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Figure S1. CD spectra of duplex II in the absence and presence of one equivalent of AgNOs.

In both cases, the duplex adopts a B-DNA conformation.!
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Figure S2. (a) Typical force curves obtained from the measurement of duplex III. (b) All the

normalized force curves are superimposed well.
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Figure S3. (a) Typical force curves obtained from the measurement of duplex IV in the

absence of Ag". (b) All the normalized force curves are superimposed well.
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Figure S4. The most probable rupture forces of duplex III under different Rs. For building up
histogram a, b, c, d, e, f, the number of force curves is 52, 56, 62, 68, 57, and 47, respectively.
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Figure S5. The most probable rupture forces of duplex IV in the presence of Ag" under

different Ry. For building up histogram a, b, c, d, e, f, the number of force curves is 49, 51, 82,

52, 110, and 104, respectively.
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Figure S6. The most probable rupture forces of duplex IV in the absence of Ag" under

different Rt. For building up histogram a, b, ¢, d, e, the number of force curves is 35, 46, 46,

68, and 48, respectively.
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Figure S7. Stepwise modification of the SiO: surface with oligonucleotide duplexes III and

IV, respectively.
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Figure S8. a) UV melting curves of duplex I in the presence of increasing amounts of Ag(I);
b) UV melting curves of duplex II in the presence of increasing amounts of Ag(I); c) melting
temperatures as derived from the respective UV melting curves, clearly showing the
significant stabilization of duplex II upon the addition of the first equivalent of Ag(l); d)
differences in the melting temperatures of duplexes II and I upon the addition of increasing

amounts of Ag(I) (identical to inset in Figure 2).



In the SMFS experiments, the gold-coated AFM cantilevers were kept into contact with the
substrates for 1 s. Here, Au-S coordination bond or even a covalent bond could form.
According to the reference, the most probable rupture forces of the Au-S bond with different
interaction times are 0.69 nN at 1.0 s, 0.76 nN at 2.0 s, 1.09 nN at 3.0 s and 1.01 nN at 8.0 s,
respectively, indicating the shifting of bond types from coordinate to covalent.> Even in the
isolated single monosulfides system that can form only Au-S coordination bond, the most
probable rupture force is larger than 450 pN, and the force value is independent on the
interaction time, as shown in Figure S9. Therefore, the Au-S bond is much stronger than the

forces holding together the DNA duplex, and the weakest part of the polymer bridge is the

DNA duplex.
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Figure S9. The most probable rupture force of Au-S coordination bond is larger than 450 pN,

and the force value is independent on the interaction time.



Table S1. Modification of SiO2 substrates characterized by XPS.

Atom Cls Ols Si213 le P2p S2p Ag3d
%
Before step 1 16.46 60.57 22.97 - - - -
%
After step 1 15.33 1.96 60.36 22.34 - - -
%
After step 2 24.59 51.91 20.71 2.79 - - -
%
After step 3
IIb 20.00 56.86 20.23 2.58 0.34 - -
IVb 22.14 55.63 19.12 2.74 0.38 - -
%
After step 4
duplex IIT 23.89 54.32 17.23 3.14 0.36 1.06 -
duplex IV 31.89 43.42 16.31 4.88 0.31 3.20 -
duplex IV in 31.01 43.33 15.13 5.11 0.84 1.98 2.60

the presence
of Ag"
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