function CSNDF evaluates the cumulative distribution function of a noncentral chi-squared random
variable with DF degrees of freedom and noncentrality parameter ALAM, that is, with
v =DF, A = ALAM, and X = CHSQ,

= @H2(Q)2) xtVElgt/2
FOwA) = 3 S [
i=0 i! 0 2V+2|)/zr(szw)

where I'(+) is the gamma function. This is a series of central chi-squared distribution functions
with Poisson weights. The value of the distribution function at the point X is the probability that
the random variable takes a value less than or equal to X.

The noncentral chi-squared random variable can be defined by the distribution function above, or
alternatively and equivalently, as the sum of squares of independent normal random variables. If Y;
have independent normal distributions with means p; and variances equal to one and

X = zinzl Yi2

then X has a noncentral chi-squared distribution with n degrees of freedom and noncentrality
parameter equal to

P ,Uiz

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the
chi-squared distribution.

Function CSNDF determines the point at which the Poisson weight is greatest, and then sums
forward and backward from that point, terminating when the additional terms are sufficiently
small or when a maximum of 1000 terms have been accumulated. The recurrence relation 26.4.8
of Abramowitz and Stegun (1964) is used to speed the evaluation of the central chi-squared
distribution functions.
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Figure 11- 9 Noncentral Chi-squared Distribution Function

Example

In this example, CSNDF is used to compute the probability that a random variable that follows the
noncentral chi-squared distribution with noncentrality parameter of 1 and with 2 degrees of
freedom is less than or equal to 8.642.

USE UMACH_INT
USE CSNDF_INT
IMPLICIT NONE
INTEGER NOUT

REAL ALAM, CHSQ, DF, P
1

CALL UMACH (2, NOUT)

DF =2.0

ALAM = 1.0

CHSQ = 8.642

P = CSNDF(CHSQ,DF,ALAM)

WRITE (NOUT,99999) P
99999 FORMAT (" The probability that a noncentral chi-squared random®, &
/, " variable with 2 df and noncentrality 1.0 is less™, &
/, " than 8.642 is ", F5.3)
END
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Output

The probability that a noncentral chi-squared random
variable with 2 df and noncentrality 1.0 is less
than 8.642 is 0.950

CSNIN

This function evaluates the inverse of the noncentral chi-squared cumulative function.

Function Return Value

CSNIN — Function value. (Output)
The probability that a noncentral chi-squared random variable takes a value less than or

equal to CSNIN is P.

Required Arguments

P — Probability for which the inverse of the noncentral chi-squared cumulative distribution
function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the noncentral chi-squared distribution. (Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter. (Input)
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

FORTRAN 90 Interface
Generic: CSNIN (P, DF, ALAM)

Specific: The specific interface names are S_CSNIN and D_CSNIN.

FORTRAN 77 Interface

Single: CSNIN (P, DF, ALAM)
Double: The double precision name is DCSNIN.
Description

Function CSNIN evaluates the inverse distribution function of a noncentral chi-squared random
variable with DF degrees of freedom and noncentrality parameter ALAM; that is, with
P =P, v=DF, and = A = ALAM, it determines ¢, (= CSNIN(P, DF, ALAM)), such that
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b Zw: e—;u/z(i/z)i J‘C“ X(v+2i)/2—1e—x/2 o
e~ |' 0 2(v+2i)/2 r(\HTz.)

where I'(+) is the gamma function. The probability that the random variable takes a value less than
orequal to Gy is P.

Function CSNIN uses bisection and modified regula falsi to invert the distribution function, which
is evaluated using routine CSNDF. See CSNDF for an alternative definition of the noncentral chi-
squared random variable in terms of normal random variables.

Comments
Informational error
Type Code
4 | Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 95-th percentage point for a noncentral chi-squared random variable
with 2 degrees of freedom and noncentrality parameter 1.

USE CSNIN_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT

REAL ALAM, CHSQ, DF, P
CALL UMACH (2, NOUT)

DF = 2.

ALAM = 1.0

P = 0.95

CHSQ = CSNIN(P,DF,ALAM)

WRITE (NOUT,99999) CHSQ

é9999 FORMAT (* The 0.05 noncentral chi-squared critical value is ", &

F6.3, ".7)

END

Output

The 0.05 noncentral chi-squared critical value iIs 8.642.

EXPDF

This function evaluates the exponential cumulative distribution function.
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Function Return Value

EXPDF — Function value, the probability that an exponential random variable takes a value
less than or equal to X. (Output)

Required Arguments

X — Argument for which the exponential cumulative distribution function is to be evaluated.
(Input)

B — Scale parameter of the exponential distribution function. (Input)

FORTRAN 90 Interface
Generic: EXPDF (X, B)

Specific: The specific interface names are S_EXPDF and D_EXPDF.

FORTRAN 77 Interface
Single: EXPDF (X, B)

Double: The double precision name is DEXPDF.

Description
The function EXPDF evaluates the exponential cumulative probability distribution function. This
function is a special case of the gamma cumulative probability distribution function
1 x5
G(x)=——| edt*'dt.
I'(a)-°
Setting a=1 and applying the scale parameter b = B yields the exponential cumulative probability
distribution function

-t —x
F(x) = IO ebdt=1-eb

This relationship between the gamma and exponential cumulative probability distribution
functions is used by EXPDF.

Example
In this example, we evaluate the probability function at X = 2.0, B = 1.0.

USE UMACH_INT
USE EXPDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, B, PR
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CALL UMACH(2, NOUT)
X = 2.0
B=1.0
PR = EXPDF(X, B)
WRITE (NOUT, 99999) X, B, PR
99999 FORMAT (" EXPDF(", F4.2, ", ", F4.2, ") = ", F6.4)
END

Output

EXPDF(2.00, 1.00) = 0.8647

EXPIN

This function evaluates the inverse of the exponential cumulative distribution function.

Function Return Value

EXPIN — Function value, the value of the inverse of the cumulative distribution function.
(Output)

Required Arguments

P — Probability for which the inverse of the exponential distribution function is to be
evaluated. (Input)

B — Scale parameter of the exponential distribution function. (Input)

FORTRAN 90 Interface
Generic: EXPIN (P, B)

Specific: The specific interface names are S_EXPIN and D_EXPIN.

FORTRAN 77 Interface
Single: EXPIN (P, B)

Double: The double precision name is DEXPIN.

Description

The function EXPIN evaluates the inverse distribution function of an exponential random variable
with scale parameter b = B.

Example

In this example, we evaluate the inverse probability function at P = 0.8647, B = 1.0.
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USE UMACH_INT

USE EXPIN_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, B, P

CALL UMACH(2, NOUT)

P = 0.8647
B=1.0
X = EXPIN(P, B)

WRITE (NOUT, 99999) P, B, X
99999 FORMAT (" EXPIN(", F6.4, ", ", F4.2, ") = ", F6.4)
END

Output

EXPIN(0.8647, 1.00) = 2.0003

EXPPR

This function evaluates the exponential probability density function.

Function Return Value

EXPPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the exponential probability density function is to be evaluated.
(Input)

B — Scale parameter of the exponential probability density function. (Input)
FORTRAN 90 Interface

Generic: EXPPR (X, B)

Specific: The specific interface names are S_EXPPR and D_EXPPR.
FORTRAN 77 Interface

Single: EXPPR (X, B)

Double: The double precision name is DEXPPR.

Description

The function EXPPR evaluates the exponential probability density function. The exponential
distribution is a special case of the gamma distribution and is defined as
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f(Xb)=T(XLb) :%e%, X0b>0.
This relationship is used in the computation of f (X| b) .

Example

In this example, we evaluate the probability function at X =2.0, B = 1.0.

USE UMACH_INT
USE EXPPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, B, PR
CALL UMACH(2, NOUT)
X = 2.0
B=1.0
PR = EXPPR(X, B)
WRITE (NOUT, 99999) X, B, PR
99999 FORMAT (" EXPPR(", F4.2, ", ", F4.2, ") = ", F6.4)
END

Output

EXPPR(2.00, 1.00) = 0.1353

EXVDF

This function evaluates the extreme value cumulative distribution function.

Function Return Value

EXVDF — Function value, the probability that an extreme value random variable takes a
value less than or equal to X. (Output)

Required Arguments

X — Argument for which the extreme value cumulative distribution function is to be
evaluated. (Input)

AMU — Location parameter of the extreme value probability distribution function. (Input)

BETA — Scale parameter of the extreme value probability distribution function. (Input)

FORTRAN 90 Interface
Generic: EXVDF (X, AMU, BETA)

Specific: The specific interface names are S_EXVDF and D_EXVDF.

Chapter 11: Probability Distribution Functions and Inverses EXVDF e 259



FORTRAN 77 Interface
Single: EXVDF (X, AMU, BETA)

Double: The double precision name is DEXVDF.

Description

The function EXVDF evaluates the extreme value cumulative distribution function, defined as

X
s

F(Xup)=1-€°

The extreme value distribution is also known as the Gumbel minimum distribution.

Example

In this example, we evaluate the probability function at X = 1.0, AMU = 0.0, BETA = 1.0.

USE UMACH_INT
USE EXVDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, AMU, B, PR
CALL UMACH(2, NOUT)

X =1.0
AMU = 0.0
B=1.0

PR = EXVDF(X, AMU, B)
WRITE (NOUT, 99999) X, AMU, B, PR

99999 FORMAT (" EXVDF(", F6.2, ", ", F4.2, ", ", F4.2, ") = ", F6.4)

END

Output

EXVDF( 1.00, 0.00, 1.00) = 0.9340

EXVIN

This function evaluates the inverse of the extreme value cumulative distribution function.

Function Return Value

EXVIN — Function value, the value of the inverse of the extreme value cumulative
distribution function. (Output)

Required Arguments

P — Probability for which the inverse of the extreme value distribution function is to be
evaluated. (Input)
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AMU — Location parameter of the extreme value probability function. (Input)

BETA — Scale parameter of the extreme value probability function. (Input)

FORTRAN 90 Interface
Generic: EXVIN (P, AMU, BETA)

Specific: The specific interface names are S_EXVIN and D_EXVIN.

FORTRAN 77 Interface
Single: EXVIN (P, AMU, BETA)

Double: The double precision name is DEXVIN.

Description

The function EXVIN evaluates the inverse distribution function of an extreme value random
variable with location parameter AMU and scale parameter BETA.

Example

In this example, we evaluate the inverse probability function at P = 0.934, AMU=1.0, BETA=1.0

USE UMACH_INT
USE EXVIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, AMU, B, PR
CALL UMACH(2, NOUT)

PR = .934
AMU = 0.0
B=1.0

X = EXVIN(PR, AMU, B)
WRITE (NOUT, 99999) PR, AMU, B, X

99999 FORMAT (" EXVIN(", F6.3, ", ", F4.2, ", ", F4.2, ") = ", F6.4)

END

Output

EXVIN(C 0.934, 0.00, 1.00) = 0.9999

EXVPR

This function evaluates the extreme value probability density function.

Function Return Value
EXVPR — Function value, the value of the probability density function. (Output)
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Required Arguments

X — Argument for which the extreme value probability density function is to be evaluated.

(Input)

AMU — Location parameter of the extreme value probability density function. (Input)

BETA — Scale parameter of the extreme value probability density function. (Input)

FORTRAN 90 Interface
Generic: EXVPR (X, AMU, BETA)

Specific: The specific interface names are S_EXVPR and D_EXVPR.

FORTRAN 77 Interface
Single: EXVPR (X, AMU, BETA)

Double: The double precision name is DEXVPR.

Description

The function EXVPR evaluates the extreme value probability density function, defined as

x-u
B

xu
f(X|,u,ﬂ)=ﬁfleﬂ €° , —o<Xu<+o, S>>0
The extreme value distribution is also known as the Gumbel minimum distribution.

Example

In this example, we evaluate the extreme value probability density function at X = 2.0,
AMU = 0.0, BETA=1.0.

USE UMACH_INT
USE EXVPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, AMU, B, PR
CALL UMACH(2, NOUT)

X =-2.0
AMU = 0.0
B=1.0

PR = EXVPR(X, AMU, B)
WRITE (NOUT, 99999) X, AMU, B, PR

99999 FORMAT (" EXVPR(", F6.2, ", ", F4.2, ", ", F4.2, ") = ", F6.4)

END
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Output

EXVPR( -2.00, 0.00, 1.00) = 0.1182

FDF

This function evaluates the F cumulative distribution function.

Function Return Value

FDF — Function value, the probability that an F random variable takes a value less than or
equal to the input F. (Output)

Required Arguments
F — Argument for which the F cumulative distribution function is to be evaluated. (Input)

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FORTRAN 90 Interface
Generic: FDF (F, DFN, DFD)

Specific: The specific interface names are S_FDF and D_FDF.

FORTRAN 77 Interface

Single: FDF (F, DFN, DFD)
Double: The double precision name is DFDF.
Description

Function FDF evaluates the distribution function of a Snedecor’s F random variable with DFN
numerator degrees of freedom and DFD denominator degrees of freedom. The function is evaluated
by making a transformation to a beta random variable and then using the routine BETDF. If X is an
F variate with v; and V, degrees of freedom and Y = v; X/(V, + v; X), then Y is a beta variate with
parameters p=V;/2 and q = V,/2. The function FDF also uses a relationship between F random
variables that can be expressed as follows.

FDF(X, DFN, DFD) = 1.0 — FDF(1.0/X, DFD, DFN)
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Figure 11- 10 F Distribution Function
Comments
Informational error
Type Code
1 3 Since the input argument F is not positive, the distribution function is
zero at F.
Example

In this example, we find the probability that an F random variable with one numerator and one
denominator degree of freedom is greater than 648.

USE UMACH_INT
USE FDF_INT
IMPLICIT NONE
INTEGER NOUT

REAL DFD, DFN, F, P
1

CALL UMACH (2, NOUT)

F = 648.0

DFN = 1.0

DFD = 1.0

P =1.0 - FDF(F,DFN,DFD)

WRITE (NOUT,99999) P
99999 FORMAT (* The probability that an F(1,1) variate is greater ", &
"than 648 is ", F6.4)
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END

Output

The probability that an F(1, 1) variate is greater than 648 is 0.0250

FIN

This function evaluates the inverse of the F cumulative distribution function.

Function Return Value

FIN — Function value. (Output)
The probability that an F random variable takes a value less than or equal to FIN is P.

Required Arguments

P — Probability for which the inverse of the F distribution function is to be evaluated.
(Input)
P must be in the open interval (0.0, 1.0).

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FORTRAN 90 Interface
Generic: FIN (P, DFN, DFD)

Specific: The specific interface names are S_FDF and D_FDF.

FORTRAN 77 Interface

Single: FIN (P, DFN, DFD)
Double: The double precision name is DFDF.
Description

Function FIN evaluates the inverse distribution function of a Snedecor’s F random variable with
DFN numerator degrees of freedom and DFD denominator degrees of freedom. The function is
evaluated by making a transformation to a beta random variable and then using the routine BETIN.
If X is an F variate with v; and Vv, degrees of freedom and Y = v; X/(v, + v; X), then Y is a beta

variate with parameters p =V;/2 and q=V,/2. If P < 0.5, FIN uses this relationship directly,
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otherwise, it also uses a relationship between F random variables that can be expressed as follows,
using routine FDF, which is the F cumulative distribution function:

FDF(F, DFN, DFD) = 1.0 — FDF(1.0/F, DFD, DFN).

Comments
Informational error
Type Code
4 4 FIN is set to machine infinity since overflow would occur upon
modifying the inverse value for the F distribution with the result
obtained from the inverse beta distribution.
Example

In this example, we find the 99-th percentage point for an F random variable with 1 and 7 degrees
of freedom.

USE UMACH_INT
USE FIN_INT
IMPLICIT NONE
INTEGER NOUT

REAL DFD, DFN, F, P
CALL UMACH (2, NOUT)

P =0.99

DFN = 1.0

DFD = 7.0

F = FIN(P,DFN,DFD)

WRITE (NOUT,99999) F

99999 FORMAT (* The F(1,7) 0.01 critical value is ", F6.3)

END

Output

The F(1, 7) 0.01 critical value is 12.246

FPR

This function evaluates the F probability density function.

Function Return Value

FPR — Function value, the value of the probability density function. (Output)

Required Arguments

F — Argument for which the F probability density function is to be evaluated. (Input)

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.
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DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FORTRAN 90 Interface
Generic: FPR (F, DFN, DFD)

Specific: The specific interface names are S_FPR and D_FDPR

FORTRAN 77 Interface

Single: FPR (F, DFN, DFD)
Double: The double precision name is DFPR.
Description

The function FPR evaluates the F probability density function, defined as

) “(m+v)
il 2
f(X|V1,v2):n(vl,v2)X 2 (1+V1—X ,

416

The parameters V, and V,, correspond to the arguments DFN and DFD.

"721
{ij , X>0,v,>0, i=12

Example

In this example, we evaluate the probability function at F = 2.0, DFN = 10.0, DFD = 1.0.

USE UMACH_INT

USE FPR_INT

IMPLICIT NONE
INTEGER NOUT

REAL F, DFN, DFD, PR
CALL UMACH(2, NOUT)

F=2.0
DFN = 10.0
DFD = 1.0

PR = FPR(F, DFN, DFD)
WRITE (NOUT, 99999) F, DFN, DFD, PR

99999 FORMAT (" FPR(", F6.2, ", ", F6.2, ", ", F6.2, ") = ", F6.4)
END
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Output

FPRC 2.00, 10.00, 1.00) = 0.1052

GAMDF

This function evaluates the gamma cumulative distribution function.

Function Return Value

GAMDF — Function value, the probability that a gamma random variable takes a value less
than or equal to X. (Output)

Required Arguments

X — Argument for which the gamma distribution function is to be evaluated. (Input)

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

FORTRAN 90 Interface
Generic: GAMDF (X, A)

Specific: The specific interface names are S_GAMDF and D_GAMDF.

FORTRAN 77 Interface
Single: GAMDF (X, A)

Double: The double precision name is DGAMDF.

Description

Function GAMDF evaluates the distribution function, F, of a gamma random variable with shape
parameter a; that is,

F(x)=L ettt
r'(a)-°

where I'(+) is the gamma function. (The gamma function is the integral from 0 to c of the same
integrand as above). The value of the distribution function at the point X is the probability that the
random variable takes a value less than or equal to X.

The gamma distribution is often defined as a two-parameter distribution with a scale parameter b
(which must be positive), or even as a three-parameter distribution in which the third parameter C
is a location parameter. In the most general case, the probability density function over (C, ) is
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— e—(t—c)/b X—C a-1
b°I"(a) ( )

f(t)
If T is such a random variable with parameters @, b, and c, the probability that T < t, can be
obtained from GAMDF by setting X = (t, — ¢)/b.

If X is less than a or if X is less than or equal to 1.0, GAMDF uses a series expansion. Otherwise, a
continued fraction expansion is used. (See Abramowitz and Stegun, 1964.)

1.0 7 e PR — - —
— g /’// P - - CL
1/ / e — 05
Ny / — 1.0
0.8+ | ' --- 5.0
1/ K — 10.0
7 /
206 | /
= i /
S 0.4 /
ol | )
1 /
02 7“‘ f" /
,‘3 Y.
0.0 \/\\/\/\\\\\\\\\\\\\\\\
0.0 5.0 10.0 15.0 20.0
e
Figure11- 11 Gamma Distribution Function
Comments
Informational error
Type Code
1 2 Since the input argument X is less than zero, the distribution function is
set to zero.
Example

Suppose X is a gamma random variable with a shape parameter of 4. (In this case, it has an Erlang
distribution since the shape parameter is an integer.) In this example, we find the probability that X
is less than 0.5 and the probability that X is between 0.5 and 1.0.

USE UMACH_INT
USE GAMDF_INT
IMPLICIT NONE
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INTEGER NOUT
REAL A, P, X

CALL UMACH (2, NOUT)
4.0
0.5
GAMDF (X, A)
TE (NOUT,99998) P
MAT (° The probability that X is less than 0.5 is ", F6.4)
1.0
= GAMDF(X,A) - P
WRITE (NOUT,99999) P
99999 FORMAT (* The probability that X is between 0.5 and 1.0 is ", &
F6.4)

o =X
L0 20 == |1 01 I

99998

UXT=TVTX>

END

Output

The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

GAMIN

This function evaluates the inverse of the gamma cumulative distribution function.

Function Return Value

GAMIN — Function value. (Output)
The probability that a gamma random variable takes a value less than or equal to
GAMIN is P.

Required Arguments

P — Probability for which the inverse of the gamma cumulative distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

FORTRAN 90 Interface
Generic: GAMIN (P, A)
Specific: The specific interface names are S_GAMIN and D_GAMIN.

FORTRAN 77 Interface
Single: GAMIN (P, A)
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Double: The double precision name is DGAMIN.

Description

Function GAMIN evaluates the inverse distribution function of a gamma random variable with
shape parameter @, that is, it determines X (= GAMIN(P, A)), such that
L
I'(a)°°
where I'(+) is the gamma function. The probability that the random variable takes a value less than
or equal to X is P. See the documentation for routine GAMDF for further discussion of the gamma
distribution.

Function GAMIN uses bisection and modified regula falsi to invert the distribution function, which
is evaluated using routine GAMDF.

Comments
Informational error
Type Code
4 | Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 95-th percentage point for a gamma random variable with shape
parameter of 4.

USE UMACH_INT

USE GAMIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL A, P, X

CALL UMACH (2, NOUT)
A=4.0

P=0.95

X = GAMINCP,A)

WRITE (NOUT,99999) X

5-99999 FORMAT (* The 0.05 gamma(4) critical value is ", F6.3, &

-9
END

Output

The 0.05 gamma(4) critical value is 7.754.
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GAMPR

This function evaluates the gamma probability density function.

Function Return Value

GAMPR — Function value, the value of the probability density function. (Output)
Required Arguments
X — Argument for which the gamma probability density function is to be evaluated. (Input)

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

FORTRAN 90 Interface

Generic: GAMPR (X, A)

Specific: The specific interface names are S_GAMPR and D_GAMPR.
FORTRAN 77 Interface

Single: GAMPR (X, A)

Double: The double precision name is DGAMPR.

Description

The function GAMPR evaluates the gamma probability density function, defined as

I (xa)= (x)"'e*, xa>0.

1
r'(a)
Example

In this example, we evaluate the probability function at X =4.0, A=5.0.

USE UMACH_INT

USE GAMPR_INT

IMPLICIT NONE

INTEGER NOUT

REAL X, A, PR

CALL UMACH(2, NOUT)

X = 4.0

A=5.0

PR = GAMPR(X, A)

WRITE (NOUT, 99999) X, A, PR
99999 FORMAT (" GAMPR(", F4.2, ", ", F4.2, ") = ", F6.4)
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END

Output

GAMPR(4.00, 5.00) = 0.1954

RALDF

This function evaluates the Rayleigh cumulative distribution function.

Function Return Value

RALDF — Function value, the probability that a Rayleigh random variable takes a value less
than or equal to X. (Output)

Required Arguments

X — Argument for which the Rayleigh cumulative distribution function is to be evaluated.
(Input)

ALPHA — Scale parameter of the Rayleigh cumulative distribution function. (Input)

FORTRAN 90 Interface
Generic: RALDF (X, ALPHA)

Specific: The specific interface names are S_RALDF and D_RALDF.

FORTRAN 77 Interface
Single: RALDF (X, ALPHA)

Double: The double precision name is DRALDF.

Description

The function RALDF evaluates the Rayleigh cumulative probability distribution function, which is
a special case of the Weibull cumulative probability distribution function, where the shape
parameter GAMMA is 2.0

XZ

F(x)=1-e
RALDF evaluates the Rayleigh cumulative probability distribution function using the relationsip

RALDF(X, ALPHA) =WBLDF(X, SQRT(2.0)*ALPHA, 2.0).
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Example

In this example, we evaluate the Rayleigh cumulative distribution function at X = 0.25,
ALPHA =0.5.

USE UMACH_INT

USE RALDF_INT

IMPLICIT NONE

INTEGER NOUT

REAL X, ALPHA, PR

CALL UMACH(2, NOUT)

X = 0.25

ALPHA = 0.5

PR = RALDF(X, ALPHA)

WRITE (NOUT, 99999) X, ALPHA, PR
99999 FORMAT (" RALDF(", F4.2, ", ", F4.2, ") = ", F6.4)

END

Output

RALDF(0.25, 0.50) = 0.1175

RALIN

This function evaluates the inverse of the Rayleigh cumulative distribution function.

Function Return Value

RALIN — Function value, the value of the inverse of the cumulative distribution function.
(Output)

Required Arguments

P — Probability for which the inverse of the Rayleigh distribution function is to be evaluated.
(Input)

ALPHA — Scale parameter of the Rayleigh cumulative distribution function. (Input)
FORTRAN 90 Interface

Generic: RALIN (P, ALPHA)

Specific: The specific interface names are S_RALIN and D_RALIN.
FORTRAN 77 Interface

Single: RALIN (P, ALPHA)

Double: The double precision name is DRALIN.

274 ¢ Chapter 11: Probability Distribution Functions and Inverses MATH LIBRARY Special Functions



Description

The function RALIN evaluates the inverse distribution function of a Rayleigh random variable with

scale parameter ALPHA.

Example

In this example, we evaluate the inverse probability function at P = 0.1175, ALPHA=0.5.

USE UMACH_INT

USE RALIN_INT

IMPLICIT NONE

INTEGER NOUT

REAL X, ALPHA, P

CALL UMACH(2, NOUT)

P =0.1175

ALPHA = 0.5

X = RALIN(P, ALPHA)

WRITE (NOUT, 99999) P, ALPHA, X
99999 FORMAT (" RALIN(", F6.4, ", ",

END

Output

RALIN(0.1175, 0.50) = 0.2500

F4.2, ")

=, F6.4)

RALPR

This function evaluates the Rayleigh probability density function.

Function Return Value

RALPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the Rayleigh probability density function is to be evaluated.

(Input)

ALPHA — Scale parameter of the Rayleigh probability function. (Input)

FORTRAN 90 Interface

Generic:  RALPR (X, ALPHA)

Specific:

FORTRAN 77 Interface

Single: RALPR (X, ALPHA)

The specific interface names are S_RALPR and D_RALPR.
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Double: The double precision name is DRALPR.

Description

The function RALPR evaluates the Rayleigh probability density function, which is a special case of
the Weibull probability density function where GAMMA is equal to 2.0, and is defined as

2
X2

f (x|a):a—X2e_[2“Z],x>0

Example

In this example, we evaluate the Rayleigh probability density function at X = 0.25, ALPHA =0.5.

USE UMACH_INT

USE RALPR_INT

IMPLICIT NONE

INTEGER NOUT

REAL X, ALPHA, PR

CALL UMACH(2, NOUT)

X = 0.25

ALPHA = 0.5

PR = RALPR(X, ALPHA)

WRITE (NOUT, 99999) X, ALPHA, PR
99999 FORMAT (" RALPR(", F4.2, ", ", F4.2, ") = ", F6.4)

END

Output

RALPR(0.25, 0.50) = 0.8825

TDF

This function evaluates the Student’s t cumulative distribution function.

Function Return Value

TDF — Function value, the probability that a Student’s t random variable takes a value less
than or equal to the input T. (Output)

Required Arguments

T — Argument for which the Student’s t distribution function is to be evaluated. (Input)

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.
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FORTRAN 90 Interface
Generic: TDF (T, DF)

Specific: The specific interface names are S_TDF and D_TDF.

FORTRAN 77 Interface
Single: TDF (T, DF)

Double: The double precision name is DTDF.

Description

Function TDF evaluates the cumulative distribution function of a Student’s t random variable with
DF degrees of freedom. If the square of T is greater than or equal to DF, the relationship of a t to an
F random variable (and subsequently, to a beta random variable) is exploited, and routine BETDF
is used. Otherwise, the method described by Hill (1970) is used. Let v= DF. If v is not an integer,
if v is greater than 19, or if v is greater than 200, a Cornish-Fisher expansion is used to evaluate
the distribution function. If v is less than 20 and ABS(T) is less than 2.0, a trigonometric series (see
Abramowitz and Stegun 1964, equations 26.7.3 and 26.7.4, with some rearrangement) is used. For
the remaining cases, a series given by Hill (1970) that converges well for large values of T is used.
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Figure11- 12 Sudent’st Distribution Function
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Example

In this example, we find the probability that a t random variable with 6 degrees of freedom is
greater in absolute value than 2.447. We use the fact that t is symmetric about 0.

USE TDF_INT

USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL DF, P, T

CALL UMACH (2, NOUT)
T = 2.447

DF = 6.0

P = 2.0*TDF(-T,DF)
WRITE (NOUT,99999) P

99999 FORMAT (* The probability that a t(6) variate is greater ", &

"than 2.447 in*, /, " absolute value i1s ", F6.4)
END

Output

The probability that a t(6) variate is greater than 2.447 in absolute value
is 0.0500

TIN

This function evaluates the inverse of the Student’s t cumulative distribution function.

Function Return Value

TIN — Function value. (Output)
The probability that a Student’s t random variable takes a value less than or equal to
TINis P.

Required Arguments

P — Probability for which the inverse of the Student’s t cumulative distribution function is to
be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

FORTRAN 90 Interface
Generic: TIN (P, DF)

Specific: The specific interface names are S_TIN and D_TIN.
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FORTRAN 77 Interface

Single: TIN (P, DF)
Double: The double precision name is DTIN.
Description

Function TIN evaluates the inverse distribution function of a Student’s t random variable with DF
degrees of freedom. Let v=DF. If v equals 1 or 2, the inverse can be obtained in closed form, if v
is between 1 and 2, the relationship of a t to a beta random variable is exploited and routine BETIN
is used to evaluate the inverse; otherwise the algorithm of Hill (1970) is used. For small values of
v greater than 2, Hill’s algorithm inverts an integrated expansion in 1/(1 + t*/v) of the t density. For
larger values, an asymptotic inverse Cornish-Fisher type expansion about normal deviates is used.

Comments
Informational error
Type Code
4 3 TIN is set to machine infinity since overflow would occur upon
modifying the inverse value for the F distribution with the result
obtained from the inverse  distribution.
Example

In this example, we find the 0.05 critical value for a two-sided t test with 6 degrees of freedom.

USE TIN_INT

USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL DF, P, T

CALL UMACH (2, NOUT)
P 0.975
DF = 6.0
T TIN(P,DF)
WRITE (NOUT,99999) T
99999 FORMAT (* The two-sided t(6) 0.05 critical value is ", F6.3)
END

Output

The two-sided t(6) 0.05 critical value is 2.447

TPR

This function evaluates the Student’s t probability density function.
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Function Return Value

TPR — Function value, the value of the probability density function. (Output)

Required Arguments

T — Argument for which the Student’s t probability density function is to be evaluated.
(Input)

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

FORTRAN 90 Interface
Generic: TPR (T, DF)

Specific: The specific interface names are S_TPR and D_TPR

FORTRAN 77 Interface

Single: TPR (T, DF)
Double: The double precision name is DTPR.
Description

The function TPR evaluates the Student’s t probability density function, defined as

2

—(v+1)/2
f(t|v)=(ﬁ(o.5,o.5v)ﬁ)1[1+—] , —w<t<ton, v21

\4

Where v = DF.

The normalizing factor uses the Beta function, BETA (see Special Functions/Chapter 4, Gamma
and Related Funtions).

Example

In this example, we evaluate the probability function at T = 1.5, DF = 10.0.

USE UMACH_INT
USE TPR_INT
IMPLICIT NONE
INTEGER NOUT

REAL T, DF, PR
CALL UMACH(2, NOUT)

T=1.5
DF = 10.0
PR = TPR(T, DF)

WRITE (NOUT, 99999) T, DF, PR

280 e Chapter 11: Probability Distribution Functions and Inverses MATH LIBRARY Special Functions



99999 FORMAT (* TPR(®, F4.2, *, ", F6.2, ") = ", F6.4)
END

Output

TPR(1.50, 10.00) = 0.1274

TNDF

This function evaluates the noncentral Student’s t cumulative distribution function.

Function Return Value

TNDF — Function value, the probability that a noncentral Student’s t random variable takes a
value less than or equal to T. (Output)

Required Arguments

T — Argument for which the noncentral Student’s t cumulative distribution function is to be
evaluated. (Input)

IDF — Number of degrees of freedom of the noncentral Student’s t cumulative distribution.
(Input)
IDF must be positive.

DELTA — The noncentrality parameter. (Input)

FORTRAN 90 Interface
Generic: TNDF (T, IDF, DELTA)

Specific: The specific interface names are S_TNDF and D_TNDF.

FORTRAN 77 Interface
Single: TNDF (T, IDF, DELTA)

Double: The double precision name is DTNDF.

Description

Function TNDF evaluates the cumulative distribution function F of a noncentral t random variable
with IDF degrees of freedom and noncentrality parameter DELTA; that is, with
v = IDF, 8 = DELTA, and =T,

V/I2 6272
t v''e

= T (v 2)(v+ X))

Ft)= il“((wri +1)/2)(3(Z5) 2 dx

Chapter 11: Probability Distribution Functions and Inverses TNDF e 281



where I'() is the gamma function. The value of the distribution function at the point {, is the
probability that the random variable takes a value less than or equal to {,.

The noncentral t random variable can be defined by the distribution function above, or
alternatively and equivalently, as the ratio of a normal random variable and an independent chi-
squared random variable. If w has a normal distribution with mean § and variance equal to one, U
has an independent chi-squared distribution with v degrees of freedom, and

X=W/+U/v

then X has a noncentral t distribution with degrees of freedom and noncentrality parameter 9.

The distribution function of the noncentral t can also be expressed as a double integral involving a
normal density function (see, for example, Owen 1962, page 108). The function TNDF uses the
method of Owen (1962, 1965), which uses repeated integration by parts on that alternate
expression for the distribution function.
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Figure 11- 13 Noncentral Sudent’st Distribution Function

Comments
Informational error
Type Code
4 2 An accurate result cannot be computed due to possible underflow for the

machine precision available. DELTA*SQRT(IDF/ (I1DF+T**2)) must
be less than SQRT(-1.9*ALOG(S)), where S=AMACH(1).
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Example

Suppose T is a noncentral t random variable with 6 degrees of freedom and noncentrality
parameter 6. In this example, we find the probability that T is less than 12.0. (This can be checked
using the table on page 111 of Owen 1962, with 7 = 0.866, which yields A = 1.664.)

USE UMACH_INT

USE TNDF_INT
IMPLICIT NONE
INTEGER IDF, NOUT

REAL DELTA, P, T
1

CALL UMACH (2, NOUT)

IDF =6

DELTA = 6.0

T = 12.0

P = TNDF(T, IDF,DELTA)

WRITE (NOUT,99999) P
99999 FORMAT (" The probability that T is less than 12.0 is ", F6.4)
END

Output

The probability that T is less than 12.0 is 0.9501

TNIN

This function evaluates the inverse of the noncentral Student’s t cumulative distribution function.

Function Return Value

TNIN — Function value. (Output)
The probability that a noncentral Student’s t random variable takes a value less than or
equal to TNIN is P.

Required Arguments

P — Probability for which the inverse of the noncentral Student’s t cumulative distribution
function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

IDF — Number of degrees of freedom of the noncentral Student’s t cumulative distribution.
(Input) 1DF must be positive.

DELTA — The noncentrality parameter. (Input)

FORTRAN 90 Interface
Generic: TNIN (P, IDF, DELTA)
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Specific: The specific interface names are S_TNIN and D_TNIN.

FORTRAN 77 Interface

Single: TNIN (P, IDF, DELTA)
Double: The double precision name is DTNIN.
Description

Function TNIN evaluates the inverse distribution function of a noncentral t random variable with
IDF degrees of freedom and noncentrality parameter DELTA; that is, with P =P, v= IDF, and
0 =DELTA, it determines t, (= TNIN(P, 1DF, DELTA)), such that

B 1 VV/Zefb“/Z

e T/ 2) v+ )

il‘((vﬂ +1)/2)(?;;)(%)i/2dx

where I'(+) is the gamma function. The probability that the random variable takes a value less than
or equal to t, is P. See TNDF for an alternative definition in terms of normal and chi-squared
random variables. The function TNIN uses bisection and modified regula falsi to invert the
distribution function, which is evaluated using routine TNDF.

Comments
Informational error
Type Code
4 1 Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 95-th percentage point for a noncentral t random variable with 6
degrees of freedom and noncentrality parameter 6.

USE TNIN_INT

USE UMACH_INT
IMPLICIT NONE
INTEGER IDF, NOUT

REAL DELTA, P, T
CALL UMACH (2, NOUT)

1DF =6

DELTA = 6.0

P = 0.95

T = TNIN(P, IDF,DELTA)

WRITE (NOUT,99999) T

é9999 FORMAT (" The 0.05 noncentral t critical value is ", F6.3, &

-7
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END

Output

The 0.05 noncentral t critical value is 11.995.

UNDF

This function evaluates the uniform cumulative distribution function.

Function Return Value

UNDF — Function value, the probability that a uniform random variable takes a value less
than or equal to X. (Output)

Required Arguments

X — Argument for which the uniform cumulative distribution function is to be evaluated.
(Input)

A — Location parameter of the uniform cumulative distribution function. (Input)

B — Value used to compute the scale parameter (B — A) of the uniform cumulative
distribution function. (Input)

FORTRAN 90 Interface
Generic: UNDF (X, A, B)

Specific: The specific interface names are S_UNDF and D_UNDF.

FORTRAN 77 Interface

Single: UNDF (X, A, B)
Double: The double precision name is DUNDF.
Description

The function UNDF evaluates the uniform cumulative distribution function with location parameter
A and scale parameter (B — A). The function definition is

0, i x< A
F(x/AB)= ;‘/A;, ifA<x<B

1, if x>B
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Example

In this example, we evaluate the probability function at X =0.65, A=0.25, B=0.75.

USE UMACH_INT

USE UNDF_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, A, B, PR
CALL UMACH(2, NOUT)

X = 0.65
A =0.25
B =0.75

PR = UNDF(X, A, B)
WRITE (NOUT, 99999) X, A, B, PR

99999 FORMAT (" UNDF(", F4.2, ", ", F4.2, ", ", F4.2, ") = ", F6.4)
END

Output

UNDF(0.65, 0.25, 0.75) = 0.8000

UNIN

This function evaluates the inverse of the uniform cumulative distribution function.

Function Return Value

UNIN — Function value, the value of the inverse of the cumulative distribution function.
(Output)

Required Arguments

P — Probability for which the inverse of the uniform cumulative distribution function is to be
evaluated. (Input)

A — Location parameter of the uniform cumulative distribution function. (Input)

B — Value used to compute the scale parameter (B — A) of the uniform cumulative
distribution function. (Input)

FORTRAN 90 Interface
Generic: UNIN (P, A, B)
Specific: The specific interface names are S_UNIN and D_UNIN.

FORTRAN 77 Interface
Single: UNIN (P, A, B)

286 ¢ Chapter 11: Probability Distribution Functions and Inverses MATH LIBRARY Special Functions



Double: The double precision name is DUNIN.

Description

The function UNIN evaluates the inverse distribution function of a uniform random variable with

location parameter A and scale parameter (B — A).

Example

In this example, we evaluate the inverse probability function at P =0.80, A= 0.25, B =0.75.

USE UMACH_INT

USE UNIN_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, A, B, P
CALL UMACH(2, NOUT)

P =0.80
A = 0.25
B =0.75
X = UNINCP, A, B)

WRITE (NOUT, 99999) P, A, B, X
99999 FORMAT (" UNIN(", F4.2, ", ", F4.2, ", ", F4.2, ") =
END

Output

UNIN(0.80, 0.25, 0.75) = 0.6500

UNPR

This function evaluates the uniform probability density function.

Function Return Value

UNPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the uniform probability density function is to be evaluated. (Input)

A — Location parameter of the uniform probability function. (Input)

B — Value used to compute the scale parameter (B — A) of the uniform probability density

function. (Input)

FORTRAN 90 Interface
Generic: UNPR (X, A, B)
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Specific: The specific interface names are S_UNPR and D_UNPR.

FORTRAN 77 Interface
Single: UNPR (X, A, B)

Double: The double precision name is DUNPR.

Description

The function UNPR evaluates the uniform probability density function with location parameter A
and scale parameter (B — A), defined

1
f(XAB)=1B-A
0 otherwise

for A<x<B

Example

In this example, we evaluate the uniform probability density function at X = 0.65, A = 0.25,
B=0.75.

USE UMACH_INT

USE UNPR_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, A, B, PR
CALL UMACH(2, NOUT)

X = 0.65
A =0.25
B =0.75

PR = UNPR(X, A, B)
WRITE (NOUT, 99999) X, A, B, PR

99999 FORMAT (" UNPR(", F4.2, ", ", F4.2, ", ", F4.2, ") = ", F6.4)
END

Output

UNPR(0.65, 0.25, 0.75) = 2.0000

WBLDF

This function evaluates the Weibull cumulative distribution function.

Function Return Value

WBLDF — Function value, the probability that a Weibull random variable takes a value less
than or equal to X. (Output)
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Required Arguments

X — Argument for which the Weibull cumulative distribution function is to be evaluated.
(Input)

A — Scale parameter. (Input)

B — Shape parameter. (Input)

FORTRAN 90 Interface
Generic: WBLDF (X, A, B)

Specific: The specific interface names are S_WBLDF and D_WBLDF.

FORTRAN 77 Interface
Single: WBLDF (X, A, B)

Double: The double precision name is DWBLDF.

Description

The function WBLDF evaluates the Weibull cumulative distribution function with scale parameter
A and shape parameter B, defined

F(x|a,b):1—e7[§]b

b
To deal with potential loss of precision for small values of (zj , the difference expression for p
a

is re-written as

and the right factor is accurately evaluated using EXPRL.

Example

In this example, we evaluate the Weibull cumulative distribution function at X = 1.5, A= 1.0,
B=2.0.

USE UMACH_INT
USE WBLDF_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, A, B, PR
CALL UMACH(2, NOUT)
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W > X
I n
NP
oo

PR = WBLDF(X, A, B)
WRITE (NOUT, 99999) X, A, B, PR

99999 FORMAT (" WBLDF(", F4.2, *, *, F4.2, ", ", F4.2, ") = ", F6.4)
END

Output

WBLDF(1.50, 1.00, 2.00) = 0.8946

WBLIN

This function evaluates the inverse of the Weibull cumulative distribution function.

Function Return Value

WBLIN — Function value, the value of the inverse of the Weibull cumulative distribution
distribution function. (Output)

Required Arguments

P — Probability for which the inverse of the Weibull cumulative distribution function is to be
evaluated. (Input)

A — Scale parameter. (Input)

B — Shape parameter. (Input)
FORTRAN 90 Interface

Generic: WBLIN (P, A, B)

Specific: The specific interface names are S_WBLIN and D_WBLIN.
FORTRAN 77 Interface

Single: WBLIN (P, A, B)

Double: The double precision name is DWBLIN.

Description

The function WBL IN evaluates the inverse distribution function of a Weibull random variable with
scale parameter A and shape parameter B.
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Example

In this example, we evaluate the inverse probability function at P = 0.8946, A= 1.0, B =2.0.

USE UMACH_INT

USE WBLIN_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, A, B, P
CALL UMACH(2, NOUT)

P = 0.8946
A=1.0

B =2.0

X = WBLIN(P, A, B)

WRITE (NOUT, 99999) P, A, B, X
99999 FORMAT (" WBLIN(®, F4.2, ", =, F4.2, ", =, F4.2, ") = ", F6.4)
END

Output

WBLIN(0.8946, 1.00, 2.00) = 1.5000

WBLPR

This function evaluates the Weibull probability density function.

Function Return Value
WBLPR — Function value, the value of the probability density function. (Output)

Required Arguments
X — Argument for which the Weibull probability density function is to be evaluated. (Input)
A — Scale parameter. (Input)
B — Shape parameter. (Input)
FORTRAN 90 Interface
Generic: WBLPR (X, A, B)
Specific: The specific interface names are S_WBLPR and D_WBLPR.
FORTRAN 77 Interface
Single: WBLPR (X, A, B)

Double: The double precision name is DWBLPR.
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Description

The function WBLPR evaluates the Weibull probability density function with scale parameter A
and shape parameter B, defined

b-1 x'J
f(x|a,b)=g(§) ef[gj, ab>0.

Example
In this example, we evaluate the Weibull probability density function at X=1.5, A=1.0, B=2.0.

USE UMACH_INT

USE WBLPR_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, A, B, PR®
CALL UMACH(2, NOUT)

X=1.5
A=1.0
B=2.0

PR = WBLPR(X, A, B)
WRITE (NOUT, 99999) X, A, B, PR

99999 FORMAT (" WBLPR(", F4.2, ", ", F4.2, ", ", F4.2, ") = ", F6.4)
END

Output

WBLPR(1.50, 1.00, 2.00) = 0.3162

GCDF

This function evaluates a general continuous cumulative distribution function given ordinates of
the density.

Function Return Value

GCDF — Function value, the probability that a random variable whose density is given in F
takes a value less than or equal to X0. (Output)

Required Arguments

X0 —Point at which the cumulative distribution function is to be evaluated. (Input)

X — Array containing the abscissas or the endpoints. (Input)
If I0PT =1 or 3, X is of length 2. If I0PT =2 or 4, X is of length M. For IOPT =1 or 3,
X(1) contains the lower endpoint of the support of the distribution and X(2) is the upper
endpoint. For I0OPT =2 or 4, X contains, in strictly increasing order, the abscissas such
that X(1) corresponds to F(I).
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F — Vector of length M containing the probability density ordinates corresponding to
increasing abscissas. (Input)
If10PT=1or3,for 1 =1,2,...,M, F(I) corresponds to
X(1) + (1 = 1) * (X(2) = X(1))/(M —1); otherwise, F and X correspond one for one.

Optional Arguments

IOPT — Indicator of the method of interpolation. (Input)
Default: 10PT = 1.

10PT Interpolation Method

1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M —Number of ordinates of the density supplied. (Input)
M must be greater than 1 for linear interpolation (10PT = 1 or 2) and greater than 3 if a
curve is fitted through the ordinates (10PT = 3 or 4).
Default: M = size (F,1).

FORTRAN 90 Interface
Generic: GCDF (X0, X, FL,.D

Specific: The specific interface names are S_GCDF and D_GCDF.

FORTRAN 77 Interface
Single: GCDF (X0, I0PT, M, X, F)

Double: The double precision name is DGCDF.

Description

Function GCDF evaluates a continuous distribution function, given ordinates of the probability
density function. It requires that the range of the distribution be specified in X. For distributions
with infinite ranges, endpoints must be chosen so that most of the probability content is included.
The function GCDF first fits a curve to the points given in X and F with either a piecewise linear
interpolant or a C' cubic spline interpolant based on a method by Akima (1970). Function GCDF
then determines the area, A, under the curve. (If the distribution were of finite range and if the fit
were exact, this area would be 1.0.) Using the same fitted curve, GCDF next determines the area up
to the point Xy(= X0). The value returned is the area up to X, divided by A. Because of the scaling
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by A, it is not assumed that the integral of the density defined by X and F is 1.0. For most
distributions, it is likely that better approximations to the distribution function are obtained when
10PT equals 3 or 4, that is, when a cubic spline is used to approximate the function. It is also
likely that better approximations can be obtained when the abscissas are chosen more densely over
regions where the density and its derivatives (when they exist) are varying greatly.

Comments

If 10PT = 3, automatic workspace usage is:
GCDF 6 * M units, or
DGCDF 11 * M units.

If 10PT = 4, automatic workspace usage is
GCDF 5 * M units, or
DGCDF 9 * M units.

Workspace may be explicitly provided, if desired, by the use of G4ADF/DG4DF. The reference
is:

G4DF(P, IOPT, M, X, F, WK, IWK)
The arguments in addition to those of GCDF are:
WK — Work vector of length 5 * M if 10PT = 3, and of length 4 * M if 10PT = 4.

IWK — Work vector of length M.

Example

In this example, we evaluate the beta distribution function at the point 0.6. The probability density
function of a beta random variable with parameters p and g is

f(x) Zr(p—+q)xp4(l—x)q*1 for 0< x<1
r(pr(a

where I'(+) is the gamma function. The density is equal to 0 outside the interval [0, 1]. We compute
a constant multiple (we can ignore the constant gamma functions) of the density at 300 equally
spaced points and input this information in X and F. Knowing that the probability density of this
distribution is very peaked in the vicinity of 0.5, we could perhaps get a better fit by using
unequally spaced abscissas, but we will keep it simple. Note that this is the same example as one
used in the description of routine BETDF. The result from BETDF would be expected to be more
accurate than that from GCDF since BETDF is designed specifically for this distribution.

USE UMACH_INT
USE GCDF_INT
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IMPLICIT  NONE
INTEGER M
PARAMETER  (M=300)

INTEGER I, I0PT, NOUT

REAL F(M), H, P, PIN1, QIN1, X(2), X0, Xl
1

CALL UMACH (2, NOUT)

X0 = 0.6

I0PT = 3
! Initializations for a beta(12,12)
! distribution.

PIN1 = 11.0

QIN1 = 11.0

X1 = 0.0

H =1.0/(M-1.0)

X)) = Xl

F(1) = 0.0

X1 =Xl +H
! Compute ordinates of the probability
1 density function.

DO 10 1=2, M - 1
F(1) = XI**PIN1*(1.0-X1)**QIN1

X1 X1 + H
10 CONTINUE
X(2) = 1.0
F(M) = 0.0
P~ = GCDF(X0, X, F, IOPT=I0PT)

WRITE (NOUT,99999) P
99999 FORMAT (" The probability that X is less than 0.6 is ", F6.4)
END

Output

The probability that X is less than 0.6 is 0.8364

GCIN

Evaluates the inverse of a general continuous cumulative distribution function given ordinates of
the density.

Required Arguments

P — Probability for which the inverse of the distribution function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

X — Array containing the abscissas or the endpoints. (Input)
If 10PT =1 or 3, X is of length 2. If 10PT =2 or 4, X is of length M. For 10PT =1 or 3,
X(1) contains the lower endpoint of the support of the distribution and X(2) is the upper
endpoint. For I0PT =2 or 4, X contains, in strictly increasing order, the abscissas such
that X(1) corresponds to F(1).
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F — Vector of length M containing the probability density ordinates corresponding to
increasing abscissas. (Input)
If10PT=1or3, for 1 =1,2,...,M, F(I) corresponds to
X(1)+ (1= 1) * (X(2) - X(1))/(M = 1); otherwise, F and X correspond one for one.

GCIN — Function value. (Output)
The probability that a random variable whose density is given in F takes a value less
than or equal to GCIN is P.

Optional Arguments

IOPT — Indicator of the method of interpolation. (Input)
Default: 10PT = 1.

10PT Interpolation Method
1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M — Number of ordinates of the density supplied. (Input)
M must be greater than 1 for linear interpolation (10PT = 1 or 2) and greater than 3 if a
curve is fitted through the ordinates (10PT = 3 or 4).
Default: M = size (F,1).

FORTRAN 90 Interface
Generic: CALL GCIN (P, X, FL,.D

Specific: The specific interface names are S_GCIN and D_GCIN.

FORTRAN 77 Interface

Single: CALL GCIN (P, I0OPT, M, X, F)
Double: The double precision function name is DGCIN.
Description

Function GCIN evaluates the inverse of a continuous distribution function, given ordinates of the
probability density function. The range of the distribution must be specified in X. For distributions
with infinite ranges, endpoints must be chosen so that most of the probability content is included.

The function GCIN first fits a curve to the points given in X and F with either a piecewise linear
interpolant or a C' cubic spline interpolant based on a method by Akima (1970). Function GCIN
then determines the area, A, under the curve. (If the distribution were of finite range and if the fit
were exact, this area would be 1.0.) It next finds the maximum abscissa up to which the area is less
than AP and the minimum abscissa up to which the area is greater than AP. The routine then
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interpolates for the point corresponding to AP. Because of the scaling by A, it is not assumed that
the integral of the density defined by X and F is 1.0.

For most distributions, it is likely that better approximations to the distribution function are
obtained when 10PT equals 3 or 4, that is, when a cubic spline is used to approximate the function.
It is also likely that better approximations can be obtained when the abscissas are chosen more
densely over regions where the density and its derivatives (when they exist) are varying greatly.

Comments

Workspace may be explicitly provided, if desired, by the use of G3IN/DG3IN. The reference is

G3IN(P, I0PT, M, X, F, WK, IWK)
The arguments in addition to those of GCIN are:
WK — Work vector of length 5 * M if I0PT = 3, and of length 4 * M if 10PT = 4.

IWK — Work vector of length M.

Example

In this example, we find the 90-th percentage point for a beta random variable with parameters 12
and 12. The probability density function of a beta random variable with parameters p and q is

X =—r—(—piﬂ)—x”’1 -x)"" for0<x<
0= Farri (0 prosxs

where I'(+) is the gamma function. The density is equal to 0 outside the interval [0, 1]. With

p = q, this is a symmetric distribution. Knowing that the probability density of this distribution is
very peaked in the vicinity of 0.5, we could perhaps get a better fit by using unequally spaced
abscissas, but we will keep it simple and use 300 equally spaced points. Note that this is the same
example that is used in the description of routine BETIN. The result from BETIN would be
expected to be more accurate than that from GCIN since BETIN is designed specifically for this
distribution.

USE GCIN_INT
USE UMACH_INT
USE BETA_INT

IMPLICIT NONE
INTEGER M
PARAMETER  (M=300)

INTEGER 1, 10PT, NOUT
REAL C, F(M), H, P, PIN, PIN1, QIN, QIN1, &
X(2), X0, XI

CALL UMACH (2, NOUT)
P 0.9
I0PT = 3
! Initializations for a beta(12,12)

Chapter 11: Probability Distribution Functions and Inverses GCIN e 297



10

99999

distribution.

PIN = 12.0
QIN = 12.0
PIN1 = PIN - 1.0
QIN1 = QIN - 1.0
C = 1.0/BETA(PIN,QIN)
X1 = 0.0
H =1.0/(M-1.0)
X(1) = X1
F(1) = 0.0
X1 = XI +H
Compute ordinates of the probability
density function.
DO 10 1=2, M - 1
F(1) = C*XI**PIN1*(1.0-X1)**QIN1
X1 = XI +H
CONTINUE
X(2) = 1.0
F(M) = 0.0
X0 = GCIN(P,X,F, IOPT=I0PT)

WRITE (NOUT,99999) XO
FORMAT (" X is less than ", F6.4, " with probability 0.9.7%)
END

Output

X is less than 0.6304 with probability 0.9.

GFNIN

This function evaluates the inverse of a general continuous cumulative distribution function given
in a subprogram.

Function Return Value

GFNIN — The inverse of the function F at the point P. (Output)
F(GFNIN) is “close” to P.

Required Arguments

F — User-supplied FUNCTION to be inverted. F must be continuous and strictly monotone.
The form is F(X), where
X — The argument to the function. (Input)
F — The value of the function at X. (Output)
F must be declared EXTERNAL in the calling program.

P — The point at which the inverse of F is desired. (Input)

GUESS — An initial estimate of the inverse of F at P. (Input)
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Optional Arguments

EPS — Convergence criterion. (Input)
When the relative change in GFNIN from one iteration to the next is less than EPS,
convergence is assumed. A common value for EPS is 0.0001. Another common value
is 100 times the machine epsilon.
Default: EPS = 100 times the machine epsilon.

FORTRAN 90 Interface
Generic: GFNIN (F, P, GUESS [...1)

Specific: The specific interface names are S_GFNIN and D_GFNIN.

FORTRAN 77 Interface
Single: GFNIN (F, P, EPS, GUESS)

Double: The double precision name is DGFNIN.

Description

Function GFNIN evaluates the inverse of a continuous, strictly monotone function. Its most
obvious use is in evaluating inverses of continuous distribution functions that can be defined by a
FORTRAN function. If the distribution function cannot be specified in a FORTRAN function, but
the density function can be evaluated at a number of points, then routine GCIN can be used.

Function GFNIN uses regula falsi and/or bisection, possibly with the Illinois modification (see
Dahlquist and Bjorck 1974). A maximum of 100 iterations are performed.

Comments
1. Informational errors
Type Code
4 1 After 100 attempts, a bound for the inverse cannot be determined.
Try again with a different initial estimate.
4 2 No unique inverse exists.
4 3 Over 100 iterations have occurred without convergence.
Convergence is assumed.
2. The function to be inverted need not be a distribution function, it can be any

continuous, monotonic function.

Example

In this example, we find the 99—th percentage point for an F random variable with 1 and 7 degrees
of freedom. (This problem could be solved easily using routine FIN. Compare the example for
FIN). The function to be inverted is the F distribution function, for which we use routine FDF.
Since FDF requires the degrees of freedom in addition to the point at which the function is
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evaluated, we write another function F that receives the degrees of freedom via a common block
and then calls FDF. The starting point (initial guess) is taken as two standard deviations above the
mean (since this would be a good guess for a normal distribution). It is not necessary to supply
such a good guess. In this particular case, an initial estimate of 1.0, for example, yields the same
answer in essentially the same number of iterations. (In fact, since the F distribution is skewed, the
initial guess, 7.0, is really not that close to the final answer.)

USE UMACH_INT

USE GFNIN_INT

IMPLICIT NONE

INTEGER NOUT

REAL DFD, DFN, F, FO, GUESS, P, SQRT
COMMON /FCOM/ DFN, DFD

INTRINSIC SQRT

EXTERNAL F

CALL UMACH (2, NOUT)

P = 0.99
DFN = 1.0
DFD = 7.0

Compute GUESS as two standard
deviations above the mean.
GUESS = DFD/(DFD-2.0) + 2.0*SQRT(2.0*DFD*DFD*(DFN+DFD-2.0)/(DFN* &
(DFD-2.0)**2*(DFD-4.0)))
FO = GFNIN(F,P,GUESS)
WRITE (NOUT,99999) FO
99999 FORMAT (* The F(1,7) 0.01 critical value is ", F6.3)

END
!
REAL FUNCTION F (X)
REAL X
1
REAL DFD, DFN, FDF
COMMON /FCOM/ DFN, DFD

EXTERNAL FDF

F = FDF(X,DFN,DFD)
RETURN
END

Output

The F(1,7) 0.01 critical value is 12.246
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Chapter 12: Mathieu Functions

Routines
Evaluate the eigenvalues
for the periodic Mathieu functions............cccccvvieiiiniieeeenen MATEE 303
Evaluate even, periodic Mathieu functions......................... MATCE 306
Evaluate odd, periodic Mathieu functions..............ccccccceeen. MATSE 310

Usage Notes
Mathieu’s equation is
d’y
v’

+(a—2qcos2v)y =0

It arises from the solution, by separation of variables, of Laplace’s equation in elliptical
coordinates, where a is the separation constant and q is related to the ellipticity of the coordinate
system. If we let t = cos v, then Mathieu’s equation can be written as

d’y . dy

1-t*)—=—t—=+(a+2q-4qt>)y=0
( )dt2 dt( G-4at’)y

For various physically important problems, the solution y(t) must be periodic. There exist, for

particular values of &, periodic solutions to Mathieu’s equation of period kr for any integer k.

These particular values of a are called eigenvalues or characteristic values. They are computed

using the routine MATEE.

There exist sequences of both even and odd periodic solutions to Mathieu’s equation. The even
solutions are computed by MATCE. The odd solutions are computed by MATSE.

MATEE

Evaluates the eigenvalues for the periodic Mathieu functions.

Required Arguments

Q — Parameter. (Input)

ISYM — Symmetry indicator. (Input)
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ISYM Meaning
0 Even
1 0Odd

IPER — Periodicity indicator. (Input)

1SYM Period
0 pi
1 2 *pi

EVAL — Vector of length N containing the eigenvalues. (Output)

Optional Arguments

N — Number of eigenvalues to be computed. (Input)
Default: N = size (EVAL,1)

FORTRAN 90 Interface
Generic: CALL MATEE (Q, ISYM, IPER, EVAL [,.1)

Specific: The specific interface names are S_MATEE and D_MATEE.

FORTRAN 77 Interface
Single: CALL MATEE (Q, N, ISYM, IPER, EVAL)

Double: The double precision function name is DMATEE.

Description

The eigenvalues of Mathieu’s equation are computed by a method due to Hodge (1972). The
desired eigenvalues are the same as the eigenvalues of the following symmetric, tridiagonal
matrix:

W, aX, 0 0

qXO VVZ qxz 0
0 oX, W, gX,
0 0 aX, W

Here,

w N2 if ISYM=1PER=m=0
" |1 otherwise

W, =[m+IPER +2(1- IPER)ISYM] +V,,
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where

+q if IPER=1,1SYM=0and m=0
V,=9—q if IPER=LISYM=1and m=0
0 otherwise

Since the above matrix is semi-infinite, it must be truncated before its eigenvalues can be
computed. Routine MATEE computes an estimate of the number of terms needed to get accurate
results. This estimate can be overridden by calling M2TEE with NORDER equal to the desired order
of the truncated matrix.

The eigenvalues of this matrix are computed using the routine EVLSB found in the IMSL
MATH/LIBRARY Chapter 2.

Comments

1. Workspace may be explicitly provided, if desired, by use of M2TEE/DM2TEE. The
reference is

CALL M2TEE (Q, N, ISYM, IPER, EVAL, NORDER, WORKD, WORKE)

The additional arguments are as follows:

NORDER — Order of the matrix whose eigenvalues are computed. (Input)

WORKD — Work vector of size NORDER. (Input/Output)

If EVAL is large enough then EVAL and WORKD can be the same vector.

WORKE — Work vector of size NORDER. (Input/Output)

2. Informational error
Type Code
4 1  The iteration for the eigenvalues did not converge.

Example

In this example, the eigenvalues for Q =5, even symmetry, and © periodicity are computed and

printed.

USE UMACH_INT
USE MATEE_INT

IMPLICIT

INTEGER

NONE
Declare variables

PARAMETER (N=10)

INTEGER
REAL

Q =5.0

ISYM, IPER, K, NOUT
Q, EVAL(N)

Compute
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ISYM = 0
IPER = 0
CALL MATEE (Q, ISYM, IPER, EVAL)

Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) 2*K-2, EVAL(K)
10 CONTINUE
99999 FORMAT (" Eigenvalue®, 12, " = ", F9.4)

END

Output
Eigenvalue 0 = -5.8000
Eigenvalue 2 = 7.4491
Eigenvalue 4 = 17.0966
Eigenvalue 6 = 36.3609
Eigenvalue 8 = 64.1989
EigenvaluelO = 100.1264
Eigenvaluel2 = 144.0874
Eigenvalueld4d = 196.0641
Eigenvaluel6 = 256.0491
Eigenvaluel8 = 324.0386

MATCE

Evaluates a sequence of even, periodic, integer order, real Mathieu functions.

Required Arguments

X — Argument for which the sequence of Mathieu functions is to be evaluated. (Input)

Q — Parameter. (Input)
The parameter Q must be positive.

N — Number of elements in the sequence. (Input)

CE — Vector of length N containing the values of the function through the series. (Output)
CE(1) contains the value of the Mathieu function of order I — 1 at X for 1 =1 to N.

FORTRAN 90 Interface
Generic: CALL MATCE (X, Q, N, CE)

Specific: The specific interface names are S_MATCE and D_MATCE.

FORTRAN 77 Interface
Single: CALL MATCE (X, Q, N, CE)
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Double: The double precision name is DMATCE.

Description

The eigenvalues of Mathieu’s equation are computed using MATEE. The function values are then
computed using a sum of Bessel functions, see Gradshteyn and Ryzhik (1965), equation 8.661.

Comments

1. Workspace may be explicitly provided, if desired, by use of M2TCE/DM2TCE. The
reference is

CALL M2TCE (X, Q, N, CE, NORDER, NEEDEV, EVALO, EVAL1l, COEF,
WORK, BSJ)

The additional arguments are as follows:

NORDER — Order of the matrix used to compute the eigenvalues. (Input)
It must be greater than N. Routine MATSE computes NORDER by the following
call to M3TEE.

CALL M3TEE(Q, N, NORDER)

NEEDEV — Logical variable, if .TRUE., the eigenvalues must be computed. (Input)

EVALO — Real work vector of length NORDER containing the eigenvalues computed
by MATEE with 1SYM =0 and IPER =0. (Input/Output)
If NEEDEV is .TRUE., then EVALO is computed by M2TCE; otherwise, it must be
set as an input value.

EVAL1 — Real work vector of length NORDER containing the eigenvalues computed
by MATEE with 1SYM =0 and IPER = 1. (Input/Output)
If NEEDEV is .TRUE., then EVAL1 is computed by M2TCE; otherwise, it must be
set as an input value.

COEF — Real work vector of length NORDER + 4.

WORK — Real work vector of length NORDER + 4.

BSJ — Real work vector of length 2 * NORDER — 2.

2. Informational error
Type Code
4 1 The iteration for the eigenvalues did not converge.
Example 1

In this example, cen(X=n/4,q=1), =0, ..., 9 is computed and printed.

Chapter 12: Mathieu Functions MATCE e 307



USE CONST_INT
USE MATCE_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER N
PARAMETER (N=10)

INTEGER K, NOUT

REAL CE(N), Q, X
Compute
Q=10
X = CONST(C"PI™)
X = 0.25* X

CALL MATCE (X, Q, N, CE)
Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, Q, CE(K)

10 CONTINUE

99999 FORMAT (" ce sub®, 12, * (-, F6.3, *,", F6.3, ") = =, F6.3)

ce
ce
ce
ce
ce
ce
ce
ce
ce
ce

END
Output
sub 0 ( 0.785, 1.000) = 0.654
sub 1 ( 0.785, 1.000) = 0.794
sub 2 ( 0.785, 1.000) = 0.299
sub 3 ( 0.785, 1.000) = -0.555
sub 4 ( 0.785, 1.000) = -0.989
sub 5 ( 0.785, 1.000) = -0.776
sub 6 ( 0.785, 1.000) = -0.086
sub 7 ( 0.785, 1.000) = 0.654
sub 8 ( 0.785, 1.000) = 0.998
sub 9 ( 0.785, 1.000) = 0.746

Additional Examples

Example 2

In this example, we compute cen(X, Q) for various values of nand X and a fixed value of g. To
avoid having to recompute the eigenvalues, which depend on ¢ but not on X, we compute the
eigenvalues once and pass in their value to M2TCE. The eigenvalues are computed using MATEE.
The routine M3TEE is used to compute NORDER based on Q and N. The arrays BSJ, COEF and WORK
are used as temporary storage in M2TCE.

USE IMSL_LIBRARIES
IMPLICIT NONE

Declare variables
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INTEGER MAXORD, N, NX

PARAMETER (MAXORD=100, N=4, NX=5)

INTEGER ISYM, K, NORDER, NOUT
REAL BSJ(2*MAXORD-2), CE(N), COEF(MAXORD+4)

REAL EVALO(MAXORD) , EVAL1(MAXORD), PI, Q, WORK(MAXORD+4), X
Compute NORDER

Q=1.0

CALL M3TEE (Q, N, NORDER)

CALL UMACH (2, NOUT)

WRITE (NOUT, 99997) NORDER

ISYM = 0

Compute eigenvalues

CALL MATEE (Q, ISYM, 0, EVALO)
CALL MATEE (Q, ISYM, 1, EVAL1)

Pl = CONST("PI™)

WRITE (NOUT, 99998)

DO 10 K=0, NX
X = (K*P1)/NX

CALL M2TCE(X, Q, N, CE, NORDER,

COEF, WORK, BSJ)
WRITE (NOUT,99999) X, CE(1), CE(2), CE(3), CE(4)

10 CONTINUE

99997 FORMAT (" NORDER =

Compute function values

99998 FORMAT (/, 28X, "Order-®, /, 20X,

27, 7X, "3%)

99999 FORMAT (" ce(", F6.3, )

END
Output
NORDER = 23
0
ce( 0.000) = 0.385
ce( 0.628) = 0.564
ce( 1.257) = 0.926
ce( 1.885) = 0.926
ce( 2.513) = 0.564
ce( 3.142) = 0.385

-FALSE., EVALO, EVAL1, &

", 13)
"0, 7X, 1%, 7X, &
", 4F8.3)

Order

1 2 3
0.857 1.086 1.067
0.838 0.574 -0.131
0.425 -0.575 -0.820
-0.425 -0.575 0.820
-0.838 0.574 0.131
-0.857 1.086 -1.067
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0.0 0.1 0.2 0.3 0.4 0.5

Figure12- 1 Plot of cey(x, q = 1)

MATSE

Evaluates a sequence of odd, periodic, integer order, real Mathieu functions.

Required Arguments

X — Argument for which the sequence of Mathieu functions is to be evaluated. (Input)

Q — Parameter. (Input)
The parameter Q must be positive.

N — Number of elements in the sequence. (Input)
SE — Vector of length N containing the values of the function through the

series. (Output)
SE(1) contains the value of the Mathieu function of order 1 at X for 1 =1 to N.

FORTRAN 90 Interface

Generic: CALL MATSE (X, Q, N, SE)

Specific: The specific interface names are S_MATSE and D_MATSE.
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FORTRAN 77 Interface

Single: CALL MATSE (X, Q, N, SE)
Double: The double precision function name is DMATSE.
Description

The eigenvalues of Mathieu’s equation are computed using MATEE. The function values are then
computed using a sum of Bessel functions, see Gradshteyn and Ryzhik (1965), equation 8.661.

Comments

1. Workspace may be explicitly provided, if desired, by use of M2TSE/DM2TSE. The
reference is

CALL M2TSE (X, Q, N, SE, NORDER, NEEDEV, EVALO, EVAL1, COEF,
WORK, BSJ)

The additional arguments are as follows:

NORDER — Order of the matrix used to compute the eigenvalues. (Input)
It must be greater than N. Routine MATSE computes NORDER by the following
call to M3TEE.
CALL M3TEE (Q, N, NORDER)

NEEDEV — Logical variable, if .TRUE., the eigenvalues must be computed. (Input)

EVALO — Real work vector of length NORDER containing the eigenvalues computed
by MATEE with 1SYM =1 and IPER =0. (Input/Output)
If NEEDEV is .TRUE., then EVALO is computed by M2TSE; otherwise, it must be
set as an input value.

EVAL1 — Real work vector of length NORDER containing the eigenvalues computed
by MATEE with 1ISYM =1 and IPER = 1. (Input/Output)
If NEEDEV is .TRUE., then EVAL1 is computed by M2TSE; otherwise, it must be
set as an input value.

COEF — Real work vector of length NORDER + 4.

WORK — Real work vector of length NORDER + 4.

BSI — Real work vector of length 2 * NORDER + 1.

2. Informational error
Type Code
4 1 The iteration for the eigenvalues did not converge.
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Example

In this example, sen(X=m/4, q=10),n=0, ..., 9 is computed and printed.

1.2

- - ‘S;‘

Ses €4

-1.2 L e e e I e A B
0.0 0.1 0.2 0.5 0.4 0.5

Figure 12- 2 Plot of sey(x, q = 1)

USE CONST_INT
USE MATSE_INT
USE UMACH_INT

IMPLICIT NONE

1 Declare variables
INTEGER N
PARAMETER (N=10)

INTEGER K, NOUT

REAL SE(N), Q, X
1 Compute
Q = 10.0
X = CONST("PI™)
X = 0.25* X
CALL MATSE (X, Q, N, SE)
1 Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, Q, SE(K)
10 CONTINUE
99999 FORMAT (" se sub”, 12, " (", F6.3, ",", F6.3, ") = ", F6.3)
END
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se
se
se
se
se
se
se
se
se
se

Output

sub
sub
sub
sub
sub
sub
sub
sub
sub
sub

CoO~NOOUBAWNEO
AAAAAAAAAAAA

[eNeNoNeooNooNoNeNe]

.785,10.
.785,10.
.785,10.
.785,10.
.785,10.
.785,10.
.785,10.
.785,10.
.785,10.
.785,10.

000)
000)
000)
000)
000)
000)
000)
000)
000)
000)

-250
.692
.082
-960
-230
.634
.981
.588
.219
.871
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Chapter 13: Miscellaneous
Functions

Routines
Spence dilogarithm .........ccccoviiii e, SPENC
Initialize a Chebyshev series ........cccoiiii INITS
Evaluate a Chebyshev Series ........cccccovviieiiiieie e, CSEVL

317
318
319

Usage Notes

Many functions of one variable can be numerically computed using a Chebyshev series,

f(x)=3" AT, (x) —-l1<x<I

A Chebyshev series is better for numerical computation than a Taylor series since the Chebyshev

polynomials, T(X), are better behaved than the monomials, X".

A Taylor series can be converted into a Chebyshev series using an algorithm of Fields and Wimp,

(see Luke (1969), page 292).
Let

f (X) = Z?zognxn
be a Taylor series expansion valid for |X| < 1. Define

_ 25 (n+3) (n+1), S
A= 2o (2n+1), k!

where (a)x =I'(a+ k)/T'(a) is Pochhammer’s symbol.
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(Note that (a)x,; = (a+ K)(@)). Then,

f(X)=1T,(x)+2 7 AT, (x) 0<x<I
where
T, (%)
are the shifted Chebyshev polynomials,
T, (x)=T, (2x-1)

In an actual implementation of this algorithm, the number of terms in the Taylor series and the
number of terms in the Chebyshev series must both be finite. If the Taylor series is an alternating

series, then the error in using only the first M terms is less than |Ey 1 |. The error in truncating the
Chebysheyv series to N terms is no more than

" e
Zn:NH | ﬂ|

If the Taylor series is valid on |[X| < R, then we can write

f(x)=>" &R (XR)
and use &R instead of &, in the algorithm to obtain a Chebyshev series in /R valid for 0 <x<R.

Unfortunately, if R is large, then the Chebyshev series converges more slowly.

The Taylor series centered at zero can be shifted to a Taylor series centered at C. Let t = X — C, so
o0 o0 n i .
f(x)= f(t+c)=Y" & (t+c) :Zn_oz;'_ogn[j](:n iy
=2t = 2 e (x=o)

By interchanging the order of the double sum, it can easily be shown that

&3 ()

By combining scaling and shifting, we can obtain a Chebyshev series valid over any interval [a, b]
for which the original Taylor series converges.

The algorithm can also be applied to asymptotic series,
F(X)~D  &x"as X -

by treating the series truncated to M terms as a polynomial in 1/X. The asymptotic series is usually
divergent; but if it is alternating, the error in truncating the series to M terms is less than

|EM 411/ R"*! for R< x < oo Normally, as M increases, the error initially decreases to a small value
and then increases without a bound. Therefore, there is a limit to the accuracy that can be obtained
by increasing M. More accuracy can be obtained by increasing R. The optimal value of M depends
on both the sequence &j and R. For R fixed, the optimal value of M can be found by finding the
value of M at which |Em|/ R" starts to increase.
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Since we want a routine accurate to near machine precision, the algorithm must be implemented
using somewhat higher precision than is normally used. This is best done using a symbolic
computation package.

SPENC

This function evaluates a form of Spence’s integral.

Function Return Value
SPENC — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: SPENC (X)

Specific: The specific interface names are S_SPENC and D_SPENC.

FORTRAN 77 Interface
Single: SPENC (X)

Double: The double precision function name is DSPENC.

Description

The Spence dilogarithm function, S(X), is defined to be

x In l—y
s(x):—J‘0 —|y | dy

For [x| < 1, the uniformly convergent expansion
k
o0 X
S( X) = z k=12

is valid.

Spence’s function can be used to evaluate much more general integral forms. For example,

CJzlog(aXer)dX:10g|a(cz+d)|_S a(cz+d)
o cx+d ad—bc| ad —bc
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Example

In this example, S(0.2) is computed and printed.

USE SPENC_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOUT

REAL VALUE, X

! Compute
X =0.2
VALUE = SPENC(X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (* SPENC(", F6.3, ") = ", F6.3)
END

Output

SPENC( 0.200) = 0.211

INITS

This function Initializes the orthogonal series so the function value is the number of terms needed
to insure the error is no larger than the requested accuracy.

Function Return Value

INITS — Number of terms needed to insure the error is no larger than ETA. (Output)
Required Arguments

OS — Vector of length NOS containing coefficients in an orthogonal series. (Input)

NOS — Number of coefficients in 0S. (Input)

ETA — Requested accuracy of the series. (Input)
Contrary to the usual convention, ETA is a REAL argument to INITDS.

FORTRAN 90 Interface
Generic: INITS (0S, NOS, ETA)

Specific: The specific interface names are INITS and INITDS.
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FORTRAN 77 Interface

Single: INITS (0S, NOS, ETA)
Double: The double precision function name is INITDS.
Description

Function INITS initializes a Chebyshev series. The function INITS returns the number of terms in
the series Sof length N needed to insure that the error of the evaluated series is everywhere less
than ETA. The number of input terms n must be greater than 1, so that a series of at least one term
and an error estimate can be obtained. In addition, ETA should be larger than the absolute value of
the last coefficient. If it is not, then all the terms of the series must be used, and no error estimate

is available.

Comments

ETA will usually be chosen to be one tenth of machine precision.

CSEVL

This function evaluates the N-term Chebyshev series.

Function Return Value
CSEVL — Function value. (Output)

Required Arguments
X — Argument at which the series is to be evaluated. (Input)

CS — Vector of length N containing the terms of a Chebyshev series. (Input)
In evaluating CS, only half of the first coefficient is summed.

Optional Arguments

N — Number of terms in the vector CS. (Input)|
Default: N = size(CS, 1)

FORTRAN 90 Interface
Generic: CSEVL (X, CS [,.D
Specific: The specific interface names are S_CSEVL and D_CSEVL.

FORTRAN 77 Interface
Single: CSEVL (X, CS, N)
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Double: The double precision function name is DCSEVL.

Description

Function CSEVL evaluates a Chebyshev series whose coefficients are stored in the array S of length
Nn at the point X. The argument X must lie in the interval

[-1, +1]. Other finite intervals can be linearly transformed to this canonical interval. Also, the
number of terms in the series must be greater than zero but less than 1000. This latter limit is
purely arbitrary; it is imposed in order to guard against the possibility of a floating point number
being passed as an argument for n.

Comments
Informational error
Type Code
3 7 X is outside the interval (—1.1, +1.1)
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User Errors

IMSL routines attempt to detect user errors and handle them in a way that provides as much in-
formation to the user as possible. To do this, we recognize various levels of severity of errors, and
we also consider the extent of the error in the context of the purpose of the routine; a trivial error
in one situation may be serious in another. IMSL routines attempt to report as many errors as they
can reasonably detect. Multiple errors present a difficult problem in error detection because input
is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity

In some cases, the user’s input may be mathematically correct, but because of limitations of the
computer arithmetic and of the algorithm used, it is not possible to compute an answer accurately.
In this case, the assessed degree of accuracy determines the severity of the error. In cases where
the routine computes several output quantities, if some are not computable but most are, an error
condition exists. The severity depends on an assessment of the overall impact of the error.

Terminal errors

If the user’s input is regarded as meaningless, such as N =—1 when “N” is the number of equations,
the routine prints a message giving the value of the erroneous input argument(s) and the reason for
the erroneous input. The routine will then cause the user’s program to stop. An error in which the
user’s input is meaningless is the most severe error and is called a terminal error. Multiple
terminal error messages may be printed from a single routine.

Informational errors

In many cases, the best way to respond to an error condition is simply to correct the input and
rerun the program. In other cases, the user may want to take actions in the program itself based on
errors that occur. An error that may be used as the basis for corrective action within the program is
called an informational error. If an informational error occurs, a user-retrievable code is set. A
routine can return at most one informational error for a single reference to the routine. The codes
for the informational error codes are printed in the error messages.
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Other errors

In addition to informational errors, IMSL routines issue error messages for which no user-
retrievable code is set. Multiple error messages for this kind of error may be printed. These errors,
which generally are not described in the documentation, include terminal errors as well as less
serious errors. Corrective action within the calling program is not possible for these errors.

Kinds of Errors and Default Actions

Five levels of severity of errors are defined in the MATH/LIBRARY Special Functions. Each
level has an associated PRINT attribute and a STOP attribute. These attributes have default
settings (YES or NO), but they may also be set by the user. The purpose of having multiple error
severity levels is to provide independent control of actions to be taken for errors of different
severity. Upon return from an IMSL routine, exactly one error state exists. (A code 0 “error” is no
informational error.) Even if more than one informational error occurs, only one message is
printed (if the PRINT attribute is YES). Multiple errors for which no corrective action within the
calling program is reasonable or necessary result in the printing of multiple messages (if the
PRINT attribute for their severity level is YES). Errors of any of the severity levels except level 5
may be informational errors.

Level 1: Note. A noteis issued to indicate the possibility of a trivial error or simply to
provide information about the computations. Default attributes: PRINT=NO, STOP=NO

Level 2: Alert. An alert indicates that the user should be advised about events occurring in
the software. Default attributes: PRINT=NO, STOP=NO

Level 3: Warning. A warning indicates the existence of a condition that may require
corrective action by the user or calling routine. A warning error may be issued because the
results are accurate to only a few decimal places, because some of the output may be
erroneous but most of the output is correct, or because some assumptions underlying the
analysis technique are violated. Often no corrective action is necessary and the condition
can be ignored. Default attributes: PRINT=YES, STOP=NO

Level 4: Fatal. A fatal error indicates the existence of a condition that may be serious. In
most cases, the user or calling routine must take corrective action to recover. Default
attributes: PRINT=YES, STOP=YES

Level 5: Terminal. A terminal error is serious. It usually is the result of an incorrect
specification, such as specifying a negative number as the number of equations. These
errors may also be caused by various programming errors impossible to diagnose correctly
in FORTRAN. The resulting error message may be perplexing to the user. In such cases,
the user is advised to compare carefully the actual arguments passed to the routine with the
dummy argument descriptions given in the documentation. Special attention should be
given to checking argument order and data types.

A terminal error is not an informational error because corrective action within the program
is generally not reasonable. In normal usage, execution is terminated immediately when a
terminal error occurs. Messages relating to more than one terminal error are printed if they
occur. Default attributes: PRINT=YES, STOP=YES
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The user can set PRINT and STOP attributes by calling ERSET as described in “Routines for Error
Handling.”

Errors in Lower-Level Routines

It is possible that a user’s program may call an IMSL routine that in turn calls a nested sequence of
lower-level IMSL routines. If an error occurs at a lower level in such a nest of routines and if the
lower-level routine cannot pass the information up to the original user-called routine, then a
traceback of the routines is produced. The only common situation in which this can occur is when
an IMSL routine calls a user-supplied routine that in turn calls another IMSL routine.

Routines for Error Handling

There are three ways in which the user may interact with the IMSL error handling system: (1) to
change the default actions, (2) to retrieve the integer code of an informational error so as to take
corrective action, and (3) to determine the severity level of an error. The routines to use are
ERSET, IERCD, and N1RTY, respectively.

ERSET

Change the default printing or stopping actions when errors of a particular error severity level
occur.

Required Arguments

IERSVR — Error severity level indicator. (Input)
If IERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are set for
errors of the specified severity level.

IPACT — Printing action. (Input)

IPACT Action

-1 Do not change current setting(s).
0 Do not print.
1 Print.
2 Restore the default setting(s).

ISACT — Stopping action. (Input)

I1SACT Action

-1 Do not change current setting(s).
0 Do not stop.
1 Stop.
2 Restore the default setting(s).
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FORTRAN 90 Interface
Generic: CALL ERSET (IERSVR, IPACT, ISACT)

Specific: The specific interface name is ERSET.

FORTRAN 77 Interface
Single: CALL ERSET (IERSVR, IPACT, ISACT)

IERCD and N1RTY

The last two routines for interacting with the error handling system, 1ERCD and N1RTY, are
INTEGER functions and are described in the following material.

1ERCD retrieves the integer code for an informational error. Since it has no arguments, it may be
used in the following way:

ICODE = IERCD()
The function retrieves the code set by the most recently called IMSL routine.

N1RTY retrieves the error type set by the most recently called IMSL routine. It is used in the
following way:

ITYPE = NIRTY(1)

ITYPE =1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5, respectively. ITYPE =3
and ITYPE = 6 are both warning errors, error severity level 3. While ITYPE = 3 errors are
informational errors (1ERCD( ) # 0), 1TYPE = 6 errors are not informational errors (1ERCD( ) = 0).

For software developers requiring additional interaction with the IMSL error handling system, see
Aird and Howell (1991).

Examples

Changes to Default Actions

Some possible changes to the default actions are illustrated below. The default actions remain in
effect for the kinds of errors not included in the call to ERSET.

To turn off printing of warning error messages:
CALL ERSET (3,0,-1)

To stop if warning errors occur:
CALL ERSET (3,-1,1)

To print all error messages:
CALL ERSET (0, 1,-1)

To restore all default settings:
CALL ERSET (O, 2,2)
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Machine-Dependent Constants

The function subprograms in this section return machine-dependent information and can be used
to enhance portability of programs between different computers. The routines IMACH, and AMACH
describe the computer’s arithmetic. The routine UMACH describes the input, ouput, and error output
unit numbers.

IMACH

This function retrieves machine integer constants that define the arithmetic used by the computer.

Function Return Value

IMACH(1) = Number of bits per integer storage unit.

IMACH(2) = Number of characters per integer storage unit:
Integers are represented in M-digit, base A form as

O'Z I’io X, A

where o is the sign and 0 <X <A k=0, ..., M.
Then,

IMACH(3) = A, the base.

IMACH(4) = M, the number of base-A digits.

IMACH(5) = AM— 1, the largest integer.

The machine model assumes that floating-point numbers are represented in normalized
N-digit, base B form as

EN'N -k
oB*Y  xB
where o is the sign, 0 <x <B,0<x<B,k=2,...,Nand E,;, <E<LE, .« Then,

IMACH(6) =B, the base.
IMACH(7) = N, the number of base-B digits in single precision.
IMACH(8) =E,;, , the smallest single precision exponent.

‘ming ?
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IMACH(9) = E,
IMACH(10) = N, the number of base-B digits in double precision.
IMACH(I) =E_, ,

IMACH(12) = E

'maxy ?

the largest single precision exponent.

maxg 2

the smallest double precision exponent.

the number of base-B digits in double precision

Required Arguments

| — Index of the desired constant. (Input)

FORTRAN 90 Interface
Generic: IMACH (1D
Specific: The specific interface name is IMACH.

FORTRAN 77 Interface
Single: IMACH (1)

AMACH

The function subprogram AMACH retrieves machine constants that define the computer’s single-
precision or double precision arithmetic. Such floating-point numbers are represented in
normalized N-digit, base B form as

EXN -k

oB®) , B
where o is the sign, 0 <x <B,0<x<B,k=2, ..., Nand
E

‘min

<E<E,,
Function Return Value

E . -1
AMACH(1) =B ™M ‘the smallest normalized positive number.
E N
AMACH(2)=B Mmax (l -B ), the largest number.

AMACH(3)=B_N , the smallest relative spacing.

N

AMACH(4):B1 ~ 'V, the largest relative spacing.
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AMACH(5) = log10 (B).

AMACH(6) = NaN (non-signaling not a number).
AMACH(7)=positive machine infinity.
AMACH(8)= negative machine infinity.

See Comment 1 for a description of the use of the generic version of this function.
See Comment 2 for a description of min, max, and N.

Required Arguments

| — Index of the desired constant. (Input)

FORTRAN 90 Interface
Generic: AMACH (1)

Specific: The specific interface names are S_AMACH and D_AMACH.

FORTRAN 77 Interface
Single: AMACH (1)

Double: The double precision name is DMACH.

Comments

1. If the generic version of this function is used, the immediate result must be stored in a
variable before use in an expression. For example:

X
Y

AMACH(1)
SQRT(X)

must be used rather than
Y = SQRT(AMACH(I)).

If this is too much of a restriction on the programmer, then the specific name can be
used without this restriction..

2. Note that for single precision B = IMACH(6), N= IMACH(7).
Enin = IMACH(8), and Epax = IMACH(9).
For double precision B= IMACH(6), N= IMACH(10).
Erin= IMACH(11), and Eax = IMACH(12).
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3. The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN (not a
number) as the result of various invalid or ambiguous operations, such as 0/0. The intent
is that AMACH(6) return a quiet NaN. On IEEE format computers that do not support a
quiet NaN, a special value near AMACH(2) is returned for AMACH(6). On computers that do
not have a special representation for infinity, AMACH(7) returns the same value as
AMACH(2).

DMACH

See AMACH.

IFNAN(X)

This logical function checks if the argument X is NaN (not a number).

Function Return Value

IFNAN - Logical function value. True is returned if the input argument is a NAN. Otherwise,
False is returned. (Output)

Required Arguments
X — Argument for which the test for NAN is desired. (Input)

FORTRAN 90 Interface
Generic: IFNAN (X))

Specific: The specific interface names are S_1FNAN and D_ IFNAN.

FORTRAN 77 Interface
Single: IFNAN (X)

Double: The double precision name is DIFNAN.

Description

The logical function 1FNAN checks if the single or double precision argument X is NAN (not a
number). The function 1FNAN is provided to facilitate the transfer of programs across computer
systems. This is because the check for NaN can be tricky and not portable across computer
systems that do not adhere to the IEEE standard. For example, on computers that support the IEEE
standard for binary arithmetic (see IEEE 1985), NaN is specified as a bit format not equal to itself.
Thus, the check is performed as

IFNAN = X .NE. X
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On other computers that do not use IEEE floating-point format, the check can be performed as:
IFNAN = X .EQ. AMACH(6)

The function I1FNAN is equivalent to the specification of the function Isnan listed in the Appendix,
(IEEE 1985). The above example illustrates the use of IFNAN. If X is NaN, a message is printed
instead of X. (Routine UMACH, which is described in the following section, is used to retrieve the
output unit number for printing the message.)

Example

USE ITFNAN_INT
USE AMACH_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER NOUT
REAL X

CALL UMACH (2, NOUT)

X = AMACH(6)
IF (IFNAN(X)) THEN
WRITE (NOUT,*) " X is NaN (not a number)."
ELSE
WRITE (NOUT,*) " X = ", X
END IF

END

Output

X is NaN (not a number).

UMACH

Routine UMACH sets or retrieves the input, output, or error output device unit numbers.

Required Arguments

N — Integer value indicating the action desired. If the value of N is negative, the input,
output, or error output unit number is reset to NUNIT. If the value of N is positive, the
input, output, or error output unit number is returned in NUNIT. See the table in
argument NUNIT for legal values of N. (Input)

NUNIT — The unit number that is either retrieved or set, depending on the value of input
argument N. (Input/Output)

The arguments are summarized by the following table:
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N Effect

1 Retrieves input unit number in NUNIT.
2 Retrieves output unit number in NUNIT.
3 Retrieves error output unit number in NUNIT.

-1 Sets the input unit number to NUNIT.

-2 Sets the output unit number to NUNIT.

-3 Sets the error output unit number to NUNIT.

FORTRAN 90 Interface
Generic: CALL UMACH (N, NUNIT)

Specific: The specific interface name is UMACH.

FORTRAN 77 Interface
Single: CALL UMACH (N, NUNIT)

Description

Routine UMACH sets or retrieves the input, output, or error output device unit numbers. UMACH is
set automatically so that the default FORTRAN unit numbers for standard input, standard output,
and standard error are used. These unit numbers can be changed by inserting a call to UMACH at the
beginning of the main program that calls MATH/LIBRARY routines. If these unit numbers are
changed from the standard values, the user should insert an appropriate OPEN statement in the
calling program.

Example

In the following example, a terminal error is issued from the MATH/LIBRARY AMACH function
since the argument is invalid. With a call to UMACH, the error message will be written to a local file
named “CHECKERR”.

USE AMACH_INT
USE UMACH_INT

IMPLICIT NONE

INTEGER N, NUNIT
REAL X
Set Parameter
N=20
NUNIT = 9

CALL UMACH (-3, NUNIT)
OPEN (UNIT=9,FILE="CHECKERR")
X = AMACH(N)

END

330 e Reference Material MATH LIBRARY Special Functions



Output

The output from this example, written to “CHECKERR” 1is:
*** TERMINAL ERROR 5 from AMACH. The argument must be between 1 and 8
Fekk inclusive. N = 0

Reserved Names

When writing programs accessing IMSL MATH/LIBRARY Special Functions, the user should
choose FORTRAN names that do not conflict with names of IMSL subroutines, functions, or
named common blocks, such as the workspace common block WORKSP (see Automatic Workspace
Allocation). The user needs to be aware of two types of name conflicts that can arise. The first
type of name conflict occurs when a name (technically a symbolic name) is not uniquely defined
within a program unit (either a main program or a subprogram). For example, such a name conflict
exists when the name BSJS is used to refer both to a type REAL variable and to the IMSL routine
BSJS in a single program unit. Such errors are detected during compilation and are easy to correct.
The second type of name conflict, which can be more serious, occurs when names of program
units and named common blocks are not unique. For example, such a name conflict would be
caused by the user defining a routine named WORKSP and also referencing a MATH/LIBRARY
Special Functions routine that uses the named common block WORKSP. Likewise, the user must not
define a subprogram with the same name as a subprogram in MATH/LIBRARY Special
Functions, that is referenced directly by the user’s program or is referenced indirectly by other
MATH/LIBRARY Special Functions subprograms.

MATH/LIBRARY Special Functions consists of many routines, some that are described in the
User’s Manual and others that are not intended to be called by the user and, hence, that are not
documented. If the choice of names were completely random over the set of valid FORTRAN
names and if a program uses only a small subset of MATH/LIBRARY Special Functions, the
probability of name conflicts is very small. Since names are usually chosen to be mnemonic,
however, the user may wish to take some precautions in choosing FORTRAN names.

Many IMSL names consist of a root name that may have a prefix to indicate the type of the
routine. For example, the IMSL single precision routine for computing Bessel functions of the first
kind with real order has the name BSJS, which is the root name, and the corresponding IMSL
double precision routine has the name DBSJS. Associated with these two routines are B2JS and
DB2JS. BSJS is listed in the Alphabetical Index of Routines, but DBSJS, B2JS, and DB2JS are
not. The user of BSJS must consider both names BSJS and B2JS to be reserved; likewise, the user
of DBSJS must consider both names DBSJS and DB2JS to be reserved. The root names of all
routines and named common blocks that are used by MATH/LIBRARY Special Functions and
that do not have a numeral in the second position of the root name are listed in the Alphabetical
Index of Routines. Some of the routines in this Index are not intended to be called by the user and
so are not documented. The careful user can avoid any conflicts with IMSL names if the following
rules are observed:

e Do not choose a name that appears in the Alphabetical Summary of Routines in the User’s
Manual, nor one of these names preceded by aD,S_,D_,C_,or Z_.

e Do not choose a name of three or more characters with a numeral in the second or third
position.
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These simplified rules include many combinations that are, in fact, allowable. However, if the
user selects names that conform to these rules, no conflict will be encountered.

Deprecated Features and Deleted Routines

Automatic Workspace Allocation

FORTRAN subroutines that work with arrays as input and output often require extra arrays for use
as workspace while doing computations or moving around data. IMSL routines generally do not
require the user explicitly to allocate such arrays for use as workspace. On most systems the
workspace allocation is handled transparently. The only limitation is the actual amount of memory
available on the system.

On some systems the workspace is allocated out of a stack that is passed as a FORTRAN array in
a named common block WORKSP. A very similar use of a workspace stack is described by Fox et
al. (1978, pages 116—121). (For compatiblity with older versions of the IMSL Libraries, space is
allocated from the COMMON block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For example, the IMSL
routine LSARG (in Chapter 1, “Linear Systems”), which solves systems of linear equations, needs
arrays for workspace. LSARG allocates arrays from the common area, and passes them to the
lower-level routine L2ARG which does the computations. In the “Comments” section of the
documentation for LSARG, the amount of workspace is noted and the call to L2ARG is described.
This scheme for using lower-level routines is followed throughout the IMSL Libraries. The names
of these routines have a “2” in the second position (or in the third position in double precision
routines having a “D” prefix). The user can provide workspace explicitly and call directly the “2-
level” routine, which is documented along with the main routine. In a very few cases, the 2-level
routine allows additional options that the main routine does not allow.

Prior to returning to the calling program, a routine that allocates workspace generally deallocates
that space so that it becomes available for use in other routines.

Changing the Amount of Space Allocated

This section isrelevant only to those systems on which the transparent workspace allocator is not
available,

By default, the total amount of space allocated in the common area for storage of numeric data is
5000 numeric storage units. (A numeric storage unit is the amount of space required to store an
integer or a real number. By comparison, a double precision unit is twice this amount. Therefore,
the total amount of space allocated in the common area for storage of numeric data is 2500 double
precision units.) This space is allocated as needed for INTEGER, REAL, or other numeric data. For
larger problems in which the default amount of workspace is insufficient, the user can change the
allocation by supplying the FORTRAN statements to define the array in the named common block
and by informing the IMSL workspace allocation system of the new size of the common array. To
request 7000 units, the statements are

COMMON /WORKSP/ RWKSP

REAL RWKSP(7000)
CALL IWKIN(7000)
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If an IMSL routine attempts to allocate workspace in excess of the amount available in the com-
mon stack, the routine issues a fatal error message that indicates how much space is needed and
prints statements like those above to guide the user in allocating the necessary amount. The
program below uses IMSL routine BSJS (See Chapter 6, “Bessel Functions ” of this manual.) to
illustrate this feature.

This routine requires workspace that is just larger than twice the number of function values

requested.
INTEGER N
REAL BS(10000), X, XNU
EXTERNAL  BSJS
! Set Parameters
XNU = .5
X =1.
N = 6000
CALL BSJS (XNU, X, N, BS)
END
Output
*** TERMINAL ERROR from BSJS. Insufficient workspace for
Fkk current allocation(s). Correct by calling
falaied IWKIN from main program with the three
Fkk following statements: (REGARDLESS OF
Fokk PRECISION)
Fkx COMMON /WORKSP/ RWKSP
Fekk REAL RWKSP(12018)
Fokx CALL IWKIN(12018)
*** TERMINAL ERROR from BSJS. The workspace requirement is
Fekk based on N =6000.
STOP

In most cases, the amount of workspace is dependent on the parameters of the problem so the
amount needed is known exactly. In a few cases, however, the amount of workspace is dependent
on the data (for example, if it is necessary to count all of the unique values in a vector). Thus, the
IMSL routine cannot tell in advance exactly how much workspace is needed. In such cases, the
error message printed is an estimate of the amount of space required.

Character Workspace

Since character arrays cannot be equivalenced with numeric arrays, a separate named common
block WKSPCH is provided for character workspace. In most respects, this stack is managed in the
same way as the numeric stack. The default size of the character workspace is 2000 character
units. (A character unit is the amount of space required to store one character.) The routine
analogous to IWKIN used to change the default allocation is IWKCIN.

The routines in the following list are being deprecated in Version 2.0 of MATH/LIBRARY
Special Functions. A deprecated routine is one that is no longer used by anything in the library but
is being included in the product for those users who may be currently referencing it in their
application. However, any future versions of MATH/LIBRARY Special Functions will not
include these routines. If any of these routines are being called within an application, it is
recommended that you change your code or retain the deprecated routine before replacing this
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library with the next version. Most of these routines were called by users only when they needed
to set up their own workspace. Thus, the impact of these changes should be limited.

G2DF
G2IN
G3DF

The following specific FORTRAN intrinsic functions are no longer supplied by IMSL. They can
all be found in their manufacturer’s FORTRAN runtime libraries. If any change must be made to
the user’s application as a result of their removal from the IMSL Libraries, it is limited to the

redeclaration of the function from “external” to “intrinsic.” Argument lists and results should be

identical.

ACOS CEXP
AINT CLOG
ALOG COoS
ALOG10 COSH
ASIN CSIN
ATAN CSQRT
ATAN2 DACOS
CABS DASIN
CCOS DATAN

DATAN2
DCOS
DCOSH
DEXP
DINT
DLOG
DLOG10
DSIN
DSINH

DSQRT
DTAN
DTANH
EXP
SIN
SINH
SQRT
TAN
TANH
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Appendix A: GAMS Index

Description

This index lists routines in MATH/LIBRARY Special Functions by a tree-structured classification
scheme known as GAMS. Boisvert, Howe, Kahaner, and Springmann (1990) give the GAMS
classification scheme. The classification scheme given here is Version 2.0. The first level of the
classification scheme is denoted by a letter A thru Z as follows:

Arithmetic, Error Analysis

Number Theory

Elementary and Special Functions

Linear Algebra

Interpolation

Solution of Nonlinear Equations

Optimization

Differentiation and Integration

Differential and Integral Equations

Integral Transforms

Approximation

Statistics, Probability

Simulation, Stochastic Modeling

Data Handling

Symbolic Computation

Computational Geometry

Graphics

Service Routines

Software Development Tools

Other

NOFOPOZINANTZOTImUN®wS

There are seven levels in the classification scheme. Subclasses for levels 3, 5, and 7 are denoted by
letters “a” thru “w”. Subclasses for levels 2, 4, and 6 are denoted by the numbers 1 thru 23.

The index given in the following pages lists routines in MATH/LIBRARY Special Functions
within each GAMS subclass. The purpose of the routine appear alongside the routine name.
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IMSL MATH/LIBRARY Special Functions

Cuoreene ELEMENTARY AND SPECIAL FUNCTIONS (search also class L5)
Cl......... Integer-valued functions (e.g., floor, ceiling, factorial, binomial
coefficient)
BINOM Evaluate the binomial coefficient.
FAC Evaluate the factorial of the argument.
C2........ Powers, roots, reciprocals

CBRT Evaluate the cube root.
CCBRT Evaluate the complex cube root.

C3......... Polynomials

C3a....... Orthogonal
INITS Initialize the orthogonal series so the function value is the
number of terms needed to insure the error is no larger
than the requested accuracy.

C3a2.....Chebyshev, Legendre
CSEVL Evaluate the N-term Chebyshev series.

C4....... Elementary transcendental functions
Cda Trigonometric, inverse trigonometric
CACOS Evaluate the complex arc cosine.
CARG  Evaluate the argument of a complex number.
CASIN Evaluate the complex arc sine.
CATAN Evaluate the complex arc tangent.
CATAN2 Evaluate the complex arc tangent of a ratio.
CCOT  Evaluate the complex cotangent.
COSDG Evaluate the cosine for the argument in degrees.
coT Evaluate the cotangent.
SINDG Evaluate the sine for the argument in degrees.

Cdb....... Exponential, logarithmic

ALNREL Evaluate the natural logarithm of one plus the argument.

CEXPRL Evaluate the complex exponential function factored from
first order.

CLNREL Evaluate the principal value of the complex natural
logarithm of one plus the argument.

CLOG10 Evaluate the principal value of the complex common
logarithm.

EXPRL Evaluate the exponential function factored from first order,
(EXP(X) — 1.0)/X.

Céc....... Hyperbolic, inverse hyperbolic
ACOSH Evaluate the arc hyperbolic cosine.
ASINH Evaluate the arc hyperbolic sine.
ATANH Evaluate the arc hyperbolic tangent.
CACOSH Evaluate the complex arc hyperbolic cosine.
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C7hb.......

CTc.......

CASINH Evaluate the complex arc hyperbolic sine.
CATANH Evaluate the complex arc hyperbolic tangent.

CCOSH
CSINH
CTAN

CTANH

Evaluate the complex hyperbolic cosine.
Evaluate the complex hyperbolic sine.
Evaluate the complex tangent.

Evaluate the complex hyperbolic tangent.

Exponential and logarithmic integrals

ALI
CHI
Cl
CIN
CINH

El

El

Evaluate the logarithmic integral.

Evaluate the hyperbolic cosine integral.

Evaluate the cosine integral.

Evaluate a function closely related to the cosine integral.
Evaluate a function closely related to the hyperbolic cosine
integral.

Evaluate the exponential integral for arguments greater
than zero and the Cauchy principal value of the integral for
arguments less than zero.

Evaluate the exponential integral for arguments greater
than zero and the Cauchy principal value for arguments
less than zero.

Evaluate the exponential integral of integer order for
arguments greater than zero scaled by EXP(X).

Evaluate the hyperbolic sine integral.

Evaluate the sine integral.

Gamma, log gamma, reciprocal gamma
ALGAMS Return the logarithm of the absolute value of the gamma

function and the sign of gamma.

ALNGAM Evaluate the logarithm of the absolute value of the gamma

function.

CGAMMA Evaluate the complex gamma function.

CGAMR

Evaluate the reciprocal complex gamma function.

CLNGAM Evaluate the complex natural logarithm of the gamma

GAMMA
GAMR
POCH
POCH1

function.

Evaluate the complete gamma function.

Evaluate the reciprocal gamma function.

Evaluate a generalization of Pochhammer’s symbol.
Evaluate a generalization of Pochhammer’s symbol
starting from the first order.

Beta, log beta
ALBETA Evaluate the natural logarithm of the complete beta

BETA
CBETA

function for positive arguments.
Evaluate the complete beta function.
Evaluate the complex complete beta function.

CLBETA Evaluate the complex logarithm of the complete beta

Psi function

function.
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CPS1  Evaluate the logarithmic derivative of the gamma function
for a complex argument.
PSI Evaluate the logarithmic derivative of the gamma function.

CTe....... Incomplete gamma

CHIDF Evaluate the chi-squared distribution function.

CHIIN Evaluate the inverse of the chi-squared distribution
function.

GAMDF  Evaluate the gamma distribution function.

GAMI  Evaluate the incomplete gamma function.

GAMIC Evaluate the complementary incomplete gamma function.

GAMIT Evaluate the Tricomi form of the incomplete gamma
function.

C7f........ Incomplete beta
BETAl Evaluate the incomplete beta function ratio.
BETDF Evaluate the beta probability distribution function.
BETIN Evaluate the inverse of the beta distribution function.

CS8......... Error functions

C8a....... Error functions, their inverses, integrals, including the normal
distribution function

ANORDF Evaluate the standard normal (Gaussian) distribution
function.

ANORIN Evaluate the inverse of the standard normal (Gaussian)
distribution function.

CERFE Evaluate the complex scaled complemented error function.

ERF Evaluate the error function.

ERFC  Evaluate the complementary error function.

ERFCE Evaluate the exponentially scaled complementary error
function.

ERFCI Evaluate the inverse complementary error function.

ERF1  Evaluate the inverse error function.

C8b....... Fresnel integrals
FRESC Evaluate the cosine Fresnel integral.
FRESS Evaluate the sine Fresnel integral.

C8e....... Dawson’s integral
DAWS Evaluate Dawson function.

C10....... Bessel functions
Cl0a.....J, Y, H(1); H(2)

C10al ...Real argument, integer order
BSJO  Evaluate the Bessel function of the first kind of order zero.
BSJ1  Evaluate the Bessel function of the first kind of order one.
BSINS Evaluate a sequence of Bessel functions of the first kind
with integer order and real arguments.
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C10a2

C10a3

C10a4

C10bl

BSYO

BSY1

Evaluate the Bessel function of the second kind of order
Zero.
Evaluate the Bessel function of the second kind of order
one.

...Complex argument, integer order.

CBJINS

Evaluate a sequence of Bessel functions of the first kind
with integer order and complex arguments.

...Real argument, real order

BSJS

BSYS

Evaluate a sequence of Bessel functions of the first kind
with real order and real positive arguments.

Evaluate a sequence of Bessel functions of the second kind
with real nonnegative order and real positive arguments.

...Complex argument, real order

CBJS

CBYS

Evaluate a sequence of Bessel functions of the first kind
with real order and complex arguments.

Evaluate a sequence of Bessel functions of the second kind
with real order and complex arguments.

...Real argument, integer order

BS10

BSI0E

BSI1

BSI1E

BSINS

BSKO

BSKOE

BSK1

BSK1E

Evaluate the modified Bessel function of the first kind of
order zero.

Evaluate the exponentially scaled modified Bessel function
of the first kind of order zero.

Evaluate the modified Bessel function of the first kind of
order one.

Evaluate the exponentially scaled modified Bessel function
of the first kind of order one.

Evaluate a sequence of Modified Bessel functions of the
first kind with integer order and real arguments.

Evaluate the modified Bessel function of the third kind of
order zero.

Evaluate the exponentially scaled modified Bessel function
of the third kind of order zero.

Evaluate the modified Bessel function of the third kind of
order one.

Evaluate the exponentially scaled modified Bessel function
of the third kind of order one.

C10b2... Complex argument, integer order

CBINS

Evaluate a sequence of Modified Bessel functions of the
first kind with integer order and complex arguments.

C10b3...Real argument, real order

BSIES

Evaluate a sequence of exponentially scaled Modified
Bessel functions of the first kind with nonnegative real
order and real positive arguments.
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BSIS  Evaluate a sequence of Modified Bessel functions of the
first kind with real order and real positive arguments.

BSKES Evaluate a sequence of exponentially scaled modified
Bessel functions of the third kind of fractional order.

BSKS  Evaluate a sequence of modified Bessel functions of the
third kind of fractional order.

C10b4...Complex argument, real order
CBIS  Evaluate a sequence of Modified Bessel functions of the
first kind with real order and complex arguments.
CBKS  Evaluate a sequence of Modified Bessel functions of the
second kind with real order and complex arguments.

C10c.....Kelvin functions

AKE10 Evaluate the Kelvin function of the second kind, kei, of
order zero.

AKEI1 Evaluate the Kelvin function of the second kind, kei, of
order one.

AKEIPO Evaluates the derivative of the Kelvin function of the
second kind, kei, of order zero.

AKERO Evaluate the Kelvin function of the second kind, ker, of
order zero.

AKER1 Evaluate the Kelvin function of the second kind, ker, of
order one.

AKERPO Evaluate the derivative of the Kelvin function of the
second kind, ker, of order zero.

BEI0  Evaluate the Kelvin function of the first kind, bei, of order
Zero.

BEI1  Evaluate the Kelvin function of the first kind, bei, of order
one.

BEIPO Evaluate the derivative of the Kelvin function of the first
kind, bei, of order zero.

BERO  Evaluate the Kelvin function of the first kind, ber, of order
Zero.

BER1  Evaluate the Kelvin function of the first kind, ber, of order
one.

BERPO Evaluate the derivative of the Kelvin function of the first
kind, ber, of order zero.

C10d..... Airy and Scorer functions
Al Evaluate the Airy function.
AID Evaluate the derivative of the Airy function.
AIDE  Evaluate the exponentially scaled derivative of the Airy

function.

AIE Evaluate the exponentially scaled Airy function.

BI Evaluate the Airy function of the second kind.

BID Evaluate the derivative of the Airy function of the second
kind.

BIDE Evaluate the exponentially scaled derivative of the Airy
function of the second kind.
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BIE Evaluate the exponentially scaled Airy function of the
second kind.

Cl4....... Elliptic integrals

CEJCN Evaluate the complex Jacobi elliptic integral cn(z, m).

CEJDN Evaluate the complex Jacobi elliptic integral dn(z, m).

CEJSN Evaluate the complex Jacobi elliptic function sn(z, m).

EJCN  Evaluate the Jacobi elliptic function cn(X, m).

EJDN  Evaluate the Jacobi elliptic function dn(x, m).

EJSN  Evaluate the Jacobi elliptic function sn(X, m).

ELE Evaluate the complete elliptic integral of the second kind
E(X).

ELK Evaluate the complete elliptic integral of the kind K(X).

ELRC  Evaluate an elementary integral from which inverse
circular functions, logarithms and inverse hyperbolic
functions can be computed.

ELRD  Evaluate Carlson’s incomplete elliptic integral of the
second kind RD(X, Y, Z).

ELRF  Evaluate Carlson’s incomplete elliptic integral of the first
kind RF(X, Y, Z).

ELRJ  Evaluate Carlson’s incomplete elliptic integral of the third
kind RI(X, Y, Z, RHO).

Cl5....... Weierstrass elliptic functions

CWPL  Evaluate the Weierstrass P-function in the lemniscat case
for complex argument with unit period parallelogram.

CWPLD Evaluate the first derivative of the Weierstrass P-function
in the lemniscatic case for complex argum with unit period
parallelogram.

CWPQ  Evaluate the Weierstrass P-function in the equianharmonic
case for complex argument with unit period parallelogram.

CWPQD Evaluate the first derivative of the Weierstrass P-function
in the equianharmonic case for complex argument with
unit period parallelogram.

Cl7....... Mathieu functions
MATCE Evaluate a sequence of even, periodic, integer order, real
Mathieu functions.
MATEE Evaluate the eigenvalues for the periodic Mathieu
functions.
MATSE Evaluate a sequence of odd, periodic, integer order, real
Mathieu functions.

C19....... Other special functions
SPENC Evaluate a form of Spence’s integral.

Lo STATISTICS, PROBABILITY
L5....... Function evaluation (search also class C)
Lsa....... Univariate
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L5al .....Cumulative distribution functions, probability density functions
GCDF  Evaluate a general continuous cumulative distribution
function given ordinates of the density.

L5alb ...Beta, binomial
BETDF Evaluate the beta probability distribution function.
BINDF Evaluate the binomial distribution function.
BINPR Evaluate the binomial probability function.

L5alc....Cauchy, chi-squared
CHIDF Evaluate the chi-squared distribution function.
CSNDF  Evaluate the noncentral chi-squared distribution function.

L5alf....F distribution
FDF Evaluate the F distribution function.

L5alg...Gamma, general, geometric
GAMDF  Evaluate the gamma distribution function.

L5alh ...Halfnormal, hypergeometric
HYPDF Evaluate the hypergeometric distribution function.
HYPPR Evaluate the hypergeometric probability function.

L5alk ...Kendall F statistic, Kolmogorov-Smirnov
AKS1DF Evaluate the distribution function of the one-sided
Kolmogorov-Smirnov goodness of fit D+ or D— test
statistic based on continuous data for one sample.
AKS2DF Evaluate the distribution function of the Kolmogorov-
Smirnov goodness of fit D test statistic based on
continuous data for two samples.

L5aln ...Negative binomial, normal
ANORDF Evaluate the standard normal (Gaussian) distribution
function.

L5alp ...Pareto, Poisson
POIDF Evaluate the Poisson distribution function.
POIPR Evaluate the Poisson probability function.

L5alt....t distribution
TDF Evaluate the Student’s t distribution function.
TNDF  Evaluate the noncentral Student’s t distribution function.

L5a2 .....Inverse cumulative distribution functions, sparsity functions
GCIN  Evaluate the inverse of a general continuous cumulative
distribution function given ordinates of the density.

L5a2b ...Beta, binomial
BETIN Evaluate the inverse of the beta distribution function.

L5a2c....Cauchy, chi-squared
CHIIN Evaluate the inverse of the chi-squared distribution
function.

L5a2f....F distribution
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FIN Evaluate the inverse of the F distribution function.

L5a2n ... Negative binomial, normal, normal scores
ANORIN Evaluate the inverse of the standard normal (Gaussian)
distribution function.
L5a2t....t distribution
TIN Evaluate the inverse of the Student’s t distribution
function.
L5b....... Multivariate
L5bl..... Cumulative distribution functions, probability density functions

L5bln...Normal
BNRDF Evaluate the bivariate normal distribution function.

N DATA HANDLING

Nl........ Input, output
IFNAN  Check if a value is NaN (not a number).

N4......... Storage management (e.g., stacks, heaps, trees)
IWKCIN Initialize bookkeeping locations describing the character
workspace stack.
IWKIN Initialize bookkeeping locations describing the workspace

stack.
R SERVICE ROUTINES
Rl......... Machine-dependent constants

AMACH Retrieve single-precision machine constants.
DMACH Retrieve double precision machine constants.
IFNAN Check if a value is NaN (not a number).

IMACH Retrieve integer machine constants.

UMACH  Set or retrieve input or output device unit numbers.

R3......... Error handling
ERSET Set error handler default print and stop actions.
IERCD Retrieve the code for an informational error.
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Appendix B:

of Routines

Alphabetical Summary

IMSL MATH LIBRARY Special Functions

Function/Page

A
ACOS on page 19
ACOSH on page 28
Al on page 155
AID on page 158
AIDE on page 163
AIE on page 161

AKEIO on page 142
AKEI1 on page 152
AKEIPO on page 147
AKERO on page 141
AKERI on page 151
AKERPO on page 146

AKSI1DF on page 225

AKS2DF on page 228

Purpose Statement

Evaluates the complex arc cosine.

Evaluates the real or complex arc hyperbolic cosine.
Evaluates the Airy function.

Evaluates the derivative of the Airy function.

Evaluates the Airy function of the second kind.

Evaluates the exponentially scaled derivative of the Airy
function.

Evaluates the Kelvin function of the second kind, kei, of
order zero.

Evaluates the Kelvin function of the second kind, kei, of
order one.

Evaluates the derivative of the Kelvin function of the second
kind, kei, of order zero.

Evaluates the Kelvin function of the second kind, ker, of
order zero.

Evaluates the Kelvin function of the second kind, ker, of
order one.

Evaluates the derivative of the Kelvin function of the second
kind, ker, of order zero

Evaluates the cumulative distribution function of the one-
sided Kolmogorov-Smirnov goodness of fit D™ or D™ test
statistic based on continuous data for one sample.

Evaluates the cumulative distribution function of the
Kolmogorov-Smirnov goodness of fit D test statistic based
on continuous data for two samples.
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Appendix B: Alphabetical Summary of Routines e B-1



ALBETA on page 74 Evaluates the natural logarithm of the complete beta function
for positive arguments.

ALGAMS on page 60 Returns the logarithm of the absolute value of the gamma
function and the sign of gamma.

ALI on page 38 Evaluates the logarithmic integral.

ALNDF on page 230 Evaluates the lognormal cumulative probability distribution
function

ALNGAM on page 58 Evaluates the real or complex function, In [y(X)|.

ALNIN on page 232 Evaluates the inverse of the lognormal cumulative

probability distribution function.

ALNPR on page 233 Evaluates the lognormal probability density function.
ALNREL on page 7 Evaluates In(X + 1) for real or complex x.
AMACH on page 326 Retrieves single-precision machine constants.
ANORDEF on page 234 Evaluates the standard normal (Gaussian) cumulative
distribution function.
ANORPR on page 237 Evaluates the normal probability density function.
ANORIN on page 236 Evaluates the inverse of the standard normal (Gaussian)
cumulative distribution function.
ASIN on page 18 Evaluates the complex arc sine.
ASINH on page 27 Evaluates the sinh™ arc sine X for real or complex X.
ATAN on page 20 Evaluates the complex arc tangent.
ATAN2 on page 21 Evaluates the complex arc tangent of a ratio.
ATANH on page 30 Evaluates tanh™ x for real or complex X.
B
BEIO on page 140 Evaluates the Kelvin function of the first kind, bei, of order
Zero.
BEI!1 on page 150 Evaluates the Kelvin function of the first kind, bei, of order
one.
BEIPO on page 145 Evaluates the derivative of the Kelvin function of the first
kind, bei, of order zero.
BERO on page 139 Evaluates the Kelvin function of the first kind, ber, of order
zZero.
BERI on page 148 Evaluates the Kelvin function of the first kind, ber, of order
one.
BERPO on page 144 Evaluates the derivative of the Kelvin function of the first
kind, ber, of order zero.
BETA on page 72 Evaluates the real or complex beta function, B(a,b).
BETAI on page 76 Evaluates the incomplete beta function ratio.
BETDF on page 238 Evaluates the the beta cumulative distribution function.
BETIN on page 241 Evaluates the inverse of the beta cumulative distribution
function.
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BETPR on page 242
BI on page 157
BID on page 159

BIDE on page 164

BIE on page 162

BINDF on page 207
BINOM on page 52
BINPR on page 209
BNRDF on page 244

BSIO on page 102

BSIOE on page 108

BSI1 on page 104

BSI1E on page 110

BSIES on page 123

BSINS on page 115
BSIS on page 121

BSJO on page 96
BSJ1 on page 98
BSJINS on page 113

BSJS on page 118

BSKO on page 105

BSKOE on page 111

BSK1 on page 107

BSKI1E on page 112

BSKES on page 126

BSKS on page 124

Evaluates the beta probability density function.
Evaluates the Airy function of the second kind.

Evaluates the derivative of the Airy function of the second
kind.

Evaluates the exponentially scaled derivative of the Airy
function of the second kind.

Evaluates the exponentially scaled Airy function of the
second kind.

Evaluates the binomial cumulative distribution function.
Evaluates the binomial coefficient.
Evaluates the binomial probability density function.

Evaluates the bivariate normal cumulative distribution
function.

Evaluates the modified Bessel function of the first kind of
order zero.

Evaluates the exponentially scaled modified Bessel function
of the first kind of order zero.

Evaluates the modified Bessel function of the first kind of
order one.

Evaluates the exponentially scaled modified Bessel function
of the first kind of order one.

Evaluates a sequence of exponentially scaled modified
Bessel functions of the first kind with nonnegative real order
and real positive arguments.

Evaluates a sequence of modified Bessel functions of the
first kind with integer order and real or complex arguments.

Evaluates a sequence of modified Bessel functions of the
first kind with real order and real positive arguments.

Evaluates the Bessel function of the first kind of order zero.
Evaluates the Bessel function of the first kind of order one.

Evaluates a sequence of Bessel functions of the first kind
with integer order and real arguments.

Evaluates a sequence of Bessel functions of the first kind
with real order and real positive arguments.

Evaluates the modified Bessel function of the third kind of
order zero.

Evaluates the exponentially scaled modified Bessel function
of the third kind of order zero.

Evaluates the modified Bessel function of the third kind of
order one.

Evaluates the exponentially scaled modified Bessel function
of the third kind of order one.

Evaluates a sequence of exponentially scaled modified
Bessel functions of the third kind of fractional order.

Evaluates a sequence of modified Bessel functions of the
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BSYO0 on page 99
BSY1 on page 101

BSYS on page 120

C
CAI on page 166

CAID on page 169

CARG on page 1
CBI on page 167

CBID on page 171
CBIS on page 132
CBIJS on page 128
CBKS on page 134

CBRT on page 2
CBYS on page 130

CERFE on page 85
CHI on page 45
CHIDF on page 245
CHIIN on page 248

CHIPR on page 250
Cl on page 41

CIN on page 43
CINH on page 47

COSDG on page 17
COT on page 13

CSEVL on page 319
CSNDF on page 251

CSNIN on page 254

third kind of fractional order.

Evaluates the Bessel function of the second kind of order
Zero.

Evaluates the Bessel function of the second kind of order
one.

Evaluates a sequence of Bessel functions of the second kind
with real nonnegative order and real positive arguments.

Evaluates the Airy function of the first kind for complex
arguments.

Evaluates the derivative of the Airy function of the first kind
for complex arguments.

Evaluates the argument of a complex number.

Evaluates the Airy function of the second kind for complex
arguments.

Evaluates the derivative of the Airy function of the second
kind for complex arguments.

Evaluates a sequence of modified Bessel functions of the
first kind with real order and complex arguments.

Evaluates a sequence of Bessel functions of the first kind
with real order and complex arguments

Evaluates a sequence of Modified Bessel functions of the
second kind with real order and complex arguments

Evaluates the cube root.

Evaluates a sequence of Bessel functions of the second kind
with real order and complex arguments.

Evaluates the complex scaled complemented error function.
Evaluates the hyperbolic cosine integral.
Evaluates the chi-squared cumulative distribution function

Evaluates the inverse of the chi-squared cumulative
distribution function.

Evaluates the chi-squared probability density function
Evaluates the cosine integral.
Evaluates a function closely related to the cosine integral.

Evaluates a function closely related to the hyperbolic cosine
integral.

Evaluates the cosine for the argument in degrees.
Evaluates the cotangent.
Evaluates the N-term Chebyshev series.

Evaluates the noncentral chi-squared cumulative distribution
function.

Evaluates the inverse of the noncentral chi-squared
cumulative function.
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CWPL on page 188

CWPLD on page 189

CWPQ on page 190

CWPQD on page 192

D

DAWS on page 90
DMACH on page 328

E
E1 on page 35

EI on page 34

EJCN on page 195
EJDN on page 197
EJSN on page 193
ELE on page 177

ELK on page 175
ELRC on page 183
ELRD on page 179
ELRF on page 178
ELRJ on page 181
ENE on page 37

ERF on page 80
ERFC on page 82
ERFCE on page 84

ERFCI on page 88

Evaluates the Weierstrass P-function in the lemniscat case
for complex argument with unit period parallelogram.

Evaluate the first derivative of the Weierstrass P-function in
the lemniscatic case for complex argum with unit period
parallelogram

Evaluates the Weierstrass P-function in the equianharmonic
case for complex argument with unit period parallelogram.

Evaluates the first derivative of the Weierstrass P-function in
the equianharmonic case for complex argument with unit
period parallelogram.

Evaluates Dawson function.

Retrieves double precision machine constants.

Evaluates the exponential integral for arguments greater than
zero and the Cauchy principal value of the integral for
arguments less than zero.

Evaluates the exponential integral for arguments greater than
zero and the Cauchy principal value for arguments less than
zZero.

Evaluates the Jacobi elliptic function cn(X, m).
This function evaluates the Jacobi elliptic function dn(x, m).
Evaluates the Jacobi elliptic function sn(X, m).

Evaluates the complete elliptic integral of the second kind
E(X).

Evaluates the complete elliptic integral of the kind K(X).

Evaluates an elementary integral from which inverse circular
functions, logarithms and inverse hyperbolic functions can
be computed.

Evaluates Carlson’s incomplete elliptic integral of the second
kind RD(X, Y, 2).

Evaluates Carlson’s incomplete elliptic integral of the first
kind RF(X, Y, 2).

Evaluates Carlson’s incomplete elliptic integral of the third
kind RI(X, Y, Z, RHO).

Evaluates the exponential integral of integer order for
arguments greater than zero scaled by EXP(X).

Evaluates the error function.
Evaluates the complementary error function.

Evaluates the exponentially scaled complementary error
function.

Evaluates the inverse complementary error function.
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ERFI on page 86

ERSET on page 323
EXPDF on page 255
EXPIN on page 257

EXPPR on page 258
EXPRL on page 4

EXVDF on page 259
EXVIN on page 260

EXVPR on page 261

F

FAC on page 50
FDF on page 263
FIN on page 265

FPR on page 266
FRESC on page 91
FRESS on page 93

G

GAMDF on page 268
GAMI on page 62
GAMIC on page 64
GAMIN on page 270

GAMIT on page 65

GAMMA on page 53
GAMPR on page 272

GAMR on page 56
GCDF on page 292
GCIN on page 295
GEODF on page 211

GEOIN on page 212

Evaluates the inverse error function.
Sets error handler default printer and stop actions.
Evaluates the exponential cumulative distribution function.

Evaluates the inverse of the exponential cumulative
distribution function.

Evaluates the exponential probability density function.

Evaluates (ex — 1)/x for real or complex X.
Evaluates the extreme value cumulative distribution function.

Evaluates the inverse of the extreme value cumulative
distribution function

Evaluates the extreme value probability density function

Evaluates the factorial of the argument.
Evaluates the F cumulative distribution function.

Evaluates the inverse of the F cumulative distribution
function.

Evaluates the F probability density function.
Evaluates the cosine Fresnel integral.

Evaluates the sineFresnel integral.

Evaluates the gamma cumulative distribution function.
Evaluates the incomplete gamma function.
Evaluates the complementary incomplete gamma function.

This function evaluates the inverse of the gamma cumulative
distribution function.

Evaluates the Tricomi form of the incomplete gamma
function.

Evaluates the real or complex gamma function, I'(X).

This function evaluates the gamma probability density
function.

Evaluates the reciprocal of the real or complex gamma
function, 1/T°(X).

Evaluates a general continuous cumulative distribution
function given ordinates of the density..

Evaluates the inverse of a general continuous cumulative
distribution function given ordinates of the density.

Evaluates the discrete geometric cumulative probability
distribution function.

Evaluates the inverse of the geometric cumulative probability
distribution function.
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GEOPR on page 213
GFNIN on page 298

H
HYPDF on page 214

HYPPR on page 216

IERCD and N1RTY on page 324
IFNAN(X) on page 328

IMACH on page 325

INITS on page 318

L
LOGI10 on page 6

M
MATCE on page 306

MATEE on page 303
MATSE on page 310

N
IERCD and N1RTY on page 324

P

POCH on page 69
POCHI1 on page 70

POIDF on page 218
POIPR on page 220
PSI on page 67

Evaluates the discrete geometric probability density function.

Evaluates the inverse of a general continuous cumulative
distribution function given in a subprogram.

Evaluates the hypergeometric cumulative distribution
function.

Evaluates the hypergeometric probability density function.

Retrieves the integer code for an informational error.
Checks if a value is NaN (not a number).
Retrieves integer machine constants.

Initializes the orthogonal series so the function value is the
number of terms needed to insure the error is no larger than
the requested accuracy.

Evaluates the complex base 10 logarithm, log;, z

Evaluates a sequence of even, periodic, integer order, real
Mathieu functions.

Evaluates the eigenvalues for the periodic Mathieu functions.

Evaluates a sequence of odd, periodic, integer order, real
Mathieu functions.

Retrieves the error type set by the most recently called
IMSL routine.

Evaluates a generalization of Pochhammer’s symbol.

Evaluates a generalization of Pochhammer’s symbol starting
from the first order.

Evaluates the Poisson cumulative distribution function.
Evaluates the Poisson probability density function.

Evaluates the real or complex psi function, y(X).
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R

RALDEF on page 273
RALIN on page 274

RALPR on page 275

S

SHI on page 44

SI on page 40
SINDG on page 16
SPENC on page 317

T

TAN on page 12
TDF on page 276
TIN on page 278

TNDF on page 281
TNIN on page 283

TPR on page 279

U

UMACH on page 329
UNDF on page 285
UNDDF on page 222

UNDIN on page 223

UNDPR on page 224
UNIN on page 286

UNPR on page 287

w

WBLDF on page 288
WBLIN on page 290

WBLPR on page 291

Evaluates the Rayleigh cumulative distribution function..

Evaluates the inverse of the Rayleigh cumulative distribution
function.

Evaluates the Rayleigh probability density function

Evaluates the hyperbolic sine integral.
Evaluates the sine integral.
Evaluates the sine for the argument in degrees.

Evaluates a form of Spence’s integral.

Evaluates tan z for complex z
Evaluates the Student’s t cumulative distribution function.

Evaluates the inverse of the Student’s t cumulative
distribution function.

Evaluates the noncentral Student’s t cumulative distribution
function.

Evaluates the inverse of the noncentral Student’s t
cumulative distribution function.

Evaluates the Student’s t probability cumulative function.

Sets or Retrieves input or output device unit numbers.
Evaluates the uniform cumulative distribution function.

Evaluates the discrete uniform cumulative distribution
function.

Evaluates the inverse of the discrete uniform cumulative
distribution function.

Evaluates the discrete uniform probability density function.

Evaluates the inverse of the uniform cumulative distribution
function.

Evaluates the uniform probability density function.

Evaluates the Weibull cumulative distribution function

Evaluates the inverse of the Weibull cumulative distribution
function.

Evaluates the Weibull probability density function.
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Product Support

Contacting Visual Numerics Support

Users within support warranty may contact Visual Numerics regarding the use of the
IMSL Fortran Numerical Library. Visual Numerics can consult on the following topics:

. Clarity of documentation
. Possible Visual Numerics-related programming problems
. Choice of IMSL Libraries functions or procedures for a particular problem

Not included in these topics are mathematical/statistical consulting and debugging of your
program.

Refer to the following for Visual Numerics Product Support contact information:
e  http://www.vni.com/tech/imsl/phone.html

The following describes the procedure for consultation with Visual Numerics:

1. Include your Visual Numerics license number

2. Include the product name and version number: IMSL Fortran Numerical Library
Version 6.0

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a description of
the problem
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Index

A

adjoint matrix xii
Airy function 155, 166
derivative 155, 158, 169
exponentially scaled 161
derivative 163
second kind 157, 167
derivative 159, 171
exponentially scaled 162
exponentially scaled derivative
164
arguments, optional subprogram xiv

B

Bessel functions 95
first kind
integer order 113
order one 98
order zero 96
real order 118, 128
modified
exponentially scaled 108, 110,
111,112,123, 126
first kind, integer order 115
first kind, nonnegative real order
123
first kind, order one 104, 110
first kind, order zero 102, 108
first kind, real order 121, 132
second kind, real order 134
third kind, fractional order 124,
126
third kind, order one 107, 112
third kind, order zero 105, 111
second kind
order one 101
order zero 99
real nonnegative order 120
real order 130
beta distribution function 241

beta functions
complete 53, 72
natural logarithm 74
incomplete 76
beta probability density 242, 243
beta probability distribution function
238
binomial coefficient 52
binomial distribution function 207
binomial probability function 209
bivariate normal distribution
function 244

C

Cauchy principal value 34, 35
character workspace 333
characteristic values 303
Chebyshev series 315, 319
chi-squared distribution function
245,248, 251
chi-squared probability density 250
complex numbers
evaluating 1
continuous data 225, 228
cosine
arc
hyperbolic 28
complex 19
hyperbolic 24
in degrees 17
integrals 41, 43
hyperbolic 45, 47
cotangent
evaluating 13
cube roots
evaluating 2
cumulative distribution function 292
cumulative distribution functions
(CDF) 203

D

Dawson’s function
evaluating 90

Dawson's function 79

discrete uniform cumulative
probability 222

discrete uniform cumulative
probability distribution 222

discrete uniform probability density
224

discrete uniform random variable
224
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distribution functions 203
cumulative (CDF) 203
general continuous cumulative
inverse 295
DOUBLE PRECISION types xi

E

eigenvalues 303
elementary functions x, 1
elliptic functions 187
elliptic integrals 173
complete 175
second kind 177
first kind
Carlson's incomplete 178
second kind
Carlson's incomplete 179
third kind
Carlson's incomplete 181
error functions 79, 80
complementary 82
complex scaled 85
exponentially scaled 84
inverse 88
inverse 86
error handling 324
error-handling xiii, xv
errors 321, 323
alert 207, 322
fatal 322
informational 321
note 207, 322
severity level xv
terminal 207, 321, 322
warning 207, 322
exponential cumulative probability
distribution 255, 256
exponential functions
first order 4
exponential integrals 33, 34, 35
of integer order 37
exponential probability density 258
extreme value cumulative probability
distribution 259
extreme value probability density
261,262

=

F distribution function 263, 265
F probability density 266
factorial 50

Fresnal integrals 79

cosine 91
sine 93

G

gamma distribution function 268,
270
gamma distributions
standard 203
gamma functions 49
complete 53
incomplete 62
complementary 64
Tricomi form 65
logarithmic derivative 67
reciprocal 56
gamma probability density 272
general continuous cumulative
distribution function 298
Geometric
inverse of the geometric
cumulative probability
distribution 212
geometric cumulative probability
distribution 211
geometric probability density 213
geometric random variable 213
getting started xiv

H

hyperbolic functions x, 11

hypergeometric distribution function
214

hypergeometric probability function
216

INTEGER types xi
inverse of the exponential
cumulative probability 257
inverse of the geometric cumulative
probability distribution 212
inverse of the lognormal cumulative
probability distribution 232
inverse of the Rayleigh cumulative
probability distribution 274
inverse of the uniform cumulative
probability distribution 286
inverse of the Weibull cumulative
probability distribution 290
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J
Jacobi elliptic function 193, 195, 197

K

Kelvin function
first kind
order one 150
order zero 139, 140, 144, 145
second kind
order one 151, 152
order zero 141, 142, 146, 147
Kolmogorov-Smirnov goodness of
fit 225, 228

L

library subprograms xii
logarithmic integrals 38
logarithms

complex

common 6

for gamma functions 58, 60

natural 7, 74
lognormal cumulative probability

distribution 230, 231

lognormal probability density 233

M

machine-dependent constants 325
Mathieu functions 303
even 306
integer order 306, 310
odd 310
periodic 303, 306, 310
real 306, 310
matrices
adjoint xii
orthogonal xii
unitary xii

N

naming conventions Xi

NaN 207

noncentral chi-squared function 254
normal probability density 237

O

optional argument xiv
optional data xiv

optional subprogram arguments xiv
ordinates of the density 292
orthogonal

matrix Xii
orthogonal series 318

P

Pochhammer's symbol 69, 70, 315

Poisson distribution function 218

Poisson probability function 220

printing 323

printing results xv

probability density function (PDF)

204

probability distribution functions 201
inverses 201

probability functions 203

R

Rayleigh cumulative probability
distribution 273, 274
Rayleigh probability density 275,

276
REAL types xi
required arguments Xiv
reserved names 331

S

sine
arc
hyperbolic 27
complex
arc 18
hyperbolic 23
in degrees 16
integrals 40
hyperbolic 44
single precision ix
Spence's integral 317
standard normal (Gaussian)
distribution function 234, 236
Student’s t distribution function 276,
278, 281, 283
Student’s t probability density 279
subprograms
library xii
optional arguments xiv

T

tangent
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arc
hyperbolic 30
complex 12
arc 20
arc of a ratio 21
hyperbolic 25
Taylor series 315
trigonometric functions x, 11

U

underflow xiii

uniform cumulative probability
distribution 285

uniform probability density 287

unitary matrix xii

user interface ix

using library subprograms xii

w

Weibull cumulative probability
distribution 289
Weibull cumulative probability
distribution function 288
Weibull probability density 291, 292
Weibull random variable 290
Weierstrass' function
equianharmonic case 190, 192
lemniscatic case 188, 189
workspace allocation 332
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