
Herbert Kuchen, Vincent von Hof, Andreas Fuchs

Ansätze zur Software-Virtualisierung für KMU - eine
empirische Bestandsaufnahme

IAI - Institut für Angewandte Informatik

Abschlussbericht

�

1

Inhaltsverzeichnis

Executive Summary . 4

1 Einführung . 5

2 Hintergrund: Virtualisierung . 7
2.1 Software-Container . 7

2.1.1 Historie der Software-Container . 7
2.1.2 Abgrenzung von Hard- und Software-Virtualisierung 8

2.2 Verknüpfung mehrerer Container zu einem Service von Servicen 10

3 Untersuchungsmethode der Studie . 13
3.1 Datenerhebung bei IAI Mitgliedern . 13
3.2 Problemzentriertes Interview . 16

3.2.1 Methodik . 16
3.2.2 Interview-Leitfaden . 17
3.2.3 Durchführung der Interviews . 18

4 Ergebnisse der Studie . 19
4.1 Status Quo . 19
4.2 Wahrgenommene Vor- und Nachteile von Virtualisierung 21
4.3 Erwartungen an Container-basierte Virtualisierung 24
4.4 Vorgehensmodell bei Service-Virtualisierung 25

5 Handlungsempfehlung zur Einführung
und Einordnung der Technologien . 28
5.1 Sicherheitsüberlegungen . 29

6 Einfluss von Docker auf die Software-Entwicklung 31

7 Diskussion . 31

�

2

Abbildungsverzeichnis

Figure 1: Hard- and Betriebssystem (BS)-level Virtualisierung. 9
Figure 2: Zusammenhang der Docker-Begrifflichkeiten. 9
Figure 3: Beispielhaftes Dockerfile für eine Wildfly Installation. 10
Figure 4: Beispiel des hierarchischen Aufbaus eines Docker-Images. 11
Figure 5: Anzahl der Mitarbeiter in den Unternehmen der Projektteilnehmer. . . . 15
Figure 6: Verteilung der Branchen der Projektteilnehmer. 15
Figure 7: Struktur des Interview-Leitfadens. 17
Figure 8: Ausrichtung der Interviewpartner. 19
Figure 9: Virtualisierungsquote. 20
Figure 10: Eingesetze Virtualisierungs-Technologien. 20
Figure 11: Technisches Wissen bezüglich Hardware- und Container-basierter Vir-

tualisierung auf der Skala von 0 (wenig Wissen) bis 5 (ausführliches
Wissen). 21

Figure 12: Wichtigkeit von Virtualisierung in den befragten Unternehmen. 22
Figure 13: Einschätzung der Vorteile von Virtualisierung. Unwichtig (grau), über

niedrige (blau) bis hohe (rot) Wichtigkeit. 22
Figure 14: Reifegrade Level (RGL) der Service-Virtualisierung in KMUs. 25
Figure 15: Verteilung der Reifegrade Level (RGL) der Projektteilnehmer. 26
Figure 16: Vorgehensmodell zur Einführung von Virtualisierungen. 27
Figure 17: Ein Screenshot von der Eclipse Che IDE. 31

�

3

�

4

Executive Summary

Dieser Bericht stellt die Ergebnisse einer Befragung von verschiedenen kleinen und mitt-
leren Unternehmen hinsichtlich ihrer bisherigen Erfahrungen und Nutzungen von Software-
Virtualisierungen dar. Insgesamt wurden sieben Kleine und mittlere Unternehmen (KMU)
aus verschiedenen Branchen wie beispielsweise der Finanzdienstleistung, Infrastruktur-
Anbieter und Software-Dienstleister befragt. Es hat sich gezeigt, dass der Einsatz von
Software-Virtualisierung in allen KMU ein wichtiges Thema ist und dementsprechend
viele Software-Services der KMU bereits virtualisiert sind. Neuerdings werden immer
häufiger Container-basierte Virtualisierungen – wie beispielsweise mit Hilfe von Docker
– mit dem Ziel eingesetzt, die Verfügbarkeit von Software-Services und dadurch auch die
Robustheit der angebotenen Software im Unternehmen zu erhöhen.

�

5

1 Einführung

Die Schlagworte Cloud Computing und DevOps sind aktuelle Themen, mit denen sich
viele Unternehmen bei IT-Entscheidungen beschäftigen. Unter Cloud-Computing wird die
Bereitstellung und Nutzung von einer IT-Infrastruktur über das Internet verstanden. Diese
Infrastruktur kann beispielsweise Speicherplatz, Rechenleistung oder Software-Services
bereitstellen. Die grundlegende Idee dabei ist, dass diese IT-Infrastruktur nicht auf lokalen
Rechnern installiert werden muss, sondern über ein Rechnernetz zur Verfügung gestellt
wird. Anwendungen, die in der Cloud laufen, versprechen beispielsweise eine höhere
Ausfallsicherheit und damit einen reibungsloseren Ablauf.

Die Nutzung von Cloud-Diensten hat für Unternehmen unter anderem einen Kostenvor-
teil, welcher zudem gut kalkulierbar ist. Teilweise erhebliche Investitionen für den Betrieb
von Software-Services müssen nicht mehr selbst vorgenommen werden, sondern können
von einem externen Dienstleister flexibel angemietet werden. Zudem sind die Kosten
scheinbar gut kalkulierbar, da die Nutzungstarife bekannt sind. Zuletzt stellten Analysten
von Gartner heraus, dass “Viele Unternehmen [...] entsetzt (sind), wenn sie ihre ersten
Cloud-Rechnungen bekommen, da diese weit höher sind als veranschlagt” [6]; daher
schlussfolgern die Analysten, dass der Begriff Cloud nunmehr im “Tal der Ernüchterung”
bezüglich des Hype-Cycles angelangt sei. Dennoch versprechen private oder hybride
Clouds weiterhin Vorteile im Hinblick auf skalierbare IT-Infrastruktur und installations- und
wartungsfreie IT-Anwendungen [4].

Um ein Programm in der Cloud lauffähig zu machen, bedarf es einer abstrakten Schicht
zwischen der Hard- und Software, welche man mit der Virtualisierung des Program-
mes erreichen kann. In der Informatik versteht man unter dem Begriff Virtualisierung
die Erzeugung eines virtuellen Objekts – wie beispielsweise einer emulierten Hardwa-
re, eines Betriebssystems (BS) oder einer Netzwerkressource – so dass auf einer ab-
strakten Ebene eine Entkoppelung von der physischen Hardware stattfindet. Damit ist
es möglich, die vorhanden IT-Ressourcen besser auszulasten sowie die Flexibilität zu
erhöhen. Unter anderem haben diese großen Vorteile der Virtualisierung dazu geführt,
dass Virtualisierungstechniken heutzutage in nahezu jedem Unternehmen eingesetzt—
beziehungsweise indirekt genutzt—werden, welches eine beliebige Form von IT-Systemen
selbst betreibt oder nutzt.

In jüngster Zeit hat eine neue Form der Virtualisierung sehr starke Aufmerksamkeit be-
kommen, welche auf die Virtualisierung von Betriebssystemen und Anwendungen zielt:
die Container-basierte Virtualisierung. Das Ziel dieser Virtualisierungs-Technik ist es,
dass mehrere Instanzen eines Betriebssystems isoliert voneinander auf einem Hostsys-
tem betrieben werden können. Das besondere dabei ist, dass diese Instanzen einen
gemeinsamen Kernel im Betriebssystem nutzen. Die Container-basierte Virtualisierung

�

6

hat den großen Vorteil, dass dadurch Rechen-Ressourcen gespart werden können, die
normalerweise für das Betriebssystem jeder einzelnen Anwendung aufgebracht werden
müssen, während gleichzeitig nicht komplett auf Isolierung verzichten werden muss. Ei-
ne sehr verbreitete Container-basierte Virtualisierungs-Engine ist Docker [9]. Zur hori-
zontalen Skalierung (durch Replikation von Komponenten), zur Lastverteilung und zum
Konfigurationsmanagement hat sich Kubernetes [10] hervorgetan.

Nicht zuletzt durch die weite Verbreitung dieser Technologien und Methoden, hat der Be-
griff “DevOps” in den letzten Jahren an Bedeutung gewonnen. DevOps bezeichnet, grob
gesagt, die schnelle und reibungslose Integration von Entwicklung (Development), Be-
trieb (Operations) und Qualitätssicherung, die im Idealfall dazu führt, dass neu enwickel-
te oder geänderte Komponenten automatisch getestet und, falls keine Fehler auftraten,
in das lauffähige System übernommen werden (Deployment). Nach aktuellen Umfragen
konnte DevOps in vielen Unternehmen zuvor nur schwer umgesetzt werden und befindet
sich nunmehr im Tal der Desillusionierung bezüglich des Gartner Hype Cycles.

Im Rahmen des vorliegenden Projektes wird untersucht, welche Erfahrungen, Hoffnun-
gen und Erwartungen KMU an Virtualisierung generell, und die Container-basierte Vir-
tualisierung im Speziellen, haben.

�

7

2 Hintergrund: Virtualisierung

Sobald Anwendungen auf einer einzelnen physischen Maschine ohne Beeinflussung von
anderen Anwendungen laufen sollen, müssen sie gegeneinander isoliert werden. Diese
Isolierung betrifft Systemressourcen und muss durch die ausführende Umgebung un-
terstützt werden. Ein Software-Artefakt hierbei mit einem kontrollierten Anteil der Sys-
temressourcen versorgt werden [5].

Lösungsansätze für das Problem der Software-Isolierung finden sich sowohl in der Hardware-
als auch in der Software-Virtualisierung. In den folgenden Kapiteln werden nun in Kapi-
tel 2.1 diese Ansätze erläutert und kontrastiert.

2.1 Software-Container

Die meisten Betriebssysteme gewährleisten Isolierung durch Hardware-Schutz-Mechanismen
wie Speicherunterteilung, Speicherseiten-Mapping und unterscheidbare Benutzer- und
Kernel-Instruktionen. Ein softwareisolierter Prozess (SIP) ist ein Prozess, dessen Gren-
zen durch Sprachsicherheitsregeln festgelegt und durch statische Typprüfung erzwungen
werden. AIKEN ET AL. kommen zu dem Schluss, dass SIP Rechenleistungs-günstige Iso-
lierungsmechanismen bieten, die Fehlerisolierung ermöglichen ohne Interprozesskom-
munikation einzuschränken [1]. Es stellt sich heraus, dass hardwarebasierte Isolierung
die Performance der Software um bis zu 35% reduzieren kann. Die Software-Isolierung
hingegen kommt auf weniger als 5% Overhead. Die geringeren Laufzeiterhöhungen von
SIPs ermöglichen den Einsatz in einer feineren Granularität als bei herkömmlichen Ver-
fahren. Allerdings bleibt die Hardware-Isolation als Abwehrmaßnahme gegen mögliche
Ausfälle von Software-Isolierungsmechanismen wertvoll. Die Fähigkeit, eine Abwägung
von Kosten und Nutzen der einzelnen Isolationstechniken durchführen zu können, wird
proportional zur Ausweitung der Software-Isolierung an Relevanz gewinnen.

2.1.1 Historie der Software-Container

Das Konzept des Software-Isolierung ist mitnichten eine neue Erscheinung. Schon 1979
wurde mit chroot in Linux ein Kommando eingeführt, um System-Ressourcen zu iso-
lieren. 1988 folgte mit software jails eine Erweiterung des Ansatzes [2, p. 82]. In der
zweiten Dekade des 21. Jahrhunderts schlossen sich Lösungen wie Rocket, LXD und
Docker an, die allesamt darauf abzielten wieder-benutzbare Software-Container bereitzu-
stellen und ein Management der Container-Konstellationen zu ermöglichen. Von diesen
Lösungen kristallisierte sich schnell Docker als besonders beliebt heraus. Anfang 2016

�

8

tauchte das Quellcode Verzeichnis zum Kern von Docker auf dem 20. Platz der Quell-
code Management Plattform Github.com “Sternchen” Liste auf, die Projekte nach Anzahl
der Empfehlungen für ein Projekt sortiert — damit rangierte das Projekt nur 4 Plätze hin-
ter dem Linux-Kernel-Quellcode-Verzeichnis [7]. Docker selbst wird mit einer Reihe von
Dienstprogrammen ausgeliefert, die die Hauptfunktionalität der Software-Virtualisierung
um Funktionen erweitern, die Nutzer beim Einrichten, Bereitstellen und Verwalten einer
verteilten Umgebung unterstützen.

2.1.2 Abgrenzung von Hard- und Software-Virtualisierung

Sollen mehrere Anwendungen auf einer einzigen physischen Maschine ohne gegenseiti-
ge Beeinflussung laufen, so sind sie hinsichtlich der Systemressourcen und der Ausführungs-
umgebung zu isolieren. Idealerweise können sie mit einem kontrollierbaren Anteil an
Systemressourcen ausgestattet werden [5]. Diese Probleme können, wie besprochen,
sowohl von virtuellen Maschinen als auch von Software-Containern gelöst werden. Vir-
tualisierung zielt darauf ab, das Vorhandensein mehrerer Maschinen auf einer einzigen
Maschine zu simulieren. Für die Virtualisierung auf der Hardware-Ebene läuft ein Hyper-
visor -Dienst auf dem BS des Hosts oder direkt auf seiner Hardware und abstrahiert ihn
durch die Bereitstellung virtueller Schnittstellen. Bei Virtualisierung auf der BS-Ebene —
diejenige, die von Software-Containern verwendet wird — wird die Abstraktion durch die
Offenlegung der Host-Kernelfunktionen über Linux LXC bereitgestellt, welche die Linux-
Steuerungsgruppen cgroup und namespaces verwendet, um den Zugriff auf die Res-
sourcen des Hosts zu beschränken und so die Isolierung zu gewährleisten.

Im Gegensatz zur traditionellen Virtualisierung reduziert die Containerisierung sowohl
den Platzbedarf von Anwendungsumgebungen als auch die Zeit, die zum Starten einer
Anwendung und zum Bereitstellen des zugehörigen Speichers benötigt wird, falls mehre-
re ähnliche Anwendungen auf der gleichen Maschine eingesetzt werden. Dies lässt sich
mit Hilfe von Figur 1 erläutern.

Eine virtuelle Maschine in der Hardware-Virtualisierung besteht aus drei Elementen:
dem Betriebssystem, den Bibliotheken, welche für die Anwendung benötigt werden, und
trivialerweise der Anwendung selbst. Im Gegensatz dazu besteht ein Container in der
Software-Virtualisierung nur aus zwei Elementen: Den für die Anwendung benötigten
Bibliotheken und der Anwendung selbst.

Da also der BS-Kernel von Containern gemeinsam genutzt wird, ist es nicht mehr not-
wendig, mehrere Kernel (BS-Level) im Speicher zu halten, wodurch entsprechend der
Speicherbedarf reduziert wird. Trivialerweise wird Speicherplatz gespart, da nicht meh-
rere BS-Instanzen vorgehalten werden müssen.

�

9

Hardware

Hypervisor

BS

Bin & Lib

App 0

BS

Bin & Lib

App 1

VM

Hardware

BS

Container Engine

Bin & Lib

App 0

Bin & Lib

App 1
Container

Abbildung 1: Hard- and BS-level Virtualisierung.


Dockerfile

DockerDocker


Docker Image

baut
FROM

beschreibt


compose.yml

Docker Swarm

besteht aus
kontrolliert

Docker Container

runs

basis für

Abbildung 2: Zusammenhang der Docker-Begrifflichkeiten.

Da zweitens beim Starten einer Anwendung das Starten des Gast-BS entfällt, ist die
Gesamtzeit, die bis zum Starten der Anwendung vergeht, im Falle der Software-Virtuali-
sierung geringer. Schließlich wird die Isolierung des Dateisystems durch einen Mecha-
nismus namens Copy-on-Write (CoW) gewährleistet, der die Notwendigkeit eliminiert,
Kopien des gesamten Dateisystems für einzelne Container zu erstellen. Stattdessen tei-
len sich Container den Zugriff auf Dateien für den Lesezugriff. Erst wenn ein Container
eine Datei ändern muss, wird eine Kopie erstellt. Um weiteren Platz zu sparen, können
nur die Inkremente gespeichert werden. Die anderen Container sehen die genannten
Änderungen nicht, so dass die erforderliche Isolierung gewährleistet ist.

Nennenswerte Softwarelösungen sind chroot, von 1979, und software jails 1998 [2]. Seit
2003 entstanden Lösungen wie rkt, LXD und Docker, die standardisierte wiederverwend-
bare Software-Container, Container-Management-Tools und sogar ein auf Software-Container
zugeschnittenes BS bieten.

Die Kernbegriffe, die sich auf Docker beziehen, sind in Abbildung 2 dargestellt. Ein Docker-
file—wie es in Abbildung 3 aufgeführt ist—besteht aus einem Satz von Anweisungen,
die, nachdem sie einmal ausgeführt wurden, zu einem CoW-basierten Dateisystem na-
mens Docker Image führen. Die erste Anweisung im Dockerfile ist immer eine Verer-
bungsanweisung FROM, die auf ein anderes Docker-Image verweist. Die Images wer-

�

10

den in privaten oder öffentlichen Repositorien zugänglich gemacht. Schließlich wird ein
Docker-Image in Form eines Docker-Containers instanziiert und dieses durch die Docker-
Engine gestartet.

Das Image, das aus dem Dockerfile erzeugt werden soll, besteht im Kern aus einem
Dateisystemzustand und einer Deklaration mehrerer Konnektoren, welche die Integrati-
on eines gestarteten Containers in das zugrundeliegende System ermöglichen, z.B. die
Netzwerkverbindung über Ports oder der Zugriff auf die interne Hardware über gemoun-
tete Festplatten-Volumes.

Man stelle sich beispielhaft ein Image vor, das laut Dockerfile-Definition intern Port 8080
exponieren soll. Nehmen wir weiterhin an, dass aus diesem Image zwei Docker-Container
container1 und container2 durch Instanziierung entstanden sin. container1 kann dann
beispielsweise Systemport 80 an den container1-internen Port 8080 binden, während con-
tainer2 den Systemport 81 an den container2-internen Port 8080 bindet, da Systemport
80 nun schon besetzt ist. Zusammengefasst lässt sich also sagen, dass Konfiguratio-
nen innerhalb des Containers fix gesetzt werden können, ohne Rücksicht auf Einstellun-
gen nehmen zu müssen, die erst bei der Auslieferung relevant werden. Diese Abstrak-
tion ermöglicht bei der Containerisierung Skalierbarkeit, da so viele Instanzen des glei-
chen Images, wie benötigt, bereitgestellt werden können. Die intern verwendeten Port-
Nummern stören hierbei nicht.

Eine containerisierte Software kann praktisch überall eingesetzt werden, da sie nur we-
nige Annahmen über die zur Ausführzeit vorhandene Hardware oder BS treffen muss.
Gleichzeitig kann durch den Container sichergestellt werden, dass Software-Abhängigkeiten
der auszuliefernden Software vorhanden sind. Somit entfällt ein Großteil der Umgebungs-
konfigurationsarbeit bei der Installation.

2.2 Verknüpfung mehrerer Container zu einem Service von Servicen

1 vers ion : ’ 2 ’

1 # Ein anderes Image mit dem Namen "base -jdk" in Version 8, vom Nutzer "jboss" dient als Basis.

2 FROM jboss/base -jdk:8

3
4 # Die WILDFLY_VERSION wird als Umgebungsvariable im Container wie folgt gesetzt sein:

5 ENV JBOSS_HOME /opt/jboss/wildfly

6
7 # Lade und installiere die vorbestimmte Wildfly Version.

8 RUN curl -O https :// download.jboss.org/wildfly/$WILDFLY_VERSION/wildfly -$WILDFLY_VERSION.tar.gz

9 ... # unpack and install

10
11 # Definiere die vorhandene Netzwerkschnittstelle (an Hand eines Ports)

12 EXPOSE 8080

13
14 # Spezifiere das Start Kommando

15 CMD ["/opt/jboss/wildfly/bin/standalone.sh", "-b", "0.0.0.0"]

Abbildung 3: Beispielhaftes Dockerfile für eine Wildfly Installation.

�

11

2 serv ices :
3 web :
4 b u i l d : . / Docke r f i l e s / w i l d f l y / .
5 por t s : − 8080
6 depends on : − db
7 db :
8 b u i l d : . / Docke r f i l e s / mysql / .
9

10 loadbalancer :
11 image : dockercloud / haproxy
12 por t s :
13 − 80:80
14 l i n k s :
15 − web
16 volumes :
17 − / var / run / docker . sock : / var / run / docker . sock

Listing 1: Ausschnitt aus einer Compose-Datei.

Hierauf aufbauend ist eine Vielzahl von sich ergänzenden Tools entstanden, die die
Docker-Engine um Funktionen erweitern, die helfen, Umgebungen zu verteilen, einzu-
richten, bereitzustellen und zu verwalten.

Erstens gibt es Docker Swarm, eine Abstraktionsschicht, die eine Reihe von Docker Engi-
nes in eine “virtuelle” Engine bündelt, welche Swarm Manager genannt wird. Der Swarm
Manager wird verwendet, um mehrere Docker Engines wie eine zu steuern. Hinsichtlich
der Zuordnung von Containern zu bestimmten Engines führt Docker Swarm Filter und
Strategien ein. Anhand einer Strategie entscheidet Swarm beispielsweise, die Container
gleichmäßig auf die Engines zu verteilen oder zuerst eine Engine aufzufüllen, bis sie ihr
Containerlimit erreicht hat, bevor die nächsten Engine angesprochen wird. Filter hinge-
gen können verwendet werden, um explizite Container-zu-Engine-Knoten-Zuweisungen
zu setzen, basierend auf dem Knotennamen oder der Konfiguration von lokal eingesetz-
ten Containern.

Schließlich erlaubt Docker Compose die Definition eines kompletten Dienstes, der aus
mehreren Containern besteht, indem die impliziten Abhängigkeiten zwischen den benötigten
einzelnen Containern in einer so genannten compose.yml Datei erklärt werden. Dies ist in

ubuntu:16.04

ibmjava:8jre

websphere:kernel websphere:beta

Abbildung 4: Beispiel des hierarchischen Aufbaus eines Docker-Images.

�

12

Listing 1 demonstriert. Eine breite Palette von Schlüsselwörtern wird unterstützt. Neben
der Auflistung der einzelnen Container unterhalb von (Zeile 7) ist es möglich, zu definie-
ren, welche Ports aus dem einzelnen Container exponiert werden sollen. Darüber hinaus
kann man definieren, welche Container verlinkt sind, was zur Bildung eines Brücken-
Netzwerkes zwischen ihnen führen wird.

Ein Image kann durch so viele Containern instanziiert werden, wie es die Auslastung
des hierdurch bereitgestellten Dienstes erfordert. Weiterhin ist das Erweitern der Hard-
ware zur Laufzeit durch Hinzufügen neuer Hosts zum Swarm einfach zu bewerkstelligen.
Wenn ein Container z.B. aufgrund eines Hardware- oder BS-Fehlers verloren geht, er-
stellt Swarm automatisch als Ersatz einen neuen Container aus dem betreffenden Image.

�

13

3 Untersuchungsmethode der Studie

Im Folgenden wird erörtert, wie das Potential von Software-Virtualisierung in KMUs unter-
sucht wurde. Dazu wurden Interviews mit den IT-Verantwortlichen der jeweiligen KMUs
durchgeführt. Interviews sind eine Form der qualitativen Forschung, welche von zwei
wesentlichen Prinzipien geprägt ist [3]: dem Prinzip der Offenheit und dem Prinzip der
Kommunikation.

Das erste Prinzip besagt, dass eine theoretische Strukturierung des Forschungsgegen-
standes erst dann vorgenommen wird, wenn dessen Strukturierung durch die beforschten
Subjekte erhoben und analysiert wurde [3]. Im Rahmen dieses Projektes wurden in den
Interviews verschiedene Fragen gestellt, welche auf unterschiedliche Dimensionen der
übergeordnete Forschungsfrage zielten. Der Aufbau des Fragebogens wird in Unterkapi-
tel 3.2.2 näher erläutert.

Das zweite Prinzip besagt, dass eine Erhebung von “bedeutungsstrukturierten Daten”
nur durch eine Kommunikationsbeziehung mit dem Forschungsobjekt erfolgen kann, wel-
che den Kommunikationsregeln des Beforschten folgt – und eben nicht denen der wis-
senschaftlichen Forschung [3]. Die Interviews wurden daher immer in persönlichen Ge-
sprächen durchgeführt, welche im Unterkapitel 3.2.3 erläutert werden.

Im Rahmen dieses Projektes werden basierend auf diesen zwei Prinzipien der qualitati-
ven Forschung die folgenden Forschungsfragen (FF) beantwortet:

FF1: Wie ist der aktuelle Stand der Einführung von Software-Virtualisierungen
in KMUs?

FF2: Was sind generelle Hindernisse bei der Einführung von Container-basierten
Virtualisierungslösungen?

3.1 Datenerhebung bei IAI Mitgliedern

Um die Forschungsfragen zu beantworten, wurde eine Einladung zu einem Gespräch
an alle 30 Mitgliedsfirmen des Fördervereins des Instituts für Angwandte Informatik der
Uni Münster (IAI) versendet. Aus diesem Kreis hatten sich sieben Mitglieder bereit er-
klärt, an diesem Projekt teilzunehmen. Dies entspricht zwar nur einer Teilnahmequote
von 23%, jedoch waren die Projektteilnehmer eine sehr heterogene Gruppe. Wir konn-
ten daher Informationen ermitteln, wie sehr unterschiedliche Unternehmen mit dem The-
ma Software-Virtualisierung vertraut sind, in welchem Umfang sie sie einsetzten und ob
Container-basierte Virtualisierungslösungen momentan – oder in Zukunft geplant – eine
Rolle spielen.

�

14

�

15

0 2,000 4,000 6,000

PT7

PT6

PT5

PT4

PT3

PT2

PT1

Abbildung 5: Anzahl der Mitarbeiter in den Unternehmen der Projektteilnehmer.

In Abbildung 5 ist die Anzahl der Mitarbeiter der sieben Projektteilnehmer (PT1, . . . , PT7)
dargestellt. Der Projektteilnehmer PT1 hat mit ca. 5700 die meisten Mitarbeiter (blauer
Balken), wovon etwa 1200 in der IT tätig sind (roter Balken). Auf der anderen Seite hat der
Projektteilnehmer PT7 mit etwa 10 Mitarbeitern – davon 5 in der IT tätig – die wenigsten
Mitarbeiter im Unternehmen beschäftigt.

Weiterhin sind die Unternehmen der Projektteilnehmer in vier verschiedenen Branchen
tätig. In Abbildung 6 sind die Verteilungen der Branchen von den Unternehmen der Pro-
jektteilnehmer dargestellt. Aus der Abbildung ist ersichtlich, dass die meisten Projektteil-
nehmer hauptsächlich in der IT-Beratung tätig sind.

Alle Unternehmen haben gemein, dass sie IT-Systeme betreiben, welche durch den Ein-

Banken

1

Versicherungen

1
Infrastruktur

2

IT-Beratung

3

Abbildung 6: Verteilung der Branchen der Projektteilnehmer.

�

16

satz von Virtualisierungs-Techniken unterstützt werden können. Um dieses Unterstützungs-
Potenzial aufzudecken, wurden mit den IT-Verantwortlichen der jeweiligen Unternehmen
Interviews durchgeführt. Ein zentraler Bestandteil von Interviews ist der Wunsch, dass die
befragte Zielgruppe möglichst selbst zu Wort kommt, um auch subjektive Sichtweisen er-
fassen zu können. Um die verschiedenen Interviews nach einem einheitlichen Muster
durchführen zu können, wurde im Rahmen dieses Projektes ein Gesprächsleitfaden ent-
wickelt. Der Entwurf dieses Interviews wird im folgenden Kapitel vorgestellt.

3.2 Problemzentriertes Interview

Interviews erlauben eine offene Interaktion in einem direkten Gespräch zwischen dem
Interviewer und der bzw. den interviewten Personen. Das problemzentrierte Interview
wird auf der Grundlage eines Leitfandens durchgeführt, in welchem offene Fragen ge-
stellt werden [11]. Ein Interview-Leitfaden ist ein strukturiertes Dokument, das als Instru-
ment der Vorbereitung auf das Gespräch dient. Im Rahmen dieses Projektes hatte der
Leitfaden eine zentrale Bedeutung. Er diente unter anderem dazu, die einzelnen Inter-
views mit den Projektteilnehmern vergleichbar zu gestalten. Die Ergebnisse dieser Um-
fragen werden in Kapitel 4 beschrieben. In den folgenden beiden Unterkapiteln werden
die Interview-Methodik (3.2.1) und der Interview-Leitfaden (3.2.2) genauer beschrieben.

3.2.1 Methodik

Die Methodik des problemzentrierten Interviews ist auf eine bestimmte Problemstellung
zentriert [8]. Im Rahmen dieses Projektes stehen die Forschungsfragen FF1 und FF2
(s. Seite 13) im Zentrum. Das Verfahren des problemzentrierten Interviews geht auf WIT-
ZEL zurück [11], der diese als eine Methodenkombination aus Interview, biographischer
Methode, Gruppendiskussion und Fallanalyse im Rahmen eines problemzentrierten For-
schungsprojekts entwickelte [8]. Es handelt sich dabei um eine offene, halb-strukturierte
Befragung, in welcher die Befragten möglichst frei zu Wort kommen [8].

Die Interviews wurden paarweise durchgeführt. Eine Person hat gesprächsführend die
Fragen an den Interviewten gestellt und die andere Person die Schriftführung übernommen.

�

17

Einleitung Allgemeine
Informationen

Virtualisierung Software
Entwicklung Infrastruktur

Abbildung 7: Struktur des Interview-Leitfadens.

3.2.2 Interview-Leitfaden

Abbildung 7 stellt den Aufbau des Leitfadens dar. Jedes Interview wurde mit einer Einlei-
tung begonnen, in der der Interviewte über die Ziele des Interviews informiert wurde. Die
Interviews wurden jeweils mit Einverständnis des Interviewten aufgezeichnet und in einer
Nachbereitung transkribiert, um die Antworten auszuwerten und mit anderen Interview-
Ergebnisse vergleichen zu können.

Nach der Einleitung sollten allgemeine Informationen zum Unternehmen und der ange-
botenen IT-Dienstleistungen identifiziert werden. Das Ziel dieses Schrittes ist es, einen
Überblick über das Umfeld des Projektpartners zu bekommen und zu verstehen, in wel-
chem Umfang das Unternehmen bereits Ressourcen (wie beispielsweise Mitarbeiter,
s. Abbildung 5) für den Betrieb von Software-Virtualisierungen im Einsatz hat.

In einem dritten Schritt soll festgestellt werden, welches Wissen die Projektpartner bereits
im Bereich Virtualisierung haben. Zusätzlich soll ermittelt werden, in welchen Bereichen
im Unternehmen bereits Virtualisierungen von Software-Artefakten stattfinden und wel-
che Technologien dafür verwendet werden. Von einem besonderen Interesse ist außer-
dem, welche Herausforderungen, Probleme und Chancen die IT-Verantwortlichen durch
den Einsatz von Software-Virtualisierung – und im Speziellen von Container-basierter
Virtualisierung – sehen.

In einem vierten Schritt sollte ermittelt werden, inwieweit Virtualisierung bei der Software-
Entwicklung im Unternehmen eine Rolle spielt. Eine Software-Virtualisierung kann nicht
nur genutzt werden, um Software-Services zu betreiben, sondern auch um einen Software-
Entwickler bei seiner Arbeit zu unterstützen, indem beispielsweise benötigte Entwicklungs-
Umgebungen virtualisiert werden. Ziel dieser Phase war es, diesen alternativen Blick auf
Software-Virtualisierung im Unternehmen aufzuzeigen und zu identifizieren, inwieweit
Virtualisierungstechniken – und dabei insbesondere Container-basierte Virtualisierung
– im Unternehmen bei der Software-Entwicklung im Einsatz ist.

In einem letzten Schritt soll ermittelt werden, wie Container-basierte Virtualisierung bei
der Wahl einer geeigneten Service-Infrastruktur unterstützend wirken kann. Außerdem
soll in diesem Schritt identifiziert werden, wie das Unternehmen bestimmte Services vir-
tualisiert – und ob dabei eine bestimmtes Transformationsschema verwendet wird. Ziel
dieses Schrittes ist es, herauszufinden, ob das Unternehmen die Chancen von Container-
basierter Virtualisierung so groß einschätzt, dass es eine solche in dem Unternehmen

�

18

einsetzen würde. Zudem soll herausgefunden werden, welche abstrakten Services in
welchem Umfang von einer Transformation betroffen wären.

Zusammenfassend hat der Gesprächsleitfaden die folgenden drei Kernbereiche:

� Allgemeine Informationen zum Unternehmen der Projektpartner identifizieren.

� Kenntnisstand der Projektpartner im Bereich Software-Virtualisierung ermitteln.

� Lösungsansätze und Vorgehensmodelle zur Einführung von Software-Virtualisierung
im Unternehmen aufzeigen.

3.2.3 Durchführung der Interviews

Die einzelnen Interviews wurden auf drei unterschiedliche Arten mit den IT-Verantwortlichen
der KMUs durchgeführt.

� persönlich beim Teilnehmer vor Ort

� persönlich in den Räumlichkeiten der Universität

� persönlich in einem Telefon-Gespräch

Der Grund für ein nicht einheitliches Vorgehen war die Berücksichtigung von Bedürfnissen
der befragten Personen. So waren beispielsweise nicht alle IT-Verantwortlichen im Raum
Münster zugegen, um hier ein persönliches Treffen vor Ort durchführen zu können. Mit
diesen Personen wurde ein Telefon-Interview durchgeführt.

Mit dem Einverständnis der befragten Personen wurden alle Interviews aufgezeichnet
und in einer Nachbearbeitung transkribiert. Alle Interviews hatten den gleichen grund-
legenden Aufbau, welcher im Fragebogen als Leitfaden festgelegt wurde. Dennoch er-
laubte die angewandte Form des Interviews auch eine freie Beantwortung der Fragen
durch den bzw. die interviewten Personen. Dadurch konnten teilweise Sachverhalte und
Zusammenhänge aufgedeckt werden, welche im Vorfeld bei der Erstellung des Frage-
bogens nicht berücksichtigt wurden. Im folgenden Unterkapitel werden diese Ergebnisse
der Interviews detailliert erläutert.

�

19

4 Ergebnisse der Studie

In diesem Kapitel werden die empirischen Umfrage- und Interview-Ergebnisse nach den
zuvor vorgestellten organisatorischen und technischen Dimensionen von Containervir-
tualisierung strukturiert und analysiert. Nachdem alle Interviews durchgeführt und tran-
skribiert wurden, wurden die Ergebnisse kodiert und in einer Datenbank gesammelt. Aus
dieser Tabelle wurden insgesamt sechs Themenblöcke identifiziert, welche in den folgen-
den Unterkapiteln näher beschrieben werden.

4.1 Status Quo

Container

Hardware

Technisch Strategisch

Abbildung 8: Ausrichtung der Interviewpartner.

Nachdem generelle Informationen zu den Unternehmen gesammelt wurden (s. Kapi-
tel 3.1), wurde die Positionierung der Teilnehmer ermittelt. Aus der Abbildung 8 lässt
sich ablesen, dass der Großteil der Teilnehmer aus technischer Sicht in das Thema Vir-
tualisierung involviert ist. Dabei bezeichnet sich aktuell nur ein Teilnehmer schon als Ex-
perte im Bereich der Container-basierten Virtualisierung. Ein Teilnehmer ist schon bi-
modal aufgestellt, d.h. er ist sowohl im besser vorhersehbaren und verstandenem Feld
der Hardware-Virtualisierung fest verankert, experimentiert aber schon im Bereich der
Container-basierten Virtualisierung. Zwei Teilnehmer sind aus strategischer Sicht mit der
Thematik betraut und ein Umfrageteilnehmer verfolgt bereits eine auf mehrere Jahre aus-
gelegte Strategie zur Einführung von Container-basierter Virtualisierung.

�

20

nein

14%

ja

86%

(a) Server Virtualisierung.

nein

42%

ja

58%

(b) Client Virtualisierung.

Abbildung 9: Virtualisierungsquote.

VMWare

4

Citrix

1

IBM AIX

1

Docker 1

Abbildung 10: Eingesetze Virtualisierungs-Technologien.

Bezüglich der Verbreitung von Virtualisierung mit Blick auf den Einsatzort im Unterneh-
men, ergeben sich Virtualisierungsquoten wie in Abbildung 9 dargestellt: 85% der Unter-
nehmen setzen bereits auf Virtualisierung im Umfeld ihrer Server. 68% der Unternehmen
virtualisieren die Benutzer(Client)-Umgebungen.

Abbildung 10 gibt einen Überblick über die primäre Virtualisierungs-Technologie der be-
fragten Unternehmen. Bei den befragten Firmen wird größtenteils VMWare zur Virtuali-
sierung eingesetzt (∼ 57%). Citrix und IBM AIX sind bei jeweils einem Teilnehmer domi-
nant; ein Teilnehmer setzt auf Docker. Dabei bleibt festzuhalten, dass das Unternehmen,
welches aktuell IBM AIX einsetzt, schon einen Transformationsprozess gestartet hat, der
IBM AIX durch VM Ware ersetzen wird.

Bezüglich der Transformation besitzt nur eines der befragten Unternehmen einen Trans-
formationsplan, der sich auch mit Container-basierter Virtualisierung beschäftigt.

Bezüglich des technischen Wissensstandes lässt sich eine starke Polarisierung erken-

�

21

0 1 2 3 4 5

0

1

2

3

n

Container
Hardware

Abbildung 11: Technisches Wissen bezüglich Hardware- und Container-basierter Virtua-
lisierung auf der Skala von 0 (wenig Wissen) bis 5 (ausführliches Wissen).

nen, die in Abbildung 11 dargestellt ist. Trivialerweise sind die Strategie-Verantwortlichen
nicht mit jedem neuen Trend direkt im Detail vertraut, da technisches Detailwissen für ihr
Alltagsgeschäft von geringer Relevanz ist. Aufgrund der relativen Neuheit der Thematik
gibt es eine große Lücke bezüglich Wissen zu Container-basierter Virtualisierung.

Alle der angesprochenen Unternehmen besitzen eine IT-Abteilung, entweder in-house
oder ausgelagert in eine Tochtergesellschaft. Das Thema Infrastruktur ist dabei für Fir-
men, die primär IT-Dienstleistungen im Auftrag erledigen, weniger relevant als für Unter-
nehmen, die kritische Infrastruktur in-house betreiben. Dementsprechend sind auftrag-
nehmende Unternehmen tendenziell offensiver in Bezug auf den Einsatz neuer Techno-
logien.

4.2 Wahrgenommene Vor- und Nachteile von Virtualisierung

Von einem besonderen Interesse ist, welche Herausforderungen, Probleme und Chancen
die IT-Verantwortlichen durch den Einsatz von Software-Virtualisierung – und im Speziel-
len von Container-basierter Virtualisierung – sehen. Alle befragten Unternehmen setzen
Virtualisierung entweder Hardware- oder Container-basiert ein. Für einige ist dies schlicht
eine alltägliche Notwendigkeit, für andere ist es eine Missions-kritische Aufgabe, die auch
aus Compliance Gründen auf keinen Fall an andere Firmen abgetreten werden kann. ???
TODO: Erläuterung

Als Vorteile werden Ausfallsicherheit, Portabilität und Skalierbarkeit genannt. Wie in Ab-
bildung 13 erkennbar, ist Ausfallsicherheit der mit Abstand wichtigste Vorteil, den sich die
Teilnehmer von Virtualisierung erhoffen. Portabilität ist für die meisten Teilnehmer rele-
vant, da die Fähigkeit logische Systeme zwischen physischen Systemen zu bewegen die

�

22

irrelevant

1

relevant4

mission-critical

2

Abbildung 12: Wichtigkeit von Virtualisierung in den befragten Unternehmen.

Wartung von Hardware einfacher gestaltet. Außerdem ist es eine Voraussetzung um Aus-
fallsicherheit zu erlangen. Skalierbarkeit hingegen spielt für die meisten Projektteilnehmer
eine tendenziell untergeordnete Rolle. Dies lässt sich damit erklären, dass die meisten
Teilnehmer schon einen sehr guten Überblick über ihre Auslastungsprofile besitzen; d.h.
sie werden selten von einem Kundenansturm überrascht. Da die Softwaresysteme bei
einigen Unternehmen Missions-kritisch sind, sind die Kapazitäten von vornherein oft so
konzipiert, dass genügend Last-Spielraum vorhanden ist. Natürlich ist in Anbetracht von
Wachstumszielen auch hier in bestimmten Zeiträumen ein Ausbau dieser Kapazitäten er-
forderlich. Abschließend ist zu sagen, dass Unternehmen, die der Virtualisierung für ihren
Geschäftserfolg eine untergeordnete Rolle zuordnen, auch die genannten Themen Aus-
fallsicherheit, Portabilität und Skalierbarekeit als tendenziell unwichtiger einstufen (2/7).

Bezüglich der Probleme, die Teilnehmer mit Virtualisierung haben, lässt sich Folgen-
des zusammenfassen: In kleinen und mittelständischen Unternehmen sind die Entwickler
ausschließlich auf Software-Projekte aufgeteilt. Es gibt häufig keine Mitarbeiter, die de-
diziert für die Thematik der Container-basierten Virtualisierung verantwortlich sind. Statt-
dessen verbringen Mitarbeiter Zeit in allen Phasen eines Software-Projekts: bei der Anfor-

Ausfallsicherheit

Portabilität

Skalierbarkeit

Wichtigkeit

Abbildung 13: Einschätzung der Vorteile von Virtualisierung.
Unwichtig (grau), über niedrige (blau) bis hohe (rot) Wichtigkeit.

�

23

derungsanalyse, Entwicklung, Deployment und Wartung. Für komplexe Fragestellungen
im Bereich Virtualisierung wird Support in Form externer Berater angefordert. Mit fort-
schreitender Zeit betreut ein Mitarbeiter entsprechend viele Systeme in der Wartung. Hier
wird von allen das konstante Monitoring und, sobald ein Systemupgrade aufgrund von un-
zureichender Systemressourcen ansteht, der Upgrade-Prozess als belastend empfunden
— gerade da dies zu Zeiten auftreten kann, in der sich andere Projekte gerade in einer
heißen Phase befinden.

Skalierbarkeit. Skalierbarkeit lässt sich generell durch vertikale oder horizontale Ska-
lierung realisieren. Vertikale Skalierung bezieht sich dabei auf die Erhöhung der Per-
formance bestehender Systemen, z.B. durch ein Upgrade der Prozessoren oder des
Arbeitsspeichers. Horizontale Skalierung erreicht höhere Performance durch das Hin-
zufügen weiterer Maschinen, sodass mehr Aufgaben zugleich abgearbeitet werden können.
Gerade die horizontale Skalierung wird zur Zeit in der IT-Welt breit diskutiert. Im Startup-
Bereich, wo teils rein digitale Produkte mit kleinen Teams auch auf einen globalen Ziel-
markt ausgerichtet werden, wird die Möglichkeit der horizontalen Skalierung hoch geschätzt,
da im Falle eines plötzlichen Popularitätssprunges des Produktes innerhalb kurzer Zeit
die Kapazität vervielfacht werden kann. Wider der Erwartung ergab die Umfrage, dass
sich alle KMU wenig für diesen Nutzen der horizontalen Skalierung interessieren. Die
wahrgenommenen Potentiale im Bereich Skalierbarkeit beschränken sich auf Einsparun-
gen, die erreicht werden können, wenn Server-Ressourcen nur zu Lastzeiten angemietet
werden würden, statt sie durchgängig zu betreiben.

Andererseits sehen die Befragten durchaus Gefahren, die von dem “Technologie-Zoo”
ausgehen, d.h. der Vielzahl von Tools, die benötigt werden, um horizontale Skalierbarkeit
umzusetzen. Eine große Anzahl von extern entwickelten Tools müsste evaluiert, die Wei-
terentwicklung überwacht und die Integration zwischen den Tools sichergestellt werden.
Auch aus Personalsicht würden weitere Kosten anfallen, da direkt mehrere Experten für
diese einzelnen Teilbereiche eingestellt werden müssten.

Portabilität. Bezüglich der Portabilität, d.h. des Grad der Transferierbarkeit einer An-
wendungen zwischen verschiedenen Systemen, sehen die Befragten noch keinen Hand-
lungsbedarf. Der Vorteil wird als “nicht ganz so präsent” oder “notwendig” angesehen.
Allerdings werden die Lock-in Effekte der aktuellen Virtualisierungs-Lösungen als unkri-
tisch angesehen, sodass potentiell eine Veränderung durchaus machbar wäre.

�

24

4.3 Erwartungen an Container-basierte Virtualisierung

Simplizität. Die meisten Befragten interessieren sich für Container-basierte Virtualisie-
rung aus anderen Gründen als der genannten horizontalen Skalierbarkeit und Portabilität.
Gerade für die kleineren Unternehmen innerhalb der befragten KMU liegt die Attraktivität
dieser Form der Virtualisierung in ihrer Simplizität für einfache Fälle. Wohingegen traditio-
nelle Virtualisierung direkt viele Probleme auf einmal zu lösen versucht, lassen sich durch
die clevere Auswahl und Beschränkung auf nur wenige Tools aus dem “Technologie-Zoo”
einfache Anforderungen potentiell einfacher umsetzen. Die Einarbeitungszeit in Konzep-
te rund um Container wird als einfacher eingeschätzt, da für einige Szenarien das Wis-
sen, welches in Kapitel 2.1.2 aufgebaut wurde, bereits ausreicht, um eine Anwendung in
einfachen Szenerien zu virtualisieren. Die Wissensbarriere ist entsprechend niedrig, es
werden lediglich Kenntnisse über die Kommandozeilen-Befehle vorausgesetzt, die nicht
komplizierter sind als jene, die von der Anwendung schon normalerweise vorausgesetzt
werden bzw. in deren Dokumentation erläutert sind. Auch die Bereitstellung der eigenen
Hardware ist simpel: Aktuelle Versionen der weit weitestverbreiteten Linux Distributionen
werden mit allen notwendigen Pakete vorinstalliert ausgeliefert. Am Ende erhoffen sich
zwei Befragte, dass diese niedrigere Barriere den Wissenstransfer vereinfachen wird.

Vorteile für Lastspitzen-Szenarios. Abseits dieses Aspekts interessieren sich KMU
für Kostenoptimierungen bei Lastspitzen, d.h. Einsparungen, die erreicht werden können,
wenn Server-Ressourcen nur zu Lastzeiten angemietet werden, statt sie durchgängig
zu betreiben. Bezüglich dieser Verheißung stellten Analysten von Gartner zuletzt je-
doch heraus, dass “Viele Unternehmen [...] entsetzt (sind), wenn sie ihre ersten Cloud-
Rechnungen bekommen, da diese weit höher sind als veranschlagt” [6]. Entsprechend
sollte eine Einführung von Container-basierter Virtualisierung nur zum Erreichen dieses
Ziels sehr kritisch betrachtet werden. Für ein Unternehmen, dass die Lastzeiten sehr
gut abschätzen kann, z.B. weil es morgens beim Login der Mitarbeiter immer zu einer
Lastspitze kommt, bietet der Ansatz durchaus Potential.

Schnelles Feedback. Ein weiterer genannter Vorteil betrifft eine erwartete Beschleu-
nigung bei der Anwendungsauslieferung, die es ermöglicht, während der Entwicklung
schnelleres Feedback zu Änderungen zu bekommen. Hier erhoffen sich die Befragten
eine höhere Personaleffizienz und eine damit verbundene Optimierung im Hinblick auf
die Personalkosten.

Entwicklung. Aus Sicht der Entwickler gibt es verschiedene Vorteile. Zum einen bietet
ein Container-basierter “Azubibaukasten” die Möglichkeit zum Ausprobieren von neuen

�

25

Technologien, ohne dass durch Fehler laufende Systeme beeinträchtigt werden können.
Bezüglich Integrationstests wird eine bessere Parallelisierung der Tests und Ausweitung
von Konfigurationskonstellationstests erwartet.

4.4 Vorgehensmodell bei Service-Virtualisierung

In Abbildung 14 sind die drei Reifegrad-Levels der Service-Virtualisierung in KMUs dar-
gestellt, welche aus den Interview-Ergebnissen abgeleitet wurden. Im Reifegrade Level
1 (RGL-1) wird ein Prototyp als Entwicklungsprojekt verwendet, in welchem man den
Prototypen mit Hilfe von Container-basierter Software-Virtualisierung erstellt. In diesem
Projekt wird Erfahrung mit den Virtualisierungstechniken gesammelt, die in zukünftige
Entscheidungen einfließen kann. Diese Entscheidungen können mehrere Dimensionen
haben. Auf der einen Seite kann die Erfahrung in der Entwicklung eines Prototypen dazu
dienen, eine generelle Aussage zur Einführung von Virtualisierungs-Software im Unter-
nehmen zu treffen. Ein Ergebnis könnte beispielsweise sein, dass die Einarbeitung der
Mitarbeiter in neue Virtualisierungstechniken zeitaufwendiger ist als erhofft. Eine Kon-
sequenz daraus könnte sein, dass eine Virtualisierungsstrategie im Unternehmen nicht
weiter verfolgt wird oder dass die Mitarbeiter gezielter in der neuen Technologie geschult
werden.

In Reifegrade Level 2 (RGL-2) wird ein neues Projekt mit Hilfe von Container-basierter
Software-Virtualisierung erstellt. Im Gegensatz zu RGL-1 wird bei RGL-2 ein gesamtes
Software-Projekt mit Hilfe von Virtualisierungstechnik entwickelt.

Das letzte Reifegrade Level (RGL-3) beinhaltet die Konvertierung von bestehenden Pro-
jekten auf Virtualisierungstechniken. Das konvertierte Software-Projekt sollte dabei die
gleichen Services und Funktionalitäten bereithalten wie das bisherige Software-System.

Abbildung 15 zeigt die Verteilung der Projektteilnehmer in die drei Reifegrade Levels. Es
ist zu erkennen, dass 4 der 7 Projektteilnehmer bisher einen Prototypen entwickelt haben,

Prototyp erstellenRGL-1

Neues Projekt erstellenRGL-2

Legacy Projekte konvertierenRGL-3

Abbildung 14: Reifegrade Level (RGL) der Service-Virtualisierung in KMUs.

�

26

RGL-1

89%

RGL-2

11%

RGL-3

0%

Abbildung 15: Verteilung der Reifegrade Level (RGL) der Projektteilnehmer.

in welchem Sie Container-basierte Virtualisierungstechniken angewendet haben. Zudem
haben 2 der 7 Projektteilnehmer ein komplett neues Projekt auf Basis von Container-
basierter Virtualisierung entwickelt. Zu erkennen ist auch, dass bisher kein einziger Pro-
jekteilnehmer ein bestehendes IT-System auf Container-basierter Virtualisierung konver-
tiert hat. Als Gründe dafür wurden genannt, dass bestehende IT-Systeme, die langjährig
im Einsatz sind, oftmals sehr zuverlässig laufen und die Gefahr gesehen wird, bei einer
Konvertierung auf Container-basierte Virtualisierung neue Fehler in das System einzu-
bauen.

Das zentrales Ergebnis der Interviews zu diesem Themenblock ist, dass bisher keiner der
Projektteilnehmer ein dokumentiertes Vorgehen im Unternehmen hat, mit dem Software-
Artefakte virtualisiert werden. Daraus lässt sich ableiten, dass bisher die Notwendigkeit
eines solchen Dokumentes nicht hoch genug war, um ein solches zu erstellen. Dennoch
haben alle Projektteilnehmer zugestimmt, dass ein solches Vorgehen sinnvoll wäre. Im
Rahmen dieses Projektes wurde ein solch abstraktes Vorgehensmodell entwickelt. In
Abbildung 16 ist das abstraktes Vorgehensmodell zur Einführung von Virtualisierungen
in einem KMU dargestellt. In einem ersten Schritt werden IT-verantwortliche Personen
innerhalb des Unternehmens identifiziert, um einen klaren Ansprechpartner für die IT-
Transformation zu ermitteln. Ein weiteres Ziel dabei ist, dass es ein Commitment der
IT-Verantwortlichen gibt, an dem Virtualisierungsprozess teilzunehmen. Sofern es im Un-
ternehmen keinen direkten Ansprechpartner dafür gibt, sollte eine Rolle dafür geschaffen
werden.

In einem nächsten Schritt werden die relevanten IT-Services mit Berücksichtigung des
Virtualisierungsvorteils identifiziert. Es gibt dabei drei Virtualisierungsvorteile, auf die ge-
prüft werden sollte: Abstraktion, Skalierbarkeit und Ausfallsicherheit (s. Unterkapitel 4.2).

�

27

Verantwortliche Personen identifizieren.
Wen frage ich?

Direkter Ansprechpartner im Unternehmen vorhanden?

Ansprechpartner identifiziert. Rolle schaffen.

ja nein

XCommitment des Unternehmens.

XKlaren Ansprechpartner.

Relevante IT-Services

XRelevante IT-Services im Unternehmen identifiziert.

XVirtualisierungsvorteile erkannt.

Welche IT-Services gibt es?

IT-Architektur

XTechnische Komponenten der Services identifiziert

Umsetzung

XRelevante IT-Services sind virutalisiert.

Bewertung

XSoll- / Ist-Vergleich.

Abbildung 16: Vorgehensmodell zur Einführung von Virtualisierungen.

In einem dritten Schritt wird die IT-Architektur der identifizierten IT-Services genauer be-
leuchtet. Ein Ziel dabei ist es herauszufinden, welche technischen Komponenten von den
zu virtualisierenden Services betroffen sind.

Anschließend kann mit Unterstützung geeigneter Virtualisierungstools der Service (teil-)
virtualisiert werden. Für den Virtualisierungsvorteil Abstraktion bietet sich beispielswei-
se Docker an, für Ausfallsicherheit Frameworks wie Ceph und Docker-Swarm und für
Skalierbarkeit unter anderem OpenStack.

Zum Schluss soll zur Bewertung des tatsächlichen Virtualisierungsvorteils ein Soll-/Ist-
Vergleich vorgenommen werden.

�

28

5 Handlungsempfehlung zur Einführung
und Einordnung der Technologien

Der im folgenden vorgestellte Prozess wird von der Cloud Native Container Foundation
(CNCF) zur Einführung von Container-basierten Infrastrukturen empfohlen. Hierbei sind
alle Schritte nach Schritt 3 als optional zu betrachten, wobei in jedem der optionalen
Schritte die Notwendigkeit der Durchführung vorab zu prüfen ist.

1. CONTAINERIZATION

� Meist mit Docker Container realisiert.

� Eine Anwendung beliebiger Größe und mit beliebiger Anzahl von Abhängigkeiten
lässt sich in einem Container zusammenfassen.

� Im Laufe der Zeit sollten Sie danach streben, geeignete Anwendungen aufzuteilen
und zukünftig Anwendungen direkt container-basiert zu konzipieren.

2. CI/CD (Continuos Integration and Delivery)

� Einrichtung kontinuierliche Integration/kontinuierliche Auslieferung (CI/CD), so dass
Änderungen an Ihrem Quellcode automatisch zu einem neuen Container führen.
D.h. der Container wird für den Quellcode neu gebaut, getestet und auf die staging-
und ggf. sogar produktiv-Server ausgeliefert.

3. ORCHESTRATION

� Kubernetes ist die marktführende Orchestrierungslösung.

� Sie sollten eine zertifizierte Kubernetes-Distribution wählen, eine gehostete Platt-
form evaluieren oder eine Installation in die eigene Systemlandschaft in Betracht
ziehen.

4. OBSERVABILITY & ANALYSIS

� Wählen Sie eine Lösung zum Monitoring, Logging und Tracing.

� Ziehen Sie dabei in Betracht, die CNCF-Projekte Prometheus für die Überwachung,
Fluentd für Logging und Jaeger für Tracing einzusetzen.

5. SERVICE MESH AND DISCOVERY

� CoreDNS ist ein schnelles und flexibles Werkzeug, das nützlich für die Serviceentde-
ckung ist.

� Sowohl Envoy, als auch Linkerd erlauben das Erstellen von service mesh architec-
tures . . .

� . . . die Health-Checks, Routing, und Lastverteilung ermöglichen.

�

29

6. NETWORKING

� Um eine flexiblere Vernetzung zu ermöglichen, verwenden Sie CNI-konforme Netz-
werkprojekte wie Calico, Flannel oder Weave Net.

7. DISTRIBUTED DATABASE

� Wenn Sie mehr Ausfallsicherheit und Skalierbarkeit benötigen, als man mit einer
einzigen Datenbank erreichen kann, ist Vitess eine gute Option für den Betrieb von
MySQL, was Skalierung durch sharding (Datenbankpartitionierungen) ermöglicht.

8. MESSAGING

� Wenn Sie mehr Leistung benötigen, als ein RESTful Webservice (mit JSON) bieten
kann, erwägen Sie die Verwendung von gRPC. NATS ist eine nachrichtenorientierte
Middleware.

9. CONTAINER RUNTIME

� Sie können alternative Container-Laufzeitumgebungen verwenden. Die gängigsten
Lösungen, die alle OCI-konform sind, sind containerd, rkt und CRI-O.

10. SOFTWARE DISTRIBUTION

� Wenn Sie eine sichere Softwareverteilung benötigen, evaluieren Sie Notar, eine
Implementierung des The Update-Framework.

5.1 Sicherheitsüberlegungen

Generell muss festgehalten werden, dass Container im Hinblick auf Sicherheit für einen
Angreifer keine unüberwindbare Hürde darstellen. Zwar wird eine Zugriffssteuerung für
die (geteilten) Systemressourcen geboten, diese ist aber keine großes Hindernis. Wie
besprochen kapseln sowohl virtuelle Maschinen, als auch Container Anwendungen. Im
Gegensatz zum Container, der Grenzen für Anwendungen definiert, bilden virtuelle Ma-
schine auch Grenzen zu ihren Ressourcen1.

� Container sind gut darin, Anwendungen zu kapseln.

� Vorteile: Skalierbarkeit, Zugriffsregelung auf Ressourcen.

� Vorsicht: Sicherheit nicht Fokus von Container.

� Gefährlichkeit von Software wird meist nicht binär bewertet, sondern existiert auf ein
Spektrum.

1Die sich ggf. auf Hardware Level wieder umgehen lassen (s. aktuell https://meltdownattack.com/)

�

30

Malware
3rd Party Software

ohne Audit
3rd Party Software

mit Audit
Eigene Software (?)

Ist also der Einsatz einer bestimmten Software geplant, so gilt es vor der Entscheidung
zu einer speziellen Virtualisierungslösung festzustellen, um welche Art von Software es
sich handelt. Handelt es sich zum Beispiel um Malware, also schädlicher Software, die
z.b. zu einem Erprobungszwecke eingesetzt wird, so ist die logische Schlussfolgerung
jene Technologie auszuwählen, welche das höchste Maß an Isolierung bietet. Handelt
es sich um eine Anwendung Dritter, so sollte die Entscheidung davon abhängig sein, ob
es möglich ist einen eigenen Sicherheits-Audit für die Software durchzuführen. Ist dies
nicht der Fall, so ist auch diese Software ein Kandidat für erhöhten Isolierungsbedarf. In
allen anderen Fällen, sollte der Sicherheits-bezogene Isolierungsbedarf gering sein; ei-
ne Ausschöpfung der Vorteile Container-basierter Virtualisierung steht ergo nach diesem
Gesichtspunkt nichts im Wege.

�

31

6 Einfluss von Docker auf die Software-Entwicklung

Container-basierte Virtualisierung kann nicht nur bei der Bereitstellung von produktions-
reifen IT-Services unterstützten, sondern kann auch in der Software-Entwicklungsphase
von einem IT-Entwickler genutzt werden, um bessere Software zu entwickeln.

Ein Entwickler kann Docker nutzen, um auf dem Entwicklungs-Rechner eine Umgebung
zu erstellen, in der Anwendungen in Containern lokal entwickelt und getestet werden.

Abbildung 17: Ein Screenshot von der Eclipse Che IDE.

DevOps ist gerade für kleinere Entwickler-Teams nützlich, wenn quasi “jeder Entwickler
alles kann”. Damit gibt es auch kein spezielles Inselwissen, falls mal ein Mitarbeiter das
Unternehmen verlässt.

Ein Beispiel für eine Integrated Development Environment (IDE)—die in der Cloud läuft—
ist Eclipse Che2.

Wie in Abbildung 6 dargestellt, sind die Unternehmen der Projektteilnehmer in unter-
schiedlichen Branchen tätig. Daraus resultiert, dass die Unternehmen auch in einem
unterschiedlichen Umfang eine IT-Abteilung betreiben (s. auch Abbildung 5). Daher ist
das Thema Software Entwicklung mit Docker auf den ersten Blick nicht für jeden der
Projektteilnehmer unmittelbar von großer Relevanz.

7 Diskussion

Im Rahmen dieses Projektes wurden zwei wesentliche Gegenstände untersucht. Zum
einen wurde untersucht, in welchem Umfang Container-basierte Virtualisierung in loka-
len Unternehmen im Raum Münster momentan genutzt wird. Zum anderen wurde unter-
sucht, welche Chancen und Risiken IT-Verantwortliche dieser Unternehmen in der Nut-
zung dieser Virtualisierungstechnik sehen.

2https://www.eclipse.org/che/

�

32

Einen der zentralen Schlüsse, die wir aus den Gesprächen mit den verschiedenen Pro-
jektpartnern ziehen können, ist:

Container-basierte Virtualisierung sollte bei IT-Entscheidern Berücksichtigung finden.

Diese IT-Entscheidungen können in einem Unternehmen sowohl von CTOs und IT-Archi-
tekten getroffen, als auch von den Entwicklern mit beeinflusst werden.

Container-Virtualisierung ist ein wichtiges Thema für IT-Entscheider. Die zentralen Vor-
teile von Container-Virtualisierung sind die gesteigerte Ausfallsicherheit (oft in Kombi-
natition mit einer Microservice-Architektur), die gute Portabilität und die Skalierbarkeit.
Nachdem die IT-Industrie über Jahre hinweg Container in Form von virtuellen Maschinen
genutzt hat, um eine Abstraktionsebene zu den physikalischen Plattformen zu schaf-
fen, ermöglichen es Technologien wie Docker nun, Container zwischen Plattformen zu
verschieben. Genauer gesagt: Linux-Applikationen und Workloads zwischen mehreren
Clouds zu bewegen, um damit die Portabilität zu verbessern. Im ersten Moment erscheint
Docker damit als ein typisches Tool für Entwickler. Aus dem Blickwinkel eines CIOs han-
delt es sich allerdings klar um ein strategisches Werkzeug, um die angestrebte hohe
Verfügbarkeit der Unternehmens-IT zu erreichen.

Außerdem interessieren sich KMUs für Kostenoptimierungen bei Lastspitzen, d.h. Ein-
sparungen, die erreicht werden können, wenn Server-Ressourcen nur zu Lastzeiten an-
gemietet werden, statt sie durchgängig zu betreiben. Bezüglich dieser Verheißung stell-
ten Analysten von Gartner zuletzt jedoch heraus, dass viele Unternehmen hier mit un-
erwartet hohen Kosten konfrontiert wurden. Entsprechend sollte eine Einführung von
Container-basierter Virtualisierung rein zum Erreichen dieses Ziels mit einer gewissen
Skepsis betrachtet werden.

Von der Portabilität bei Container-Virtualisierung können beispielsweise auch Cloud-Marktplätze
und Cloud-Brokerage-Services wie Deutsche Börse Cloud Exchange (DBCE) profitieren
und ihren Kunden die Möglichkeit bieten, Applikationen zwischen den unterschiedlichen
Anbietern je nach Bedarf und Kosten zu verschieben.

�

33

Literatur

[1] Mark Aiken, Manuel Fahndrich, Chris Hawblitzel, Galen Hunt, and Jim Larus. De-
constructing process isolation. In ACM SIGPLAN Workshop on Memory Systems
Performance and Correctness, pages 1–10, San Jose, CA, October 2006. ACM.

[2] David Bernstein. Containers and cloud: From lxc to docker to kubernetes. 1(3):81–
84.

[3] Uwe Flick, Ernst von Kardorff, and Ines Steinke. Qualitative forschung. Ein Hand-
buch, 6:14, 2008.

[4] Fraunhofer-Gesellschaft. Public, Private und Hybrid Cloud? https://www.cloud.

fraunhofer.de/de/faq/publicprivatehybrid.html. Accessed Jun. 2018.

[5] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A
Virtual Machine-based Platform for Trusted Computing. In ACM SIGOPS Operating
Systems Review, volume 37, pages 193–206. ACM.

[6] Gartner, Inc. Umfrage: Cloud kann teuer werden. https://www.gartner.com/

events/emea/infrastructure-operations-management#section_exhibitors.
Accessed Jun. 2018.

[7] GitHub, Inc. Repositories by stars.

[8] Andrea Kurz, Constanze Stockhammer, Susanne Fuchs, and Dieter Meinhard. Das
problemzentrierte interview. In Qualitative Marktforschung, pages 463–475. Sprin-
ger, 2007.

[9] Dirk Merkel. Docker: Lightweight linux containers for consistent development and
deployment. Linux J., 2014(239), March 2014.

[10] The Linux Foundation. Kubernetes - Production-Grade Container Orchestration.
https://kubernetes.io/. Accessed Jun. 2018.

[11] Andreas Witzel. Verfahren der qualitativen Sozialforschung: Überblick und Alterna-
tiven. Campus-Verlag, 1982.

�

34

