
Master’s Thesis

Cell Localization in PET with Optimal
Transport

Maibrit Becker

Matr. 451523

Supervisor: Prof. Dr. Benedikt Wirth

Assisting Supervisor: Dr. Frank Wübbeling

Faculty of Mathematics and Computer Science, University of Münster, Germany

March 27, 2025

Contents

1 Introduction 3

2 Optimal Transport: Mathematical Basics 5

2.1 Optimal Transport . 5

2.2 Optimal Partial Transport . 10

2.3 Dual and optimality conditions . 12

2.4 Slicing . 17

3 Sliced Optimal Partial Transport: The Algorithm 19

3.1 The Sliced Optimal Partial Transport Algorithm 19

3.2 Slicing and appilcation in Point Cloud Registration 22

4 Physical Background of Positron Emission Tomography 25

5 Gradient Descent Algorithm 27

5.1 Gradient Descent (GD) . 27

5.2 Stochastic Gradient Descent (SGD) . 27

6 The Algorithm 29

6.1 Outline of algorithm/intuition/informal description 30

6.2 Local Convergence Proof . 32

6.3 Initialization . 35

6.4 Choice of parameters . 36

7 Numerical Results 39

7.1 Example . 39

7.2 Parameter Analysis . 43

8 Conclusion and Outlook 47

2

1 Introduction

In recent years, Positron Emission Tomography (PET) has become an important tool

in medical imaging because it allows the detection and localization of cellular activity

within the human body. PET generates one-dimensional projection data (also referred

to as sinograms) by measuring emission lines along different paths through the body.

Reconstructing a 3D image from these projections is a complex inverse problem. The

core challenge is to compute the distribution of active cells or structures from these

noisy and incomplete measurements.

In this work, I propose a method for approximating the positions of individual cells using

optimal transport theory and slicing methods. The essential idea is to model the PET

data as a set of randomly placed measurement points X along the measurement lines,

and to represent the candidate cell positions by another set of points Y , distributed

randomly in the 3D space with an associated mass c. The goal is to iteratively improve

the positions of the points in X and Y , so that they represent the ground truth of the

cells, which generated the PET measurements.

The foundation of my method is inspired by the “Sliced Optimal Partial Transport”

(SOPT) algorithm [1], where the authors present an approach to aligning point clouds

using optimal transport theory. Specifically, in their “Algorithm 3”, the authors apply

their one-dimensional SOPT-algorithm to point cloud registration with slicing, a con-

cept that I adapt to the PET reconstruction problem. Initially, the three-dimensional

projections are sliced to simplify the problem into one dimension, and a correspondence

between the X and Y points is computed based on the optimal transport cost. Follow-

ing this, the points in Y are shifted towards the average positions of their corresponding

points in X, improving the approximation. Once this alignment in 1D space is com-

pleted, a backprojection is performed to map the points back into the 3D space.

As an initialization step, filtered backprojection is used. This initial guess allows for a

more accurate starting position of the candidate cells in the 3D space, which can then

be improved iteratively using the SOPT algorithm and the idea presented above. The

3

process repeats iteratively, where each step consists of moving the points X toward the

reconstructed points Y along the measurement lines, gradually converging to an accu-

rate 3D representation of the cell distribution.

I also give a theoretical proof of local convergence for the proposed algorithm, when

starting near the ground truth. By proving that my algorithm operates similarly to the

minimization of a sliced Wasserstein distance between the sets of points X and Y using

the stochastic gradient descent algorithm, the convergence can be shown.

I implemented my algorithm in Python through numerical experiments with practical

examples and investigated the algorithms’ results while testing different parameters.

In the following sections, a detailed mathematical formulation of the problem will be

provided, the derivation of the algorithm will be explained and the numerical results of

the algorithm will be presented.

4

2 Optimal Transport: Mathematical Basics

This chapter provides the necessary mathematical foundations to understand the algo-

rithms and techniques introduced in this work. The main idea is based in the theory

of Optimal Transport, especially with a focus on the ideas introduced in the Sliced Op-

timal Partial Transport article [1]. Optimal Transport is a mathematical theory that

deals with finding the most efficient way to move mass from one distribution to another,

minimizing a given cost function.

We will begin by introducing the classical Kantorovich formulation of the optimal trans-

port problem, followed by its dual formulation, and derived from that its optimality

conditions. Special attention will be given to transport scenarios where the source and

target measures have different total masses.

Finally, we will introduce the concept of slicing, a technique that allows high-dimensional

transport problems to be reduced to simpler, lower-dimensional cases.

2.1 Optimal Transport

To stay consistent throughout the thesis with the formulations in the SOPT-articel [1],

the definitions and statements in this chapter are formulated in line with those in the

article.

Definition 2.1 (Measure). Let X be a set and A a σ-algebra over X. A function

µ : A → [0,∞] is called a measure if the following conditions hold:

• µ(∅) = 0 and

• for all countable collections {Ak}∞k=1 of pairwise disjoint sets in A holds:

µ(∪∞k=1Ak) =
∑∞

k=1 µ(Ak) (σ-additivity).

A probability measure is a measure, where µ(X) = 1 holds.

Example 2.2 (Discrete Measure). A discrete measure µ on (X,A) with locations

x1, ..., xn ∈ X reads

µ =

∞∑
i=1

aiδxi ,

5

where the weights ai ∈ R>0 and Dirac measures δxi(X) defined as

δxi(X) =

1 if xi ∈ X

0 if xi /∈ X.

Definition 2.3 (Push Forward measure). Given a measurable function f : X → Y

between two measurable spaces and a measure µ on X, the pushforward measure f#µ

on Y is defined by

(f#µ)(B) = µ(f−1(B)),

for any measurable set B ⊆ Y .

Definition 2.4 (Wasserstein-distance). Let (Ω, d) be a metric space, where every prob-

ability measure is a radon measure in Ω.

For p ≥ 1 let Pp(Ω) the set of all probability measures µ on Ω with finite p′th Moment,

meaning for a x0 from Ω holds ∫
Ω
d(x, x0)

pdµ(x) <∞.

Then the Wasserstein p-distance between two probability measures µ and ν from Pp(Ω)
for p <∞ is defined as

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Ω×Ω

d(x, y)pdγ(x, y)

) 1
p

,

where Γ(µ, ν) is the set of all joint probability measures whose marginal are µ and ν,

meaning

Γ(µ, ν) = {γ : π1#γ = µ, π2#γ = ν},

where π1(x, y) = x and π2(x, y) = y. This is also called ”mass conservation constraint”.

For p =∞ the Wassertein distance is defined as

W∞(µ, ν) := inf
γ∈Γ(µ,ν)

sup
(x,y)∈supp(γ)

d(x, y),

where supp(γ) is the support of the measure.

Remark 2.5. The Wasserstein-distance is a metric on Pp(Ω).

Proof. See for example [7], Chapter 6, Example 6.3.

6

To develop their algorithm the authors from [1] used the Kantorovich definition of the

Optimal (partial) transport problem, which can be derived from the Wasserstein-metric.

In the following, we will use their definition of the Optimal Transport problem:

Definition 2.6 (Kantorovich Problem). Given µ, ν ∈ P(Ω), and a lower semi-continuous

function c : Ω2 → R+, the OT problem between µ and ν in the Kantorovich formulation

is defined as

OT(µ, ν) := inf
γ∈Γ(µ,ν)

∫
Ω2

c(x, y) dγ(x, y). (2.1)

When c(x, y) is the p-th power of a metric, the p-th root of the induced optimal value

is the Wasserstein distance.

Remark 2.7. Suppose we have empirical distributions µ and ν with the same sizes and

weights = 1:

µ =
∑n

i=1 δxi and ν =
∑n

j=1 δyj with n = m. Then the OT problem 2.1 for those

measures can be written as

OT({xi}ni=1, {yj}mj=1) := min
γ∈Γ(µ,ν)

∑
i,j

c(xi, yj)γij , (2.2)

where

Γ(µ, ν) :=
{
γ ∈ Rn×m

+ : γ1m = 1n, γ
T1n = 1m

}
and 1n denotes the n× 1 vector whose entries are 1 and analogously for 1m.

Remark 2.8 (Dual of the empirical OT-problem). The primal problem 2.2 admits the

dual form

sup
Φ∈Rn,Ψ∈Rm

Φi+Ψj≤c(xi,yj)∀i,j

n∑
i=1

Φi +
m∑
j=1

Ψj .

Proof.

Let’s denote Cij := c(xi, yj). Then we can write ⟨C, γ⟩ =
∑

i,j c(xi, yj)γij .

Next, we write down the Lagrangian for the OT problem (while keeping in mind the

definition of Γ(µ, ν):

min
γ

max
(Φ,Ψ)∈(Rn×Rm)

⟨C, γ⟩+ ⟨1n − γ1n,Φ⟩+ ⟨1m − γT1m,Ψ⟩.

Next, we exchange min and max. This is always possible when considering linear pro-

grams in finite dimensions. Then we get

7

max
(Φ,Ψ)∈(Rn×Rm)

⟨1n,Φ⟩+ ⟨1m,Ψ⟩+min
γ
⟨C, γ⟩ − ⟨γ1n,Φ⟩ − ⟨γT1m,Ψ⟩

= max
(Φ,Ψ)∈(Rn×Rm)

⟨1n,Φ⟩+ ⟨1m,Ψ⟩+min
γ
⟨γ,C − Φ1Tn −ΨT1m︸ ︷︷ ︸

:=Q

⟩

min
γ≥0
⟨γ,Q⟩ =

0 if Q ≥ 0,

−∞ otherwise.

Because we want to calculate the maximum of min⟨γ,Q⟩, and this is 0, we get the

constraint:

C − Φ1Tn −ΨT1m = C − Φ⊕Ψ > 0.

Example 2.9. An interesting example to understand the primal/dual formulation bet-

ter is provided in [5], Remark 2.10 and Remark 2.21. In the following, this idea is

presented:

The primal Kantorovich optimal transport problem can be practically interpreted through

the example of resource allocation between warehouses and factories. In this scenario,

an operator wants to transport raw materials from n warehouses to m factories at min-

imal cost. Each warehouse xi holds units of resources, while each factory yj requires

units to operate. The cost of transporting one unit from warehouse xi to factory yj is

denoted by c(xi, yj).

The objective is to find an optimal transport plan γij that minimizes the total cost:

min
γ∈Γ(µ,ν)

∑
i,j

c(xi, yj)γij ,

which represents the primal problem.

Γ(µ, ν) represents the set of feasible transport plans that satisfy the supply and demand

constraints, so that all units from all factories get transported and that each factory

gets all resources it requires.

The dual problem can be described as follows:

8

The operator gets the opportunity to outsource the transport task to a vendor. The

vendor employs a pricing scheme, where they charge a collection fee Φi for picking up a

unit from warehouse xi and a delivery fee Ψj for delivering a unit to factory yj . Thus,

the total price charged by the vendor is:

n∑
i=1

Φi +

m∑
j=1

Ψj . (2.3)

To ensure competitive pricing, the vendor must set prices such that:

Φi +Ψj ≤ c(xi, yj) for all i, j.

This means the vendor has to make sure, that their prices do not exceed the operators

transporting cost, otherwise their offer would not be accepted.

The vendor’s objective is to maximize their profit in 2.3 while sticking to these cost con-

straints. Therefore, the dual problem is then defined as the maximum over their profit

2.3, while keeping in mind to keep their prices lower than the operators transporting

costs:

sup
Φ,Ψ

 n∑
i=1

Φi +
m∑
j=1

Ψj

 ,

subject to the condition Φi +Ψj ≤ c(xi, yj).

The optimal dual solution corresponds to the maximum price the vendor can charge

while still being competitive with the direct transportation cost.

Note that the optimal value of the dual problem is equal to that of the primal problem,

indicating that the price charged by the vendor matches the minimal transport cost

the operator would have if they solved the problem themselves. This duality provides

a quick way for the operator to check the fairness of the vendor’s prices, ensuring that

they do not overpay for the service.

Theorem 2.10. Let K,T be convex subsets of vector spaces V1, respectively V2, where

V1 is locally convex and let f : K × T → R. If

1. f(x, ·) is concave for every x ∈ K

2. f(·, y) is continuous and convex on K for every y ∈ T

3. f(x, ·) is concave on T for every x ∈ K

9

then

sup
y∈T

inf
x∈K

f(x, y) = inf
x∈K

sup
y∈T

f(x, y).

Proof. See [2], Theorem 2.

2.2 Optimal Partial Transport

In many use cases, it is relevant to look at measures with different amounts of masses.

Because of the mass conservation constraint, we can not use the OT problem. Instead,

in [1] the authors modified the OT problem to allow mass destruction on the source

and mass creation on the target by introducing a linear mass destruction and creation

penalty.

Definition 2.11 (Kantorovich Problem for Optimal Partial Transport). Let µ, ν ∈
M+(Ω), the set of all positive Radon measures on Ω and λ1, λ2 ≥ 0. The definition of

the OPT Problem from [1] is:

OPTλ1,λ2(µ, ν) := inf
γ∈Γ≤(µ,ν)

∫
Ω2

c(x, y) dγ+λ1 (µ(Ω)− π1#γ(Ω))+λ2 (ν(Ω)− π2#γ(Ω)) ,

(2.4)

where

Γ≤(µ, ν) = {γ : π1#γ ≤ µ, π2#γ ≤ ν}.

Partial transport means that we transport a fixed amount of mass m = γ(Ω)2 between

the two measures µ and ν with different masses as cheap as possible.

At the right hand side of equation 2.4 the penalty term was added which gets larger,

the less we transport. Without the penalty term, due to the definition of Γ≤(µ, ν), no

transport at all would be the optimal value of our OPT-problem.

Remark 2.12. The authors of [1] also stated that, without loss of generality, it is

possible to consider for λ = λ1+λ2
2 only

OPTλ(µ, ν) := OPTλ,λ(µ, ν),

10

because

OPTλ,λ(µ, ν) = OPTλ1,λ2(µ, ν)−
λ1 − λ2

2
µ(Ω)− λ2 − λ1

2
ν(Ω)︸ ︷︷ ︸

=:Kλ1,λ2
(µ,ν)

and Kλ1,λ2(µ, ν) is a constant for fixed µ and ν.

Remark 2.13. When c(x, y) is a metric and λ1 = λ2, then OPTλ(., .) defines a metric

onM+(Ω)

Proof. For the details, again, look at [1], Page 3.

One question left is the following: How does the choice of λ affect the result of our

OPT-Problem?

Shortly said, λ corresponds to the maximum distance mass can be transported. Each

amount of mass m can be achieved by choosing λ: The bigger we choose it, the bigger

the transported mass. It is also possible to see that in equation 2.4: The variable λ

influences the impact of the penalty term.

Next, the authors of [1] formalized this result by showing that the support of the optimal

transport plan γ does not contain pairs of points (x, y) where the cost to transport x

to y exceeds 2λ:

Lemma 2.14. There exists an optimal γ∗ for (3) such that γ∗(S) = 0, where S =

{(x, y) ∈ Ω2 : c(x, y) ≥ 2λ}.

Proof. The proof follows along the proof in [1].

Let γ be any transport plan, and define a new transport plan γ′ by

γ′(A) = γ(A \ S)

for any Borel set A ⊂ Ω2. The corresponding cost functional C(γ) is given by:

C(γ) =

∫
Ω2

c(x, y) dγ + λ [µ(Ω)− π1#γ(Ω) + ν(Ω)− π2#γ(Ω)] .

Since γ(Ω2) = (π1#γ)(Ω) = (π2#γ)(Ω), we can rewrite the cost functional as:

C(γ) =

∫
Ω2

(c(x, y)− 2λ) dγ + λ(µ(Ω) + ν(Ω)).

11

The difference in cost between γ and γ′ is then:

C(γ)− C(γ′) =

∫
S
(c(x, y)− 2λ) dγ(x, y).

Since c(x, y) ≥ 2λ for all (x, y) ∈ S by the definition of S, it follows that:

C(γ)− C(γ′) ≥ 0.

This implies that for any γ, we can find a better transport plan γ′ such that γ′(S) = 0.

2.3 Dual and optimality conditions

The proofs in this section essentially follow the proofs presented in [4].

Theorem 2.15 (Dual). Define the Csiszár f–divergence F(γ1, µ) as

F(γ1, µ) :=
∫

F (σ)dµ+ F ′
∞γ⊥(Ω) =

λ (µ(Ω)− γ1(Ω)) if 0 ≤ γ1 ≤ µ,

+∞ otherwise,

(same for F(γ2, ν))
with the integrand F

F (s) =

λ(1− s) if s ∈ [0, 1],

+∞ else.

and σ, µ⊥ is defined by Lebesgue’s decomposition theorem µ = dγ1
dµ + µ⊥ and recession

constant of F : F ′
∞ := lim

s→∞
F (s)
s .

Then we can rewrite our OPT-problem 2.4 by plugging everything in by:

OPTλ(µ, ν) = inf
γ≥0

∫
Ω2

c dγ + F(π1#γ︸ ︷︷ ︸
=:γ1

, µ) + F(π2#γ︸ ︷︷ ︸
=:γ2

, ν). (2.5)

We show: The dual of our OPT-problem in 2.4 is

D(µ, ν) = sup
Φ∈L1(µ),Ψ∈L1(ν)

Φ⊕Ψ≤c
Φ,Ψ lsc and bounded

∫
Ω
−F ∗(−Φ) dµ+

∫
Ω
−F ∗(−Ψ) dν,

12

where F ∗ : R→ (−∞,∞], called Legendre conjugate function, is defined as

F ∗(r) = sup
s
(rs− F (s)) = max{−λ, r}.

Proof. By [4], Theorem 2.7 one can rewrite

F(γ1, µ) = sup

{∫
Ω
Φdµ−

∫
Ω
R∗(Φ) dγ1 : Φ, R

∗(Φ) lower semicontinuous (lsc) and bounded

}
,

where R∗(Φ) = sup
s>0

(sΦ− sF (1/s)) = sup
r>0

(Φ− F (r))/r

and

F(γ2, ν) = sup

{∫
Ω
Ψdν −

∫
Ω
R∗(Ψ) dγ2 : Ψ, R∗(Ψ) lower semicontinuous and bounded

}
,

where R∗(Ψ) = sup
s>0

(sΨ− sF (1/s)) = sup
r>0

(Ψ− F (r))/r.

Next, we introduce the saddle function

L (γ, (Φ,Ψ)) =

∫
Ω
c−R∗(Φ)−R∗(Ψ) dγ︸ ︷︷ ︸

I

+

∫
Ω
Φ dµ+

∫
Ω
Ψ dν︸ ︷︷ ︸

II

. (2.6)

By rewriting our OPT-problem with our new F(γ1, µ), F(γ2, ν) we immediately see

that

OPTλ(µ, ν) = inf
γ>0

sup
Φ,R∗(Φ),
Ψ,R∗(Ψ)

lsc and bounded

L (γ, (Φ,Ψ)) .

The idea is to get the dual by exchanging inf and sup. One can show that

sup inf
γ
L(γ, φ) = inf

γ
supL(γ, φ),

using Theorem 2.10.

For our saddle function L (γ, (Φ,Ψ)) one can show:

1. γ 7→ L (γ, (Φ,Ψ)) is convex and lsc.

2. (Φ,Ψ) 7→ L (γ, (Φ,Ψ)) is concave.

3. There exist (Φ0,Ψ0) and c > sup inf L (γ, (Φ,Ψ)) s.t. {γ : L (γ, (Φ0,Ψ0)) ≤ c} is
compact.

13

(Again, see [4], Theorem 2.4 for details). Then we obtain the desired equality and hence

define the dual of OPT as:

D(µ, ν) = sup
Φ,R∗(Φ),
Ψ,R∗(Ψ)

lsc and bounded

inf
γ>0
L (γ, (Φ,Ψ)) .

Next, we calculate infγ>0 L (γ, (Φ,Ψ)). For Part I from 2.6 we get

inf
γ>0

∫
Ω
c−R∗(Φ)−R∗(Ψ)dγ =

0 if R∗(Φ) +R∗(Ψ) ≤ c

−∞ else.

Then, also considering Part II from 2.6, this leads to:

inf
γ>0
L (γ, (Φ,Ψ)) =


∫
ΩΦ dµ+

∫
ΩΨ dν if R∗(Φ) +R∗(Ψ) ≤ c

−∞ else,

so the dual has the form:

D(µ, ν) = sup
Φ,R∗(Φ),Ψ,R∗(Ψ)
lsc and bounded
R∗(Φ)⊕R∗(Ψ)≤c

∫
Ω
Φdµ+

∫
Ω
Ψdν.

By change of variable: φ1 := −R∗(Φ), φ2 := −R∗(Ψ), Φ := −F ∗(−φ1) and Ψ :=

−F ∗(−φ2) we get

D(µ, ν) = sup
φ1∈L1(µ),φ2∈L1(ν)

φ1,φ2 lsc and bounded
ϕ1⊕ϕ2≤c

∫
Ω
−F ∗(−φ1)dµ+

∫
Ω
−F ∗(−φ2)dν,

which is what we claimed with φ1 = Φ, φ2 = Ψ.

Remark 2.16. Again, as in Remark 2.7, suppose we have our two discrete measures µ

and ν in Rd, but now with different sizes, so n ̸= m. Then we define the discrete version

of our OPT-Problem 2.4 by

OPT({xi}ni=1, {yj}mj=1) := min
γ∈Γ≤(µ,ν)

∑
i,j

c(xi, yj)γij + λ(n+m− 2
∑
i,j

γij), (2.7)

14

where

Γ≤(µ, ν) :=
{
γ ∈ Rn×m

+ : γ1m ≤ 1n, γ
T1n ≤ 1m

}
and 1n denotes the n× 1 vector whose entries are 1.

Remark 2.17 (Dual of the discrete OPT-problem). The discrete primal problem 2.7

admits the dual form

sup
Φ∈Rn,Ψ∈Rm

Φi+Ψj≤c(xi,yj)∀i,j

n∑
i=1

min{Φi, λ}+
m∑
j=1

min{Ψj , λ}.

Theorem 2.18 (Optimality Conditions). We have the following necessary and sufficient

conditions for γ ∈ Γ≤(µ, ν),Φ ∈ L1(µ), Ψ ∈ L1(ν) to be optimal for the primal and dual

problems:

Φ⊕Ψ = c γ-a.e.

−Φ ∈ ∂F

(
dγ1
dµ

)
, γ1 = π1#γ µ-a.e.

−Ψ ∈ ∂F

(
dγ2
dν

)
, γ2 = π2#γ ν-a.e.

Proof. It is possible to show that:

F(γ1, µ)−
∫
Ω
Φ dµ ≥

∫
Ω
ϕ1 dγ1

and that equality holds if and only if for the Lebesgue decomposition, one has:
ϕ1 ∈ ∂F (∂γ1∂µ), Φ = −F ∗(ϕ1) µ+ γ1-a.e.

Φ = F (0) <∞ µ⊥-a.e.

ϕ1 = F ′
∞ <∞ γ⊥1 -a.e.

Analogue for

F(γ2, ν)−
∫
Ω
Ψ dν ≥

∫
Ω
ϕ2 dγ2,

with ∂F the subdifferential of F (See again [4], Lemma 2.6 for the proof).

We again substitute Φ := −F ∗(−φ1), ϕ1 = −φ1 (and analogue Ψ := −F ∗(−φ2), ϕ2 =

−φ2) to obtain

F(γ1, µ)−
∫
Ω
−F ∗(−φ1)dµ ≥

∫
Ω
−φ1 dγ1, (2.8)

15

with equality if and only if:
−φ1 ∈ ∂F(∂γ1∂µ), −F ∗(−φ1) = −F ∗(φ) (µ+ γ1)-a.e.

−F ∗(−φ1) = F (0) <∞ µ⊥-a.e.

−φ1 = F ′
∞ <∞ γ⊥1 -a.e.

(2.9)

and analogous

F(γ2, ν)−
∫
Ω
−F ∗(−φ2)dν ≥

∫
Ω
−φ2 dγ2. (2.10)

By recalling the definition of OPT (2.5) and using 2.8, 2.10 and 2.9, we get∫
Ω2

c dγ︸ ︷︷ ︸
≥
∫
Ω φ1dγ+

∫
Ω φ2dγ

+F(γ1, µ) + F(γ2, ν)

︸ ︷︷ ︸
objective of ET

(2.8)

≥
∫
Ω
−F ∗(−φ1)dµ+

∫
Ω
−F ∗(−φ2)dν︸ ︷︷ ︸

objective of the dual

,

where equality holds if and only if
c = φ1 ⊕ φ2 γ-a.e.

−φ1 ∈ ∂F (∂γ1∂µ) µ-a.e. (*)

−φ2 ∈ ∂F (∂γ2∂ν) ν-a.e. ,

with

∂F (s) =


{−λ} if s ∈ (0, 1)

(−∞,−λ] if s = 0

[−λ,∞) if s = 1.

Then for example (*) is equivalent to:

φ1(x) = λ if
∂γ1(x)

∂µ(x)
∈ (0, 1)

φ1(x) ∈ [λ,∞) if
∂γ1(x)

∂µ(x)
= 0

φ1(x) ∈ (−∞, λ] if
∂γ1(x)

∂µ(x)
= 1,

which is again the statement we claimed with φ1 = Ψ and φ2 = Φ.

16

Remark 2.19 (Optimality Conditions for the discrete case). We get the following

optimality conditions for the discrete case γ ∈ Γ≤(µ, ν),Φ ∈ Rn,Ψ ∈ Rm:

Φi +Ψj = c(xi, yj), ∀(xi, yj) ∈ supp(γ)

Φi < λ⇒ [π1#γ]i = 1 Ψj < λ⇒ [π2#γ]j = 1

Φi = λ⇒ [π1#γ]i ∈ [0, 1] Ψj = λ⇒ [π2#γ]j ∈ [0, 1]

Φi > λ⇒ [π1#γ]i = 0 Ψj > λ⇒ [π2#γ]j = 0

2.4 Slicing

In order to extend the concept of optimal transport to higher dimensions, we introduce

a technique known as slicing. Slicing is a method that allows us to simplify high-

dimensional problems by projecting them onto lower-dimensional subspaces, typically

one-dimensional lines. By reducing the dimensionality of the problem, we can handle

complex measures and distributions more easily.

To formalize this, consider a set of probability measures in a high-dimensional space,

specifically in Rd. Let µ, ν ∈ M+(Ω), where Ω ∈ Rd be two measures and let λ :

Sd−1 → R+ \ {0} . The core idea is to define the Sliced Optimal Partial Transport

problem (like in [1]) in terms of integrals over all directions on the sphere Sd−1:

SOPTλ(µ, ν) =

∫
Sd−1

OPTλ(θ) (⟨θ, ·⟩#µ, ⟨θ, ·⟩#ν) dσ(θ),

where σ ∈ P(Sd−1) be a set of probability measures supported on the unit sphere

Sd−1 and ⟨θ, ·⟩# denotes the projection of measures onto the direction θ. For general

measures, this integral is often computationally intensive, so it is replaced with an

empirical average:

SOPTλ(µ, ν) ≈
1

N

N∑
i=1

OPTλi
(⟨θi, ·⟩#µ, ⟨θi, ·⟩#ν) ,

where {θi}Ni=1 now are sampled from a uniform distribution over the unit sphere Sd−1

and λ is an L1-function λ ∈ L1(Sd−1;R+ \ {0}).
In practical terms, this means that with the help of slicing, we project the high-

dimensional data points X and Y onto lines defined by directions θi. These projections

transform the points into one-dimensional distributions (essentially a sum of delta func-

tions along the projection line). We then compute the optimal transport in this reduced

one-dimensional setting for each θi, and average the results over multiple directions to

17

approximate the high-dimensional transport cost.

Theorem 2.20. Let λ : Sd−1 → R+ \ {0}. When the cost function c : R× R→ R+ is

the p-th power of a metric on R, where p ∈ [1,∞), then (SOPTλ(µ, ν))
1
p is a metric in

M+(Ω).

Proof. The proof can be found in [1], Theorem 5.2.

18

3 Sliced Optimal Partial Transport: The

Algorithm

3.1 The Sliced Optimal Partial Transport Algorithm

Figure 3.1: OPT-algorithm pseudocode from [1]

The Sliced Optimal Partial Transport (SOPT) from [1] algorithm is an iterative method

designed to solve the partial optimal transport problem by projecting the problem into

one-dimensional slices. Below, we describe the algorithm in detail, including the steps

taken in each iteration.

Throughout the algorithm, not only the primal variable γ, but also the dual variables Φ

and Ψ are iteratively adjusted. The dual objective function is designed to maximize the

transport potential while respecting the penalty factor λ, the primal objective function

wants to minimize the total transport cost.

Initialization and Setup

We assume that the source and target points {xi}ni=1 and {yj}mj=1 are sorted and that

L[i] is the index determining the transport of mass from xi, which means if L[i] ̸= −1
then xi is assigned to yL[i].

19

The SOPT algorithm begins with an initialization step, after that we assume that the

optimal transport solution has been solved up to the current point, and the goal is

to extend it to the next point in the sequence. For this purpose, we have our dis-

crete measures defined by source points xi and target points yj , which we aim to align

optimally.

Assume we already solved

OPT
(
{xi}k−1

i=1 , {yj}
m
j=1

)
.

In the next Iteration we want to solve

OPT
(
{xi}ki=1, {yj}mj=1

)
.

In each iteration k, a new point xk is introduced, and the algorithm determines its

optimal match among the target points yj by minimizing the cost function subject to

the dual constraints.

Selection of the Most Attractive Target Point

To determine the optimal target for the new point xk, the algorithm computes the most

attractive target point yj∗ , which minimizes the cost function c(xk, yj) adjusted by the

dual variables Ψ and Φ. Then we calculate the index j∗ of the most attractive point yj

by calculating

j∗ = argminj=1,...,m (c(xk, yj)−Ψj)

and

Φk = min{c(xk, yj∗)−Ψj∗ , λ}.

The parameter λ acts as a penalty factor, controlling the maximum allowed transport

cost.

Handling Different Cases

The algorithm proceeds by evaluating the value of Φk and then distinguishing three

main cases:

• Case 1: If Φk = λ, then xk is considered ”destroyed,” meaning it does not get

assigned to any yj .

• Case 2: If Φk < λ and yj∗ is unassigned, then we assign xk to yj∗ .

20

• Case 3: If Φk < λ and yj∗ is already assigned, we usually would also assign xk

to yj∗ , but because this is not possible, we start a sub-algorithm to resolve the

conflict.

Conflict Resolution and Sub-Algorithm

When a conflict arises (Case 3), a sub-algorithm is started to adjust the assignments

and to solve this conflict. This involves raising Φk−1 and Φk while lowering Ψj∗ at the

same rate, until one of the following sub-cases occurs:

• Case 3.1: Φk−1 (or Φk) reaches λ. In this situation, we assign xk to yj∗ , and

destroy xk−1 (or assign xk−1 to yj∗ , and destroy xk).

• Case 3.2: Φk +Ψj∗+1 = c(xk, yj∗+1) is satisfied (which would be optimal for the

primal and the dual variables), allowing xk to be assigned to the new target yj∗+1.

• Case 3.3: If Φk−1 + Ψj∗−1 = c(xk−1, yj∗−1) and yj∗−1 is unassigned, then we

assign xk−1 to yj∗−1. If yj∗−1 is already assigned, we add another pair of points

(xk−2, yj∗−2) to the conflict chain and repeat the sub-algorithm steps.

Figure 3.1 shows the outline of the algorithm and in figure 3.2 you can find an illustraion

of the different cases from the SOPT-article.

Figure 3.2: Illustration of cases handled by the SOPT algorithm, from [1].

Choice of λ

As already mentioned in 2.14, regularization parameter λ corresponds to the maximum

distance mass can be transported, because it influences the impact of the penalty term

in the definition of the OPT -Problem defined in 2.4, so it significantly influences the

flexibility of mass transport between source and target points. As shown in figure 3.3

21

(adapted from the SOPT article), varying λ modifies the amount of transportable mass.

When λ is relatively low, the algorithm imposes stricter constraints, allowing transport

primarily between nearby points, which ensures more localized matching. As λ increases,

these constraints relax, allowing the mass to be transported over larger distances. This

adjustment leads to a more global alignment of points but also assigns points, that

are very far apart, which could be disadvantageous in practical cases. Consequently,

selecting an appropriate λ value is essential to balancing local accuracy with global

flexibility in partial transport problems.

Figure 3.3: Impact of choice of λ, source: [1].

3.2 Slicing and appilcation in Point Cloud Registration

The authors from [1] of the Sliced Optimal Partial Transport (SOPT) algorithm also

proposed an application for their 1D-algorithm, designed to align two 3D point clouds

by iteratively transforming the source cloud to match the target cloud. This approach

uses slicing techniques to simplify the optimization process, where each slice represents

a projection of the 3D space onto a 1D line. By iteratively adjusting the scale, rotation,

and translation, the source point cloud is aligned with the target cloud.

22

Given:

• a source point cloud X, represented by orange points in the figure 3.5,

• a target point cloud Y , represented by green points,

the goal is to compute a transformation T , such that Ŷ := Tx = sRX + β, so we want

to obtain the green point cloud Y by iteratively scaling, rotating and shifting the orange

one, where s is a scaling factor, R is a rotation matrix and β is a translation vector.

The goal is to achieve an approximate alignment such that Ŷ ≈ Y , using the transfor-

mation T .

To solve that problem, the authors used their Algorithm 3.

In figure 3.4, the proposed outline from the SOPT-article [1] for this algorithm is shown.

Figure 3.4: Pseudocode of Point Cloud Algorithm, source: [1]

Detailed Steps and Explanation

1. Initialization: Initialize the transformation parameters R, s, and β, and select a

sample of projection directions {θi}Ni=1 ⊂ S2, representing different directions in 3D

space along which to slice the point clouds.

2. Initial Guess: Compute an initial transformed source point cloud Ŷ = sRX +β by

using the initial parameters above.

3. Slicing and Optimal Partial Transport: In this step, we choose one θl and slice

the 3D point clouds along this direction. The results are two onedimensional measures,

on which we can apply Algorithm 1 (SOPT), to compute the optimal transport plan

between the onedimensional points of Y and Ŷ .

4. Update of Ŷ : For each point ŷi in the transformed source point cloud Ŷ , move this

point in the direction of it’s assigned point yL[i]. Steps 3 and 4 can be represented using

the follwing formula:

ŷi = ŷi +
(
θTl yL[i] − θTl ŷi

)
θl.

23

In other words, the computed distance between the two onedimensional points ŷi and

yL[i] that were assigned to each other, gets projected back into 3D and gets added to

the old point ŷi.

5. Transformation Update Using ICP: In the next step, we update our tranfor-

mation parameters R, s, and β, such that Ŷ ≈ sRx + β using Iterative Closest Point

(ICP) algorithms. It is possible to find more details in [1].

6. Lambda Adjustment: If the domain dom(L) exceeds a threshold, increase λ to

penalize further deviations. Again, for more details look at the article.

We repeat Steps 3-6 for each θi, until we obtain the green point cloud.

In the Chapter after the next, we will try to use this technique for our PET-problem to

adapt the formula, so that we can use it in our case.

Figure 3.5: Example of iterative slicing for aligning the source (orange) and target
(green) point clouds.

24

4 Physical Background of Positron

Emission Tomography

Positron Emission Tomography (PET) is an imaging technique used to visualize metabolic

processes inside the body, see for example [3], Chapter 6 or [6]. This method is based on

the detection of gamma photons produced by the annihilation of positrons emitted from

a radioactive tracer. The tracer is typically a biologically active molecule, such as glu-

cose, labeled with a positron-emitting radionuclide (e.g., Fluor-18). Once the tracer is

injected into the patient’s body, it distributes according to the body’s metabolic activity.

The fundamental physical process behind PET imaging starts with the decay of the

radionuclide, which emits a positron (β+-decay). The positron travels a short distance

in the tissue before colliding with an electron. This collision leads to the annihilation

of the positron and electron, a process that produces two gamma photons of 511 keV

each. Most importantly, these photons are emitted in exactly opposite directions (180

degrees apart) due to the conservation of momentum in the annihilation process.

The patient lies inside a ring-shaped scanner that contains multiple detectors arranged

in a circular shape around the body. These detectors have the function of capturing the

gamma photons. When two photons are detected almost simultaneously by detectors

on opposite sides of the scanner (within a small time window), the system registers

this event as a ”coincidence”. The line connecting the two detectors is referred to as a

line of response (LOR), which represents the possible path along which the annihilation

occurred. Multiple such lines are detected for each radioactive decay, and over time,

this results in a large number of LORs, providing the data for image reconstruction.

There are also a few challenges in PET imaging. One of the main challenges is the scat-

tering of photons, which can occur due to interactions with surrounding tissues before

reaching the detector. Scattering changes the direction of the photons, which can lead

to errors in determining the exact line of response. Algorithms need to correct those

25

scattering events during the reconstruction process. For further details on this topic

again, look at [3], Chapter 6 or [6].

The primary task of PET imaging is to reconstruct a 3D representation of the tracer dis-

tribution inside the body, which indirectly reflects the biological or metabolic processes

of interest. Conventional PET systems are optimized for imaging larger structures, such

as tumors or organs, and typically operate with relatively high levels of radioactivity.

In our specific application, however, we aim to detect a small number of individual cells,

which significantly lowers the amount of radioactivity involved. This leads to increased

relative noise. Furthermore, at these lower levels of radioactivity, the effects of photon

scattering becomes worse, leading to higher levels of noise.

26

5 Gradient Descent Algorithm

The Gradient Descent (GD) and Stochastic Gradient Descent (SGD) are im-

portant optimization algorithms widely used in machine learning and data analysis.

Both methods aim to minimize a cost function f(x) by iteratively updating the model

parameters in the direction that reduces the cost. Below is a detailed description of

both methods.

5.1 Gradient Descent (GD)

Gradient Descent is a first-order optimization algorithm that seeks to find the minimum

of a multivariate differentiable function f : Rd → R. Given a function f(x) defined as

the average of n individual components fi(x), where:

f(x) =
1

n

n∑
i=1

fi(x),

the Gradient Descent method calculates the full gradient ∇f(x) at each iteration, which

involves computing ∇fi(x) for every i = 1, 2, . . . , n. The model parameters x are up-

dated iteratively using:

xk+1 = xk − αk∇f(xk),

where αk is the step size or learning rate at iteration k. This method provides an exact

update direction based on the entire dataset, which often leads to stable convergence,

but computing the gradient ∇f(xk) can also be computationally expensive and slow,

particularly for large datasets.

5.2 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a variant of the Gradient Descent method that

aims to reduce the computational cost by approximating the full gradient with a single

27

randomly chosen component fik(x) at each iteration. In SGD, only one function fik(x)

is selected at each iteration k, where ik is an index chosen from the set {1, 2, . . . , n}.
The update rule for SGD is thus given by:

xk+1 = xk − αk∇fik(x
k). (5.1)

The selection of ik can follow different strategies, for example one can choose ik to

cycle through {1, 2, . . . , n} in order (Cyclic Selection), or ik is chosen randomly from

{1, 2, . . . , n} at each iteration (Random Selection).

For more details, see [8].

28

6 The Algorithm

Algorithm Idea: Cell Localization Using PET and SOPT

Minimization

As described earlier, in PET, we want to locate radioactively labeled cells that have

been injected into a patient. The measurements consist of lines where a cell must lie on.

However, not all of these measurement lines are accurate, as some may contain noise or

false signals. Typically, each cell generates multiple measurement lines, let’s say with

an average of c lines per cell.

The objective is to develop an algorithm that can localize the cells using the data. The

core idea of the algorithm is as follows:

1. Initialization:

• For each measurement line, place a point on that line. These points will form

a configuration X.

• Additionally, generate a set of points randomly distributed within R3 to form

a configuration Y . In this configuration, each set of c points should overlap

at a single location, effectively forming a ”point of mass c” that represents a

potential cell.

2. Optimization Process:

• The goal is to simultaneously adjust the positions of the points in configura-

tions X and Y such that their SOPT distance is minimized.

• The points in X can only move along the measurement lines they were ini-

tially placed on. This constraint reflects the fact that the true cell location

must lie somewhere along these lines.

• The points in Y , however, must move as clusters of c overlapping points.

This constraint ensures that each cluster represents a single cell, as each cell

should generate approximately c measurement lines.

29

By iteratively minimizing the SOPT distance while keeping the moving constraints in

mind, the algorithm wants to align the clusters in Y with the points in X and therefore

find the positions of the cells.

Let m be the number of cells we are looking for and n be the number of measurements,

where n is larger than m, because we have multiple measurement lines per cell.

We beginn with initializing our points X0 = {x0i }ni=1 and Y 0 = {y0j }mj=1.

In every iteration k, we have the constraint, that every point xki has to lie on it’s

correspoding line of response LORi, so xki = pi + ski vi, where pi, vi ∈ R3 define the line

LORi

From that, we derive the measures µ and ν as follows:

• Points Xk: µ =
∑n

i=1 δxk
i
, where xki = pi + ski vi for every iteration k and every

index i,

• Points Y k with mass c: ν =
∑m

j=1 cδykj
, where c = n

m .

Here, of course, we assume that c is an integer.

Note, that it is possible to view the points with mass c as a number of c points with

mass 1. We will need that to use the SOPT-algorithm to assign the points X and Y to

each other. As a result we get that one point with mass c (which represents one cell)

can be assigned to up to c points in X. We need that because the SOPT-algorithm can

only handle points with mass 1.

After we solved the SOPT problem, it is our objective to minimize the Wasserstein-2-

distance between those points in X and Y , that where assigned to each other, while

paying attention to the constraints that µ must fit to the measurements, so the points

X can only move along their lines of responses.

6.1 Outline of algorithm/intuition/informal description

In this section, the informal description of the steps in the cell locating algorithm and

it’s pseudocode are provided.

• Step 0 (Initilization):

Given {LORi}ni=1, initialize X0 = {x0i }ni=1 and Y 0 = {y0j }mj=1 and choose λ and

{θi}Ni=1 ⊂ S2.

Then, in the k-th iteration, we do the following:

30

• Step 1 (Slicing and solving the OPT-problem in 1D):

In the first step, we choose one θk and project both sets of points Xk and Y k

into 1D by multiplying with θk. Then the SOPT-Algorithm assigns those points

to each other, depending on their 1D-distance. As a result, we get a vector

L : {1, . . . , n} → {1, . . . ,m}, where L[i] = j describes, that the 1D-point xki θ
k

was assigned to the point ykj θ
k.

Note that by viewing the points in Y as points with a mass (i.e. c overlapping

points), it is now possible to use the SOPT-algorithm for points with masses and

therefore we can assign multiple points in X to one point with mass c in Y .

• Step 2 (Move points Y towards the middle of their assigned points X):

Because it is possible and also likely that one point with mass c in Y was assigned

to multiple points in X, the next step is calculating the new points in Y k+1 by

computing the mean of their assigned points in X, so compute:

ykj =
1

mj

∑
l∈L−1(j)

xkl , where mj = |L−1(j)|.

• Step 3 (Move the points X):

Calculate the 1D-distances of a 1D-Point xki and it’s corresponding 1D-point ykL[i]
and project the distance back to 3D. Then add this 3D-vector to the original 3D-

point xki :

x̃k+1
i = xki + (θk · yL[i] − θk · xi)θk

• Step 4 (Orthogonal projection):

Make sure, that the points inXk+1stay on their lines, so project them orthogonally

onto their measurement lines, so

xk+1
i = PLORi(x̃

k+1
i).

As an alternative to step 4, we can parametrize the points in X by writing xj = pj+sjvj

and then optimizing sj instead of xj , which is what we will do and is described in the

next section.

Here, you find the pseudocode for those steps:

31

Algorithm 1 cell localization

Input: {LORi}ni=1, N : # of projections, λ ∈ R

1: initialize X0 = {x0i }ni=1 and Y 0 = {y0j }mj=1, λ, sample {θi}Ni=1 ⊂ S2

2: for k = 1, . . . , N do

3: Compute transportation plan L of OPTλ(θ
T
k X, θTk Y) with OPT-algorithm

4: for all j = 1, . . . ,m do

5: mj = |L−1(j)|
6: Compute yj =

1
mj

∑
l∈L−1(j) xl

7: end for

8: for all i ∈ dom(L) do

9: xi ← PLORi

(
xi + (θk · yL[i] − θk · xi)θk

)
10: end for

11: end for

6.2 Local Convergence Proof

In this section, we provide a local convergence proof. Starting near the ground truth

allows us to assume that the point assignments between the sets X and Y do not change

after a few iterations. The goal of our local convergence proof is to minimize the Sliced

Wasserstein-2 distance between X and Y.

We begin by assuming, that in iteration k, the following set of indices are assigned to

the index of the point ykj :

L−1(j) = {i ∈ {1, . . . , n} | L(i) = j} = {i ∈ {1, . . . , n} | xki is assigned to ykj }
and we try to minimize the following function:

f({xk}Nk=1) :=
1

N

N∑
k=1

fk(x
k),

where

fk(x
k) :=

1

2

∑
i∈L−1(j)

∣∣∣∣ ⟨ykj , θk⟩ − 〈xki , θk〉︸ ︷︷ ︸
:=fki

∣∣∣∣2.

In the following, we will use the stochastic gradient method to minimize this function.

We will use in every iteration k only one part of the sum, so we will only compute the

gradient of fk(x
k).

32

First, we take the sum over every yl and include that every yl is the average of its

assigned points in X, so use this formula ykj = 1
mj

∑
l∈L−1(j) x

k
l to compute

fk(x
k) =

m∑
j=1

1

2

∑
i∈L−1(j)

∣∣∣∣∣∣⟨ 1

mj

∑
L−1(j)

xkl , θ
k⟩ −

〈
xki , θ

k
〉∣∣∣∣∣∣

2

.

By using the parametrization formula xki = pi + ski vi, we get the following function to

minimize:

fk(s
k) =

m∑
j=1

1

2

∑
i∈L−1(j)

∣∣∣∣∣∣⟨ 1

mj

∑
l∈L−1(j)

pl + skl vl, θ
k⟩ −

〈
pi + ski vi, θ

k
〉∣∣∣∣∣∣

2

, (6.1)

where now we minimize subject to sk instead of xk. Doing that for every iteration k,

we get the sliced Wasserstein-2-distance:

f({sk}Nk=1) =
1

N

N∑
k=1

m∑
j=1

1

2

∑
i∈L−1(j)

∣∣∣∣∣∣⟨ 1

mj

∑
l∈L−1(j)

pl + skl vl, θ
k⟩ −

〈
pi + ski vi, θ

k
〉∣∣∣∣∣∣

2

.

We want to minimize the function f . To do this, we want to use the stochastic gradient

descent algorithm (5.1) with ik = k, so in every iteration k we update all the points

{ski }ni=1 using the gradient of the function fk(s
k) defined in equation 6.1.

We choose one index it ∈ 1, ..., n and denote jt = L[it] as the index it was assigned to.

Then the stochastic gradient formula looks like this (for the k-th iteration and the it-th

point xit or sit) : sk+1
it

= skit − αk∇skit
fk(s

k) Where we denote ∇it = ∇skit
. Now we

need to calculate the gradient:

∇itfk(s
k) = ∇it(

m∑
j=1

1

2

∑
i∈L−1(j)

∣∣∣∣ ⟨ 1

mj

∑
l∈L−1(j)

pl + skl vl, θ
k⟩ −

〈
pi + ski vi, θ

k
〉

︸ ︷︷ ︸
=fki

∣∣∣∣2).

The first sum disappears, because every point xki can only be assigned to one ykj , so

only one of the summands stays when we take the derivative. Then, we can calculate:

33

∇itfki(s
k
i) = ∇it

(
⟨ 1

mjt

∑
l∈L−1(j)

pl + skl vl, θ
k⟩
)

− ∇it

(〈
pi + ski vi, θ

k
〉)

=
1

mjt

〈
vit , θ

k
〉

−

{
⟨vki , θk⟩ if i = it

0 if i ̸= it.

Next, we calculate

∇it(fki(s
k
i))

2 = 2 fki(s
k
i) ∇itfki(s

k
i)

= 2
(
⟨ykj , θk⟩ −

〈
xki , θ

k
〉)(1

mj

〈
vit , θ

k
〉
−

{
⟨vi, θk⟩ if i = it

0 if i ̸= it.

)

Now, to compute the final gradient by taking the sums and noting that only one indice

jt stays, which the it-th indice was assigned to, explicitly this is the indice jt = L[it]:

∇itfk(s
k) (6.2)

=

m∑
j=1

1

2

∑
i∈L−1(j)

∇it(fki(s
k
i))

2 (6.3)

= −
(
⟨ykjt , θ

k⟩ −
〈
xkit , θ

k
〉)
⟨vit , θk⟩+

1

mjt

〈
vit , θ

k
〉 m∑

j=1

∑
i∈L−1(j)

(
⟨ykj , θk⟩ −

〈
xki , θ

k
〉)

,

(6.4)

where the first part is exactly the formula we wanted if we plug in the gradient into

formula 6.2.

We derived our formula by using stochastic gradient descent, which converges, so our

algorithm doas also (locally) converge.

As I already mentioned above, the parametrization of the points X, to make sure they

stay on their lines (and therefore updating the scalars s), is equivalent to updating the

points x and then orthogonally project the points x onto their lines. We can see that

by just calculating the orthogonal projection PLORi onto line LORi

xk+1
it

= PLORi

(
xkit − αk∇xk

it
fk(x

k)
)

= xkit − PLORi

(
αk

(
⟨ykjt , θ

k⟩ −
〈
xkit , θ

k
〉)

θk
)

= xkit − αk

(
⟨ykjt , θ

k⟩ −
〈
xkit , θ

k
〉)

θk
vit
|vit |

vit
|vit |

.

34

If we look at the first part of formula 6.4 and plug this into xk+1
it

= pit + sk+1
it

vit , we get

that

xk+1
it

= pit + sk+1
it

vit
(6.2)
= pi +

(
skit − αk∇itfk(s

k)
)
vi

(6.4)
= pi +

(
skit + αk

(
⟨ykjt , θ

k⟩ −
〈
xkit , θ

k
〉)
⟨vit , θk⟩

)
vit

xk
it
=pit+skit

vit
= xki + αk

(
⟨ykjt , θ

k⟩ −
〈
xkit , θ

k
〉)

θkvitvit ,

which is the same as calculating the orthogonal projection above, if the direction vectors

vi are normed for every line.

6.3 Initialization

To make sure we can use the local convergence proof, we have to make sure that we start

near our ground truth, so that the assignments of our OPT-algorithm do not change so

much.

We can look at this from an applied point of view: Often, the scanners, in which the

patient lies in, is very big, while the cells are very close to each other. If we choose a

random initialization of the points and place the points X and Y randomly in the big

scanner, the algorithm will not converge.

For that reasons I used a discrete version of FBP.

Points Y

As we know from Inverse Problems, in medical imaging techniques, the radon transform

of the image gives the measurement. So for the initialization, the idea is to use a

(rough) discrete inversion of the radon transform. Let’s denote by LOR the vector,

which contains in the i-th component the start vector pi and the direction vector vi,

from which we can derive the Line LORi on which the point xi lies. Then we can

compute the discrete backprojection on one point z = (z1, z2, z3) ∈ R3 by the following

formula:

BP (z1, z2, z3) =
n∑

i=1

G(d((z1, z2, z3), LORi)),

35

where d((z1, z2, z3), LORi) is the smallest distance between the point z and the line

LORi and G is a Gaussian filter, defined as G(d) := exp(− d2

2σ2). The variance σ2

influences how wide the filter is, thus a bigger σ leads to stronger smoothness.

In this formula, we thicken up the measurement lines with the Gaussian filter. G(d)

corresponds to how much a point contributes to the backprojection, depending on the

distance the point has to the line.

As mentioned above, we only do a rough initialization and calculate the backprojection

on equidistant points. Then, depending on how many cells we are looking for, we take

the maximum (for example the top m ∗ 3) values of the discrete backprojection. The

points, where the values of the BP -function are maximal, are then our candidates for

the initial points Y.

After that, I used the k-means cluster algorithm to cluster those maximum points to

get exactly m initial points.

Points X

After I initialized our points Y , we get our points X by choosing for every point in X

one Point in Y randomly and project it orthogonally onto the line of response of the

point in X. This is random but still makes sure that the initial points are near the

ground truth.

6.4 Choice of parameters

The algorithm uses two key parameters, λ and max distance, which control the assign-

ment of points from set X to set Y . Both parameters are chosen so that the transport

cost based on distance is small while trying to deal with scattering. However, they

operate on different principles and affect the matching process in different ways.

The Role of λ

As already mentioned before, the parameter λ from the OPT-algorithm from [1] de-

termines the threshold for the 1D distance between the projected points from sets X

and Y . It controls the initial assignment by specifying how close the projections of two

points must be for them to be considered a match. If the absolute 1D distance between

a point xi and a point yj exceeds λ, the assignment is removed (i.e., L[i] = −1).
Bigger λ values allow for a higher distance when we assign points, meaning that a

greater number of points from set X may be assigned to points in set Y . However, this

36

increased flexibility can lead to less precise assignments, as points that are relatively far

apart in 3D space may still be considered close enough in 1D.

Smaller λ values, on the other hand, lead to fewer assignments. This results in a

more precise, but possibly sparse, matching. There could be many points that remain

unassigned, which could lead to less moving of points in the right direction.

An additional aspect of the parameter λ is its influence on the algorithm’s sensitivity

to noise and scattering.

Smaller λ values lead to a stricter criterion for matching points, because we filter

assignments that could be influenced by noise or scatter lines. This is because only

points that are very close to each other in the 1D projection are considered for matching.

Irrelevant or noisy data are less likely to be assigned and therefore the impact of noise

is reduced in the solution.

On the other hand, larger λ values allow more assignments to occur, which increases

the likelihood that some of these matches might be influenced by noise. This can result

in the algorithm erroneously assigning points that are very far apart from each other in

the original 3D space.

Thus, by decreasing λ, we assume that we can control the algorithms robustness against

noise, especially in scenarios where there is a lot of scattering, as it is in ours.

The Role of max distance

While λ handles the initial assignment based on the 1D projection, the max distance

parameter evaluates the assignments made earlier using the 3D distance. The pa-

rameter λ only takes 1D-distances into account, which can get problematic when the

1D-distance does not represent the actual 3D-distance of two points, for example can

the 1D-distance be very low, leading to an assignment in the OPT-algorithm, while the

3D-distance is very large. Therefore I introduced the parameter max distance. As-

suming a group of xi points is assigned to a single yj point, the average 3D distance

between the assigned xi points and the corresponding yj point is calculated:

davg =
1

nj

∑
i∈Aj

∥xi − yj∥2,

where Aj = {i | L[i] = j} is the set of indices assigned to yj , and nj is the number of

assigned points. If any point xi has a 3D distance to yj that exceeds max distance×davg,
the assignment is removed. In our examples, the parameter max distance had a value

37

between 1 und 3, to give an idea in which range the parameter could be chosen.

Interplay between λ and max distance during the Algorithm

The parameter max distance is dynamic, because its influence depends on the config-

uration of the points at each iteration. As the algorithm progresses, points from sets

X and Y are iteratively adjusted, which hopefully results in decreasing distances be-

tween assigned points. This reduction in distances leads to a decrease in the value of

davg. Thus, over the course of the algorithm, assignments become increasingly stringent,

allowing only those points that are very close in 3D space to remain matched.

In contrast, at least in our case, λ remains constant throughout the algorithm’s execu-

tion, setting a fixed boundary for the initial assignment of the OPT-algorithm based

on the 1D projection. It influences primarily the early stages of the matching pro-

cess, ensuring that only points that are relatively close in the projected 1D space are

considered.

Conclusion: Comparing the impact of the Parameters

In summary, while both parameters λ and max distance try to ensure optimal match-

ing, they operate on different principles and impact different stages of the assignment

process:

• λ controls the breadth of the initial assignments based on a 1D projection, acting

as a static threshold throughout the algorithm.

• max distance refines the initial assignments by enforcing a dynamic 3D proximity

constraint that becomes stricter as the points converge.

We hope that the interplay between those parameters leads to the best possible assign-

ments and therefore to an optimal solution of the algorithm.

38

7 Numerical Results

7.1 Example

In this chapter, I show the numeric results of the algorithm.

You can see the basic setting in figure 7.1, where the scanner is a cylinder with radius

447.6 mm (x−y-plane) and height −114 mm<= z <= 114 mm. We are looking for five

cells, which are represented by green points and which are relatively close to each other,

i.e. have a distance of approximately 10mm. Shown are only 30 lines of responses for

the second cell for better clarity. In this example, we have 300 lines, 5 cells, scattering

of 30-40% and used 600 iterations for the final result seen in figure 7.4.

In figures 7.2 and 7.3 you see the initialization as described in Chapter 6.3. Again,

the green points represent the cells, the red dots represent the top 25 cells, which are

the result of the discrete filtered backprojection. The blue crosses are the final initial

Y-points we use, which we get by using the k-means cluster algorithm applied to our

red points. The black dots in figure 7.3 are the initial X-points, again only shown for

30 measurement lines.

Finally, in 7.5, you see how the algorithm converges over the course of 600 iterations.

The red dots represent our guesses for the positions of the cells, while the green dots

are the ground-truth positions and the blue dots represent our X-points.

The execution of this example with 600 iterations and 300 measurements took approx-

imately one minute, whereas on the university server, it required about half the time.

Also note that the error calculation is based on the Euclidean distance, also known as

the 2-norm.

39

Figure 7.1: Basic setting: 5 cells (green) and 30 measurement lines for the second cell
(grey) including some scatter lines

Figure 7.2: Initialization of Y-points: Result of the top 25 values of the discrete FBP
(red) and final initial Y-points with k-means (blue)

40

Figure 7.3: Initialization of X-points (black) for 30 measurement lines

Figure 7.4: Result of the algorithm for the given parameters (red) and ground truth
(green)

41

(a) 1 iterations (b) 100 iterations

(c) 200 iterations (d) 300 iterations

(e) 400 iterations (f) 500 iterations

Figure 7.5: Convergence of the algorithm over the course of 500 iterations

42

7.2 Parameter Analysis

In this section, I tested combinations of max distance and λ to determine how these

parameters should be selected depending on the proportion of noise in the measurements

and visualized those results in 7.7.

The noise ratios were tested in the range of 0.1 to 1.1. The max distance values tested

were in the range of 1 to 6 and the λ values tested between 10 and 900.

Ten different examples were generated, each containing five cells positioned differently.

The distance between each adjacent cell was about 10 mm.

After the initialization step, the error per cell was in the range of 30-40 mm and a cell

is considered detected if its final distance is less than 2 mm.

Each test case consisted of 300 correct measurements, with additional noise added based

on the noise ratio. For instance, at 50% noise, a total of 450 measurements were used.

For each parameter combination and example, the algorithm was run for 600 iterations

and the backprojection was evaluated with standard deviation σ = 20 at 163 different

points.

An analysis was performed on all parameter combinations. The results can be seen in

figures 7.7, where I visualized all parameter combinations as dots, where on average,

more than 97% of the cells were detected. The following conclusions can be drawn from

those pictures:

For low noise ratios, the choice of λ is not critical; a wide range of values can still pro-

duce good results. However, max distance should not be too large and performs best

when set between 1 and 2.5.

As the proportion of noise increases, selecting an appropriate λ becomes crucial. Larger

values of λ allow noise to have a greater influence on the result. For that reason,

as noise increases, a smaller λ produces better result. We can also see, that a larger

max distance becomes beneficial, likely because if we choose both parameters too small,

both parameters limit the amount of points assigned to each other. If λ is chosen smaller

while max distance is also very small, fewer points are assigned to each other and if we

have the same number of iterations, fewer cells are moved in the right direction at each

iteration.

When noise is very high, fewer parameter combinations achieve satisfactory results. In

43

this case it is very important to choose λ very small.

We can assume that the choice of λ strongly depends on the distance between cells.

Further investigation with additional test cases, where the cells have different distances

to each other, is necessary to validate this observation. However, such an exploration

was not feasible within the time constraints of this study.

The findings indicate that parameter tuning is highly dependent on the noise ratio in the

measurement data. While smaller values of max distance are beneficial for low noise

scenarios, larger values become advantageous as noise increases. The parameter λ should

be carefully chosen to balance noise suppression and flexibility in adjustments. Further

experiments with diverse cell distances could provide further insight into optimizing

these parameters effectively.

44

45

Figure 7.7: Combination of parameters, that achieved an accuracy
of 97% or more. The max distance values tested were
[1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3, 4, 5, 6], and the λ values tested were
[10, 20, 31, 40, 50, 60, 70, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750, 800, 850, 900]

46

8 Conclusion and Outlook

In this thesis, we presented an approach to cell localization in Positron Emission To-

mography (PET) using the Sliced Optimal Partial Transport (SOPT) algorithm. Using

optimal transport theory and slicing techniques, our method approximates cell positions

on the basis of PET measurement data. The algorithm showed reasonable performance

under different noise levels when choosing the parameters accordingly, which highlights

its potential for further exploration.

The numerical experiments confirmed that the choice of algorithm parameters

max distance and λ, significantly impacts the accuracy of the algorithm. For low noise

scenarios, a wide range of parameter values yielded good results, whereas higher noise

levels required more careful tuning to achieve the same results. The findings suggest

that a dynamic adjustment of these parameters could improve the algorithm’s results.

However, further parameter analyses would be necessary but are too time-consuming

within the scope of this work.

Despite the promising aspects, several challenges remain. The current approach was

primarily tested with uniform cell distributions, although other distributions could also

be applicable. Different point configurations were not explored in detail, but it would

be interesting to see how they influence the choice of parameters, that has to be made

to achieve good results. Future work could focus on extending the algorithm to handle

moving cells, which would be a natural extension of the existing framework.

Additionally, further research is required to improve computational efficiency if the algo-

rithm is used on larger datasets. Optimizing the implementation and exploring parallel

computing techniques could reduce processing time and make the approach more prac-

tical.

In conclusion, the proposed algorithm provides a starting point for a different approach

to PET cell localization and hopefully contributes to the broader exploration of the

algorithms in medical imaging.

47

References

[1] Yikun Bai et al. Sliced Optimal Partial Transport. 2023. arXiv: 2212.08049 [cs.LG].

url: https://arxiv.org/abs/2212.08049.

[2] Mathias Beiglböck, Pierre Henry-Labordère, and Friedrich Penkner.Model-independent

Bounds for Option Prices: A Mass Transport Approach. 2013. arXiv: 1106.5929

[q-fin.PR]. url: https://arxiv.org/abs/1106.5929.

[3] National Research Council. Mathematics and physics of emerging biomedical imag-

ing. National Academy Press, Washington, DC (United States), Dec. 1996. url:

https://www.osti.gov/biblio/510447.

[4] Matthias Liero, Alexander Mielke, and Giuseppe Savaré. “Optimal Entropy-Transport

problems and a new Hellinger–Kantorovich distance between positive measures”.

In: Inventiones mathematicae 211.3 (Dec. 2017), 969–1117. issn: 1432-1297. doi:

10.1007/s00222-017-0759-8. url: http://dx.doi.org/10.1007/s00222-017-

0759-8.

[5] Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. 2020. arXiv:

1803.00567 [stat.ML]. url: https://arxiv.org/abs/1803.00567.

[6] D Townsend. “Physical Principles and Technology of Clinical PET Imaging”. In:

Annals of the Academy of Medicine, Singapore 33 (Apr. 2004), pp. 133–45. doi:

10.47102/annals-acadmedsg.V33N2p133.

[7] Cédric Villani. “The Wasserstein distances”. In: Optimal Transport: Old and New.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 93–111. isbn: 978-3-540-

71050-9. doi: 10.1007/978-3-540-71050-9_6. url: https://doi.org/10.1007/

978-3-540-71050-9_6.

[8] Stephen J. Wright and Benjamin Recht. Optimization for Data Analysis. Cam-

bridge University Press, 2022.

48

Declaration of Academic Integrity

I hereby confirm that this thesis, entitled __

___,

is solely my own work and that I have used no sources or aids other than the ones stated.

All passages in my thesis for which other sources, including electronic media, have been

used, be it direct quotes or content references, have been acknowledged as such and

the sources cited. I am aware that plagiarism is considered an act of deception which

can result in sanction in accordance with the examination regulations.

I confirm that I am aware that my work may be cross-checked with other texts to identify

possible similarities and that it may be stored in a database for this purpose.

I confirm that I have not submitted the following thesis in part or whole as an examina-

tion paper before.

(date, signature of student)

