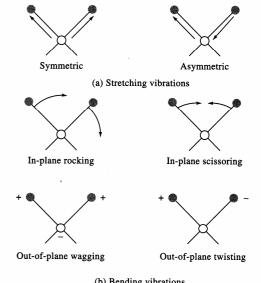
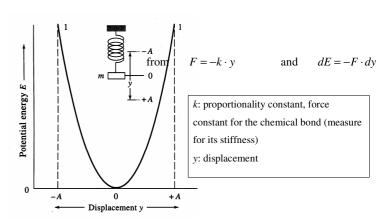

Infrared Spectroscopy



Characteristics:

- · Transmittance rather than absorbance is measured
- The abscissa scale is not linear to wavenumber
- Infrared spectra are a result of the absorption of radiation which activates vibrations in molecules



(b) Bending vibrations
Types of molecular vibrations

• Vibrations of molecules can only be excited by radiation if the electric dipole moment changes during vibration (selection rule; *c.f.* Raman spectroscopy)

Classical treatment (harmonic oscillator)

vibrational frequency: $v_m = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$

or for two masses connected with a spring

$$v_m = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

with the reduced mass $\mu : \mu = \frac{m_1 \cdot m_2}{m_1 + m_2}$

Example:

Calculate the approximate wavenumber of the fundamental absorption peak due to the stretching vibration of a carbonyl group.

$$m_{1}(C) = \frac{12 \cdot 10^{-3} \, kg \, / \, mol}{6.0 \cdot 10^{23} \, atoms \, / \, mol} \cdot 1 atom = 2.0 \cdot 10^{-26} \, kg$$

$$m_2(O) = 27 \cdot 10^{-26} \, kg$$

$$\Rightarrow \mu = \frac{2.0 \cdot 10^{-26} \, kg \cdot 2.7 \cdot 10^{-26} \, kg}{(2.0 + 2.7) \cdot 10^{-26} \, kg} = 1.1 \cdot 10^{-26} \, kg$$

$$v = \frac{1}{2\pi} \cdot \sqrt{\frac{k}{\mu}} \implies \overline{v} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}} = 5.3 \cdot 10^{-12} \cdot \sqrt{\frac{k}{\mu}}$$
$$= 5.3 \cdot 10^{-12} \, s / cm \cdot \sqrt{\frac{10^3 \, N / m}{1.1 \cdot 10^{-26} \, kg}} = 1.6 \cdot 10^3 \, cm^{-1}$$

Some molecular data for diatomic molecules determined by infra-red spectroscopy

Molecule	Vibration (cm ⁻¹)	Anharmonicity constant, x_e	Force constant (N m ⁻¹)	Internuclear distance r_{eq} (nm)
HF	4138-5	0.0218	966	0.0927
HCl†	2990.6	0.0174	516	0.1274
HBr	2649.7	0.0171	412	0.1414
HI	2309-5	0.0172	314	0.1609
CO	2169-7	0.0061	1902	0 1131
NO	1904.0	0.0073	1595	0.1151
ICl†	384-2	0.0038	238	0.2321

[†] Data refers to the 35Cl isotope.

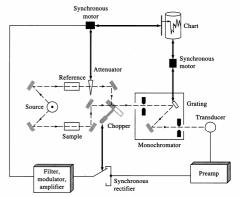
Applications of IR-Spectroscopy

Qualitative Analysis

Group frequency region $(3600 - 1200 \text{ cm}^{-1})$: identify characteristic groups Fingerprint region $(1200 - 600 \text{ cm}^{-1})$: characteristic for every compound

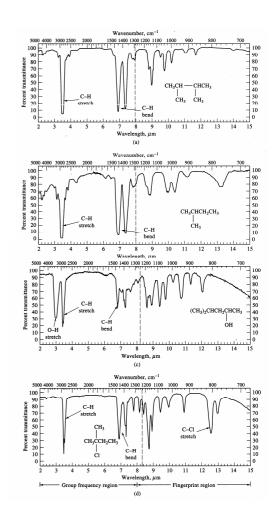
- 1.) Identification of compounds by comparison with a database of spectra
- 2.) Identification of characteristic groups

Number of fundamental vibrations in polyatomic molecules


Non-linear molecules: 3N-6

Linear molecules: 3 N - 5

N: number of atoms


Instruments for IR-spectroscopy

Dispersive instruments (similar to UV-vis instruments, cell between source and monochromator)

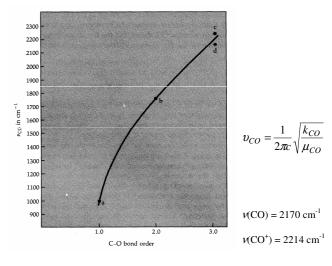
FT-IR-instruments (high sensitivity, fast)

Filter photometers (for monitoring air pollutants CO₂, HCN, etc.)

Group frequencies for some organic groups				
Bond	Type of compound Frequency		Intensity	
		range (cm ⁻¹)		
О-Н	Aliphatic and aromatic	3600-3000	Variable	
	alcohols			
N-H	Amines, amides 3600-3100 Mediu			
С-Н	Alkanes 2850-2970 Stron		Strong	
	alkenes	3010-3095	Medium	
	Alkynes	3300	Strong	
	Aromatic rings	3100-3010	medium	
C≡N	Nitrile	2280-2210	strong	
C≡C	Alkyne	2260-2100	Strong	
C=O	Aldehydes, ketones, 1760-11690		Strong	
	esters,			
-C=C-	alkenes	1670-1610	variable	
-C=C-	Aromatic rings	1600-1500	variable	
C-O	Alcohols, ethers, etc	1300-1050	strong	
C-N	Amines, amides 1360-1180 stron		strong	

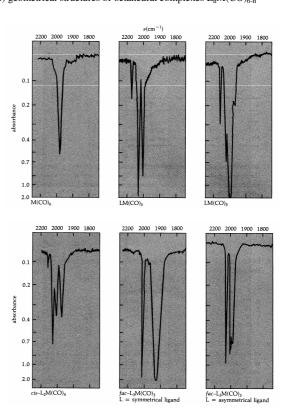
Complex	V _{CO} (cm ⁻)
Ni(CO) ₄	2046
Co(CO) ₄	1883
Fe(CO) ₄ ²⁻	1788

b) coordination geometry for complexes of the type $L_3M(CO)_2$


O-C-M-C-O in phase vibration	O—C—M—C—C		$I_{\text{sym}}/I_{\text{asym}} = \cot^2 a$	$^{2}\Phi$
M C 2Φ	0.1 - 0.2 - 0.4 - 0.4 -			
	0.7	11	- 1	
	1.0 -		-	ı
	2200	1800 (cm ⁻¹)	2200 ν(cm ⁻¹)	1800
		(CIII /	P(CIII)	

Predicted relative intensities of $L_3M(CO)_2$ when 2Φ is 90° (a) and 120° (b)

3.) Structural information


e.g. transition metal carbonyl complexes ($v_{CO} = 1850 - 2125 \text{ cm}^{-1}$)

a) bond order and $d\pi$ -p π^* backbonding

Complex	$v_{\rm CO}({\rm cm}^{-1})$
Mn(CO) ₆ ⁺	2090
Cr(CO) ₆	2000
V(CO) ₆	1860

c) geometrical structures of octahedral complexes $L_{n}M(CO)_{6\text{-}n}$

