Abschlussbericht

IAl - Institut flir Angewandte Informatik

Ansatze zur Software-Virtualisierung fiur KMU - eine
empirische Bestandsaufnahme

Herbert Kuchen, Vincent von Hof, Andreas Fuchs

Inhaltsverzeichnis
Executive Summary o o i i i e e e e e e e e e e e e e 4
1 EInflhrung . . o v o e e e e e e e e e e e e e e e 5
2 Hintergrund: Virtualisierung« o o v v o e e e e e e 7
2.1 Software-Container. 7
2.1.1 Historie der Software-Container. 7
2.1.2 Abgrenzung von Hard- und Software-Virtualisierung 8
2.2 VerknlUpfung mehrerer Container zu einem Service von Servicen 10
3 Untersuchungsmethode der Studie v v vt i i v oo o e u 13
3.1 Datenerhebung bei IAl Mitgliedern 13
3.2 Problemzentriertes Interview 16
3.21 Methodik 16
3.2.2 Interview-Leitfaden 17
3.2.3 Durchfuhrung der Interviews 18
4 ErgebnissederStudie i i e 19
41 StatusQUO 19
4.2 Wahrgenommene Vor- und Nachteile von Virtualisierung 21
4.3 Erwartungen an Container-basierte Virtualisierung 24
4.4 \orgehensmodell bei Service-Virtualisierung 25
5 Handlungsempfehlung zur Einfihrung
und Einordnung der Technologien o o i i it i i i i i o e e 28
5.1 Sicherheitsiberlegungen 29
6 Einfluss von Docker auf die Software-Entwicklung 31
7 DisSKUSSION & v v i it e e e e e e e e e e e e e e e e e e e 31

Abbildungsverzeichnis

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:

Figure 12:
Figure 13:

Figure 14:
Figure 15:
Figure 16:
Figure 17:

Hard- and Betriebssystem (BS)-level Virtualisierung.
Zusammenhang der Docker-Begrifflichkeiten.
Beispielhaftes Dockerfile fur eine Wildfly Installation.
Beispiel des hierarchischen Aufbaus eines Docker-Images.
Anzahl der Mitarbeiter in den Unternehmen der Projektteilnehmer. . . .
Verteilung der Branchen der Projektteilnenmer.
Struktur des Interview-Leitfadens.
Ausrichtung der Interviewpartner.
Virtualisierungsquote. L
Eingesetze Virtualisierungs-Technologien.
Technisches Wissen bezliglich Hardware- und Container-basierter Vir-
tualisierung auf der Skala von 0 (wenig Wissen) bis 5 (ausflhrliches
Wissen).
Wichtigkeit von Virtualisierung in den befragten Unternehmen.
Einschatzung der Vorteile von Virtualisierung. Unwichtig (grau), Uber
niedrige (blau) bis hohe (rot) Wichtigkeit.
Reifegrade Level (RGL) der Service-Virtualisierung in KMUs.
Verteilung der Reifegrade Level (RGL) der Projektteilnehmer.
Vorgehensmodell zur Einfihrung von Virtualisierungen.
Ein Screenshot von der Eclipse Che IDE.

10
11
15
15
17
19
20
20

21
22

22

4
Executive Summary

Dieser Bericht stellt die Ergebnisse einer Befragung von verschiedenen kleinen und mitt-
leren Unternehmen hinsichtlich ihrer bisherigen Erfahrungen und Nutzungen von Software-
Virtualisierungen dar. Insgesamt wurden sieben Kleine und mittlere Unternehmen (KMU)
aus verschiedenen Branchen wie beispielsweise der Finanzdienstleistung, Infrastruktur-
Anbieter und Software-Dienstleister befragt. Es hat sich gezeigt, dass der Einsatz von
Software-Virtualisierung in allen KMU ein wichtiges Thema ist und dementsprechend
viele Software-Services der KMU bereits virtualisiert sind. Neuerdings werden immer
haufiger Container-basierte Virtualisierungen — wie beispielsweise mit Hilfe von Docker
— mit dem Ziel eingesetzt, die Verfugbarkeit von Software-Services und dadurch auch die
Robustheit der angebotenen Software im Unternehmen zu erhéhen.

1 Einfuhrung

Die Schlagworte Cloud Computing und DevOps sind aktuelle Themen, mit denen sich
viele Unternehmen bei IT-Entscheidungen beschaftigen. Unter Cloud-Computing wird die
Bereitstellung und Nutzung von einer IT-Infrastruktur Gber das Internet verstanden. Diese
Infrastruktur kann beispielsweise Speicherplatz, Rechenleistung oder Software-Services
bereitstellen. Die grundlegende Idee dabei ist, dass diese IT-Infrastruktur nicht auf lokalen
Rechnern installiert werden muss, sondern tber ein Rechnernetz zur Verfligung gestellt
wird. Anwendungen, die in der Cloud laufen, versprechen beispielsweise eine hdhere
Ausfallsicherheit und damit einen reibungsloseren Ablauf.

Die Nutzung von Cloud-Diensten hat fir Unternehmen unter anderem einen Kostenvor-
teil, welcher zudem gut kalkulierbar ist. Teilweise erhebliche Investitionen fiir den Betrieb
von Software-Services missen nicht mehr selbst vorgenommen werden, sondern kbnnen
von einem externen Dienstleister flexibel angemietet werden. Zudem sind die Kosten
scheinbar gut kalkulierbar, da die Nutzungstarife bekannt sind. Zuletzt stellten Analysten
von Gartner heraus, dass “Viele Unternehmen [...] entsetzt (sind), wenn sie ihre ersten
Cloud-Rechnungen bekommen, da diese weit héher sind als veranschlagt” [6]; daher
schlussfolgern die Analysten, dass der Begriff Cloud nunmehr im “Tal der Erntichterung”
bezlglich des Hype-Cycles angelangt sei. Dennoch versprechen private oder hybride
Clouds weiterhin Vorteile im Hinblick auf skalierbare IT-Infrastruktur und installations- und
wartungsfreie IT-Anwendungen [4].

Um ein Programm in der Cloud lauffahig zu machen, bedarf es einer abstrakten Schicht
zwischen der Hard- und Software, welche man mit der Virtualisierung des Program-
mes erreichen kann. In der Informatik versteht man unter dem Begriff Virtualisierung
die Erzeugung eines virtuellen Objekts — wie beispielsweise einer emulierten Hardwa-
re, eines Betriebssystems (BS) oder einer Netzwerkressource — so dass auf einer ab-
strakten Ebene eine Entkoppelung von der physischen Hardware stattfindet. Damit ist
es moglich, die vorhanden IT-Ressourcen besser auszulasten sowie die Flexibilitat zu
erhéhen. Unter anderem haben diese groBBen Vorteile der Virtualisierung dazu gefihrt,
dass Virtualisierungstechniken heutzutage in nahezu jedem Unternehmen eingesetzt—
beziehungsweise indirekt genutzt—werden, welches eine beliebige Form von IT-Systemen
selbst betreibt oder nutzt.

In jingster Zeit hat eine neue Form der Virtualisierung sehr starke Aufmerksamkeit be-
kommen, welche auf die Virtualisierung von Betriebssystemen und Anwendungen zielt:
die Container-basierte Virtualisierung. Das Ziel dieser Virtualisierungs-Technik ist es,
dass mehrere Instanzen eines Betriebssystems isoliert voneinander auf einem Hostsys-
tem betrieben werden konnen. Das besondere dabei ist, dass diese Instanzen einen
gemeinsamen Kernel im Betriebssystem nutzen. Die Container-basierte Virtualisierung

6

hat den grof3en Vorteil, dass dadurch Rechen-Ressourcen gespart werden kdnnen, die
normalerweise flr das Betriebssystem jeder einzelnen Anwendung aufgebracht werden
missen, wahrend gleichzeitig nicht komplett auf Isolierung verzichten werden muss. Ei-
ne sehr verbreitete Container-basierte Virtualisierungs-Engine ist Docker [9]. Zur hori-
zontalen Skalierung (durch Replikation von Komponenten), zur Lastverteilung und zum
Konfigurationsmanagement hat sich Kubernetes [10] hervorgetan.

Nicht zuletzt durch die weite Verbreitung dieser Technologien und Methoden, hat der Be-
griff “DevOps” in den letzten Jahren an Bedeutung gewonnen. DevOps bezeichnet, grob
gesagt, die schnelle und reibungslose Integration von Entwicklung (Development), Be-
trieb (Operations) und Qualitatssicherung, die im Idealfall dazu fihrt, dass neu enwickel-
te oder geanderte Komponenten automatisch getestet und, falls keine Fehler auftraten,
in das lauffahige System bernommen werden (Deployment). Nach aktuellen Umfragen
konnte DevOps in vielen Unternehmen zuvor nur schwer umgesetzt werden und befindet
sich nunmehr im Tal der Desillusionierung bezlglich des Gartner Hype Cycles.

Im Rahmen des vorliegenden Projektes wird untersucht, welche Erfahrungen, Hoffnun-
gen und Erwartungen KMU an Virtualisierung generell, und die Container-basierte Vir-
tualisierung im Speziellen, haben.

2 Hintergrund: Virtualisierung

Sobald Anwendungen auf einer einzelnen physischen Maschine ohne Beeinflussung von
anderen Anwendungen laufen sollen, missen sie gegeneinander isoliert werden. Diese
Isolierung betrifft Systemressourcen und muss durch die ausfihrende Umgebung un-
terstitzt werden. Ein Software-Artefakt hierbei mit einem kontrollierten Anteil der Sys-
temressourcen versorgt werden [5].

Lésungsansatze fur das Problem der Software-Isolierung finden sich sowohl in der Hardware-
als auch in der Software-Virtualisierung. In den folgenden Kapiteln werden nun in Kapi-
tel 2.1 diese Ansatze erlautert und kontrastiert.

2.1 Software-Container

Die meisten Betriebssysteme gewahrleisten Isolierung durch Hardware-Schutz-Mechanismen
wie Speicherunterteilung, Speicherseiten-Mapping und unterscheidbare Benutzer- und
Kernel-Instruktionen. Ein softwareisolierter Prozess (SIP) ist ein Prozess, dessen Gren-
zen durch Sprachsicherheitsregeln festgelegt und durch statische Typprifung erzwungen
werden. AIKEN ET AL. kommen zu dem Schluss, dass SIP Rechenleistungs-glnstige Iso-
lierungsmechanismen bieten, die Fehlerisolierung ermdglichen ohne Interprozesskom-
munikation einzuschranken [1]. Es stellt sich heraus, dass hardwarebasierte Isolierung
die Performance der Software um bis zu 35% reduzieren kann. Die Software-Isolierung
hingegen kommt auf weniger als 5% Overhead. Die geringeren Laufzeiterh6hungen von
SIPs erméglichen den Einsatz in einer feineren Granularitat als bei herkémmlichen Ver-
fahren. Allerdings bleibt die Hardware-Isolation als AbwehrmaBnahme gegen mdgliche
Ausfélle von Software-Isolierungsmechanismen wertvoll. Die Fahigkeit, eine Abwagung
von Kosten und Nutzen der einzelnen Isolationstechniken durchfiihren zu kdnnen, wird
proportional zur Ausweitung der Software-Isolierung an Relevanz gewinnen.

2.1.1 Historie der Software-Container

Das Konzept des Software-Isolierung ist mitnichten eine neue Erscheinung. Schon 1979
wurde mit chroot in Linux ein Kommando eingeflihrt, um System-Ressourcen zu iso-
lieren. 1988 folgte mit software jails eine Erweiterung des Ansatzes [2, p. 82)]. In der
zweiten Dekade des 21. Jahrhunderts schlossen sich Lésungen wie Rocket, LXD und
Docker an, die allesamt darauf abzielten wieder-benutzbare Software-Container bereitzu-
stellen und ein Management der Container-Konstellationen zu erméglichen. Von diesen
Lésungen kristallisierte sich schnell Docker als besonders beliebt heraus. Anfang 2016

8

tauchte das Quellcode Verzeichnis zum Kern von Docker auf dem 20. Platz der Quell-
code Management Plattform Github.com “Sternchen” Liste auf, die Projekte nach Anzahl
der Empfehlungen fir ein Projekt sortiert — damit rangierte das Projekt nur 4 Platze hin-
ter dem Linux-Kernel-Quellcode-Verzeichnis [7]. Docker selbst wird mit einer Reihe von
Dienstprogrammen ausgeliefert, die die Hauptfunktionalitat der Software-Virtualisierung
um Funktionen erweitern, die Nutzer beim Einrichten, Bereitstellen und Verwalten einer
verteilten Umgebung unterstiitzen.

2.1.2 Abgrenzung von Hard- und Software-Virtualisierung

Sollen mehrere Anwendungen auf einer einzigen physischen Maschine ohne gegenseiti-
ge Beeinflussung laufen, so sind sie hinsichtlich der Systemressourcen und der Ausfiihrungs-
umgebung zu isolieren. Idealerweise kénnen sie mit einem kontrollierbaren Anteil an
Systemressourcen ausgestattet werden [5]. Diese Probleme kdnnen, wie besprochen,
sowohl von virtuellen Maschinen als auch von Software-Containern gelést werden. Vir-
tualisierung zielt darauf ab, das Vorhandensein mehrerer Maschinen auf einer einzigen
Maschine zu simulieren. Fir die Virtualisierung auf der Hardware-Ebene lauft ein Hyper-
visor-Dienst auf dem BS des Hosts oder direkt auf seiner Hardware und abstrahiert ihn
durch die Bereitstellung virtueller Schnittstellen. Bei Virtualisierung auf der BS-Ebene —
diejenige, die von Software-Containern verwendet wird — wird die Abstraktion durch die
Offenlegung der Host-Kernelfunktionen Uber Linux LXC bereitgestellt, welche die Linux-
Steuerungsgruppen cgroup und namespaces verwendet, um den Zugriff auf die Res-
sourcen des Hosts zu beschranken und so die Isolierung zu gewahrleisten.

Im Gegensatz zur traditionellen Virtualisierung reduziert die Containerisierung sowohl
den Platzbedarf von Anwendungsumgebungen als auch die Zeit, die zum Starten einer
Anwendung und zum Bereitstellen des zugehdrigen Speichers bendtigt wird, falls mehre-
re dhnliche Anwendungen auf der gleichen Maschine eingesetzt werden. Dies lasst sich
mit Hilfe von Figur 1 erlautern.

Eine virtuelle Maschine in der Hardware-Virtualisierung besteht aus drei Elementen:
dem Betriebssystem, den Bibliotheken, welche fiir die Anwendung bendtigt werden, und
trivialerweise der Anwendung selbst. Im Gegensatz dazu besteht ein Container in der
Software-Virtualisierung nur aus zwei Elementen: Den fir die Anwendung bendtigten
Bibliotheken und der Anwendung selbst.

Da also der BS-Kernel von Containern gemeinsam genutzt wird, ist es nicht mehr not-
wendig, mehrere Kernel (BS-Level) im Speicher zu halten, wodurch entsprechend der
Speicherbedarf reduziert wird. Trivialerweise wird Speicherplatz gespart, da nicht meh-
rere BS-Instanzen vorgehalten werden mussen.

’ e H o - ‘ ’ =5 H £ 5 ‘ Container
M<| | Bin & Lib || Bin & Lib | | Bin & Lib || Bin & Lib |
s |[B] Container Engine
Hypervisor ’ BS ‘
’ Hardware ‘ ’ Hardware ‘

Abbildung 1: Hard- and BS-level Virtualisierung.

Docker Image

beschreibt _ - - "=~ basis fir
L7 FROM s
R4 baut .
I, \4
Docker T
runs
Dockerfile Docker Container
kontrolliert

A
1 besteht aus
1

compose.yml

Docker Swarm

Abbildung 2: Zusammenhang der Docker-Begrifflichkeiten.

Da zweitens beim Starten einer Anwendung das Starten des Gast-BS entfallt, ist die
Gesamtzeit, die bis zum Starten der Anwendung vergeht, im Falle der Software-Virtuali-
sierung geringer. Schlie3lich wird die Isolierung des Dateisystems durch einen Mecha-
nismus namens Copy-on-Write (CoW) gewahrleistet, der die Notwendigkeit eliminiert,
Kopien des gesamten Dateisystems fir einzelne Container zu erstellen. Stattdessen tei-
len sich Container den Zugriff auf Dateien flir den Lesezugriff. Erst wenn ein Container
eine Datei andern muss, wird eine Kopie erstellt. Um weiteren Platz zu sparen, kdnnen
nur die Inkremente gespeichert werden. Die anderen Container sehen die genannten
Anderungen nicht, so dass die erforderliche Isolierung gewéhrleistet ist.

Nennenswerte Softwarelésungen sind chroot, von 1979, und software jails 1998 [2]. Seit
2003 entstanden Lésungen wie rkt, LXD und Docker, die standardisierte wiederverwend-
bare Software-Container, Container-Management-Tools und sogar ein auf Software-Container
zugeschnittenes BS bieten.

Die Kernbegriffe, die sich auf Docker beziehen, sind in Abbildung 2 dargestellt. Ein Docker-
file—wie es in Abbildung 3 aufgefihrt ist—besteht aus einem Satz von Anweisungen,
die, nachdem sie einmal ausgefuhrt wurden, zu einem CoW-basierten Dateisystem na-
mens Docker Image fuhren. Die erste Anweisung im Dockerfile ist immer eine Verer-
bungsanweisung FROM, die auf ein anderes Docker-Image verweist. Die Images wer-

10

den in privaten oder 6ffentlichen Repositorien zuganglich gemacht. SchlieBlich wird ein
Docker-Image in Form eines Docker-Containers instanziiert und dieses durch die Docker-
Engine gestartet.

Das Image, das aus dem Dockerfile erzeugt werden soll, besteht im Kern aus einem
Dateisystemzustand und einer Deklaration mehrerer Konnektoren, welche die Integrati-
on eines gestarteten Containers in das zugrundeliegende System ermdglichen, z.B. die
Netzwerkverbindung Uber Ports oder der Zugriff auf die interne Hardware Gber gemoun-
tete Festplatten-Volumes.

Man stelle sich beispielhaft ein Image vor, das laut Dockerfile-Definition intern Port 8080
exponieren soll. Nehmen wir weiterhin an, dass aus diesem Image zwei Docker-Container
container1 und container2 durch Instanziierung entstanden sin. container1 kann dann
beispielsweise Systemport 80 an den containeri-internen Port 8080 binden, wahrend con-
tainer2 den Systemport 81 an den container2-internen Port 8080 bindet, da Systemport
80 nun schon besetzt ist. Zusammengefasst lasst sich also sagen, dass Konfiguratio-
nen innerhalb des Containers fix gesetzt werden kénnen, ohne Riicksicht auf Einstellun-
gen nehmen zu mussen, die erst bei der Auslieferung relevant werden. Diese Abstrak-
tion ermdglicht bei der Containerisierung Skalierbarkeit, da so viele Instanzen des glei-
chen Images, wie bendtigt, bereitgestellt werden kdnnen. Die intern verwendeten Port-
Nummern stéren hierbei nicht.

Eine containerisierte Software kann praktisch Uberall eingesetzt werden, da sie nur we-
nige Annahmen Uber die zur Ausfihrzeit vorhandene Hardware oder BS treffen muss.
Gleichzeitig kann durch den Container sichergestellt werden, dass Software-Abhangigkeiten
der auszuliefernden Software vorhanden sind. Somit entfallt ein GroBteil der Umgebungs-
konfigurationsarbeit bei der Installation.

2.2 \Verknupfung mehrerer Container zu einem Service von Servicen

1 version: ‘2’

Ein anderes Image mit dem Namen "base-jdk" in Version 8, vom Nutzer "jboss" dient als Basis.
FROM jboss/base-jdk:8

Die WILDFLY_VERSION wird als Umgebungsvariable im Container wie folgt gesetzt sein:
ENV JBOSS_HOME /opt/jboss/wildfly

Lade und installiere die vorbestimmte Wildfly Version.
RUN curl -0 https://download.jboss.org/wildfly/$WILDFLY_VERSION/wildfly-$WILDFLY_VERSION.tar.gz
. # unpack and install

O©CoONOOOA~WN =

11 # Definiere die vorhandene Netzwerkschnittstelle (an Hand eines Ports)
12 EXPOSE 8080

14 # Spezifiere das Start Kommando
15 CMD ["/opt/jboss/wildfly/bin/standalone.sh", "-b", "0.0.0.0"]

Abbildung 3: Beispielhaftes Dockerfile fiir eine Wildfly Installation.

11

2 services:

3 web:

4 build: ./Dockerfiles/wildfly /.
5 ports: — 8080

6 depends_on: — db

7 db:

8 build: ./Dockerfiles/mysql/.
10 loadbalancer:

11 image: dockercloud/haproxy

12 ports:

13 — 80:80

14 links :

15 — web

16 volumes:

17 — /var/run/docker.sock:/var/run/docker.sock

Listing 1: Ausschnitt aus einer Compose-Datei.

Hierauf aufbauend ist eine Vielzahl von sich erganzenden Tools entstanden, die die
Docker-Engine um Funktionen erweitern, die helfen, Umgebungen zu verteilen, einzu-
richten, bereitzustellen und zu verwalten.

Erstens gibt es Docker Swarm, eine Abstraktionsschicht, die eine Reihe von Docker Engi-
nes in eine “virtuelle” Engine blindelt, welche Swarm Manager genannt wird. Der Swarm
Manager wird verwendet, um mehrere Docker Engines wie eine zu steuern. Hinsichtlich
der Zuordnung von Containern zu bestimmten Engines fihrt Docker Swarm Filter und
Strategien ein. Anhand einer Strategie entscheidet Swarm beispielsweise, die Container
gleichmaBig auf die Engines zu verteilen oder zuerst eine Engine aufzuftillen, bis sie ihr
Containerlimit erreicht hat, bevor die nachsten Engine angesprochen wird. Filter hinge-
gen kdnnen verwendet werden, um explizite Container-zu-Engine-Knoten-Zuweisungen
zu setzen, basierend auf dem Knotennamen oder der Konfiguration von lokal eingesetz-
ten Containern.

SchlieBlich erlaubt Docker Compose die Definition eines kompletten Dienstes, der aus
mehreren Containern besteht, indem die impliziten Abhangigkeiten zwischen den bendtigten
einzelnen Containern in einer so genannten compose.yml Datei erklart werden. Dies istin

’ ubuntu:16.04 ‘

1

’ ibmjava:8jre ‘

™~

lwebsphere:kernel‘ lwebsphere:beta‘

Abbildung 4: Beispiel des hierarchischen Aufbaus eines Docker-Images.

12

Listing 1 demonstriert. Eine breite Palette von Schllisselwértern wird unterstiitzt. Neben
der Auflistung der einzelnen Container unterhalb von (Zeile 7) ist es méglich, zu definie-
ren, welche Ports aus dem einzelnen Container exponiert werden sollen. Darliber hinaus
kann man definieren, welche Container verlinkt sind, was zur Bildung eines Brlicken-
Netzwerkes zwischen ihnen flihren wird.

Ein Image kann durch so viele Containern instanziiert werden, wie es die Auslastung
des hierdurch bereitgestellten Dienstes erfordert. Weiterhin ist das Erweitern der Hard-
ware zur Laufzeit durch Hinzuflgen neuer Hosts zum Swarm einfach zu bewerkstelligen.
Wenn ein Container z.B. aufgrund eines Hardware- oder BS-Fehlers verloren geht, er-
stellt Swarm automatisch als Ersatz einen neuen Container aus dem betreffenden Image.

13
3 Untersuchungsmethode der Studie

Im Folgenden wird erdrtert, wie das Potential von Software-Virtualisierung in KMUs unter-
sucht wurde. Dazu wurden Interviews mit den IT-Verantwortlichen der jeweiligen KMUs
durchgeflhrt. Interviews sind eine Form der qualitativen Forschung, welche von zwei
wesentlichen Prinzipien gepragt ist [3]: dem Prinzip der Offenheit und dem Prinzip der
Kommunikation.

Das erste Prinzip besagt, dass eine theoretische Strukturierung des Forschungsgegen-
standes erst dann vorgenommen wird, wenn dessen Strukturierung durch die beforschten
Subjekte erhoben und analysiert wurde [3]. Im Rahmen dieses Projektes wurden in den
Interviews verschiedene Fragen gestellt, welche auf unterschiedliche Dimensionen der
Ubergeordnete Forschungsfrage zielten. Der Aufbau des Fragebogens wird in Unterkapi-
tel 3.2.2 ndher erlautert.

Das zweite Prinzip besagt, dass eine Erhebung von “bedeutungsstrukturierten Daten”
nur durch eine Kommunikationsbeziehung mit dem Forschungsobjekt erfolgen kann, wel-
che den Kommunikationsregeln des Beforschten folgt — und eben nicht denen der wis-
senschaftlichen Forschung [3]. Die Interviews wurden daher immer in persénlichen Ge-
sprachen durchgefiihrt, welche im Unterkapitel 3.2.3 erlautert werden.

Im Rahmen dieses Projektes werden basierend auf diesen zwei Prinzipien der qualitati-
ven Forschung die folgenden Forschungsfragen (FF) beantwortet:

FF1: Wie ist der aktuelle Stand der Einflihrung von Software-Virtualisierungen
in KMUs?

FF2: Was sind generelle Hindernisse bei der Einfihrung von Container-basierten
Virtualisierungslésungen?

3.1 Datenerhebung bei IAl Mitgliedern

Um die Forschungsfragen zu beantworten, wurde eine Einladung zu einem Gesprach
an alle 30 Mitgliedsfirmen des Fordervereins des Instituts fir Angwandte Informatik der
Uni Minster (lAl) versendet. Aus diesem Kreis hatten sich sieben Mitglieder bereit er-
klart, an diesem Projekt teilzunehmen. Dies entspricht zwar nur einer Teilnahmequote
von 23%, jedoch waren die Projektteilnehmer eine sehr heterogene Gruppe. Wir konn-
ten daher Informationen ermitteln, wie sehr unterschiedliche Unternehmen mit dem The-
ma Software-Virtualisierung vertraut sind, in welchem Umfang sie sie einsetzten und ob
Container-basierte Virtualisierungslésungen momentan — oder in Zukunft geplant — eine
Rolle spielen.

14

15

PT1 B

PT2 :
PT3[1] 1
PT4] :

Il

I

i

0

PT5
PT6
PT7

| | |
2,000 4,000 6,000

Abbildung 5: Anzahl der Mitarbeiter in den Unternehmen der Projektteilnehmer.

In Abbildung 5 ist die Anzahl der Mitarbeiter der sieben Projektteilnehmer (PT1, ..., PT7)
dargestellt. Der Projektteilnehmer PT1 hat mit ca. 5700 die meisten Mitarbeiter (blauer
Balken), wovon etwa 1200 in der IT tatig sind (roter Balken). Auf der anderen Seite hat der
Projektteilnehmer PT7 mit etwa 10 Mitarbeitern — davon 5 in der IT tatig — die wenigsten
Mitarbeiter im Unternehmen beschaftigt.

Weiterhin sind die Unternehmen der Projektteilnehmer in vier verschiedenen Branchen
tatig. In Abbildung 6 sind die Verteilungen der Branchen von den Unternehmen der Pro-
jektteilnehmer dargestellt. Aus der Abbildung ist ersichtlich, dass die meisten Projekiteil-
nehmer hauptsachlich in der IT-Beratung tatig sind.

Alle Unternehmen haben gemein, dass sie IT-Systeme betreiben, welche durch den Ein-

Versicherungen

Infrastruktur Banken

IT-Beratung

Abbildung 6: Verteilung der Branchen der Projektteilnehmer.

16

satz von Virtualisierungs-Techniken unterstiitzt werden kénnen. Um dieses Unterstitzungs-
Potenzial aufzudecken, wurden mit den IT-Verantwortlichen der jeweiligen Unternehmen
Interviews durchgefihrt. Ein zentraler Bestandteil von Interviews ist der Wunsch, dass die
befragte Zielgruppe mdglichst selbst zu Wort kommt, um auch subjektive Sichtweisen er-
fassen zu kénnen. Um die verschiedenen Interviews nach einem einheitlichen Muster
durchfihren zu kénnen, wurde im Rahmen dieses Projektes ein Gesprachsleitfaden ent-
wickelt. Der Entwurf dieses Interviews wird im folgenden Kapitel vorgestellt.

3.2 Problemzentriertes Interview

Interviews erlauben eine offene Interaktion in einem direkten Gesprach zwischen dem
Interviewer und der bzw. den interviewten Personen. Das problemzentrierte Interview
wird auf der Grundlage eines Leitfandens durchgefihrt, in welchem offene Fragen ge-
stellt werden [11]. Ein Interview-Leitfaden ist ein strukturiertes Dokument, das als Instru-
ment der Vorbereitung auf das Gesprach dient. Im Rahmen dieses Projektes hatte der
Leitfaden eine zentrale Bedeutung. Er diente unter anderem dazu, die einzelnen Inter-
views mit den Projektteilnehmern vergleichbar zu gestalten. Die Ergebnisse dieser Um-
fragen werden in Kapitel 4 beschrieben. In den folgenden beiden Unterkapiteln werden
die Interview-Methodik (3.2.1) und der Interview-Leitfaden (3.2.2) genauer beschrieben.

3.2.1 Methodik

Die Methodik des problemzentrierten Interviews ist auf eine bestimmte Problemstellung
zentriert [8]. Im Rahmen dieses Projektes stehen die Forschungsfragen FF1 und FF2
(s. Seite 13) im Zentrum. Das Verfahren des problemzentrierten Interviews geht auf WiT-
ZEL zurlck [11], der diese als eine Methodenkombination aus Interview, biographischer
Methode, Gruppendiskussion und Fallanalyse im Rahmen eines problemzentrierten For-
schungsprojekts entwickelte [8]. Es handelt sich dabei um eine offene, halb-strukturierte
Befragung, in welcher die Befragten mdglichst frei zu Wort kommen [8].

Die Interviews wurden paarweise durchgeflihrt. Eine Person hat gesprachsfihrend die
Fragen an den Interviewten gestellt und die andere Person die Schriftfiihrung Glbernommen.

17

Allgemeine Software

Einleitun Virtualisierun .
S Informationen - 9= Entwicklung

=—>| Infrastruktur

Abbildung 7: Struktur des Interview-Leitfadens.

3.2.2 Interview-Leitfaden

Abbildung 7 stellt den Aufbau des Leitfadens dar. Jedes Interview wurde mit einer Einlei-
tung begonnen, in der der Interviewte Uber die Ziele des Interviews informiert wurde. Die
Interviews wurden jeweils mit Einverstandnis des Interviewten aufgezeichnet und in einer
Nachbereitung transkribiert, um die Antworten auszuwerten und mit anderen Interview-
Ergebnisse vergleichen zu kénnen.

Nach der Einleitung sollten allgemeine Informationen zum Unternehmen und der ange-
botenen IT-Dienstleistungen identifiziert werden. Das Ziel dieses Schrittes ist es, einen
Uberblick tiber das Umfeld des Projektpartners zu bekommen und zu verstehen, in wel-
chem Umfang das Unternehmen bereits Ressourcen (wie beispielsweise Mitarbeiter,
s. Abbildung 5) fiir den Betrieb von Software-Virtualisierungen im Einsatz hat.

In einem dritten Schritt soll festgestellt werden, welches Wissen die Projektpartner bereits
im Bereich Virtualisierung haben. Zusatzlich soll ermittelt werden, in welchen Bereichen
im Unternehmen bereits Virtualisierungen von Software-Artefakten stattfinden und wel-
che Technologien dafiir verwendet werden. Von einem besonderen Interesse ist auB3er-
dem, welche Herausforderungen, Probleme und Chancen die IT-Verantwortlichen durch
den Einsatz von Software-Virtualisierung — und im Speziellen von Container-basierter
Virtualisierung — sehen.

In einem vierten Schritt sollte ermittelt werden, inwieweit Virtualisierung bei der Software-
Entwicklung im Unternehmen eine Rolle spielt. Eine Software-Virtualisierung kann nicht
nur genutzt werden, um Software-Services zu betreiben, sondern auch um einen Software-
Entwickler bei seiner Arbeit zu unterstltzen, indem beispielsweise bendtigte Entwicklungs-
Umgebungen virtualisiert werden. Ziel dieser Phase war es, diesen alternativen Blick auf
Software-Virtualisierung im Unternehmen aufzuzeigen und zu identifizieren, inwieweit
Virtualisierungstechniken — und dabei insbesondere Container-basierte Virtualisierung
—im Unternehmen bei der Software-Entwicklung im Einsatz ist.

In einem letzten Schritt soll ermittelt werden, wie Container-basierte Virtualisierung bei
der Wahl einer geeigneten Service-Infrastruktur unterstiitzend wirken kann. AuBerdem
soll in diesem Schritt identifiziert werden, wie das Unternehmen bestimmte Services vir-
tualisiert — und ob dabei eine bestimmtes Transformationsschema verwendet wird. Ziel
dieses Schrittes ist es, herauszufinden, ob das Unternehmen die Chancen von Container-
basierter Virtualisierung so gro3 einschatzt, dass es eine solche in dem Unternehmen

18

einsetzen wirde. Zudem soll herausgefunden werden, welche abstrakten Services in
welchem Umfang von einer Transformation betroffen waren.

Zusammenfassend hat der Gesprachsleitfaden die folgenden drei Kernbereiche:

m Allgemeine Informationen zum Unternehmen der Projektpartner identifizieren.
m Kenntnisstand der Projektpartner im Bereich Software-Virtualisierung ermitteln.

m Ldsungsansatze und Vorgehensmodelle zur Einfihrung von Software-Virtualisierung
im Unternehmen aufzeigen.

3.2.3 Durchfiihrung der Interviews

Die einzelnen Interviews wurden auf drei unterschiedliche Arten mit den IT-Verantwortlichen
der KMUs durchgeftihrt.

m personlich beim Teilnehmer vor Ort
m personlich in den Raumlichkeiten der Universitat

m personlich in einem Telefon-Gesprach

Der Grund fir ein nicht einheitliches Vorgehen war die Berucksichtigung von Bedurfnissen
der befragten Personen. So waren beispielsweise nicht alle IT-Verantwortlichen im Raum
Munster zugegen, um hier ein persdnliches Treffen vor Ort durchfiihren zu kdnnen. Mit
diesen Personen wurde ein Telefon-Interview durchgefuhrt.

Mit dem Einverstandnis der befragten Personen wurden alle Interviews aufgezeichnet
und in einer Nachbearbeitung transkribiert. Alle Interviews hatten den gleichen grund-
legenden Aufbau, welcher im Fragebogen als Leitfaden festgelegt wurde. Dennoch er-
laubte die angewandte Form des Interviews auch eine freie Beantwortung der Fragen
durch den bzw. die interviewten Personen. Dadurch konnten teilweise Sachverhalte und
Zusammenhange aufgedeckt werden, welche im Vorfeld bei der Erstellung des Frage-
bogens nicht beriicksichtigt wurden. Im folgenden Unterkapitel werden diese Ergebnisse
der Interviews detailliert erlautert.

19
4 Ergebnisse der Studie

In diesem Kapitel werden die empirischen Umfrage- und Interview-Ergebnisse nach den
zuvor vorgestellten organisatorischen und technischen Dimensionen von Containervir-
tualisierung strukturiert und analysiert. Nachdem alle Interviews durchgefiihrt und tran-
skribiert wurden, wurden die Ergebnisse kodiert und in einer Datenbank gesammelt. Aus
dieser Tabelle wurden insgesamt sechs Themenbldcke identifiziert, welche in den folgen-
den Unterkapiteln naher beschrieben werden.

4.1 Status Quo

Container °

Hardware U

Technisch Strategisch

Abbildung 8: Ausrichtung der Interviewpartner.

Nachdem generelle Informationen zu den Unternehmen gesammelt wurden (s. Kapi-
tel 3.1), wurde die Positionierung der Teilnehmer ermittelt. Aus der Abbildung 8 lasst
sich ablesen, dass der Grof3teil der Teilnehmer aus technischer Sicht in das Thema Vir-
tualisierung involviert ist. Dabei bezeichnet sich aktuell nur ein Teilnehmer schon als Ex-
perte im Bereich der Container-basierten Virtualisierung. Ein Teilnehmer ist schon bi-
modal aufgestellt, d.h. er ist sowohl im besser vorhersehbaren und verstandenem Feld
der Hardware-Virtualisierung fest verankert, experimentiert aber schon im Bereich der
Container-basierten Virtualisierung. Zwei Teilnehmer sind aus strategischer Sicht mit der
Thematik betraut und ein Umfrageteilnehmer verfolgt bereits eine auf mehrere Jahre aus-
gelegte Strategie zur Einfiihrung von Container-basierter Virtualisierung.

20

nein
nein

86% 58%

ja
(a) Server Virtualisierung. 1a
(b) Client Virtualisierung.

Abbildung 9: Virtualisierungsquote.

Citrix
IBM AIX

Docker

VMWare

Abbildung 10: Eingesetze Virtualisierungs-Technologien.

Bezlglich der Verbreitung von Virtualisierung mit Blick auf den Einsatzort im Unterneh-
men, ergeben sich Virtualisierungsquoten wie in Abbildung 9 dargestellt: 85% der Unter-
nehmen setzen bereits auf Virtualisierung im Umfeld ihrer Server. 68% der Unternehmen
virtualisieren die Benutzer(Client)-Umgebungen.

Abbildung 10 gibt einen Uberblick (iber die priméare Virtualisierungs-Technologie der be-
fragten Unternehmen. Bei den befragten Firmen wird groBtenteils VMWare zur Virtuali-
sierung eingesetzt (~ 57%). Citrix und IBM AIX sind bei jeweils einem Teilnehmer domi-
nant; ein Teilnehmer setzt auf Docker. Dabei bleibt festzuhalten, dass das Unternehmen,
welches aktuell IBM AIX einsetzt, schon einen Transformationsprozess gestartet hat, der
IBM AIX durch VM Ware ersetzen wird.

Bezliglich der Transformation besitzt nur eines der befragten Unternehmen einen Trans-
formationsplan, der sich auch mit Container-basierter Virtualisierung beschaftigt.

Bezlglich des technischen Wissensstandes lasst sich eine starke Polarisierung erken-

21

T T
3 --- Container ||
--- Hardware
2 AN N
RN SN
/// \ / \\
e S \\ ! \
7/ / \ / \
s \ ! >
’ / \ / A
1 [7’ / N - — = — N / N |
! \ N ’
/ \ N\ ’
! \ A ’
/ \ / \ 7/
! \ \ ’
\ ! \ ’
/ N \ ’
! Ny N
0 [! N .
| | | | | |

Abbildung 11: Technisches Wissen bezlglich Hardware- und Container-basierter Virtua-
lisierung auf der Skala von 0 (wenig Wissen) bis 5 (ausfihrliches Wissen).

nen, die in Abbildung 11 dargestellt ist. Trivialerweise sind die Strategie-Verantwortlichen
nicht mit jedem neuen Trend direkt im Detail vertraut, da technisches Detailwissen fir ihr
Alltagsgeschaft von geringer Relevanz ist. Aufgrund der relativen Neuheit der Thematik
gibt es eine groBe Liicke bezlglich Wissen zu Container-basierter Virtualisierung.

Alle der angesprochenen Unternehmen besitzen eine IT-Abteilung, entweder in-house
oder ausgelagert in eine Tochtergesellschaft. Das Thema Infrastruktur ist dabei flr Fir-
men, die primar IT-Dienstleistungen im Auftrag erledigen, weniger relevant als far Unter-
nehmen, die kritische Infrastruktur in-house betreiben. Dementsprechend sind auftrag-
nehmende Unternehmen tendenziell offensiver in Bezug auf den Einsatz neuer Techno-
logien.

4.2 Wahrgenommene Vor- und Nachteile von Virtualisierung

Von einem besonderen Interesse ist, welche Herausforderungen, Probleme und Chancen
die IT-Verantwortlichen durch den Einsatz von Software-Virtualisierung — und im Speziel-
len von Container-basierter Virtualisierung — sehen. Alle befragten Unternehmen setzen
Virtualisierung entweder Hardware- oder Container-basiert ein. Fiir einige ist dies schlicht
eine alltagliche Notwendigkeit, fir andere ist es eine Missions-kritische Aufgabe, die auch
aus Compliance Grinden auf keinen Fall an andere Firmen abgetreten werden kann. ?7?7?
TODO: Erlauterung

Als Vorteile werden Ausfallsicherheit, Portabilitdt und Skalierbarkeit genannt. Wie in Ab-
bildung 13 erkennbar, ist Ausfallsicherheit der mit Abstand wichtigste Vorteil, den sich die
Teilnehmer von Virtualisierung erhoffen. Portabilitat ist fir die meisten Teilnehmer rele-
vant, da die Fahigkeit logische Systeme zwischen physischen Systemen zu bewegen die

22

mission-critical

relevant

irrelevant

Abbildung 12: Wichtigkeit von Virtualisierung in den befragten Unternehmen.

Wartung von Hardware einfacher gestaltet. AuBBerdem ist es eine Voraussetzung um Aus-
fallsicherheit zu erlangen. Skalierbarkeit hingegen spielt fir die meisten Projektteilnehmer
eine tendenziell untergeordnete Rolle. Dies lasst sich damit erklaren, dass die meisten
Teilnehmer schon einen sehr guten Uberblick tber ihre Auslastungsprofile besitzen; d.h.
sie werden selten von einem Kundenansturm Uberrascht. Da die Softwaresysteme bei
einigen Unternehmen Missions-kritisch sind, sind die Kapazitaten von vornherein oft so
konzipiert, dass genligend Last-Spielraum vorhanden ist. Naturlich ist in Anbetracht von
Wachstumszielen auch hier in bestimmten Zeitrdumen ein Ausbau dieser Kapazitaten er-
forderlich. Abschlie3end ist zu sagen, dass Unternehmen, die der Virtualisierung flr ihren
Geschaftserfolg eine untergeordnete Rolle zuordnen, auch die genannten Themen Aus-
fallsicherheit, Portabilitat und Skalierbarekeit als tendenziell unwichtiger einstufen (2/7).

Beziiglich der Probleme, die Teilnehmer mit Virtualisierung haben, lasst sich Folgen-
des zusammenfassen: In kleinen und mittelstandischen Unternehmen sind die Entwickler
ausschlieBlich auf Software-Projekte aufgeteilt. Es gibt haufig keine Mitarbeiter, die de-
diziert fir die Thematik der Container-basierten Virtualisierung verantwortlich sind. Statt-
dessen verbringen Mitarbeiter Zeit in allen Phasen eines Software-Projekts: bei der Anfor-

Skalierbarkeit [l
Portabilitat | |
Ausfallsicherheit l |

Wichtigkeit

Abbildung 13: Einschatzung der Vorteile von Virtualisierung.
Unwichtig (grau), tGber niedrige (blau) bis hohe (rot) Wichtigkeit.

23

derungsanalyse, Entwicklung, Deployment und Wartung. Fir komplexe Fragestellungen
im Bereich Virtualisierung wird Support in Form externer Berater angefordert. Mit fort-
schreitender Zeit betreut ein Mitarbeiter entsprechend viele Systeme in der Wartung. Hier
wird von allen das konstante Monitoring und, sobald ein Systemupgrade aufgrund von un-
zureichender Systemressourcen ansteht, der Upgrade-Prozess als belastend empfunden
— gerade da dies zu Zeiten auftreten kann, in der sich andere Projekte gerade in einer
heiBen Phase befinden.

Skalierbarkeit. Skalierbarkeit I1asst sich generell durch vertikale oder horizontale Ska-
lierung realisieren. Vertikale Skalierung bezieht sich dabei auf die Erhéhung der Per-
formance bestehender Systemen, z.B. durch ein Upgrade der Prozessoren oder des
Arbeitsspeichers. Horizontale Skalierung erreicht hohere Performance durch das Hin-
zufligen weiterer Maschinen, sodass mehr Aufgaben zugleich abgearbeitet werden kénnen.
Gerade die horizontale Skalierung wird zur Zeit in der IT-Welt breit diskutiert. Im Startup-
Bereich, wo teils rein digitale Produkte mit kleinen Teams auch auf einen globalen Ziel-
markt ausgerichtet werden, wird die Mdglichkeit der horizontalen Skalierung hoch geschatzt,
da im Falle eines pl6tzlichen Popularitatssprunges des Produktes innerhalb kurzer Zeit
die Kapazitat vervielfacht werden kann. Wider der Erwartung ergab die Umfrage, dass
sich alle KMU wenig fur diesen Nutzen der horizontalen Skalierung interessieren. Die
wahrgenommenen Potentiale im Bereich Skalierbarkeit beschranken sich auf Einsparun-
gen, die erreicht werden kénnen, wenn Server-Ressourcen nur zu Lastzeiten angemietet
werden wilrden, statt sie durchgangig zu betreiben.

Andererseits sehen die Befragten durchaus Gefahren, die von dem “Technologie-Zoo”
ausgehen, d.h. der Vielzahl von Tools, die bendétigt werden, um horizontale Skalierbarkeit
umzusetzen. Eine groBe Anzahl von extern entwickelten Tools miisste evaluiert, die Wei-
terentwicklung Uberwacht und die Integration zwischen den Tools sichergestellt werden.
Auch aus Personalsicht wirden weitere Kosten anfallen, da direkt mehrere Experten flr
diese einzelnen Teilbereiche eingestellt werden mlssten.

Portabilitat. Bezlglich der Portabilitat, d.h. des Grad der Transferierbarkeit einer An-
wendungen zwischen verschiedenen Systemen, sehen die Befragten noch keinen Hand-
lungsbedarf. Der Vorteil wird als “nicht ganz so prasent” oder “notwendig” angesehen.
Allerdings werden die Lock-in Effekte der aktuellen Virtualisierungs-Lésungen als unkri-
tisch angesehen, sodass potentiell eine Veranderung durchaus machbar ware.

24
4.3 Erwartungen an Container-basierte Virtualisierung

Simplizitat. Die meisten Befragten interessieren sich fiir Container-basierte Virtualisie-
rung aus anderen Griinden als der genannten horizontalen Skalierbarkeit und Portabilitat.
Gerade fir die kleineren Unternehmen innerhalb der befragten KMU liegt die Attraktivitat
dieser Form der Virtualisierung in ihrer Simplizitat fir einfache Falle. Wohingegen traditio-
nelle Virtualisierung direkt viele Probleme auf einmal zu I6sen versucht, lassen sich durch
die clevere Auswahl und Beschrankung auf nur wenige Tools aus dem “Technologie-Zoo”
einfache Anforderungen potentiell einfacher umsetzen. Die Einarbeitungszeit in Konzep-
te rund um Container wird als einfacher eingeschatzt, da fur einige Szenarien das Wis-
sen, welches in Kapitel 2.1.2 aufgebaut wurde, bereits ausreicht, um eine Anwendung in
einfachen Szenerien zu virtualisieren. Die Wissensbarriere ist entsprechend niedrig, es
werden lediglich Kenntnisse Uber die Kommandozeilen-Befehle vorausgesetzt, die nicht
komplizierter sind als jene, die von der Anwendung schon normalerweise vorausgesetzt
werden bzw. in deren Dokumentation erlautert sind. Auch die Bereitstellung der eigenen
Hardware ist simpel: Aktuelle Versionen der weit weitestverbreiteten Linux Distributionen
werden mit allen notwendigen Pakete vorinstalliert ausgeliefert. Am Ende erhoffen sich
zwei Befragte, dass diese niedrigere Barriere den Wissenstransfer vereinfachen wird.

Vorteile fiir Lastspitzen-Szenarios. Abseits dieses Aspekts interessieren sich KMU
fir Kostenoptimierungen bei Lastspitzen, d.h. Einsparungen, die erreicht werden kénnen,
wenn Server-Ressourcen nur zu Lastzeiten angemietet werden, statt sie durchgangig
zu betreiben. Beziiglich dieser VerheiBung stellten Analysten von Gartner zuletzt je-
doch heraus, dass “Viele Unternehmen [...] entsetzt (sind), wenn sie ihre ersten Cloud-
Rechnungen bekommen, da diese weit hdher sind als veranschlagt” [6]. Entsprechend
sollte eine Einfiihrung von Container-basierter Virtualisierung nur zum Erreichen dieses
Ziels sehr kritisch betrachtet werden. Fir ein Unternehmen, dass die Lastzeiten sehr
gut abschatzen kann, z.B. weil es morgens beim Login der Mitarbeiter immer zu einer
Lastspitze kommt, bietet der Ansatz durchaus Potential.

Schnelles Feedback. Ein weiterer genannter Vorteil betrifft eine erwartete Beschleu-
nigung bei der Anwendungsauslieferung, die es ermdglicht, wahrend der Entwicklung
schnelleres Feedback zu Anderungen zu bekommen. Hier erhoffen sich die Befragten
eine hohere Personaleffizienz und eine damit verbundene Optimierung im Hinblick auf
die Personalkosten.

Entwicklung. Aus Sicht der Entwickler gibt es verschiedene Vorteile. Zum einen bietet
ein Container-basierter “Azubibaukasten” die Méglichkeit zum Ausprobieren von neuen

25

Technologien, ohne dass durch Fehler laufende Systeme beeintrachtigt werden kénnen.
Beziiglich Integrationstests wird eine bessere Parallelisierung der Tests und Ausweitung
von Konfigurationskonstellationstests erwartet.

4.4 Vorgehensmodell bei Service-Virtualisierung

In Abbildung 14 sind die drei Reifegrad-Levels der Service-Virtualisierung in KMUs dar-
gestellt, welche aus den Interview-Ergebnissen abgeleitet wurden. Im Reifegrade Level
1 (RGL-1) wird ein Prototyp als Entwicklungsprojekt verwendet, in welchem man den
Prototypen mit Hilfe von Container-basierter Software-Virtualisierung erstellt. In diesem
Projekt wird Erfahrung mit den Virtualisierungstechniken gesammelt, die in zuklnftige
Entscheidungen einflieBen kann. Diese Entscheidungen kénnen mehrere Dimensionen
haben. Auf der einen Seite kann die Erfahrung in der Entwicklung eines Prototypen dazu
dienen, eine generelle Aussage zur Einfihrung von Virtualisierungs-Software im Unter-
nehmen zu treffen. Ein Ergebnis kdnnte beispielsweise sein, dass die Einarbeitung der
Mitarbeiter in neue Virtualisierungstechniken zeitaufwendiger ist als erhofft. Eine Kon-
sequenz daraus kdnnte sein, dass eine Virtualisierungsstrategie im Unternehmen nicht
weiter verfolgt wird oder dass die Mitarbeiter gezielter in der neuen Technologie geschult
werden.

In Reifegrade Level 2 (RGL-2) wird ein neues Projekt mit Hilfe von Container-basierter
Software-Virtualisierung erstellt. Im Gegensatz zu RGL-1 wird bei RGL-2 ein gesamtes
Software-Projekt mit Hilfe von Virtualisierungstechnik entwickelt.

Das letzte Reifegrade Level (RGL-3) beinhaltet die Konvertierung von bestehenden Pro-
jekten auf Virtualisierungstechniken. Das konvertierte Software-Projekt sollte dabei die
gleichen Services und Funktionalitaten bereithalten wie das bisherige Software-System.

Abbildung 15 zeigt die Verteilung der Projektteilnehmer in die drei Reifegrade Levels. Es
ist zu erkennen, dass 4 der 7 Projektteilnehmer bisher einen Prototypen entwickelt haben,

RGL-1 Prototyp erstellen

RGL-2 Neues Projekt erstellen

RGL-3 Legacy Projekte konvertieren

Abbildung 14: Reifegrade Level (RGL) der Service-Virtualisierung in KMUs.

26
RGL-3

RGL-1

Abbildung 15: Verteilung der Reifegrade Level (RGL) der Projektteilnehmer.

in welchem Sie Container-basierte Virtualisierungstechniken angewendet haben. Zudem
haben 2 der 7 Projektteilnehmer ein komplett neues Projekt auf Basis von Container-
basierter Virtualisierung entwickelt. Zu erkennen ist auch, dass bisher kein einziger Pro-
jekteilnehmer ein bestehendes IT-System auf Container-basierter Virtualisierung konver-
tiert hat. Als Griinde dafir wurden genannt, dass bestehende IT-Systeme, die langjahrig
im Einsatz sind, oftmals sehr zuverlassig laufen und die Gefahr gesehen wird, bei einer
Konvertierung auf Container-basierte Virtualisierung neue Fehler in das System einzu-
bauen.

Das zentrales Ergebnis der Interviews zu diesem Themenblock ist, dass bisher keiner der
Projektteilnehmer ein dokumentiertes Vorgehen im Unternehmen hat, mit dem Software-
Artefakte virtualisiert werden. Daraus lasst sich ableiten, dass bisher die Notwendigkeit
eines solchen Dokumentes nicht hoch genug war, um ein solches zu erstellen. Dennoch
haben alle Projektteilnehmer zugestimmt, dass ein solches Vorgehen sinnvoll ware. Im
Rahmen dieses Projektes wurde ein solch abstrakies Vorgehensmodell entwickelt. In
Abbildung 16 ist das abstraktes Vorgehensmodell zur Einflihrung von Virtualisierungen
in einem KMU dargestellt. In einem ersten Schritt werden IT-verantwortliche Personen
innerhalb des Unternehmens identifiziert, um einen klaren Ansprechpartner fir die IT-
Transformation zu ermitteln. Ein weiteres Ziel dabei ist, dass es ein Commitment der
IT-Verantwortlichen gibt, an dem Virtualisierungsprozess teilzunehmen. Sofern es im Un-
ternehmen keinen direkten Ansprechpartner dafir gibt, sollte eine Rolle dafir geschaffen
werden.

In einem nachsten Schritt werden die relevanten IT-Services mit Berlcksichtigung des
Virtualisierungsvorteils identifiziert. Es gibt dabei drei Virtualisierungsvorteile, auf die ge-
prift werden sollte: Abstraktion, Skalierbarkeit und Ausfallsicherheit (s. Unterkapitel 4.2).

27

Verantwortliche Personen identifizieren.
Wen frage ich?

‘ Direkter Ansprechpartner im Unternehmen vorhanden? ‘

J?./ nein
‘ Ansprechpartner identifiziert. ‘«— Rolle schaffen.

v'Klaren Ansprechpartner.

v Commitment des Unternehmens.

|

Relevante IT-Services
Welche IT-Services gibt es?

v'Virtualisierungsvorteile erkannt.
v'Relevante IT-Services im Unternehmen identifiziert.

|

IT-Architektur

v Technische Komponenten der Services identifiziert

|

Umsetzung

v Relevante IT-Services sind virutalisiert.

|

Bewertung

v'Soll- / Ist-Vergleich.

Abbildung 16: Vorgehensmodell zur Einfihrung von Virtualisierungen.

In einem dritten Schritt wird die IT-Architektur der identifizierten IT-Services genauer be-
leuchtet. Ein Ziel dabei ist es herauszufinden, welche technischen Komponenten von den
zu virtualisierenden Services betroffen sind.

AnschlieBend kann mit Unterstitzung geeigneter Virtualisierungstools der Service (teil-)
virtualisiert werden. Fur den Virtualisierungsvorteil Abstraktion bietet sich beispielswei-
se Docker an, fur Ausfallsicherheit Frameworks wie Ceph und Docker-Swarm und flr
Skalierbarkeit unter anderem OpenStack.

Zum Schluss soll zur Bewertung des tatsachlichen Virtualisierungsvorteils ein Soll-/Ist-
Vergleich vorgenommen werden.

28
5 Handlungsempfehlung zur Einfihrung

und Einordnung der Technologien

Der im folgenden vorgestellte Prozess wird von der Cloud Native Container Foundation
(CNCF) zur Einfuhrung von Container-basierten Infrastrukturen empfohlen. Hierbei sind
alle Schritte nach Schritt 3 als optional zu betrachten, wobei in jedem der optionalen
Schritte die Notwendigkeit der Durchfiihrung vorab zu prifen ist.

1. CONTAINERIZATION

m Meist mit Docker Container realisiert.

m Eine Anwendung beliebiger GréBe und mit beliebiger Anzahl von Abhangigkeiten
I&sst sich in einem Container zusammenfassen.

m Im Laufe der Zeit sollten Sie danach streben, geeignete Anwendungen aufzuteilen
und zukiinftig Anwendungen direkt container-basiert zu konzipieren.

2. CI/CD (Continuos Integration and Delivery)

m Einrichtung kontinuierliche Integration/kontinuierliche Auslieferung (CI/CD), so dass
Anderungen an lhrem Quellcode automatisch zu einem neuen Container fiihren.
D.h. der Container wird fir den Quellcode neu gebaut, getestet und auf die staging-
und ggf. sogar produktiv-Server ausgeliefert.

3. ORCHESTRATION

m Kubernetes ist die marktfihrende Orchestrierungslosung.

m Sie sollten eine zertifizierte Kubernetes-Distribution wahlen, eine gehostete Platt-
form evaluieren oder eine Installation in die eigene Systemlandschaft in Betracht
ziehen.

4. OBSERVABILITY & ANALYSIS

m Wahlen Sie eine Lésung zum Monitoring, Logging und Tracing.
m Ziehen Sie dabei in Betracht, die CNCF-Projekte Prometheus fiir die Uberwachung,
Fluentd fir Logging und Jaeger fir Tracing einzusetzen.
5. SERVICE MESH AND DISCOVERY
m CoreDNS ist ein schnelles und flexibles Werkzeug, das nitzlich fir die Serviceentde-
ckung ist.

m Sowohl Envoy, als auch Linkerd erlauben das Erstellen von service mesh architec-
tures ...

m ...die Health-Checks, Routing, und Lastverteilung erméglichen.

29
6. NETWORKING

m Um eine flexiblere Vernetzung zu erméglichen, verwenden Sie CNI-konforme Netz-
werkprojekte wie Calico, Flannel oder Weave Net.

7. DISTRIBUTED DATABASE

m Wenn Sie mehr Ausfallsicherheit und Skalierbarkeit benétigen, als man mit einer
einzigen Datenbank erreichen kann, ist Vitess eine gute Option flir den Betrieb von
MySQL, was Skalierung durch sharding (Datenbankpartitionierungen) ermdglicht.

8. MESSAGING

m Wenn Sie mehr Leistung bendtigen, als ein RESTful Webservice (mit JSON) bieten
kann, erwagen Sie die Verwendung von gRPC. NATS ist eine nachrichtenorientierte
Middleware.

9. CONTAINER RUNTIME

m Sie kdnnen alternative Container-Laufzeitumgebungen verwenden. Die gangigsten
Lésungen, die alle OCI-konform sind, sind containerd, rkt und CRI-O.

10. SOFTWARE DISTRIBUTION

m Wenn Sie eine sichere Softwareverteilung benbdtigen, evaluieren Sie Notar, eine
Implementierung des The Update-Framework.

5.1 Sicherheitsiberlegungen

Generell muss festgehalten werden, dass Container im Hinblick auf Sicherheit fiir einen
Angreifer keine uniberwindbare Hirde darstellen. Zwar wird eine Zugriffssteuerung far
die (geteilten) Systemressourcen geboten, diese ist aber keine groBes Hindernis. Wie
besprochen kapseln sowohl virtuelle Maschinen, als auch Container Anwendungen. Im
Gegensatz zum Container, der Grenzen fir Anwendungen definiert, bilden virtuelle Ma-
schine auch Grenzen zu ihren Ressourcen’.

m Container sind gut darin, Anwendungen zu kapseln.

o Vorteile: Skalierbarkeit, Zugriffsregelung auf Ressourcen.
o Vorsicht: Sicherheit nicht Fokus von Container.

m Gefahrlichkeit von Software wird meist nicht binar bewertet, sondern existiert auf ein
Spektrum.

'Die sich ggf. auf Hardware Level wieder umgehen lassen (s. aktuell https: //meltdownattack. com/)

30

Malware

—_

3rd Party Software
Audit

—_

3rd Party Software
mit Audit

—_

Eigene Software (?)

Ist also der Einsatz einer bestimmten Software geplant, so gilt es vor der Entscheidung
zu einer speziellen Virtualisierungslosung festzustellen, um welche Art von Software es
sich handelt. Handelt es sich zum Beispiel um Malware, also schadlicher Software, die
z.b. zu einem Erprobungszwecke eingesetzt wird, so ist die logische Schlussfolgerung
jene Technologie auszuwahlen, welche das héchste Maf3 an Isolierung bietet. Handelt
es sich um eine Anwendung Dritter, so sollte die Entscheidung davon abhangig sein, ob
es maoglich ist einen eigenen Sicherheits-Audit fur die Software durchzufihren. Ist dies
nicht der Fall, so ist auch diese Software ein Kandidat fiir erhéhten Isolierungsbedarf. In
allen anderen Fallen, sollte der Sicherheits-bezogene Isolierungsbedarf gering sein; ei-
ne Ausschopfung der Vorteile Container-basierter Virtualisierung steht ergo nach diesem
Gesichtspunkt nichts im Wege.

31
6 Einfluss von Docker auf die Software-Entwicklung

Container-basierte Virtualisierung kann nicht nur bei der Bereitstellung von produktions-
reifen IT-Services unterstitzten, sondern kann auch in der Software-Entwicklungsphase
von einem IT-Entwickler genutzt werden, um bessere Software zu entwickeln.

Ein Entwickler kann Docker nutzen, um auf dem Entwicklungs-Rechner eine Umgebung
zu erstellen, in der Anwendungen in Containern lokal entwickelt und getestet werden.

NEW WORKSPACE

Abbildung 17: Ein Screenshot von der Eclipse Che IDE.

DevOps ist gerade fiir kleinere Entwickler-Teams nitzlich, wenn quasi “jeder Entwickler
alles kann”. Damit gibt es auch kein spezielles Inselwissen, falls mal ein Mitarbeiter das
Unternehmen verlasst.

Ein Beispiel fur eine Integrated Development Environment (IDE)—die in der Cloud lauft—
ist Eclipse Che?.

Wie in Abbildung 6 dargestellt, sind die Unternehmen der Projektteilnehmer in unter-
schiedlichen Branchen tatig. Daraus resultiert, dass die Unternehmen auch in einem
unterschiedlichen Umfang eine IT-Abteilung betreiben (s. auch Abbildung 5). Daher ist
das Thema Software Entwicklung mit Docker auf den ersten Blick nicht fir jeden der
Projektteilnehmer unmittelbar von groB3er Relevanz.

7 Diskussion

Im Rahmen dieses Projektes wurden zwei wesentliche Gegenstande untersucht. Zum
einen wurde untersucht, in welchem Umfang Container-basierte Virtualisierung in loka-
len Unternehmen im Raum Miinster momentan genutzt wird. Zum anderen wurde unter-
sucht, welche Chancen und Risiken IT-Verantwortliche dieser Unternehmen in der Nut-
zung dieser Virtualisierungstechnik sehen.

https://www.eclipse.org/che/

32

Einen der zentralen Schllsse, die wir aus den Gesprachen mit den verschiedenen Pro-
jektpartnern ziehen kdnnen, ist:

Container-basierte Virtualisierung sollte bei IT-Entscheidern Berticksichtigung finden.

Diese IT-Entscheidungen kdnnen in einem Unternehmen sowohl von CTOs und IT-Archi-
tekten getroffen, als auch von den Entwicklern mit beeinflusst werden.

Container-Virtualisierung ist ein wichtiges Thema fir IT-Entscheider. Die zentralen Vor-
teile von Container-Virtualisierung sind die gesteigerte Ausfallsicherheit (oft in Kombi-
natition mit einer Microservice-Architektur), die gute Portabilitdt und die Skalierbarkeit.
Nachdem die IT-Industrie Gber Jahre hinweg Container in Form von virtuellen Maschinen
genutzt hat, um eine Abstraktionsebene zu den physikalischen Plattformen zu schaf-
fen, ermdglichen es Technologien wie Docker nun, Container zwischen Plattformen zu
verschieben. Genauer gesagt: Linux-Applikationen und Workloads zwischen mehreren
Clouds zu bewegen, um damit die Portabilitat zu verbessern. Im ersten Moment erscheint
Docker damit als ein typisches Tool fir Entwickler. Aus dem Blickwinkel eines ClOs han-
delt es sich allerdings klar um ein strategisches Werkzeug, um die angestrebte hohe
Verflgbarkeit der Unternehmens-IT zu erreichen.

AuBerdem interessieren sich KMUs fiir Kostenoptimierungen bei Lastspitzen, d.h. Ein-
sparungen, die erreicht werden kdnnen, wenn Server-Ressourcen nur zu Lastzeiten an-
gemietet werden, statt sie durchgangig zu betreiben. Bezliglich dieser VerheiBung stell-
ten Analysten von Gartner zuletzt jedoch heraus, dass viele Unternehmen hier mit un-
erwartet hohen Kosten konfrontiert wurden. Entsprechend sollte eine Einfihrung von
Container-basierter Virtualisierung rein zum Erreichen dieses Ziels mit einer gewissen
Skepsis betrachtet werden.

Von der Portabilitét bei Container-Virtualisierung kénnen beispielsweise auch Cloud-Marktplatze
und Cloud-Brokerage-Services wie Deutsche Bérse Cloud Exchange (DBCE) profitieren

und ihren Kunden die Moglichkeit bieten, Applikationen zwischen den unterschiedlichen
Anbietern je nach Bedarf und Kosten zu verschieben.

33
Literatur

[1] Mark Aiken, Manuel Fahndrich, Chris Hawblitzel, Galen Hunt, and Jim Larus. De-
constructing process isolation. In ACM SIGPLAN Workshop on Memory Systems
Performance and Correctness, pages 1—10, San Jose, CA, October 2006. ACM.

[2] David Bernstein. Containers and cloud: From Ixc to docker to kubernetes. 1(3):81—
84.

[38] Uwe Flick, Ernst von Kardorff, and Ines Steinke. Qualitative forschung. Ein Hand-
buch, 6:14, 2008.

[4] Fraunhofer-Gesellschaft. Public, Private und Hybrid Cloud? https://www.cloud.
fraunhofer.de/de/faq/publicprivatehybrid.html. Accessed Jun. 2018.

[5] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A
Virtual Machine-based Platform for Trusted Computing. In ACM SIGOPS Operating
Systems Review, volume 37, pages 193-206. ACM.

[6] Gartner, Inc. Umfrage: Cloud kann teuer werden. https://www.gartner.com/

events/emea/infrastructure-operations-management#section_exhibitors.

Accessed Jun. 2018.
[7] GitHub, Inc. Repositories by stars.

[8] Andrea Kurz, Constanze Stockhammer, Susanne Fuchs, and Dieter Meinhard. Das
problemzentrierte interview. In Qualitative Marktforschung, pages 463—475. Sprin-
ger, 2007.

[9] Dirk Merkel. Docker: Lightweight linux containers for consistent development and
deployment. Linux J., 2014(239), March 2014.

[10] The Linux Foundation. Kubernetes - Production-Grade Container Orchestration.
https://kubernetes.io/. Accessed Jun. 2018.

[11] Andreas Witzel. Verfahren der qualitativen Sozialforschung: Uberblick und Alterna-
tiven. Campus-Verlag, 1982.

34

