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Figure S1. UV/Vis spectra of a solution of ctDNA (7.6 · 10–5 M) in Tris-HCl buffer (pH 7.4) at 25 °C upon 

increasing concentrations of the respective PtII complex (11 steps with an increase of 3.2 · 10–6 M per 

step). Arrows indicate the direction of the changes. Data for a) complex 8, b) complex 9 and c) complex 

10. 

 

 

 

 
Figure S2. a) Melting curves of ctDNA, determined by temperature-dependent UV spectra at 260 nm 

and 280 nm, respectively. b) First derivative of the melting curves, used to determine the melting 

temperature Tm,UV. 
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Figure S3. a) Example for temperature-dependent CD spectra (here: ctDNA). b) Temperature-

dependent molar ellipticity at selected wavelengths (black: 246 nm, red: 277 nm). A sigmoid fit of these 

data was used to determine the melting temperature derived via temperature-dependent CD 

spectroscopy (Tm,CD). 
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Figure S4. Excitation (dotted line) and emission (solid line) spectra of complex 8 (3.2 M) in Tris-HCl 

buffer (pH 7.4) in the absence (black) and presence of ctDNA (red: 7.6 · 10–6 M; green: 7.6 · 10–5 M). 

 

 

 
Figure S5. Excitation (dotted line) and emission (solid line) spectra of complex 8 (32 M) in Tris-HCl 

buffer (pH 7.4) in the absence (black) and presence of ctDNA (red: 7.6 · 10–6 M; green: 7.6 · 10–5 M). 
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Figure S6. Excitation (dotted line) and emission (solid line) spectra of complex 9 (3.2 M) in Tris-HCl 

buffer (pH 7.4) in the absence (black) and presence of ctDNA (red: 7.6 · 10–6 M; green: 7.6 · 10–5 M). 

 

 

 
Figure S7. Excitation (dotted line) and emission (solid line) spectra of complex 9 (32 M) in Tris-HCl 

buffer (pH 7.4) in the absence (black) and presence of ctDNA (red: 7.6 · 10–6 M; green: 7.6 · 10–5 M). 
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Figure S8. Excitation (dotted line) and emission (solid line) spectra of complex 10 (3.2 M) in Tris-HCl 

buffer (pH 7.4) in the absence (black) and presence of ctDNA (red: 7.6 · 10–6 M; green: 7.6 · 10–5 M). 

 

 

 
Figure S9. Excitation (dotted line) and emission (solid line) spectra of complex 10 (32 M) in Tris-HCl 

buffer (pH 7.4) in the absence (black) and presence of ctDNA (red: 7.6 · 10–6 M; green: 7.6 · 10–5 M). 

 

 

  



Marian Hebenbrock, Darío González-Abradelo, Cristian A. Strassert, Jens Müller 
DNA groove-binding ability of luminescent platinum(II) complexes based on a family of tridentate 

N^N^C ligands bearing differently substituted alkyl tethers 

S8 
 

 

Table S1. Emission lifetimes of compound 8 (3.2 M) with and without ctDNA (as derived from data 

depicted in Figure S4).a 
Detection Additive 

 None 7.6 · 10–6 M ctDNA 7.6 · 10–5 M ctDNA 

500 nm 

av = 0.94 s 
 
fractional amplitudes: 
1 (1.24 s): 41.0% 
2 (0.73 s): 59.0% 

av = 10.8 s 
 
fractional amplitudes: 
1 (5.29 s): 14.9% 
2 (0.64 s): 31.5% 
3 (18.26 s): 53.6% 

av = 16.6 s 
 
fractional amplitudes: 
1 (18.8 s): 83.0% 
2 (5.96 s): 17.0% 
 
av = 18.1 s (deaerated) 
 
fractional amplitudes: 
1 (21.5 s): 79.6% 
2 (4.54 s): 20.4% 
 

650 nm 

av = 0.68 s 
 
fractional amplitudes: 
1 (0.634 s): 45.7% 
2 (0.231 s): 27.2% 
3 (1.20 s): 27.1% 
 

av = 0.82 s 
 
fractional amplitudes: 
1 (0.91 s): 61.8% 
2 (0.30 s): 27.9% 
3 (1.7036 s): 10.3% 

av = 1.4 s 
 
fractional amplitudes: 
1 (15.7 s): 1.8% 
2 (1.73 s): 38.0% 
3 (0.76 s): 60.2% 

a av = amplitude-weighted average lifetimes 
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Table S2. Emission lifetimes of compound 8 (32 M) with and without ctDNA (as derived from data 

depicted in Figure S5).a 
Detection Additive 

 None 7.6 · 10–6 M ctDNA 7.6 · 10–5 M ctDNA 

500 nm not determined not determined 

av = 14.4 s 
 
fractional amplitudes: 
1 (17.4 s): 78.2% 
2 (3.26 s): 21.8% 
 
av = 14.1 s (deaerated) 
 
fractional amplitudes: 
1 (7.9 s): 19.6% 
2 (1.37 s): 22.4% 
3 (21.1 s): 58.0% 

650 nm 

av = 0.58 s 
 
fractional amplitudes: 
1 (0.54 s): 51.8% 
2 (0.19 s): 24.2% 
3 (1.08 s): 24.0% 
 

av = 0.62 s 
 
fractional amplitudes: 
1 (0.51 s): 43.9% 
2 (0.19 s): 20.4% 
3 (0.99 s): 35.7% 

av = 0.87 s 
 
fractional amplitudes: 
1 (6.6 s): 0.2% 
2 (1.17 s): 50.0% 
3 (0.54 s): 49.8% 

a av = amplitude-weighted average lifetimes 
  



Marian Hebenbrock, Darío González-Abradelo, Cristian A. Strassert, Jens Müller 
DNA groove-binding ability of luminescent platinum(II) complexes based on a family of tridentate 

N^N^C ligands bearing differently substituted alkyl tethers 

S10 
 

 

Table S3. Emission lifetimes of compound 9 (3.2 M) with and without ctDNA (as derived from data 

depicted in Figure S6).a 
Detection Additive 

 None 7.6 · 10–6 M ctDNA 7.6 · 10–5 M ctDNA 

500 nm not determined 

av = 10.2 s 
 
fractional amplitudes: 
1 (17.8 s): 51.0% 
2 (4.90 s): 18.6% 
3 (0.652 s): 30.4% 

av = 14.5 s 
 
fractional amplitudes: 
1 (17.2 s): 80.6% 
2 (2.95 s): 19.4% 
 
av = 14.2 s (deaerated) 
 
fractional amplitudes: 
1 (21.3 s): 89.4% 
2 (3.74 s): 10.6% 

650 nm 

av = 0.35 s 
 
fractional amplitudes: 
1 (1.14 s): 9.4% 
2 (0.40 s): 40.7% 
3 (0.145 s): 49.9% 
 

av = 0.82 s 
 
fractional amplitudes: 
1 (2.71 s): 5.1% 
2 (1.05 s): 51.4% 
3 (0.33 s): 43.5% 

av = 1.0 s 
 
fractional amplitudes: 
1 (14.4 s): 2.3% 
2 (1.52 s): 28.6% 
3 (0.350 s): 69.1% 

a av = amplitude-weighted average lifetimes 
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Table S4. Emission lifetimes of compound 9 (32 M) with and without ctDNA (as derived from data 

depicted in Figure S7).a 
Detection Additive 

 None 7.6 · 10–6 M ctDNA 7.6 · 10–5 M ctDNA 

500 nm not determined 

av = 2.0 s 
 
fractional amplitudes: 
1 (13.2 s): 12.5% 
2 (0.242 s): 71.2% 
3 (1.20 s): 16.3% 

av = 9.9 s 
 
fractional amplitudes: 
1 (4.44 s): 16.0% 
2 (0.413 s): 25.2% 
3 (15.5 s): 58.8% 
 
av = 10.2 s (deaerated) 
 
fractional amplitudes: 
1 (21.0 s): 89.5% 
2 (0.70 s): 2.5% 
3 (4.14 s): 8.0% 

650 nm 

av = 0.21 s 
 
fractional amplitudes: 
1 (0.861 s): 6.9% 
2 (0.264 s): 37.7% 
3 (0.083 s): 55.4% 

av = 0.25 s 
 
fractional amplitudes: 
1 (1.02 s): 8.1% 
2 (0.324 s): 35.3% 
3 (0.091 s): 56.6% 

av = 0.38 s 
 
fractional amplitudes: 
1 (0.110 s): 44.4% 
2 (1.146 s): 12.4% 
3 (0.381 s): 42.9% 
4 (6.69 s): 0.3% 
 a av = amplitude-weighted average lifetimes 
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Table S5. Emission lifetimes of compound 10 (3.2 M) with and without ctDNA (as derived from data 

depicted in Figure S8).a 
Detection Additive 

 None 7.6 · 10–6 M ctDNA 7.6 · 10–5 M ctDNA 

500 nm 

av = 0.90 s 
 
fractional amplitudes: 
1 (3.84 s): 1.8% 
2 (0.98 s): 61.0% 
3 (0.64 s): 37.2% 
 
av = 1.64 s (deaerated) 
 
fractional amplitudes: 
1 (1.11 s): 81.3% 
2 (3.97 s): 18.8% 

av = 6.8 s 
 
fractional amplitudes: 
1 (4.70 s): 21.4% 
2 (1.00 s): 45.9% 
3 (16.3 s): 32.7% 

av = 16.1 s 
 
fractional amplitudes: 
1 (18.5 s): 81.8% 
2 (5.6 s): 18.2% 
 
av = 17.2 s (deaerated) 
 
fractional amplitudes: 
1 (11.4 s): 23.8% 
2 (22.0 s): 64.8% 
3 (2.47 s): 11.4% 
 

650 nm 

av = 0.55 s 
 
fractional amplitudes: 
1 (1.70 s): 10.7% 
2 (0.645 s): 44.3% 
3 (0.179 s): 45.0% 
 

av = 1.14 s 
 
fractional amplitudes: 
1 (1.46 s): 52.8% 
2 (0.78 s): 47.2% 

av = 1.02 s 
 
fractional amplitudes: 
1 (1.21 s): 72.5% 
2 (0.53 s): 27.5% 

a av = amplitude-weighted average lifetimes 
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Table S6. Emission lifetimes of compound 10 (32 M) with and without ctDNA (as derived from data 

depicted in Figure S9).a 
Detection Additive 

 None 7.6 · 10–6 M ctDNA 7.6 · 10–5 M ctDNA 

500 nm 

av = 0.86 s 
 
fractional amplitudes: 
1 (1.24 s): 24.2% 
2 (0.74 s): 75.8% 

not determined not determined 

650 nm 

av = 1.02 s 
 
fractional amplitudes: 
1 (1.17 s): 66.6% 
2 (0.74 s): 33.4% 

av = 0.78 s 
 
fractional amplitudes: 
1 (1.03 s): 57.3% 
2 (0.51 s): 34.3% 
3 (0.122 s): 8.4% 
 

av = 1.02 s 
 
fractional amplitudes: 
1 (1.21 s): 72.5% 
2 (0.53 s): 27.5% 

a av = amplitude-weighted average lifetimes 
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Scheme S1. Structural representation of compound 1 for NMR characterization. 

 

 

 
Scheme S2. Structural representation of compound 2 for NMR characterization. 

 

 

 
Scheme S3. Structural representation of compound 3 for NMR characterization. 

 

 

 
Scheme S4. Structural representation of compound 4 for NMR characterization. 

 

 

 
Scheme S5. Structural representation of compound 5 for NMR characterization. 
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Scheme S6. Structural representation of compound 6 for NMR characterization. 

 

 

 
Scheme S7. Structural representation of compound 7 for NMR characterization. 

 

 

 
Scheme S8. Structural representation of compound 8 for NMR characterization. 

 

 

 
Scheme S9. Structural representation of compound 9 for NMR characterization. 
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Scheme S10. Structural representation of compound 10 for NMR characterization. 
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