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1 Introduction

1. Introduction
The task to recover an underlying cause from measurements of its induced effects is an
important task in many scientific disciplines. Typical problems can be found for example
in medical imaging, where it is desired to reconstruct anatomic structures in the human
body from MRI or X-ray measurements, or in the field of geophysics in order to map
subsurface structures with help of seismic tomography. All these applications share a
common goal: gaining insight into hidden phenomena through indirect measurements -
or mathematically speaking to solve an underlying inverse problem.

Let X denote the space of possible sources and Y the space of measurements equipped
with a mapping K : X → Y describing the measurement process. The goal of the inverse
problem is then to reconstruct u ∈ X from a measurement f ∈ Y such that

Ku = f.

However, in most applications these inverse problems are often ill-posed in Hadamard´s
sense [1, Def. 4]: Either a solution u of Ku = f does not exist, a solution is not unique
or small changes of f may lead to large changes of the solution u. In practice, it is not
unusual for several of these conditions to be violated at once.

A common strategy to avoid these obstacles is to make use of regularization. Instead
of attempting to solve the ill-posed original problem, which means to solve u = K−1f
directly, one considers a variational formulation. For a given measurement f ∈ Y one
aims at finding

u ∈ argmin
v∈X

1
α
Ff (Kv) +G(v).

Here, α ∈ R, Ff : Y → (−∞,+∞] and G : X → (−∞,+∞] should be selected in a
manner that Ff ensures closeness of the minimizer and the ground truth and G assures
certain regularity and may incorporate a priori known properties of u. The regularization
parameter α on the other hand regulates, which term gains how much impact on the
solution.

This thesis will deal with the inverse problem of reconstructing a ground truth consist-
ing of a linear combination of weighted indicator functions of rectangular sets from its
truncated Fourier image. The anisotropic total variation is chosen as the regularization
term. This setup relies on the problem formulated in [2]. Although this type of TV reg-
ularization does not produce a well-posed problem in Hadamard´s sense, the anisotropic
total variation is well suited to produce images with sharp edges and is therefore a valid
and promising choice as regularization term in our case. Moreover, note that since the
considered ground truth has just horizontal and vertical edges, it can be parameterized
by just finitely many values. This is a characteristic that is also true for images consist-
ing solely of finitely many point masses, so one may expect similar behaviour when it
comes to reconstruction. It was shown in [2] that this is true and we will briefly refer to
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1 Introduction

these results in section 2.3.2.

The question we want to answer in this thesis is how to solve the reconstruction problem.
In view of the above considerations it is natural to ponder if the two problems of point
masses and weighted indicator functions may also be solved by similar algorithms. In
[3] the classic Frank-Wolfe algorithm (FW) and a variation, the sliding Frank-Wolfe
algorithm (SFW), were presented to reconstruct point masses, so it seems intuitive and
appropriate to analyze whether the Frank-Wolfe algorithm and its sliding version are
also suitable to restore a ground truth consisting of rectangles and how these algorithms
can be applied.

This paper is organized as follows: In section 2 we will briefly discuss the role of regular-
ization in inverse problems and recall the concepts of anisotropic total variation and the
space of bounded variation. The anisotropic total variation will be introduced as regu-
larization term in section 2.3. Here, the main problem is presented and the solvability
properties from [2] are cited.

Section 3 is the main part of this thesis. Here, the classic Frank-Wolfe algorithm is intro-
duced and adapted progressively to the total variation regularized problem. Therefore,
concerning the minimization step, the extreme points of a total variation ball are deter-
mined and it is argued numerically, whether it is justified to assume that the optimal
extreme points are rectangular shaped in our application. To analyze the stopping crite-
rion of the Frank-Wolfe algorithm in the next part of the section, primal-dual optimality
conditions are developed. The last part of this section is dedicated to the sliding aspect
of the sliding Frank-Wolfe algorithm.

In the final section we test the classical Frank-Wolfe algorithm as well as the sliding
Frank-Wolfe algorithm numerically and assess their ability to reduce reconstruction er-
rors and to capture edges precisely.
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2 Total variation regularization

2. Total variation regularization
In order to understand the problem discussed in this paper, we must first introduce its
setup.
The goal is to reconstruct a ground truth composed of rectangular indicator functions
from a slightly noisy measurement. To avoid the possible ill-posedness of this noisy
inverse problem we approximate it by neighboring well-posed problems and solve them
for an approximate solution. To do so, we are going to make use of regularization.

2.1. Regularization
Let X,Y be Banach spaces, u† ∈ X the ground truth that should be reconstructed,
K : X → Y a measurement operator and Ku† +ω = f ∈ Y the measurement with some
noise ω ∈ Y . Note, that f does not necessarily need to coincide with f † = Ku†. The
inverse problem that is to be solved is of the form

given f ∈ Y, find u ∈ X s.t. Ku = f.

As explained in the introduction, in order to find an approximate solution of Ku = f
one can solve a regularized problem in form of the minimization problem below,

min
u∈X

Jf
α(u), Jf

α(u) = 1
α
Ff (Ku) +G(u) (1)

Here, Ff : Y → R ∪ +∞ is the fidelity term, G : X → R ∪ +∞ the regularization term
and α ≥ 0 the regularization parameter.
The fidelity term ensures that the solution of the minimization problem (1) (respectively
its image under K) is close to the measured data f , whereas the regularization term
makes the solution fit into the context of the given problem. This means, that G can
compensate for lost information during the measurement with a priori known information
of the ground truth such as sparsity or smoothness, or that it can remove artifacts from
the reconstructed solution. The amount of the influence that G has on the solution of
(1) is controlled by α. The larger α is, the more impact the regularization term gains,
as described in [4].
As stated in [2], G and Ff are proper and convex functions, where the fidelity term
satisfies Ff (Ku) = 0 ⇔ Ku = f and Ff (Ku) > 0, otherwise. Therefore, α = 0 is
considered as the constraint forcing Ff (Ku) = 0, i.e. Ku = f . This means, for α = 0
the objective functional may take the form Jf

0 (u) = ι{f}(Ku) +G(u) , where

ι{f}(Ku) =
{

0 if f = Ku

+∞ if f ̸= Ku

3



2 Total variation regularization

This type of regularization with α = 0 is especially used in a no-noise regime as for
example in Theorem 2.12 that is cited from [2].

As stated in [4] common examples for the data-fidelity term Ff are L1, L2, Huber or
Lorentzian estimators. The regularized problem that is considered in this paper indeed
uses an ℓ2 term, as pointed out in Pα(f).
One of the most used regularization terms G is the so called Tikhonov regularization.
This is defined as G(u) = ∥Γu∥22. Γ captures certain aspects of the ground truth and
takes the form of e.g. the derivative, the Laplacian or just the identity. Thus, the
regularizer limits the energy of the solution or enforces smoothness. As a consequence
noisy pixels are reduced or sharp edges will be prevented.
This is not what is desired in our case. As described above, the considered ground truth
is made up of rectangular indicator functions and thus a key characteristic of a solution
should be sharp edges. So instead of Tikhonov regularization, we make use of the total
variation (TV) of a function u as regularization term.

2.2. Total variation and the space of bounded variation
Definition 2.1 (Anisotropic total variation, [5, Def. 3.4]). Let Ω be a generic open set
of Rn and u ∈ L1(Ω). The anisotropic total variation of u in Ω is defined as

TV(u; Ω) = sup
{∫

Ω
u divϕ dx

∣∣∣∣ϕ ∈ C1
c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1

}
, (2)

where div is the divergence operator, C1
c (Ω,Rn) is the set of continuously differentiable

functions from Ω to Rn with compact support in Ω and ∥·∥L∞(Ω) is the supremum norm.

Remark 2.2. Note, that for continuously differentiable functions u ∈ C1(Ω):

TV(u; Ω) =
∫

Ω
|∇u| dx = |∇u|(Ω) (3)

The first equality of (3) was stated in [5], whereas the second equality is a simple result
for weighted measures. Let ν = fµ, where µ is a measure and f measurable. Then, by
[1, Ex. 114.5], ν(Ω) =

∫
Ω f dµ. In our case, let µ be the Lebesgue measure and |∇u| the

measurable function, as it is continuous. We then get the desired
∫

Ω |∇u| dx = |∇u|(Ω).

Equation (3) motivates the choice of TV(u; Ω) as regularization term G in the regular-
ization (1) in order to reconstruct indicator functions of rectangles. It indicates that
this selection promotes solutions with sparse (distributional) gradients and sharp edges.
Moreover, horizontal and vertical edges are preferred over diagonal ones as argued later
in a slightly different context in A.1.
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2 Total variation regularization

In any case, a minimizer u of (1) must satisfy TV(u; Ω) < +∞. All functions fulfilling
this condition are summed up in the space of functions of bounded variation BV(Ω).

Definition 2.3 (Space of functions of bounded variation BV(Ω)). Again, let Ω be a
generic open set of Rn. The space of functions of bounded variation is then defined as

BV(Ω) =
{
u ∈ L1(Ω)

∣∣∣TV(u; Ω) <∞
}
. (4)

Remark 2.4. In [5, Def. 3.1] the space BV(Ω) is introduced in a slightly different way.
This characterization will be needed in the proof of Proposition 2.9.

Proposition 2.5 (Equivalent definition of BV(Ω), [5, Def. 3.1, Prop. 3.6]).

B̃V(Ω) =
{
u ∈ L1(Ω)

∣∣∣∣∣ the distributional derivative of u is representable
by a finite Radon measure in Ω

}

=

u ∈ L1(Ω)

∣∣∣∣∣∣∣
∀i ∈ {1, . . . , n} there is a finite Radon measure µi such that∫

Ω
u
∂ϕ

∂xi
dx = −

∫
Ω
ϕ dµi ∀ϕ ∈ C1

c (Ω).


We write Du = µ = (µ1, . . . , µn).
Indeed both characterizations BV(Ω) and B̃V(Ω) coincide: Let u ∈ L1(Ω). Then, u
belongs to B̃V(Ω) if and only if TV(u; Ω) < ∞. In addition, TV(u; Ω) coincides with
|Du|(Ω) for any u ∈ BV(Ω).

Proof. A proof of Proposition 2.5 can be obtained from [5, Prop. 3.6].

As TV(u; Ω) and BV(Ω) are crucial concepts in the course of this thesis, we will state
some important properties in the following propositions.

Proposition 2.6 (Lower semicontinuity of TV, [6, Thm. 1.9]). Let Ω ⊆ Rn be an open
set and {ui} a sequence of functions in BV(Ω) which converges in L1

loc(Ω) to a function
u.
Then

TV(u; Ω) ≤ lim inf
i→∞

TV(ui; Ω) (5)

Proof. The proof stems also from [6, Thm. 1.9]. Let ϕ ∈ C1
c (Ω) such that ∥ϕ∥∞ ≤ 1.

Then: ∫
Ω
u divϕ dx = lim

i→∞

∫
Ω
ui divϕ dx

≤ lim inf
i→∞

sup
{∫

Ω
ui divϕ dx

∣∣∣∣ϕ ∈ C1
c (Ω), ∥ϕ∥∞ ≤ 1

}
= lim inf

i→∞
TV(ui; Ω)

5



2 Total variation regularization

Now, taking the supremum over all such ϕ on the left side leads to the desired statement.

Proposition 2.7 (Convexity of TV). The total variation is a convex functional, i.e. for
every u1, u2 ∈ BV (Ω) and 0 ≤ t ≤ 1:

TV(tu1 + (1− t)u2; Ω) ≤ tTV(u1; Ω) + (1− t)TV(u2; Ω) (6)

Proof. Let u1, u2 ∈ BV(Ω) and t ∈ [0, 1]. Then

TV(tu1 + (1− t)u2; Ω) = sup
{∫

Ω
(tu1 + (1− t)u2) divϕ dx

∣∣∣∣ϕ ∈ C1
c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1

}
= sup

{∫
Ω
tu1 divϕ dx+

∫
Ω

(1− t)u2 divϕ dx
∣∣∣∣ϕ ∈ C1

c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1
}

≤ t sup
{∫

Ω
u1 divϕ dx

∣∣∣∣ϕ ∈ C1
c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1

}
+ (1− t) sup

{∫
Ω
u2 divψ dx

∣∣∣∣ψ ∈ C1
c (Ω,Rn), ∥ψ∥L∞(Ω) ≤ 1

}
= tTV(u1; Ω) + (1− t)TV(u2; Ω)

Proposition 2.8 (Positive 1-homogeneity of TV). For any u ∈ BV(Ω) and t ∈ R with
t > 0 one gets

TV(tu; Ω) = t · TV(u; Ω).

Proof. Let u ∈ BV(Ω) and t > 0. Then

TV(tu; Ω) = sup
{∫

Ω
tu · divϕ

∣∣∣∣ϕ ∈ C∞
c (Ω,R2), ∥ϕ∥∞ ≤ 1

}
t>0= t · sup

{∫
Ω
u · divϕ

∣∣∣∣ϕ ∈ C∞
c (Ω,R2), ∥ϕ∥∞ ≤ 1

}
= t · TV(u; Ω)

Proposition 2.9 (BV(Ω) as Banach space, [6, Rem. 1.12]). BV(Ω) becomes a Banach
space, when endowed with the norm

∥u∥BV : =
∫

Ω
|u| dx+ |Du|(Ω)

= ∥u∥L1 + TV(u; Ω).

Proof. The proof is based on the argumentation in [6, Rem. 1.12].

6



2 Total variation regularization

• BV(Ω) is a vector space of L1(Ω): Clearly, BV(Ω) is a subset of L1(Ω). It remains
to show its linearity properties. Therefore, let u, v ∈ BV(Ω) and c ∈ R.
Then: ∫

Ω
(u+ cv) divϕ dx =

∫
Ω
u divϕ dx+ c

∫
Ω
v divϕ dx

u,v∈BV(Ω), Prop. 2.5= −
∫

Ω
ϕ dDu− c

∫
Ω
ϕ dDv

= −
∫

Ω
ϕ d(Du+ cDv) ∀ϕ ∈ C1

c (Ω)

This implies, again with Proposition 2.5, u+ cv ∈ BV(Ω) as its variational deriva-
tive is a finite Radon measure.

• ∥·∥BV satisfies the norm properties: Let u, v ∈ BV(Ω). Then

∥u+ v∥BV = ∥u+ v∥L1 + TV(u+ v; Ω)

= ∥u+ v∥L1 + sup
{∫

Ω
u+ v divϕ dx

∣∣∣∣ϕ ∈ C1
c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1

}
≤ ∥u∥L1 + ∥v∥L1 + sup

{∫
Ω
udivϕ dx

∣∣∣∣ϕ ∈ C1
c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1

}
+ sup

{∫
Ω
v divϕ dx

∣∣∣∣ϕ ∈ C1
c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1

}
= ∥u∥L1 + TV(u; Ω) + ∥v∥L1 + TV(v; Ω) = ∥u∥BV + ∥v∥BV

Moreover for u ∈ BV(Ω) and c ∈ R:

∥cu∥BV = ∥cu∥L1 + TV(cu; Ω) = ∥cu∥L1 + |D(cu)|(Ω)
= |c| ∥u∥L1 + |c| |Du|(Ω) = |c| ∥u∥BV

Now, let u ∈ BV(Ω) such that ∥u∥BV = 0, i.e.
≥0︷ ︸︸ ︷
∥u∥L1 +

≥0︷ ︸︸ ︷
|Du|(Ω) = 0, so both

summands need to be 0. From |Du|(Ω) = 0 follows that u must be a constant
function. Under this condition with ∥u∥L1 = 0 we get u = 0.
Altogether, ∥·∥BV satisfies all norm conditions and thus is a norm on BV(Ω).

• BV(Ω) is complete with respect to ∥·∥BV: Suppose {ui} is a Cauchy sequence in
BV(Ω). Then, by definition of the norm, {ui} is also Cauchy in the complete space
L1(Ω). Therefore, there exists a function u ∈ L1(Ω) such that ui → u in L1(Ω).
As ui is Cauchy in BV(Ω) its norm ∥ui∥BV is bounded. Thus, |Dui| = TV(ui; Ω) <
∞ for i → ∞ and by lower semicontinuity of the total variation (Prop. 2.6)
TV(u; Ω) <∞, i.e. u ∈ BV(Ω). It remains to show ui → u in BV(Ω), but ui → u
in L1(Ω) is already done, so just show TV(ui − u; Ω)→ 0 for i→∞.

7



2 Total variation regularization

Let ϵ > 0. Then, there is N ∈ N s.t. for all i, n ≥ N : ∥ui − um∥BV ≤ ϵ i.e.
TV(ui − un; Ω) ≤ ϵ. As un → u in L1(Ω), also (ui − un)→ (ui − u) in L1(Ω). By
lower semicontinuity again:

TV(ui − u; Ω) ≤ lim inf
n→∞

TV(ui − un; Ω) ≤ ϵ

⇒ ∥ui − u∥BV → 0. This proves completeness of BV(Ω) and it becomes a Banach
space when equipped with the norm as defined above.

Remark 2.10. With Proposition 2.9 it is valid to optimize over the space of BV(Ω)-
functions in Equation (1).

2.3. The TV regularized problem
In this section we formally introduce the inverse problem and its associated regularized
problem, that we are going to analyze in this thesis. The problem as well as the contents
of this section are taken from [2].

2.3.1. Setup of the problem

Let Ω = (R/Z)2 = T2 the two-dimensional flat torus, that can be identified with [0, 1]2
with periodic boundary conditions. Let the ground truth image be a piecewise constant
real-valued function of the form

u† =
M∑

m=1

N∑
n=1

u†
mn1[xm,xm+1[×[yn,yn+1[ ∈ BV(Ω) (7)

again, with periodic boundary conditions. 1A is the characteristic function of a set A,
i.e.

1A(x) =
{

1 if x ∈ A
0 otherwise.

Further, let x1 < · · · < xM and y1 < · · · < yM be points in R/Z, where we identify
xM+1 = x1 and analogue yN+1 = y1 due to periodicity of Ω. Moreover, we consider the
interval [a, b[ with b < a as the interval [a, b+ 1[⊂ R projected onto R/Z. The minimal
distance of all points {xi | i = 1, . . . ,M} and {yj | j = 1, . . . , N} is denoted by

∆ = min {min{dist(xm, xm+1) | m = 1, . . . ,M}, min{dist(yn, yn+1) | n = 1, . . . , N}} .

Here, dist is the Euclidean distance between two points in Ω defined via

dist((x1, y1), (x2, y2)) = min{|(x1 − x2 + k, y1 − y2 + l)|2 | k, l ∈ Z}

8



2 Total variation regularization

for all (x1, y1), (x2, y2) ∈ Ω.

Further, let K : BV(Ω)→ Y be the linear bounded measurement operator from the space
of functions of bounded variations introduced in Definition 2.3 into the finite dimensional
image space Y equipped with the Euclidean norm.
In our case, K is chosen to be the truncated Fourier transform, i.e. Ku is of the form

Ku = (ûk)k∈Z2,|k|∞≤Φ

=
(∫

Ω
e−2πi(x,y)·(k1,k2)u(x, y) d(x, y)

)
k1,k2∈Z,|k1|,|k2|≤Φ

(8)

with cut-off frequency Φ ≥ 1.
The concrete regularized problem in form of Equation (1) reads as follows:

min
u∈BV(Ω)

Jf
α(u), Jf

α(u) = 1
2α |Ku− f |

2
2 + TV(u; Ω) (Pα(f))

where | · |2 is the ℓ2-norm on the finite-dimensional vectorspace Y .

Remark 2.11. In the analysis of (Pα(f)), we are going to need the preadjoint measure-
ment operator of K as well as the related predual spaces. Therefore, we will introduce
the associated notation.
Let the predual space of BV(Ω) be denoted by BV(Ω)# and let Y # be the predual space
of Y . Note, that Y can be identified with Y # as it is finite dimensional by assumption.
The preadjoint measurement operator K# : Y # → BV(Ω)# is defined by

⟨K#w, u⟩ = ⟨w,Ku⟩ for all u ∈ BV(Ω), w ∈ Y # = Y

where ⟨·, ·⟩ describes the dual pairing between an element from a topological vectorspace
and an element from its dual.
Let w ∈ Y . Then the preadjoint K# of the truncated Fourier transform is of the form

K#w =
∑

|k|∞≤Φ
wk · e2πi(x,y)·(k1,k2). (9)

2.3.2. Solvability of the problem

Before dealing with the question of how to solve Pα(f), we need to discuss the conditions
under which it can be solved at all. To do so, we will cite the main results from the
article [2]. The assumption, we need to make, regards the distributional gradient of the
ground truth and is presented below:

Assumption 1 (Consistent gradient direction [2, Assumption 1]). On a vertical line, the
(distributional) x-derivative of u† does not change sign, and equivalently, on a horizontal

9



2 Total variation regularization

line, the (distributional) y-derivative of u† does not chance sign as well. Mathematically
speaking, for each m the restriction Dxu

† |({xm}×R/Z) of the measure Dxu
† to the ver-

tical line {xm} × R/Z is either a nonnegative or nonpositive measure. Accordingly,
Dyu

† |(R/Z×{yn}) is nonnegative or nonpositive for every n.

Now consider two different cases. On the one hand, the exact reconstruction of u† from
Ku† = f † in a no-noise regime and on the other hand the case of a noisy environment,
i.e. the attempt to reconstruct u† from a noisy measurement f δ with noise level δ, i.e.
f δ satisfies 1

2 |f
δ − f †|22 < δ.

Indeed, for a noise free environment, one can expect exact reconstruction of the ground
truth, as presented in the theorem below:

Theorem 2.12 (Exact reconstruction [2, Thm. 2] ). Let Assumption 1 about a consistent
gradient direction hold and let K be the truncated Fourier transform defined in (8). There
exists a constant C > 0 such that, if ∆ > C

Φ , then u† is the unique minimizer of

Jf†

0 (u) = TV(u) + ι{f†}(Ku).

In a noisy regime with noise level δ, one can not expect exact nor unique reconstruction,
but a bound on the reconstruction error depending on δ.

Theorem 2.13 (Convergence for vanishing noise [2, Thm. 3]). Let Assumption 1 (con-
sistent gradient direction) hold and let K be the truncated Fourier transform from (8).
There exists a constant C > 0 such that, if ∆ > C

Φ , then any minimizer uδ of

Jfδ

α (u) = 1
2α |Ku− f

δ|22 + TV(u; Ω)

for the choice of α =
√
δ satisfies ∥∥∥uδ − u†

∥∥∥
1
≤ Cδ

1
4 .

Remark 2.14. The estimation of the convergence rate in Theorem 2.13 may be suboptimal
as numerical results from [2] imply. Those results rather suggest that an upper bound
of Cδ 1

2 can be achieved, although this was not proved yet.
Moreover, it is important to note, that the measurement operator K can not be chosen
completely arbitrarily, as it needs to satisfy certain source conditions that are required
to prove Theorem 2.12 and Theorem 2.13. These source conditions are of the form
that there exists a dual variable w ∈ Y # such that K#w satisfies particular regularity
conditions. Indeed, as shown in [2], the choice ofK being the truncated Fourier transform
is suitable as the required source conditions are fulfilled in that case.
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3. Frank-Wolfe algorithm
In the previous section, we have seen, that under certain conditions, the TV regularized
optimization problem Pα(f) yields a solution that either coincides with the ground truth
u† or converges to it in the L1(Ω)-norm for decreasing noise level δ. Nevertheless, we
still need to answer the question of how to determine solutions u of Pα(f) and which
algorithm is suitable for this task.

There are various approaches for algorithms to numerically solve Pα(f). As outlined
in [7] these algorithms can be categorized according to whether they require to solve a
system of linear equations or not. Those that do not, are in general based on the dual
formulation of the minimization problem. Thus, they are computationally efficient but
may be limited, when the measurement operator K becomes non-trivial and complex.
Alternatively, one can consider algorithms that directly operate on the primal formu-
lation of Pα(f) and usually use a smooth approximation of TV(u; Ω) for optimization.
Plenty of them are based on the Euler-Lagrange equations and therefore a system of
linear equations, often involving second-order differential operators, needs to be solved.
Another class of methods, which avoids both the need for second-order differential ap-
proximations and the explicit dual formulation of Pα(f), is based on first-order opti-
mization techniques. One such algorithm to solve Pα(f) and subject of this paper is the
Frank-Wolfe algorithm (FW), also known as conditional gradient (CG) method. In the
past it was not as popular due to sub-optimal convergence rates but the algorithm has
become more favoured, as it is suitable to incorporate complicated constraints of the
given minimization problem and each iteration of the algorithm has just low complexity.
This is the case, since the FW does not need difficult and expensive projections but
just solves a simpler linear subproblem in each iteration. This is very useful for current
topics such as large-scale machine learning problems or image processing [cf. 8].
The FW was first introduced in [9] but we are going to present the version that was
showcased in [3].

The Frank-Wolfe algorithm aims to solve a minimization problem of the form

min
u∈C

J(u). (10)

Here, C is a weakly compact convex set of a Banach space, therefore bounded and J is
supposed to be a differentiable convex function.

Remark 3.1. Note that there is no need for a Hilbert structure as C just needs to be a
subset of a Banach space.
Moreover, the convexity of the functional J has just an impact on the convergence rate
of the algorithm and not on the applicability of the algorithm in general. According to
[10], in case of non-convexity of the objective functional J the convergence rate of the
Frank-Wolfe algorithm reduces from O( 1

k ) to O( 1√
k
), but the problem can still be solved

11
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by the FW.
Furthermore, the weak compactness of C is often demanded in order to ensure well-
definedness of the minimization step in line 2. Nevertheless, this is not a necessary
condition for well-definedness as we will show later in Lemma 3.8.

The Frank-Wolfe algorithm is then defined as follows:

Algorithm 1 Classic Frank-Wolfe Algorithm (general case)
1: for k = 0, . . . , n do
2: Minimize: s[k] ∈ argmins∈CJ(u[k]) + dJ(u[k])[s− u[k]].
3: if dJ(u[k])[s[k] − u[k]] = 0 then
4: u[k] solution of (10). Stop.
5: else:
6: Step research: γ[k] ← 2

k+2 or γ[k] ∈ argminγ∈[0,1]J(u[k] + γ(s[k] − u[k])).
7: Update: u[k+1] ← u[k] + γ[k](s[k] − u[k]).
8: end if
9: end for

Figure 1: Illustration of how the classic Frank-Wolfe algorithm (Algorithm 1) works in
the general setting introduced in (10).

Note, that Figure 1 illustrates that any minimizer s[k] that is determined in line 2 of
Algorithm 1 is an extreme point of the convex set C. The definition of extreme points can
be found in Definition 3.2 and the corresponding proposition explaining this behaviour

12
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following from the Bauer Maximum Principle is presented in Proposition 3.3.

Definition 3.2 (Extreme points, [11, Def. 7.61]). A point x in a set C is said to be
an extreme point of C if it cannot be written as a strict convex combination of distinct
points in C. This means, for any convex combination with x1, x2 ∈ C, 0 < λ < 1 and

x = λx1 + (1− λ)x2

follows that x1 = x2 = x.

Proposition 3.3 ([11, Cor. 7.70]). If C is a nonempty compact convex subset of a
locally convex Hausdorff space, then every continuous linear functional has a maximizer
and a minimizer that are extreme points of C.

3.1. Frank-Wolfe algorithm for the TV regularized problem
It is easy to see that the TV regularized problem Pα(f) does not satisfy the conditions
presented above that are required to apply the Frank-Wolfe algorithm directly.
On the one hand, in Pα(f) we optimize over the whole space of functions of bounded vari-
ation, i.e. C = BV(Ω). Note that this is in particular an unbounded set and therefore,
it is not a weakly compact convex set of a Banach space as the Frank-Wolfe algorithm
demands. Moreover, the objective functional Jf

α(u) = 1
2α |Ku − f |

2
2 + TV(u; Ω) is not

differentiable, as the regularizer TV(u; Ω) is not differentiable [cf. 12, Ch. 3].

In the proceeding we want to modify the original problem Pα(f) in such a way that
we can apply the Frank-Wolfe algorithm and still restore minimizers of the original
objective.
As a first step, following the idea from [3], we are going to reformulate the original
problem Pα(f), such that the considered objective becomes differentiable.

Lemma 3.4. Let C = {(t, u) ∈ R+ × BV(Ω) | TV(u; Ω) ≤ t ≤M} with M = |f |22
2α .

Then, the original TV regularized problem

min
u∈BV(Ω)

Jf
α(u), Jf

α(u) = 1
2α |Ku− f |

2
2 + TV(u; Ω) (Pα(f))

is equivalent to the problem

min
(t,u)∈C

J̃f
α(t, u), J̃f

α(t, u) = 1
2 |Ku− f |

2
2 + αt (P̃α(f))

in the sense that u is a solution to Pα(f) if and only if (t, u) is a solution to P̃α(f) for
some feasible t ≥ 0.

Remark 3.5. Note, that trivially a minimizer u∗ of Pα(f)= 1
2α |Ku − f |

2
2 + TV(u; Ω) is

13
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also a minimizer of the functional 1
2 |Ku− f |

2
2 + αTV(u; Ω) and vice versa. With abuse

of notation denote the latter functional also as Pα(f).

Proof of Lemma 3.4. • Show that any solution u∗ of Pα(f) is feasible for P̃α(f) and
vice versa:
Let u∗ ∈ BV(Ω) be a minimizer of Jf

α . Then:

Jf
α(u∗) = 1

2α |Ku
∗ − f |22︸ ︷︷ ︸
≥0

+TV(u∗; Ω)
optimality
≤ Jf

α(0) = 1
2α |f |

2
2 := M

⇒ TV(u∗; Ω) ≤ |f |
2
2

2α = M

Thus, the restriction of the optimization problem P̃α(f) to the bounded set C is
valid since one can only consider the BV(Ω)-functions u satisfying TV(u; Ω) ≤M
without excluding possible solutions.
Notice that trivially, any feasible function u from a pair (t, u) ∈ C, in particular
including the minimizing function ũ∗, is a BV(Ω)-function and thus feasible for
Pα(f).

• Solution of Pα(f) is a solution of P̃α(f) for some admissible t:
Let u∗ be a solution of Pα(f). For any pair (t, u) minimizing P̃α(f) one can observe
t = TV(u; Ω), as this minimizes the second part of the functional J̃f

α . Having this,
both problems read the same and thus by assumption, (t, u) = (TV(u∗; Ω), u∗) is
a minimizer of P̃α(f).

• Solution of P̃α(f) yields a solution of Pα(f):
Let (t̃∗, ũ∗) be a minimizer of P̃α(f). Then, by above considerations, t̃∗ = TV(ũ∗; Ω)
and both problems coincide again. We can conclude that ũ∗ is also minimizer of
Pα(f) and both problems are equivalent.

As shown above in Lemma 3.4, the constructed auxiliary problem is equivalent to the
one we aim to solve. With the above adjustments we have reached differentiability of
the objective J̃f

α , as stated in the lemma below.

Lemma 3.6 (Differentiability of J̃f
α). The modified objective J̃f

α(t, u) = 1
2 |Ku−f |

2
2 +αt

is differentiable.

Proof. Compute the total derivative DJ̃f
α at position (t, u) ∈ C and evaluate it in direc-
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tion (s, v) ∈ C. We get

DJ̃f
α(t, u)[(s, v)] = DtJ̃

f
α(t, u)[s] +DuJ̃

f
α(t, u)[v]

= Dt

(1
2 |Ku− f |

2
2 + αt

)
[s] +Du

(1
2⟨Ku− f,Ku− f⟩2 + αt

)
[v]

= αs+ d
dr

(1
2⟨K(u+ rv)− f,K(u+ rv)− f⟩2 + αt

) ∣∣∣∣∣
r=0

= αs+ d
dr

(
1
2⟨Ku− f,Ku− f⟩2 + r2

2 ⟨Kv,Kv⟩2 + r⟨Ku− f,Kv⟩2 + αt

) ∣∣∣∣∣
r=0

= αs+ ⟨Ku− f,Kv⟩2 = αs+ ⟨K#(Ku− f), v⟩2

= αs+
∫

Ω
K#(Ku− f) · v dx

(11)

and with this the differentiability of J̃f
α . Note, that this derivative is linear in s and

v.

What still needs to be discussed is the question whether the minimization step in line 2
of Algorithm 1, to find

(s[k], v[k]) ∈ argmin
(s,v)∈C

DJ̃f
α(t, u)[s, v],

is well defined.

In the current setting the space we minimize above, C = {(t, u) ∈ R+ × BV(Ω) |
TV(u; Ω) ≤ t ≤M}, lacks in compactness.
On the one hand C is convex but not weakly compact, as by [13, Thm. 3.31] this would
mean that BV(Ω) was reflexive, but it is not as stated in [14, Ch. 2].
On the other hand, we can also not achieve weak*-compactness by interpreting BV(Ω)
as the dual space of its predual BV(Ω)#. This would have sufficed, as the differential
from Equation (11) can be represented by (α,K#(Ku − f)) ∈ R × BV(Ω)# so with
weak*-compactness any sequence produced in line 2 of the algorithm would have had a
convergent subsequence attaining its limit in C. However, the Banach-Alaoglu Theorem
[15, Thm. 3.16] that would have given the desired weak*-compactness can not be applied
in the current case, as the considered ball {u ∈ BV(Ω) | TV(u; Ω) ≤ M} is not closed
with respect to the Banach space norm ∥ · ∥BV := ∥ · ∥L1 + TV(·; Ω) on BV(Ω) but just
with respect to the seminorm TV(·; Ω), which is not sufficient.
To rectify this issue, there is the need to adjust the set C in order to achieve closedness
of the ball in ∥ · ∥BV. The property that prevents closedness is that the total variation
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is invariant under the addition of constants. This can be seen as for every c ∈ R

TV(u+ c; Ω) = sup
{∫

Ω
(u+ c) divϕ dx

∣∣∣∣ϕ ∈ C1
c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1

}
= sup{

∫
Ω
udivϕ dx+

∫
Ω
cdivϕ dx︸ ︷︷ ︸

=
∫

∂Ω c ϕ·ν dA=0

|ϕ ∈ C1
c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1}

= sup
{∫

Ω
udivϕ dx

∣∣∣∣ϕ ∈ C1
c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1

}
= TV(u; Ω).

In order to prohibit these vertical shifts, we force the functions u ∈ BV(Ω) to satisfy∫
Ω u dx = 0. With the Poincaré-type inequality from [5, Thm. 3.44], stating that for

any u ∈ BV(Ω) with vanishing integral on a bounded connected domain:

∥u∥L1(Ω) =
∫

Ω
|u| dx ≤ D · TV(u; Ω), D ∈ R, depending only on Ω,

we can conclude that this additional restriction also limits the L1−norm of u.
Therefore, every u ∈ C0 with

C0 =
{

(t, u) ∈ R+ × BV(Ω) | TV(u; Ω) ≤ t ≤M,

∫
Ω
u dx = 0

}
(12)

also satisfies

∥u∥BV = TV(u; Ω) + ∥u∥L1(Ω) ≤M +D · TV(u; Ω) ≤ (1 +D) ·M.

Thus, the created set C0 is closed in norm, as any pair (t, u) ∈ C0 satisfies |t| ≤M <∞
and ∥u∥BV ≤ (1+D ·M) <∞ and the Banach-Alaoglu Theorem can be applied in order
to ensure weak*-compactness.

Remark 3.7 (Modified Problem). The new setting in which we want to solve the TV
regularized problem Pα(f) reads as follows:
Let

BV0(Ω) :=
{
u ∈ BV(Ω) |

∫
Ω
u dx = 0

}
. (13)

This still forms a Banach space as it is well-defined under addition and scalar multi-
plication and inherits the Banach space properties from BV(Ω). Moreover define the
adjusted measurement operator and its predual

K0 := K
∣∣
BV0(Ω) : BV(Ω)0 → Y and (K0)# : Y → BV0(Ω)#. (14)
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With this the initial optimization problem (Pα(f)) restricts to

min
u∈BV0(Ω)

Jf,0
α (t, u), Jf,0

α (t, u) = 1
2α |K

0u− f |22 + TV(u; Ω) (PBV0
α (f))

respectively

min
(t,u)∈C0

J̃f,0
α (t, u), J̃f,0

α (t, u) = 1
2 |K

0u− f |22 + αt (P̃BV0
α (f))

with C0 :=
{

(t, u) ∈ R+ × BV0(Ω) | TV(u; Ω) ≤ t ≤M
}

.

Lemma 3.8 (Well-posedness of P̃BV0
α (f)). The optimization problem P̃BV0

α (f) is well-
posed to be solved by the Frank-Wolfe algorithm.

Proof. The differentiability of the objective J̃f,0
α (t, u) can be obtained exactly as in the

proof of Lemma 3.6 with derivative

DJ̃f
α(t, u)[(s, v)] = αs+

∫
Ω

(K0)#(K0u− f) · v dx. (15)

The well-definedness of the minimization step now follows immediately from the con-
siderations before, as we have now assured that C0 is closed and the Banach-Alaoglu
Theorem [15, Thm. 3.16] can be applied.

3.2. Minimization step
The core of the Frank-Wolfe algorithm is the minimization step in line 2 of Algorithm
1, in our application finding

(s[k], v[k]) ∈ argmin
(s,v)∈C0

DJ̃f,0
α (t, u)[s, v].

To characterize solutions of this optimization problem more precisely, we make use of
Proposition 3.3. As proved in the previous section, C0 is nonempty since (t, u) = (t, 0) ∈
C0 for some t ≤ M , weak*-compact and convex. Moreover DJ̃f,0

α (t, u) is linear and
weak*-continuous since it is an element from BV0(Ω)# and thus weak*-continuous by
definition of the weak*-topology. This shows that the requirements of Proposition 3.3
are satisfied and thus the minimizer in each iteration can be found among the extreme
points of the convex set C0.

The aim of the following section is therefore to characterize the extreme points of
C0 =

{
(t, u) ∈ R+ × BV0(Ω) | TV(u; Ω) ≤ t ≤M

}
in order to determine the possible

minimizers that are created in line 2 of Algorithm 1 by minimizing the linear functional
DJ̃f

α .
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Note that extreme points of C0 are of the form

(0, 0) or (M,uext)

with uext an extreme point of the ball BM,0 :=
{
u ∈ BV0(Ω) | TV(u; Ω) ≤M

}
. Thus

the next step is to analyze the structure of the extreme points of BM,0.

3.2.1. Extreme points of the TV ball

This passage is dedicated to characterize the extreme points of BM,0 and relies in large
parts on the work done in [16] and [17].
In the beginning we need to establish some theoretical background.

Definition 3.9 (Perimeter, [5, Def. 3.35]). Let E ⊂ Ω be a measurable set and Ω an
open set in Rn. The perimeter of E in Ω is defined as the total variation of the indicator
function of the set E, i.e.

Per(E; Ω) = TV(1E ; Ω) = sup
{∫

E
divϕ dx | ϕ ∈ C1

c (Ω;Rn), ∥ϕ∥∞ ≤ 1
}
.

A set E has finite perimeter in Ω if Per(E; Ω) <∞ is finite.

Lemma 3.10 ([5, Prop. 3.38]). With the notation from Definition 3.9 one gets the
equality

Per(E; Ω) = Per(Ω \ E; Ω).

The next theorem needed in the following section is the so-called coarea formula. This
gives another characterization of the perimeter of a function.

Theorem 3.11 (Coarea formula, [5, Thm. 3.40]). Let Ω ⊂ Rn be an open set and
u ∈ BV(Ω). Define the sets

U (t) = {x ∈ Ω | u(x) > t}.

Then, the following equality holds:

TV(u; Ω) =
∫ ∞

−∞
Per(U (t); Ω) dt.

Remark 3.12. From Lemma 3.10 one can deduce that the coarea formula also holds for
level sets defined as

Ũ (t) = {x ∈ Ω | u(x) ≤ t}.

Definition 3.13 (Decomposable set, [16, Def. 4.4]). Let E ⊂ Ω be a set of finite
perimeter. E is called decomposable if there exists a partition of E into two sets A
and B i.e. A ∪ B = E and A ∩ B = ∅, such that |A| > 0, |B| > 0 and Per(E; Ω) =
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Per(A; Ω) + Per(B; Ω).
A set of finite perimeter is called indecomposable if it is not decomposable.

This directly leads to the family of simple sets, that are going to play a crucial role in
the characterization of the extreme points of BM,0.

Definition 3.14 (Simple set, [16, Def. 4.5]). A set of finite perimeter E ⊂ Ω is called
simple if both E and Ω \ E are indecomposable.

Definition 3.15 (Measure theoretic interior and exterior, [16]). Let us further define
the measure theoretic interior of E as

E1 :=
{
x ∈ Rd

∣∣ lim
r→0

|E ∩Br(x)|
|Br(x)| = 1

}
,

where Br(x) denotes the ball of radius r around the point x ∈ Rd. Analogously, define
the measure theoretic exterior as

E0 :=
{
x ∈ Rd | lim

r→0

|E ∩Br(x)|
|Br(x)| = 0

}
.

Moreover, the essential boundary of E is defined as ∂∗E = Rd \ (E0 ∪ E1).

Theorem 3.16 (Constancy Theorem, [16, Lem. 4.6]). Let u ∈ BV(Ω) and E ⊂ Ω an
indecomposable set such that

TV(u;E1) = 0.

Then there exists c ∈ R such that u(x) = c almost everywhere in E.

Proof. A proof of the above theorem can be found in [18, Prop. 2.15].

The first step to analyze the extreme points of the target set BM,0 is to understand the
structure of the extreme points of the related set BM

N introduced below in equation (16).

Let N be the nullspace of the total variation, i.e.

N := {u ∈ BV(Ω) | TV(u; Ω) = 0} .

Remark 3.17. Constant functions u ≡ c for some c ∈ R clearly belong to the nullspace of
the total variation, in other words R ⊆ N . Moreover, elements of N need to be constant
on Ω by definition of the total variation. As Ω is a connected set, those functions u
are solely allowed to take a single value on the whole domain, so we get equality, which
means N = R.

The nullspace is a closed subspace of the space of functions of bounded variation and
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thus it is valid to consider the quotient space

BV(Ω)N := BV(Ω)/N = {uN = u+N | u ∈ BV(Ω)}

endowed with the quotient topology. Furthermore, let

TVN : BV(Ω)N → [0,+∞) with TVN (uN ; Ω) := TV(u; Ω).

This describes a well-defined map on the quotientspace BV(Ω)N , as the total variation
is constant on each equivalence class uN . Having this, one can consider the ball of radius
M in the quotientspace BV(Ω)N , defined by

BM
N := {uN ∈ BV(Ω)N | TVN (uN ; Ω) ≤M} . (16)

Remark 3.18. Notice that the set BM,0 can be regarded as a canonical choice of represen-
tatives for the equivalence classes of BM

N , by selecting for each class the unique element
with vanishing mean, which is obtained by subtracting the constant 1

|Ω|
∫

Ω u dx ∈ N
from u.
Thus, it is natural to consider the ball in the quotient space BM

N and determine extreme
points there in order to deduce from these results the extreme points of the desired set
BM,0.

To determine the extreme points of BM
N , denoted by Ext(BM

N ), we base our argument on
Theorem 4.7 from [16], providing a more detailed version of the proof than presented in
the original source. In addition, we adapt both the statement and the proof to the case
where the ball has radius M .

Theorem 3.19 (Extreme points of BM
N , [16, Thm. 4.7]). We have

Ext(BM
N ) =

{
±M · 1E

Per(E; Ω) +N | E simple
}
.

Proof. We proceed to prove the equality of sets above by proving each inclusion sepa-
rately.

Step 1 ("⊆"):

Firstly, note that for any uN ∈ Ext(BM
N ) must hold uN ̸= N . If this was not the

case, i.e. if uN = N , then we could write with any E being a connected simple set
uN = 1

2( 1E
Per(E;Ω) + N ) + 1

2(− 1E
Per(E;Ω) + N ), which is a non-trivial convex combination

contradicting the extremality of uN = N .
Therefore, let uN ∈ Ext(BM

N ) and choose a suitable u ∈ BV(Ω) such that u +N = uN
and u /∈ N . Then TV(u; Ω) ̸= 0. With 0 ̸= TV(u; Ω) = TVN (uN ,Ω) ∈ {0,M}, it is
obvious that TV(u; Ω) = M .
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The next goal is to show that u attains only two values almost everywhere in Ω. There-
fore, define the functional F : [−∞,+∞]→ R by

F (s) =
∫ s

−∞
Per({u(x) ≤ t}; Ω) dt.

This satisfies F (−∞) = 0 and with the Coarea Formula 3.11 and Remark 3.12 follows

F (+∞) =
∫ +∞

−∞
Per({u(x) ≤ t}; Ω) dt = TV(u; Ω) = M.

Moreover, as the function t 7→ Per({u(x) ≤ t}; Ω) is integrable on R, F becomes a
continuous functional. Thus, the intermediate value theorem ([e.g. 19]) can be applied
and yields the existence of an s ∈ R such that F (s) = M

2 . Set

u1 := 2 min(u, s), u2 := 2 max(u− s, 0).

Then

1
2u1 + 1

2u2 = min(u, s) + max(u− s, 0) =


u+ 0 = u , if u < s

u+ 0 = s+ 0 , if u = s

s+ u− s = u , if u > s

 = u.

Furthermore, TV(u1; Ω) = TV(u2; Ω) = M , due to the following calculation.

M

2 = F (s) =
∫ s

−∞
Per({u(x) ≤ t}; Ω) dt =

∫ s

−∞
Per({1

2u1(x) ≤ t}; Ω) dt

=
∫ +∞

−∞
Per({1

2u1(x) ≤ t}; Ω) dt−
∫ +∞

s
Per({1

2u1(x) ≤ t}; Ω)︸ ︷︷ ︸
Lem. 3.10= Per({ 1

2 u1(x)>t};Ω)
1
2 u1≤s

= Per(∅;Ω)=0

dt

=
∫ +∞

−∞
Per({1

2u1(x) ≤ t}; Ω) dt Thm. 3.11= TV(1
2u1; Ω) = 1

2TV(u1; Ω)

⇒ TV(u1; Ω) = M

A similar calculation yields TV(u2; Ω) = M .
We have chosen uN to be an extreme point of BM

N , so uN = (u1)N = (u2)N as the convex
combination from above would not be possible otherwise. Due to Remark 3.17, we can
conclude that there exist c1, c2 ∈ R such that u = u1 + c1 = u2 + c2.
Let x ∈ Ω such that u(x) ≥ s. Then,

u(x) = u1(x) + c1 = 2 ·min(u(x), s) + c1 = 2s+ c1.

Similarly, we get for x ∈ Ω with u(x) < s that

u(x) = u2 + c2 = 2 ·max(u(x)− s, 0) + c2 = c2.
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This observation shows, that u takes at most two values everywhere, namely 2s+ c1 or
c2. From the property that TV(u; Ω) = M ̸= 0, it becomes clear that u cannot be a
constant function and therefore needs to take at least two values, so altogether, u takes
exactly two values. Moreover, from 2s+ c1 ≥ s and c2 < s it follows 2s+ c1 > c2.

As the representatives ũ of the equivalence class uN are of the form ũ = u+c, where c ∈ R
can be chosen arbitrarily, we could pick without loss of generality the representative with
c = −c2 or the one with c = −2s− c1. Then, ũ takes either the values c2 − c2 = 0 and
2s+ c1 − c2 =: a > 0 or the values 2s+ c1 − 2s− c1 = 0 and c2 − 2s− c1 =: a < 0. For
simplicity, ũ will still be denoted by u. Thus, we can suppose that u(x) ∈ {0, a} almost
everywhere.
Now, define the set E := {x ∈ Ω | u(x) = a}. Having this, it is clear, that u needs to
be a scaled version of the characteristic function ±1E , as u vanishes outside of E and is
constant on the inside. To determine the scaling d, we exploit TV(u; Ω) = M . Thus,

M = TV(u; Ω) =TV(d · ±1E ; Ω) = ±d · TV(1E ; Ω) = ±d · Per(E; Ω)

⇒ d = ± M

Per(E; Ω)

and u is of the form u = ±M · 1E
Per(E;Ω) .

It is still left to show, that the constructed set E is a simple set in Ω. Therefore it is
sufficient to show E and Ω \ E are not decomposable.

E is not decomposable:
Let by contradiction E be decomposable. Then, there exists a partition of E in sets
A and B of finite perimeter satisfying Per(A; Ω) > 0, Per(B; Ω) > 0 and Per(E; Ω) =
Per(A; Ω) + Per(B; Ω). Define

u1 = ±M · 1A

Per(A; Ω) and u2 = ±M · 1B

Per(B; Ω) .

With this we get

u =±M · 1E

Per(E; Ω)

= ±M · 1A + 1B

Per(E; Ω) = ±M
(

1A

Per(A; Ω) ·
Per(A; Ω)
Per(E; Ω) + 1B

Per(B; Ω) ·
Per(B; Ω)
Per(E; Ω)

)
= Per(A; Ω)

Per(E; Ω)u1 + Per(B; Ω)
Per(E; Ω)u2

and have found a non-trivial convex combination of u, which forms a contradiction to u
being an extreme point. Therefore, E is an indecomposable set.

Ω \ E is not decomposable:
Again, suppose by contradiction that Ω \ E is decomposable. Let Ω \ E = A ∪ B be a
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suitable decomposition. Define, similar to the above computations,

u1 = ∓M · 1A

Per(A; Ω) and u2 = ±M · 1− 1B

Per(B : Ω) .

With this we get

u =±M · 1E

Per(E; Ω) = ±M ·
1− 1Ω\E

Per(E; Ω) = ±M · 1− 1A − 1B

Per(E; Ω)

= ±M · 1− 1B

Per(B; Ω) ·
Per(B; Ω)
Per(E; Ω) ∓M ·

1A

Per(A; Ω) ·
Per(A; Ω
Per(E; Ω)

= Per(B; Ω)
Per(E; Ω)u2 + Per(A; Ω)

Per(E; Ω)u1

With Lemma 3.10,

Per(A; Ω)
Per(E; Ω) + Per(B; Ω)

Per(E; Ω) = Per(A; Ω) + Per(B; Ω)
Per(Ω \ E; Ω) = Per(Ω \ E; Ω)

Per(Ω \ E; Ω) = 1.

Therefore, the above is again an non-trivial convex combination of u and forms a con-
tradiction for u being an extreme point. This shows that Ω \E is not decomposable and
together with the part above this proves that E is a simple set. Thus, the first inclusion
Ext(BM

N ) ⊆
{
±M · 1E

Per(E;Ω) +N | E simple
}

is proven.

Step 2 ("⊇"):

Now consider the opposite inclusion. Let E ⊂ Ω be a given simple set. Suppose by
contradiction that ±M · 1E

Per(E;Ω) + N is no extreme point of Ext(BM
N ), i.e. there exist

u1, u2 ∈ BV(Ω) with TV(u1; Ω) ≤M, TV(u2; Ω) ≤M and

±M · 1E

Per(E; Ω) +N = λ(u1 +N ) + (1− λ)(u2 +N ),

with λ ∈ (0, 1) and u1 +N ̸= u2 +N .
In the next step we can choose representatives of the classes ui +N with i ∈ {1, 2} and a
representative of ±M 1E

Per(E;Ω) +N , which means to choose arbitrary c0, c1, c2 ∈ R(= N ).
Then:

±M · 1E

Per(E; Ω) + c0 = λ(u1 + c1) + (1− λ)(u2 + c2)

⇔ ±M · 1E

Per(E; Ω) + c = λu1 + (1− λ)u2

(17)

for some c ∈ R, depending on c0, c1 and c2. By building the derivative, this gives the
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equation
±M · D1E

Per(E; Ω) = λDu1 + (1− λ)Du2. (18)

Moreover, for any measurable A ⊂ Ω one gets the equality

M · |D1E |(A)
Per(E; Ω) = λ|Du1|(A) + (1− λ)|Du2|(A). (19)

To show this, it is a quite obvious observation that due to the triangle inequality we
have ” ≤ ” in (19), so it remains to show, that ” < ” is not possible for any A ⊂ Ω.

Proof of (19): Again, show the claim by contradiction. Assume that there exists a
measurable set A ⊂ Ω such that M · |D1E |(A)

Per(E;Ω) < λ|Du1|(A) + (1− λ)|Du2|(A). Then, as
|D1E |(Ω) = TV(1E ; Ω) = Per(E; Ω):

M = M · |D1E |(Ω)
Per(E; Ω)

A∩Ac=∅,
A∪Ac=Ω= M ·

( |D1E |(A)
Per(E; Ω) + |D1E |(Ac)

Per(E; Ω)

)
< λ|Du1|(A) + (1− λ)|Du2|(A) +M · |D1E |(Ac)

Per(E; Ω)
< λ|Du1|(A) + (1− λ)|Du2|(A) + λ|Du1|(Ac) + (1− λ)|Du2|(Ac)
A∩Ac=∅
A∪Ac=Ω= λ |Du1|(Ω)︸ ︷︷ ︸

≤M

+(1− λ) |Du2|(Ω)︸ ︷︷ ︸
≤M

≤M ⇒M < M

This shows that the assumption leads to a contradiction and thus proves (19).

Clearly, |D1E | is just supported on the essential boundary ∂∗E (Def. 3.15), as it is
the derivative of the characteristic function of a set of finite perimeter. Therefore,
|D1E |(E1) = |D1E |(E0) = 0 and with (19), as E1 and E0 are measurable sets, we get

|Du1|(E0) = |Du1|(E1) = |Du2|(E0) = |Du2|(E1) = 0
Prop. 2.5⇔ TV(u1;E0) = TV(u1;E1) = TV(u2;E0) = TV(u2;E1) = 0.

This shows that the requirements of the constancy theorem (Thm. 3.16) are satisfied
for the indecomposable sets E and Ω \ E. Note, that when considering Ω \ E as an
indecomposable set, (Ω \ E)1 = E0. Applying Thm. 3.16, one gets that u1 and u2 are
both constant on E and on Ω \ E, i.e. there are constants c1, c2, d1, d2 ∈ R such that

u1 = d1 · 1E + c1 and u2 = d2 · 1E + c2. (20)

Furthermore, from M = λ ·TV(u1; Ω)+(1−λ) ·TV(u2; Ω) due to Equation (19) and with
TV(u1; Ω) ≤ M as well as TV(u2; Ω) ≤ M by assumption, it follows that TV(u1; Ω) =
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TV(u2; Ω) = M . Combining this with the the explicit formulas from above yields

M = TV(ui; Ω) = TV(di · 1E + ci; Ω) = |di| · TV(1E ; Ω) = |di| · Per(E; Ω)

|di| =
M

Per(E; Ω) > 0 for i ∈ {1, 2}.

The next step is to determine the signs of d1 and d2.

It can be seen that d1 and d2 cannot have an opposite sign. Assume, they had. From
(18) and with Dui = di ·D1E for i ∈ {1, 2} it follows

M · |D1E |(Ω)
Per(E; Ω)︸ ︷︷ ︸

=1

= |λDu1 + (1− λ)Du2|(Ω)

⇔ M = |λd1 ·D1E + (1− λ)d2 ·D1E |(Ω) = |λd1 + (1− λ)d2| · |D1E |(Ω)
⇔ M = |λd1 + (1− λ)d2| · Per(E; Ω)

assumption of
opposite sign

< (λ|d1|+ (1− λ)|d2|) · Per(E; Ω)

=
(
λ

M

Per(E; Ω) + (1− λ) M

Per(E; Ω)

)
· Per(E; Ω) = M

This forms a contradiction, so sign d1 = sign d2.

Moreover the signs of d1 and d2 need to coincide with the sign of ±M · (Per(E; Ω))−1.
This is due to (17):

±M · 1E

Per(E; Ω) + c = λu1 + (1− λ)u2

⇔ ±M · (Per(E; Ω))−1 · 1E + c = λ(d11E + c1) + (1− λ)(d21E + c2)
⇔ ±M · (Per(E; Ω))−1 · 1E + c = (λd1 + (1− λ)d2)1E + (λc1 + (1− λ)c2)

If the prefactor of the characteristic function on the left hand side ±M · (Per(E; Ω))−1

is larger than zero, also the prefactor on the right side λd1 + (1−λ)d2 needs to be larger
than zero to ensure a positive bulge over the set E. This is only possible, if at least
one of d1 and d2 is positive, and with the above considerations also the other one has to
have a positive sign. Similarly, if the left hand prefactor is negative also d1 and d2 have
a negative sign.
Hence, d1 = d2 = ± M

Per(E;Ω) . Now, one can put this into (20) and receive

u1 = ± M

Per(E; Ω)1E + c1 and u2 = ± M

Per(E; Ω)1E + c2
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with c1, c2 ∈ R(= N ), which means

u1 +N = ± M

Per(E; Ω)1E +N = u2 +N .

This contradicts the assumption that ± M
Per(E;Ω)1E +N is no extreme point of Ext(BM

N )
and thus proves the second inclusion of the claim and finishes the proof.

The previous theorem has shown, that there is a good characterization of the extreme
points of BM

N . To derive the extreme points of BM,0, we transfer the calculated extreme
points of BM

N into extreme points of BM,0. To do so, the next theorem can be applied.

Theorem 3.20 ([20, Theorem 9.2.3 ]). Let X and Y be linear spaces, K a convex subset
of X, and A an affine map of X into Y. If A is injective, then

extA(K) = A(extK).

Proof. First of all recall from the definition of affinity [e.g. 20, Definition 9.1.4] that a
map A : X → Y is called affine, if A(tx + (1 − t)y) = tAx + (1 − t)Ay for all x, y ∈ X
and t ∈ [0, 1].

• extA(K) ⊂ A(extK)
Let Ax be an extreme point of A(K). Show that x is an extreme point of K.
Therefore, let x = ty+(1−t)z with y, z ∈ K and t ∈ (0, 1) be a convex combination
of x. Now, apply A on both sides of the convex combination and yield

Ax = A(ty + (1− t)z) A affine= tAy + (1− t)Az.

As Ax was supposed to be an extreme point of A(K), one can conclude Ax =
Ay = Az. As A is injective, also x = y = z, which proves, that x is an extreme
point of K.

• extA(K) ⊃ A(extK)
Now, let x be an extreme point of K and show that Ax is an extreme point of
A(K). Again, let Ax = tAy + (1 − t)Az be a convex combination of Ax, i.e.
Ay,Az ∈ A(K), t ∈ (0, 1). By affinity of A, one gets Ax = A(ty + (1 − t)z) as
above and with injectivity x = ty+ (1− t)z. Due to the choice of x as an extreme
point of K, we can conclude x = y = z, and with this Ax = Ay = Az, which shows
that Ax is an extreme point of A(K).

As explained before and as done in [17, Prop. 3.1], we will use Theorem 3.19 and
Theorem 3.20 to describe the extreme points of BM,0:
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Theorem 3.21 (Extreme points of BM,0, [17, Prop. 3.1]). We have

Ext(BM,0) =
{
± M

Per(E; Ω)
◦
1E | E simple

}

with ◦
u := u− 1

|Ω|
∫

Ω u(x) dx for any u ∈ BV(Ω).

Proof. Consider the setup and notation of Theorem 3.19. We have already shown in
that theorem, that the extreme points of BM

N are of the form

Ext(BM
N ) =

{(
± M

Per(E; Ω) · 1E

)
N
| E simple

}
.

According to Theorem 3.20 we aim at finding an affine and injective map A : BV(Ω)N →
BV0(Ω). Define this map via

A(uN ) := u− 1
|Ω|

∫
Ω
u(x) dx = ◦

u.

Then:

• A is well-defined: Let uN = vN , which means u = v + c for some c ∈ R. Then

A(uN ) = u− 1
|Ω|

∫
Ω
u(x) dx

= v + c− 1
|Ω|

∫
Ω

(v + c)(x) dx

= c− 1
|Ω| |Ω|c︸ ︷︷ ︸
=0

+v − 1
|Ω|

∫
Ω
v(x) dx = A(vN ),

so A is independent of the representative of the equivalence class and thus well-
defined on BV(Ω)N .

• A maps into BV0(Ω): Let uN ∈ BV(Ω)N . Then, A(uN ) clearly is a BV(Ω)-
function, as u ∈ BV(Ω) and the total variation does not change when a constant
c ∈ R is added. Furthermore,∫

Ω
A(uN ) =

∫
Ω

(
u(y)− 1

|Ω|

∫
Ω
u(x) dx

)
dy

= −|Ω|
|Ω|

∫
Ω
u(x) dx+

∫
Ω
u(y) dy = 0,

(21)

so A(uN ) ∈ BV0(Ω).
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• A is affine: Let uN , vN ∈ BV(Ω)N and t ∈ [0, 1].

A(tuN + (1− t)vN︸ ︷︷ ︸
=(tu+(1−t)v)N

) = tu+ (1− t)v − 1
|Ω|

∫
Ω

(tu+ (1− t)v)(x) dx

= t

(
u− 1
|Ω|

∫
Ω
u(x) dx

)
+ (1− t)

(
v − 1
|Ω|

∫
Ω
v(x) dx

)
= tA(uN ) + (1− t)A(vN )

• A is injective: Let A(uN ) = A(vN ). Then:

u− 1
|Ω|

∫
Ω
u(x) dx = v − 1

|Ω|

∫
Ω
v(x) dx

⇔ u− v = 1
|Ω|

∫
Ω

(u− v)(x) dx ∈ R = N

⇒(uN ) = (vN )

Having this, the conditions of Theorem 3.20 are satisfied. Considering the convex set
BM

N , the theorem gives us
extA(BM

N ) = A(ext(BM
N )).

Notice, that A(BM
N ) = BM,0. For the first inclusion let uN ∈ BM

N . Then,

TV(A(uN ); Ω) = TV(u− 1
|Ω|

∫
Ω
u(x) dx; Ω) = TV(u; Ω) ≤M.

With the above considerations in (21) also
∫

ΩA(uN ) = 0, so A(uN ) ∈ BM,0.
On the other hand, let u ∈ BM,0. Then, one can write u = u− 1

|Ω|
∫

Ω u(x) dx ∈ A(uN ), as
the integral of u over Ω is zero. Obviously, uN ∈ BM

N , as TVN (uN ; Ω) = TV(u; Ω) ≤M ,
so u ∈ A(BM

N ). This yields the desired equality A(BM
N ) = BM,0.

Putting everything together, one gets

ext(BM,0) = A(ext(BM
N ))

= A

({(
± M

Per(E; Ω) · 1E

)
N
| E simple

})

=
{
± M

Per(E; Ω) ·
(
1E −

1
|Ω|

∫
Ω
1E(x) dx

)
| E simple

}
=
{
± M

Per(E; Ω) ·
◦
1E | E simple

}
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3.2.2. Optimal simple sets under the truncated Fourier transform

Above we have seen that the minimizing pair (s, v) ∈ C0 that is produced in line 2 of
the Frank-Wolfe algorithm is of the form (s, v) = (0, 0) or (s, v) = (M,± M

Per(E;Ω) ·
◦
1E)

with E being a simple set. The minimization problem in line 2 thus reduces to

argmin
(s,v)∈C0

αs+
∫

Ω
(K0)#(K0u− f) · v dx

= argmin
E simple
ϵ∈{−1,1}

αM +
∫

Ω
(K0)#(K0u− f) · ϵM

Per(E; Ω)
◦
1E dx

= argmin
E simple
ϵ∈{−1,1}

M ·
(
α+ ϵ

Per(E; Ω)

∫
Ω

(K0)#(K0u− f)
(
1E −

1
|Ω|

∫
Ω
1E dy︸ ︷︷ ︸
=|E|

)
dx
)

= argmin
E simple
ϵ∈{−1,1}

M ·
(
α+ ϵ

Per(E; Ω)

(∫
E

(K0)#(K0u− f) dx− |E|
|Ω|

∫
Ω

(K0)#(K0u− f) dx
))

.

Recall that the considered setting requires that (K0)# : Y # = Y → BV0(Ω)#, where
the latter is the predual space of BV0(Ω) and can be characterized as BV0(Ω)# ={
v ∈ BV(Ω)#∣∣ ∫

Ω v dx = 0
}

. Therefore,
∫

Ω(K0)#(K0u − f) dx = 0 and the problem
reduces further to

argmin
E simple
ϵ∈{−1,1}

M ·
(
α+ ϵ

Per(E; Ω)

∫
E

(K0)#(K0u− f) dx
)
.

This is minimized for ϵ = −sign(
∫

E(K0)#(K0u − f)) and the optimal simple sets are
minimizers of the problem

argmin
E simple

− 1
Per(E; Ω)

∣∣∣∣∣∣
∫

E
(K0)# (K0u− f)︸ ︷︷ ︸

=:w

dx

∣∣∣∣∣∣︸ ︷︷ ︸
=:J

. (22)

Here (K0)#w is of the form ∑
|k|∞≤Φwk ·e2πi(x,y)·(k1,k2)(= K#w) as given in (9) with the

additional condition that
∫

Ω(K0)#w dx = 0. As introduced in section 2.3.1 we identify
Ω with [0, 1]2.

Remark 3.22. The condition
∫

Ω(K0)#w dx = 0 can be achieved by forcing w0,0 = 0.
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This can be seen as∫
Ω

(K0)#w dx =
∫

Ω

∑
|k|∞≤Φ

wk · e2πi(x,y)·(k1,k2) dx

=
∑

|k|∞≤Φ
wk ·

∫ 1

0
e2πixk1 dx ·

∫ 1

0
e2πiyk2 dy.

with ∫ 1

0
e2πizki dz =

{
1 if ki = 0
e2πiki −1

2πiki
= 0 if ki ̸= 0.

This can be plugged in above and yields

∫
Ω

(K0)#w dx =
∑

|k|∞≤Φ
wk ·

{
1 if k1 = k2 = 0
0 else

}
= w0,0.

(K0)#w is the combination of trigonometric polynomials and looks as follows:

(K0)#w =
∑

|k|∞≤Φ
wk · e2πi(x,y)·(k1,k2)

=
∑

0≤k1,k2≤Φ
ak1,k2 cos(2πk1x) cos(2πk2y) + bk1,k2 sin(2πk1x) sin(2πk2y)

+ ck1,k2 sin(2πk1x) cos(2πk2y) + dk1,k2 cos(2πk1x) sin(2πk2y),

where the coefficients ak1,k2 , bk1,k2 , ck1,k2 and dk1,k2 depend on w and are in such a way
that the integral over Ω vanishes.

In the following, we want to provide evidence for the assumption that the optimal simple
sets solving (22) may be assumed to be rectangular. The idea, that cutting the possibly
round boundaries of a simple set E may improve the functional J , stems from the
following considerations. Therefore, we look at the individual components of J and
analyze how they react on a cut-off of δ on one side of the set E as illustrated in Figure
2. Here, E is supposed to be the circular area, where (K0)#w is negative.

• Per(E; Ω): Notice that the anisotropic perimeter of an arbitrary connected convex
and bounded simple set E equals the perimeter of the surrounding axis-aligned
rectangle with same heights and same width as E. A proof of this can be found in
the appendix in Lemma A.1. Then,

∆Per(E; Ω) = −2δ

as the upper and lower boundary is shortened by δ each.

• |
∫

E(K0)#w|: The area of the domain cut away is approximately of magnitude
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Figure 2: Illustration of the cut-away of the left edge of the simple set E by δ.

δ ·
√
δ = δ

3
2 . Moreover, the integrand (K0)#w is supposed to be negative on the

set E, and of order δ. Altogether, this yields that the absolute value of the integral
will change by approximately

∆(|
∫

E
(K0)#w)| ≈ −δ · δ ·

√
δ = −δ

5
2 .

The overall change of J that is induced by the curtailment of E is thus given by

∆J = − 1
Per(E; Ω) ·∆

(∣∣∣∣∫
E

(K0)#w)
∣∣∣∣)−∆

( 1
Per(E; Ω)

)
·
∣∣∣∣∫

E
(K0)#w

∣∣∣∣
= − 1

Per(E; Ω) ·∆
(∣∣∣∣∫

E
(K0)#w)

∣∣∣∣)+ 1
Per(E; Ω)2 ·∆Per(E; Ω) ·

∣∣∣∣∫
E

(K0)#w

∣∣∣∣
≈ 1

Per(E; Ω) ·
(
δ

5
2 − 2δ · 1

Per(E; Ω) ·
∣∣∣∣∫

E
(K0)#w

∣∣∣∣) .
Hence, depending on the integral of (K0)#w over E and the perimeter of the set E, it is
possible that a straightening of E by a small δ may improve the objective functional J .
In the proceeding we will determine the optimal simple sets for two exemplary cases
numerically and analyze, whether those numerical examples indicate that the optimal
simple sets can be assumed to be rectangular, when considering the truncated Fourier
transform as measurement operator.
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Example 1 ((K0 )#w)1 = cos(2πx) + cos(2πy)− cos(2πx) cos(2πy)
Note, that

∫
Ω((K0)#w)1 dx = 0, so it is indeed a permitted measurement. To identify

the optimal simple set E, we try three different approaches.

The first approach is to characterize the level sets of ((K0)#w)1 and search for the level
set minimizing J . The second is to start with the outer edges of the level sets and form
rectangles with different heights and widths around them. Lastly, we combine both
approaches, so we start with the level sets and proceedingly cut the edges, such that the
outer edges are horizontal and vertical. Note that there possibly remain level set-shaped
parts connecting the vertical and horizontal segments. The programming code can be
found under https://github.com/lenasme/SlidingFrankWolfe_Thesis_Schmedt.

Figure 3: left: Illustration of ((K0)#w)1 over the domain Ω = [0, 1]2;
right: Top view of the optimal simple sets resulting from different approaches.

level set with value 0: J ≈ −0.17397
optimal level set with value −0.2028: J ≈ −0.19379
optimal set when considering rectangles: J ≈ −0.21213
optimal set when considering the level set approach with horizontal and

vertical cuts: J ≈ −0.21213

Note, that the sets resulting from the combined and the rectangular approach
are in the exact same place.

Figure 3 illustrates the findings. The objective functional J becomes smallest, when
considering the rectangular or the combined approach. Note that both approaches lead
to the same set E that is indeed rectangular.

Example 2 ((K0 )#w)2 = − cos(2πx) cos(2πy) + 1
2 cos(4πx) cos(4πy)

Again,
∫

Ω((K0)#w)2 dx = 0 and with this ((K0)#w)2 forms an admissible measurement
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in our sense. Similar to the first example, we consider the level set, a rectangular and a
combined approach. The numerical results are summed up in Figure 4.

Figure 4: left: Illustration of ((K0)#w)2 over the domain Ω = [0, 1]2;
right: Top view of the optimal simple sets resulting from different approaches.

level set with value 0: J ≈ −0.04791
optimal level set with value −0.2028: J ≈ −0.04947
optimal set when considering rectangles: J ≈ −0.05483
optimal set when considering the level set approach with horizontal and

vertical cuts: J ≈ −0.05573

It can be seen, that the pure level set approach yields the worst outcome for this example,
while the combined approach leads to the best result, as the objective J takes here the
smallest value. Nevertheless, restricting to rectangles does still a good job and J differs
just by approximately 9×10−4 from the best solution, which is a lot better in comparison
to what the best level set does, which produces an error of magnitude 6.3× 10−3.

In conclusion, these two examples indeed indicate that restricting the simple sets to be
rectangular is justified. Even though small mistakes are done as pointed out in the second
example, rectangles yield good approximations of the optimal simple sets. Therefore,
assume in the following that the minimizing functions v[k] that are searched for in line
2 of the Frank-Wolfe algorithm are of the form

v[k] ∈
{
± M

Per(E; Ω)
◦
1E

∣∣E is rectangular
}
. (23)

These findings can be exploited in the formulation of the Frank-Wolfe algorithm. Thus,
the updated algorithm is presented in Algorithm 2, including the results presented in
Theorem 3.21 and Equation (22).
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Algorithm 2 Classic Frank-Wolfe Algorithm (minimization step adapted for PBV0
α (f))

1: for k = 0, . . . , n do
2: Minimize: E∗ ∈ argmin

E rectangular
− 1

Per(E;Ω)

∣∣∣∫E(K0)#(K0u[k] − f) dx
∣∣∣.

3: if dJ(u[k])[s[k] − u[k]] = 0 then
4: u[k] solution of (PBV0

α (f)). Stop.
5: else:
6: Step research: γ[k] ← 2

k+2 or γ[k] ∈ argminγ∈[0,1]J((1− γ)u[k] + γ Mϵ
Per(E∗;Ω)

◦
1E∗).

7: Update: u[k+1] ← (1− γ[k])u[k] + γ[k]( Mϵ
Per(E∗;Ω)

◦
1E∗).

8: end if
9: end for

3.3. Stopping criterion
Having analyzed the minimization step of the Frank-Wolfe algorithm, it is still necessary
to find a practical stopping criterion that can be used in line 3 of Algorithm 2.

Therefore, we want to make use of the primal-dual optimality conditions introduced in
Corollary 3.27. The theorems and definitions that are required accordingly are presented
below.

Definition 3.23 (Subdifferential, [1, Def. 98]). Let X be a Banach space and X∗ its
dual. The subdifferential of a convex function f : X → R ∪ {+∞} in x ∈ X is defined
by

∂f(x) :=
{
x∗ ∈ X∗

∣∣∣∣f(y)− f(x) ≥ ⟨x∗, y − x⟩ for all y ∈ X
}
. (24)

Definition 3.24 (Legendre-Fenchel conjugate, [1, Def. 101]). Let X be a Banach space
and X∗ its dual space. The Legendre-Fenchel conjugate of a convex function f : X →
R ∪+∞ is the function f∗ : X∗ → (−∞,+∞] defined by

f∗(x∗) = sup
x∈X
{⟨x∗, x⟩ − f(x)}. (25)

Theorem 3.25 (Fenchel inequality, [1, Thm. 104]). Let f be proper convex, x ∈ X,x∗ ∈
X∗. Then

⟨x∗, x⟩ = f(x) + f∗(x∗)⇔ x∗ ∈ ∂f(x)⇔ x ∈ ∂f∗(x∗).

Theorem 3.26 (Fenchel duality, [21, Thm. 4.4.3]). Let X and Y be Banach spaces,
F : X → R ∪ {+∞} and G : Y → R ∪ {+∞} be convex functions and K : X → Y a
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linear bounded operator. Assume further that

K domF ∩ contG ̸= ∅.

Then
inf

x∈X
{F (x) +G(Kx)}︸ ︷︷ ︸

primal

= sup
y∗∈Y ∗

{−F ∗(K∗y∗)−G∗(−y∗)}︸ ︷︷ ︸
dual

, (26)

i.e. strong duality holds, and the supremum of the dual problem is attained if finite.

Proposition 3.27 (Primal-dual optimality conditions, [1, Cor. 106]). Let strong duality
hold.

x ∈ X solves the primal and y∗ ∈ Y ∗ the dual problem ⇔
{

Kx ∈ ∂G∗(y∗)
−K∗y∗ ∈ ∂F (x)

The obstacle that arises when we consider the theory above is that there is the need to
know about the dual of the Banach space X. In our application X = BV(Ω), but as
remarked for example in Remark 3.12 of [5], just very little can be said on the dual space
of BV(Ω). To avoid these difficulties, we consider our optimization problem PBV0

α (f) no
longer over the space BV0(Ω) but over the easier to handle space L2,0(Ω), defined as

L2,0(Ω) := {u ∈ L2(Ω) |
∫

Ω
u(x) dx = 0}.

Due to the Embedding Theorem stated in [5, Cor. 3.49] we obtain in our case with
Ω = (R/Z)2 that BV(Ω) embeds continuously into L2(Ω). The same is true for the
restriction on vanishing integrals, which means BV0(Ω) ↪→ L2,0(Ω) and in particular
BV0(Ω) ⊂ L2,0(Ω).

Remark 3.28 (Modified Setting). The optimization problem, no longer viewed over BV0(Ω)
but over the space L2,0(Ω), reads as follows:

min
u∈L2,0(Ω)

Jf,0
α (u) Jf,0

α (u) = 1
2α |K

0u− f |22 + TV(u; Ω). (PL2,0
α (f))

or equivalently

min
(t,u)∈CL2,0

J̃f,0
α (t, u) J̃f,0

α (t, u) = 1
2 |K

0u− f |22 + αt (P̃L2,0
α (f))

with CL2,0 :=
{

(t, u) ∈ R+ × L2,0(Ω) | TV(u; Ω) ≤ t ≤M = |f |22
2α

}
.

According to Proposition 2 of [22], as the proof works the same when restricting to the
space L2,0(Ω), this problem is well-defined and there exists a minimizer u ∈ L2,0(Ω) of
the above problem.
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Moreover, the solutions uBV0 of PBV0
α (f) and uL2,0 of PL2,0

α (f) will coincide since by
definition of the objective functional, the solution uL2,0 has to satisfy uL2,0 ∈ L2,0(Ω) ∩
BV0(Ω), as TV(uL2,0 ; Ω) =∞, otherwise. Therefore, both problems will have the same
solutions and L2,0(Ω)∩BV0(Ω) is the natural space to minimize the objective functional.

3.3.1. Optimality conditions

In order to be able to apply Proposition 3.27, we must first verify that strong duality
holds. To do so, consider Theorem 3.26. To obtain strong duality, we only need to
show that K0 domF ∩ contG ̸= ∅, as the other requirements are satisfied since in our
application F = TV(·,Ω) and G = 1

2α | · −f |
2
2 fulfill convexity and the truncated Fourier

transform K0 is linear and bounded.

Existence of K0v ∈ K0domF ∩ contG:

Let v ≡ 0 ∈ L2,0(Ω). Then, F (v) = TV(v; Ω) = 0 < +∞ and thus v ∈ domF . We
need to show that K0v ∈ contG. This is indeed the case, as G maps w 7→ 1

2α |w − f |
2
2

which is continuous in every w ∈ Y , so in particular in K0v ∈ Y . Therefore, K0v ∈
K0 domF ∩ contG ̸= ∅ and Theorem 3.26 can be applied.

Having this, the strong duality required in Proposition 3.27 is satisfied. Therefore, from
the primal-dual optimality condition we can deduce{

Kx ∈ ∂F ∗(y)
−K∗y ∈ ∂G(x)

}
⇒ x ∈ X solves the primal PL2,0

α (f).

Note that with the Fenchel inequality Theorem 3.25 this condition can be reformulated
in order to get rid of the Legendre-Fenchel conjugate and takes following equivalent form,
when adapted to our application: y ∈ ∂F (Ku) = ∂

(
1

2α |K
0u− f |22

)
−(K0)#y ∈ ∂G(u) = ∂TV(u; Ω)

}
⇒ u ∈ L2,0(Ω) solves the primal PL2,0

α (f).

(27)

Remark 3.29. Since L2,0(Ω) is a Hilbert space, the Riesz representation theorem yields
(K0)∗ = (K0)# and we can identify the adjoint of K0 with the preadjoint.
Moreover, the first condition y ∈ ∂

(
1

2α |K
0u− f |22

)
is equivalent to y = 1

α(K0u− f), as
the subdifferential ∂

(
1

2α | · −f |
2
2

)
is given by its derivative 1

α(· − f).

What remains in order to be able to formulate a specific optimality condition, is to
understand the structure and appearance of the subdifferential ∂TV(·; Ω). This is of
particular interest, as this condition is going to be the core of the stopping criterion,
that will be used in line 3 of the Frank-Wolfe algorithm.
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By Definition 3.23, we get

∂TV(0; Ω) =
{
η ∈ (L2,0)∗(Ω)

∣∣TV(u; Ω)− TV(0; Ω)︸ ︷︷ ︸
=0

≥ ⟨η, u− 0⟩, ∀u ∈ L2,0(Ω)
}

=
{
η ∈ L2,0(Ω)

∣∣ TV(u; Ω)︸ ︷︷ ︸
≥0

≥
∫

Ω
ηu dx, ∀u ∈ L2,0(Ω)

}

holds for all u∈L2,0(Ω)=
{
η ∈ L2,0(Ω)

∣∣TV(u; Ω) ≥
∣∣∣∣∫

Ω
ηu dx

∣∣∣∣ , ∀u ∈ L2,0(Ω)
}
.

(28)

Following the approach presented in Chapter 2.2 of [23], our goal is to express the
subdifferential in terms of sets such that a resulting stopping criterion is consistent with
the representation of solutions of the minimization step in line 2 of the algorithm. In
order to obtain a set-based formulation of the subdifferential some additional tools are
required. On the one hand the Coarea formula which was already introduced in Theorem
3.11 and on the other hand the so-called Layer-Cake formula introduced below.

Proposition 3.30 (Layer-cake formula, [24, Thm. 1.13]). Let u be a measurable and
nonnegative function on Ω. For x ∈ Ω one has

u(x) =
∫ +∞

0
1{x ∈ Ω | u(x) > t}︸ ︷︷ ︸

=:{u>t}

(x) dt.

Remark 3.31. What we are going to need is the applied case of u being nonnegative and
η ∈ L2,0(Ω). Then the Layer-cake formula gives∫

Ω
η(x)u(x) dx =

∫
Ω
η(x)

∫ ∞

0
1{u>t} dt dx

Fubini=
∫ ∞

0

∫
Ω
1{u>t}η(x) dx dt

=
∫ ∞

0

∫
{u>t}

η(x) dx dt.

(29)

Lemma 3.32 (Subdifferential of TV(0; Ω), [23, Chapter 2.2]). The subdifferential of the
total variation at 0 given in (28) can equivalently be expressed via the following set

∂TV(0; Ω) =
{
η ∈ L2,0(Ω)

∣∣∣∣∀E ⊂ Ω with 0 < |E| < +∞ and Per(E; Ω) < +∞ :∣∣∣∣∫
Ω
η

1E

Per(E; Ω) dx
∣∣∣∣ ≤ 1︸ ︷︷ ︸

⇔|
∫

E
η dx|≤Per(E;Ω)

}
. (30)

Proof. To prove the desired equality of sets, we are going to prove both inclusions sep-
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arately.

• (28) ⊂ (30): Let η ∈ (28), i.e. for every u ∈ L2,0(Ω) we have the inequality
|
∫

Ω ηu dx| ≤ TV(u; Ω). Let u =
◦
1E ∈ L2,0(Ω), with E ⊂ Ω such that 0 < |E| <

+∞ and Per(E; Ω) < +∞. Then∣∣∣∣∫
Ω
η

◦
1E dx

∣∣∣∣ ≤ TV(
◦
1E ; Ω).

Note that∣∣∣∣∫
Ω
η

◦
1E dx

∣∣∣∣ =
∣∣∣∣∫

Ω
η ·
(
1E −

1
|Ω|

∫
Ω
1E dy

)
dx
∣∣∣∣ =

∣∣∣∣ ∫
E
η dx−|E|

∫
Ω
η dx︸ ︷︷ ︸
=0

∣∣∣∣ =
∣∣∣∣∫

E
η dx

∣∣∣∣ .

Moreover, TV(
◦
1E ; Ω) = TV(1E ; Ω) = Per(E; Ω), as

◦
1E and 1E just differ by a

constant, which has no effect on the total variation as argued before. Thus, one
gets the inequality ∣∣∣∣∫

E
η dx

∣∣∣∣ ≤ Per(E; Ω)

and can conclude η ∈ (30).

• (30) ⊂ (28): Let u ∈ L2,0(Ω) and let η ∈ (30), i.e. for every E ⊂ Ω with
0 < |E| < +∞ and Per(E; Ω) < +∞ the inequality |

∫
E η| ≤ Per(E; Ω) holds. As

the Layer-cake formula is solely defined for nonnegative functionals, decompose u
in its positive and its negative part, i.e. write u = u+ − u− with

u+(x) := max{u(x), 0} ≥ 0 and u−(x) := max{−u(x), 0} ≥ 0.

With the Coarea formula one gets

TV(u+; Ω) =
∫ +∞

−∞
Per({u+ > t}; Ω) dt =

∫ ∞

−∞
Per({u+ ≤ t}︸ ︷︷ ︸

=∅ ∀t<0

; Ω) dt

=
∫ +∞

0
Per({u+ ≤ t}; Ω) dt =

∫ +∞

0
Per({u+ > t}; Ω) dt

(31)

and similarly

TV(u−; Ω) =
∫ +∞

−∞
Per({u− > t}; Ω) dt =

∫ +∞

0
Per({u− > t}; Ω) dt. (32)

Moreover TV(u; Ω) = TV(u+; Ω) + TV(u−; Ω). This can be seen, as

TV(u; Ω) = sup
{∫

Ω
u+divϕ dx−

∫
Ω
u−divϕ dx

∣∣∣∣ϕ ∈ C1
c (Ω,R2), ∥ϕ∥∞ ≤ 1

}
.
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Note that the support of u+ and u− is disjoint, so the optimal ϕ in the above
equation can be chosen in such a way that ϕ = ϕ1 +ϕ2, where ϕ1 and ϕ2 also have
disjoint support and

TV(u; Ω) = sup
{∫

Ω
u+divϕ1 dx−

∫
Ω
u−divϕ2 dx

∣∣∣∣ϕ1, ϕ2 ∈ C1
c (Ω,R2), ∥ϕ1,2∥∞ ≤ 1

}
minus taken by ϕ2= sup

{∫
Ω
u+divϕ1 dx

∣∣∣∣ϕ1 ∈ C1
c (Ω,R2), ∥ϕ1∥∞ ≤ 1

}
+ sup

{∫
Ω
u−divϕ2 dx

∣∣∣∣ϕ2 ∈ C1
c (Ω,R2), ∥ϕ2∥∞ ≤ 1

}
= TV(u+; Ω) + TV(u−; Ω).

Let E1 := {x ∈ Ω | u+(x) > t} and E2 := {x ∈ Ω | u−(x) > t}. Then, E1,2
satisfy the conditions of (30) and we get by assumption on η∣∣∣∣∣

∫
{x∈Ω|u+(x)>t}

η(x) dx
∣∣∣∣∣ ≤ Per({x ∈ Ω | u+(x) > t}; Ω)

and ∣∣∣∣∣
∫

{x∈Ω|u−(x)>t}
η(x) dx

∣∣∣∣∣ ≤ Per({x ∈ Ω | u−(x) > t}; Ω).

Now integrate both sides over t from 0 to +∞ and obtain∫ +∞

0

∣∣∣∣∣
∫

{u+>t}
η(x) dx

∣∣∣∣∣ dt ≤
∫ +∞

0
Per({u+ > t}; Ω) dt (31)= TV(u+; Ω) (33)

as well as∫ +∞

0

∣∣∣∣∣
∫

{u−>t}
η(x) dx

∣∣∣∣∣ dt ≤
∫ +∞

0
Per({u− > t}; Ω) dt (32)= TV(u−; Ω). (34)

In the end, the aim is to estimate |
∫

Ω ηu dx| ≤ TV(u; Ω). To verify this, start
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with the left hand side.∣∣∣∣∫
Ω
ηu dx

∣∣∣∣ =
∣∣∣∣∫

Ω
η
(
u+ − u−

)
dx
∣∣∣∣ =

∣∣∣∣∫
Ω
ηu+ dx−

∫
Ω
ηu− dx

∣∣∣∣
≤
∣∣∣∣∫

Ω
ηu+ dx

∣∣∣∣+ ∣∣∣∣∫
Ω
ηu− dx

∣∣∣∣
Layer−cake (29)=

∣∣∣∣∣
∫ +∞

0

∫
{u+>t}

η dx dt
∣∣∣∣∣+

∣∣∣∣∣
∫ ∞

0

∫
{u−>t}

η dx dt
∣∣∣∣∣

≤
∫ +∞

0

∣∣∣∣∣
∫

{u+>t}
η dx

∣∣∣∣∣ dt+
∫ ∞

0

∣∣∣∣∣
∫

{u−>t}
η dx

∣∣∣∣∣ dt

(33),(34)
≤ TV(u+; Ω) + TV(u−; Ω) = TV(u; Ω)

This proves that η satisfies the conditions of (28), as u ∈ L2,0(Ω) was chosen
arbitrarily.

In the above considerations both inclusions were shown, so the desired equality of sets
holds.

We have seen, that ∂TV(0; Ω) is given by equation (30). Nevertheless, what is needed for
the primal-dual optimality conditions described in equation (27) based on Proposition
3.27 is ∂TV(u; Ω), where u ̸= 0 is allowed. To understand the structure of ∂TV(u; Ω),
we make use of the following lemma.

Lemma 3.33 ([22, Lem. 10]). Let X be a Hilbert space and F : X → R ∪ {+∞} a
positively 1-homogeneous convex functional. Then, for each x ∈ X we have

∂F (x) =
{
ξ ∈ ∂F (0)

∣∣⟨ξ, x⟩ = F (x)
}
. (35)

As L2,0(Ω) is a Hilbert space and from Propositions 2.8 and 2.7 we have 1-homogeneity
and convexity of the total variation, the above lemma is applicable and leads directly to
the following characterization of the subdifferential of the total variation for an arbitrary
u ∈ L2,0(Ω).

Lemma 3.34 (Subdifferential of TV(u; Ω)). The subdifferential of the total variation of
an arbitrary u ∈ L2,0(Ω) is given by

∂TV(u; Ω) =
{
η ∈ ∂TV(0; Ω)

∣∣∣∣ ∫
Ω
ηu dx = TV(u; Ω)

}
. (36)
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3.3.2. Formulation of a stopping criterion

The next proposition gives a stopping criterion that is applicable in our case.

Proposition 3.35 (Stopping Criterion, [23, Rem. 4]). A valid stopping criterion is
given by

sup
E

|
∫

E η
[k]|

Per(E; Ω) ≤ 1 with η[k] = − 1
α

(K0)#(K0u[k] − f)

together with the modified update step introduced in line 8 of Algorithm 3.
By Lemma 3.32, η[k] ∈ ∂TV(0; Ω) and due to optimality of a[k] in line 8 of Algorithm 3
we have

∫
Ω η

[k]u[k] = TV(u[k]; Ω), so indeed η[k] ∈ ∂TV(u[k]; Ω). This ensures that the
primal-dual optimality conditions from equation (27) are satisfied and u[k] is a solution
of PL2,0

α (f).

This stopping criterion as well as the new update step that is required in the above
proposition to ensure optimality are included in Algorithm 3. Note that the new update
step will decrease the objective more than the standard update step of forming a convex
combination of the existing sets as presented in Algorithms 1 and 2 will do. Thus, the
convergence properties of the algorithm do not break by changing this step.

Algorithm 3 Classic Frank-Wolfe Algorithm (minimization step, stopping criterion and
update step adapted for PL2,0

α (f))
1: for k = 0, . . . , n do
2: η[k] = − 1

α(K0)#(K0u[k] − f);
3: Minimize: E∗ ∈ argmax

E rectangular
1

Per(E;Ω) |
∫

E η
[k]|

4: if |
∫

E∗
η[k]| ≤ Per(E∗; Ω) then

5: u[k] solution of (PL2,0
α (f)). Stop.

6: else:
7: E[k+1] ← (E[k]

1 , . . . , E
[k]
N [k] , E∗)

8: a[k+1] ← argmin
a∈RN [k]+1

Jf,0
α

(∑N [k]+1
i=1 ai

◦
1

E
[k+1]
i

)
9: remove atoms with zero amplitude

10: N [k+1] ← number of atoms in E[k+1]

11: u[k+1] ←
∑N [k+1]

i=1 a
[k+1]
i

◦
1

E
[k+1]
i

12: end if
13: end for

Remark 3.36. Following the argumentation of Remark 3 in [23], we may assume that
for all a ∈ RN the total variation may be expressed via

TV(
N∑

i=1
ai

◦
1Ei ; Ω) = TV(

N∑
i=1

ai1Ei ; Ω) =
N∑

i=1
|ai|Per(Ei; Ω).
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This yields that Jf,0
α

(∑N [k]+1
i=1 ai

◦
1

E
[k+1]
i

)
can be interpreted as a functional of a ∈

RN [k]+1 via

J [k+1]
α (a) = Jf,0

α

N [k]+1∑
i=1

ai

◦
1

E
[k+1]
i

 = 1
2 |K

0
E[k+1]a− f |22 + α

N [k]+1∑
i=1

Per(E[k+1]
i ; Ω) · |ai|.

(37)
Here, K0

E[k+1] : RN [k]+1 → Y and its preadjoint (K0
E[k+1])# : Y → RN [k]+1 are given by

K0
E[k+1]a =

N [k]+1∑
i=1

aiK
0
(◦
1

E
[k+1]
i

)
(K0

E[k+1])#y =
(
⟨

◦
1

E
[k+1]
i

, (K0)#y⟩
)

i=1,...,N [k]+1
.

Proof of Proposition 3.35. The only aspect that needs to be verified in order to prove
that the stated stopping criterion is valid is that the optimality in line 8 ensures

∫
Ω η

[k]u[k] =
TV(u[k]; Ω).
Let u[k] = ∑N [k]

i=1 ai

◦
1

E
[k]
i

. As the (ai)i=1,...,N [k] are optimal for J [k]
α , one gets

0 ∈ ∂J [k]
α (a) =

(
K0

E[k]

)# (
K0

E[k]a− f
)

+ α∂

N [k]∑
i=1

Per(E[k]
i ; Ω) · |ai|


︸ ︷︷ ︸

=:T (a)

⇔− 1
α

(
K0

E[k]

)# (
K0

E[k]a− f
)
∈ ∂T (a).

Note that T is 1-homogeneous. Together with Lemma A.2 from the appendix,

T (a) =
〈
− 1
α

(
K0

E[k]

)# (
K0

E[k]a− f
)
, a

〉
.
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3 Frank-Wolfe algorithm

Putting this together one can conclude

TV(u[k]) =
N [k]∑
i=1

Per(E[k]
i ; Ω) · |ai| = T (a) =

〈
a,− 1

α
(K0

E[k])#(K0
E[k]a− f)

〉

=
〈

(ai)i=1,...,N [k] ,

(
⟨

◦
1

E
[k]
i

,− 1
α

(K0)#(K0u[k] − f)︸ ︷︷ ︸
=η[k]

⟩
)

i=1,...,N [k]

〉

=
N [k]∑
i=1

ai ·
∫

Ω

◦
1

E
[k]
i

η[k] =
∫

Ω

N [k]∑
i=1

ai

◦
1

E
[k]
i

η[k]

=
∫

Ω
u[k]η[k],

which proves that η[k] ∈ ∂TV(u[k]; Ω) and thus ensures optimality of the solution u[k]

once the stopping criterion is satisfied.

3.4. Sliding step
As proposed in [3] in the context of recreating point masses, it is useful to introduce
a sliding step to the classic Frank-Wolfe algorithm. The generated image function u[k],
that is produced by the classic Frank-Wolfe algorithm is not going to be sparse but will
consist of a multitude of simple sets approximating the indicator sets of the ground truth
image u†. This can prevented by the introduction of a sliding step. In each iteration of
the Frank-Wolfe algorithm there will be an additional minimization step over sets and
weights at the same time initialized with the sets and weights computed previously. This
means, in this additional step the sets are allowed to move and errors in location from
former steps may be corrected. Thus, there is not such a strong need to compensate for
small errors with new indicator functions that are created in the next iterations but the
possibility of making corrections to existing indicator functions. The final algorithm fully
adapted to solve problem PL2,0

α (f) including a sliding step therefore reads as follows:

Algorithm 4 Sliding Frank-Wolfe Algorithm (minimization step, stopping criterion and
update step adapted for PL2,0

α (f))
1: for k = 0, . . . , n do
2: η[k] = − 1

α(K0)#(K0u[k] − f);
3: Minimize: E∗ ∈ argmax

E rectangular
1

Per(E;Ω) |
∫

E η
[k]|

4: if |
∫

E∗
η[k]| ≤ Per(E∗; Ω) then

5: u[k] solution of (PL2,0
α (f)). Stop.

6: else:
7: E[k+1] ← (E[k]

1 , . . . , E
[k]
N [k] , E∗);
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3 Frank-Wolfe algorithm

8: a[k+1] ← argmin
a∈RN [k]+1

Jf,0
α

(∑N [k]+1
i=1 ai

◦
1

E
[k+1]
i

)
;

9: remove atoms with zero amplitude;
10: N [k+1] ← number of atoms in E[k+1];
11: perform a local descent on (a,E) 7→ Jf,0

α

(∑N [k+1]
i=1 ai

◦
1

E
[k+1]
i

)
initialized with

(a[k+1], E[k+1]);
12: repeat the operations of lines 8-10;
13: u[k+1] ←

∑N [k+1]
i=1 a

[k+1]
i

◦
1

E
[k+1]
i

;
14: end if
15: end for

Note that Algorithm 4 is still a valid application of the standard Frank-Wolfe algorithm.
The additional reduction of the objective in line 11 does not break convergence properties
and line 12 ensures that also the stopping criterion from Proposition 3.35 remains valid.
The improvement resulting from the additional sliding step will be numerically tested
and compared to the classic Frank-Wolfe algorithm (Algorithm 3) in the next section.
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4 Numerical implementation and results

4. Numerical implementation and results
4.1. Implementation details
The complete implementation and source code used in this thesis can be accessed via
https://github.com/lenasme/SlidingFrankWolfe_Thesis_Schmedt.
To test Algorithm 3 and its sliding version, Algorithm 4, we need to implement the
ground truth as described in equation (7) with the additional property that the integral
vanishes over Ω = [0, 1]2, i.e. u† ∈ BV0(Ω). To do so, we make use of the implementation
that was proposed in [2]. With this construction of u† the consistent gradient direction
is maintained and thus the requirements of Theorem 2.13 are satisfied, so convergence
in the described sense can be expected. To reduce the computational effort, we restrict
to at most three jumps in vertical as well as in horizontal direction. This means u† is of
the form

u† =
M∑

m=1

N∑
n=1

u†
mn

◦
1[xm,xm+1[×[yn,yn+1[

with M,N ≤ 4. Moreover the minimal distance between the jump points is restricted
to the interval I = [0.075, 0.095].

ground truth 1 ground truth 2

Figure 5: Two examples of a valid ground truths with periodic boundary conditions.

In order to apply Algorithm 4 it is necessary to develop an implementation of

• the minimization in line 2 to find the optimal set E∗;

• the minimization in line 8 to find the optimal weights a[k+1] for existing sets E[k+1];

• the local descent in line 11 on

(a,E) 7→

1
2 |

N [k]+1∑
i=1

aiK
0(

◦
1

E
[k+1]
i

)− f |22 + α
N [k]+1∑

i=1
Per(E[k+1]

i ; Ω) · |ai|

 .
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4 Numerical implementation and results

Line 2:

We split the minimization step of the algorithm that is carried out in line 2 into two
separate minimizations. Firstly, we perform a coarse convex minimization which ensures
that we end up in a global minimum. Afterwards, the optimal set E∗ ∈ argmin

E simple

Per(E;Ω)
|
∫

E
η[k]|

is determined directly, initialized with the results from the first minimization step.

Concerning the coarse convex optimization, the initial minimization problem that needs
to be solved in line 2 is to find a minimizer

(s, v) s.t. TV(v; Ω) ≤ s ≤M of DJ̃f,0
α (t, u)(s, v) = αs+

∫
Ω

(K0)#(K0u− f) · v dx.
(I)

This was derived in equation (11) but is not a convex problem. However, given a
minimizer (s∗, v∗) of (I), the pair ( s∗

M ,− v∗

M ) is a solution of

argmin
TV(v)≤s≤1

s − 1
α

∫
Ω
K#(Ku− f) · v dx︸ ︷︷ ︸

=
∫

Ω η·v dx

. (II)

Note that clearly s = TV(v) as a larger choice of s would be suboptimal. Moreover, for
any minimizer (s, v) of (II), TV(v) = 1. Suppose, this was not the case, i.e. TV(v) =
r < 1. Then, ṽ = v

r still satisfies TV(ṽ) ≤ 1 and

TV(ṽ) +
∫

Ω
η · ṽ dx = TV(v) +

∫
Ω η · v dx
r

< TV(v) +
∫

Ω
η · v dx.

This contradicts the assumed optimality of v, so indeed for any minimizing pair (s, v)
of (II) we have TV(v) = s = 1. Thus, the first summand in (II) has no influence on the
minimizer and the optimization reduces to

argmin
TV(v)≤1

∫
Ω
η · v dx. (III)

This is a convex problem and thus the minimization terminates in a global minimum.
Moreover, a solution of (III) just differs from a solution of (I) by a scalar, which has no
influence on the shape but solely on the intensity of v. Therefore, (III) can be solved
instead of (I) in order to determine an optimal set E∗.
The algorithm that solves (III) on a coarse grid and extracts the boundaries of a level set
of the solution v was done in [23] by using a primal-dual algorithm. Denote the created
set by Ẽ.
To compute an optimal simple set E∗ minimizing the quotient Per(E;Ω)

|
∫

E
η[k]| , we restrict our-

selves to rectangular sets instead of general simple sets as justified in Section 3.2.2.
Starting from an initial rectangle induced by the boundary of Ẽ, which ensures global
optimality, we refine the set through a gradient-based optimization procedure, a Limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm with bounds (L-BFGS-B).
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The terms that are passed to the optimization must depend on the outer coordinates
of the axis-aligned rectangle E = [xmin, xmax] × [ymin, ymax], denoted by the tuple
(xmin, xmax, ymin, ymax) ∈ [0, N ]4, where N is the size of the underlying grid. There-
fore, the perimeter is given by

Per(E; Ω) = 2 · ((xmax − xmin) + (ymax − ymin))

and its partial derivatives by

∂Per(E;Ω)
∂xmin

= −2 ∂Per(E;Ω)
∂xmax

= 2 ∂Per(E;Ω)
∂ymin

= −2 ∂Per(E;Ω)
∂ymax

= 2.

For the computation of |
∫

E η| recall that η = − 1
α(K0)#(K0u − f) with K0 being the

truncated Fourier transform with cut-off frequency Φ and (K0)# its inverse mapping
into the space with vanishing integral. By not taking the factor − 1

α into account as
it does not influence the minimizing set and denoting w = K0u − f for simplicity,∫

E η̃ dx :=
∫

E(K0)#w dx is of the following form:

∫
E
η̃ dx =

∫ xmax

xmin

∫ ymax

ymin
η̃ dy dx =

Φ∑
k1=−Φ

Φ∑
k2=−Φ

wk1,k2 · I(k1, k2)

with

I(k1, k2) =



1
−(2π)2k1k2

(
exp(2πik1xmax + k2ymax

N
)− exp(2πik1xmax + k2ymin

N
)

− exp(2πik1xmin + k2ymax
N

) + exp(2πik1xmin + k2ymin
N

)
) if k1, k2 ̸= 0

1
N2πik2

((
exp(2πik2ymax

N
)− exp(2πik2ymin

N
)
)
· xmax

+
(

exp(2πik2ymin
N

)− exp(2πik2ymax
N

)
)
· xmin

) if k1 = 0, k2 ̸= 0

1
N2πik1

((
exp(2πik1xmax

N
)− exp(2πik1xmin

N
)
)
· ymax

+
(

exp(2πik1xmin
N

)− exp(2πik1xmax
N

)
)
· ymin

) if k2 = 0, k1 ̸= 0

0 if k1 = k2 = 0.

Here, the vanishing integral of η̃ is ensured by setting I(0, 0) = 0. This excludes the
entry w0,0 from the frequency space denoting the mean value of η̃ as explained in Remark
3.22.
The partial derivatives of the integral with respect to the coordinates can be computated
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analytically in a straightforward manner, as exemplified for xmin below.

∂

∂xmin

∫
E
η̃ dx =

Φ∑
k1=−Φ

Φ∑
k2=−Φ

wk1,k2 ·
∂

∂xmin
I(k1, k2)

with

∂

∂xmin
I(k1, k2) =



i

−2πk2N

(
− exp(2πik1xmin + k2ymax

N
)

+ exp(2πik1xmin + k2ymin
N

)
) if k1, k2 ̸= 0

1
N2πik2

(
exp(2πik2ymin

N
)− exp(2πik2ymax

N
)
)

if k1 = 0, k2 ̸= 0

1
N2

((
− exp(2πik1xmin

N
)
)
· ymax

+
(

exp(2πik1xmin
N

)
)
· ymin

) if k2 = 0, k1 ̸= 0

0 if k1 = k2 = 0.

Finally, the gradient that is transferred to the L-BFGS-B is obtained via quotient rule:

∇Per(E; Ω)
|
∫

E η̃|
= sign

(∫
E
η̃

)
· ∇(Per(E; Ω)) ·

∫
E η̃ −∇(

∫
E η̃) · Per(E; Ω)

(
∫

E η̃)2

Line 8:

Let the current function at iteration k be of the form ∑N [k]+1
i=1 ã

[k+1]
i

◦
1

E
[k+1]
i

with E[k+1] =

(E[k]
1 , . . . , E

[k]
N [k] , E∗), ã[k+1] = (a[k]

1 , . . . , a
[k]
N [k] , 1) and N [k] + 1 the number of rectangular

sets. The aim of line 8 of Algorithm 4 is to improve the weights ã[k+1]
i after the new

rectangle E∗ is added. Note, that we optimize over all weights and not just the new
one corresponding to E∗. Again, a L-BFGS-B is used with optimization parameters
a ∈ [−1, 1]N [k]+1. The objective that is passed to the algorithm is of the form

a 7→

1
2 |

N [k]+1∑
i=1

aiK
0(

◦
1

E
[k+1]
i

)− f |22 + α
N [k]+1∑

i=1
Per(E[k+1]

i ; Ω) · |ai|


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as stated in equation (37) and can be formulated equivalently by denoting E
[k+1]
j =

[xj
min, x

j
max]× [yj

min, y
j
max] and plugging in the truncated Fourier transform by

a 7→
(

1
2

Φ∑
k1,k2=−Φ

∣∣∣N [k]+1∑
j=1

aj ·
∫ xj

max

xj
min

∫ yj
max

yj
min

exp(−2πi(xk1 + yk2
N

)) dy dx︸ ︷︷ ︸
=:Hj(k1,k2)

−fk1,k2

∣∣∣2
2

+ α
N [k]+1∑

j=1
2|aj | · ((xj

max − x
j
min) + (yj

max − y
j
min))

)
.

(38)

Note that Hj(k1, k2) and fk1,k2 are complex as they stem from the Fourier frequency
space. Thus, the partial derivatives of 1

2
∑

k |
∑

j ajH
j(k1, k2)− fk1,k2 |22 in the directions

r ∈ (a, xmin, xmax, ymin, ymax) are of the form

∂

∂r

1
2
∑

k

|
∑

j

ajH
j(k1, k2)− fk1,k2 |22

= ∂

∂r

1
2
∑

k

(
(
∑

j

ajH
j(k1, k2)− fk1,k2) · (

∑
j

ajHj(k1, k2)− fk1,k2)
)

= 1
2
∑

k

( ∂
∂r

(
∑

j

ajH
j(k1, k2)) · (

∑
j

ajHj(k1, k2)− fk1,k2)

+ (
∑

j

ajH
j(k1, k2)− fk1,k2) · ∂

∂r
(
∑

j

ajHj(k1, k2))
)

=
∑

k

ℜ
( ∂
∂r

(
∑

j

ajH
j(k1, k2)) · (

∑
j

ajHj(k1, k2)− fk1,k2)
)

(39)

In line 8 of the algorithm, r = a and for any i ∈ {1, . . . , N [k] + 1} :

∂

∂ai

N [k]+1∑
j=1

ajH
j(k1, k2) = ai ·H i(k1, k2),

so the overall gradient that is passed to the L-BFGS-B consists of N [k] + 1 partial
derivatives of the form

∂

∂ai
=

Φ∑
k1,k2=−Φ

ℜ
(
ai ·H i(k1, k2) ·

(
(
N [k]+1∑

j=1
ajHj(k1, k2)− fk1,k2)

))
+ 2α · ((xi

max − xi
min) + (yi

max − yi
min)) · sign(ai).

(40)

The double integral Hj(k1, k2) =
∫ xj

max
xj

min

∫ yj
max

yj
min

exp(−2πi(xk1+yk2
N )) dy dx that appears in

the objective as well as in the gradient can be computed analytically and is implemented
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similar to I(k1, k2) from line 2 of the algorithm in the following way:

Hj(k1, k2) =



N2

−(2π)2k1k2

(
exp(−2πik1x

j
max + k2y

j
max

N
)

− exp(−2πik1x
j
max + k2y

j
min

N
)

− exp(−2πik1x
j
min + k2y

j
max

N
)

+ exp(−2πik1x
j
min + k2y

j
min

N
)
)

if k1, k2 ̸= 0

N

2πik2

((
− exp(−2πik2y

j
max
N

) exp(−2πik2y
j
min
N

)
)
· xj

max

+
(

exp(−2πik2y
j
max
N

)− exp(−2πik2y
j
min
N

)
)
· xj

min

) if k1 = 0, k2 ̸= 0

N

2πik1

((
− exp(−2πik1x

j
max
N

) + exp(−2πik1x
j
min
N

)
)
· yj

max

+
(

exp(−2πik1x
j
max
N

)− exp(−2πik1x
j
min
N

)
)
· yj

min

) if k2 = 0, k1 ̸= 0

0 if k1 = k2 = 0.

Line 11:

The objective that is supposed to be reduced in line 11 of Algorithm 4 is similar to
equation (38). What differs here is that we do not solely optimize over the weights ai

but at the same time over all boundaries of existing rectangles. Again, a L-BFGS-B
algorithm is used to find parameters (ai, x

i
min, x

i
max, y

i
min, y

i
miax) ∈ [−1, 1] × [0, N ]4 with

i ∈ {1, . . . , N [k+1]} that reduce the objective. With the notation from above the objective
can be written via

(a, xmin, xmax, ymin, ymax) 7→
(

1
2

Φ∑
k1,k2=−Φ

∣∣∣N [k]+1∑
j=1

aj ·Hj(k1, k2)− fk1,k2

∣∣∣2
2

+ α
N [k]+1∑

j=1
2|aj | · ((xj

max − x
j
min) + (yj

max − y
j
min))

)
.

What remains is the computation of the partial derivatives concerning the coordinates,
as ∂

∂ai
has already been determined in equation (40). As H i(k1, k2) depends on the

coordinates of the i-th rectangle, we need to compute partial derivatives of H i(k2, k2)
for xi

min, x
i
max, y

i
min, y

i
max. Again, we will just formulate this explicitly for xi

min as the
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remaining coordinates follow similarly by calculation.

∂

∂xi
min

H i(k1, k2) =



iN

−2πk2

(
exp(−2πik1x

i
min + k2y

i
max

N
)

− exp(−2πik1x
i
min + k2y

i
min

N
)
) if k1, k2 ̸= 0

N

2πik2

(
exp(−2πik2y

i
max
N

)− exp(−2πik2ymin
N

)
)

if k1 = 0, k2 ̸= 0

(
− exp(−2πik1x

i
min
N

)
)
· yi

max

+
(

exp(−2πik1x
i
min
N

)
)
· yi

min

if k2 = 0, k1 ̸= 0

0 if k1 = k2 = 0.

4.2. Numerical results
In this section the created algorithms are tested on the image sources created in Figure
5. We are going to display how the classic Frank-Wolfe algorithm (Algorithm 3) and its
sliding variation (Algorithm 4) work and how their reconstructed results differ.

The noise strength 1
2 |f − f

†|22 ≤ δ that is considered in the experiments is δ = 10−2

and according to [2] the regularization parameter is chosen as α = C
√
δ with C = 1

0.028 .
In both presented examples the classic Frank-Wolfe algorithm as well as the sliding
version are applied on input data generated by a truncated Fourier transform with cut-
off frequency Φ = 5 and Φ = 18. The reconstructed images and their corresponding
deviations from the ground truth are illustrated in Figures 6 to 9.
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1a) 1b) 1c)

1d) 1e)

Figure 6: Output of the reconstruction with classic Frank-Wolfe algorithm for different
cut-off frequencies Φ. 1a) ground truth 1, 1b) classic FW, Φ = 5, 1c) classic
FW, Φ = 18, 1d) difference of 1a) and 1b), 1e) difference of 1a) and 1c).

1a′) 1b′) 1c′)

1d′) 1e′)

Figure 7: Output of the reconstruction with sliding Frank-Wolfe algorithm for different
cut-off frequencies Φ. 1a′) ground truth 1, 1b′) classic FW, Φ = 5, 1c′) classic
FW, Φ = 18, 1d′) difference of 1a′) and 1b′), 1e′) difference of 1a′) and 1c′).
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2a) 2b) 2c)

2d) 2e)

Figure 8: Output of the reconstruction with classic Frank-Wolfe algorithm for different
cut-off frequencies Φ. 2a) ground truth 2, 2b) classic FW, Φ = 5, 2c) classic
FW, Φ = 18, 2d) difference of 2a) and 2b), 2e) difference of 2a) and 2c).

2a′) 2b′) 2c′)

2d′) 2e′)

Figure 9: Output of the reconstruction with sliding Frank-Wolfe algorithm for different
cut-off frequencies Φ. 2a′) ground truth 2, 2b′) classic FW, Φ = 5, 2c′) classic
FW, Φ = 18, 2d′) difference of 2a′) and 2b′), 2e′) difference of 2a′) and 2c′).
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The reduction of the objective

JL2,0
α = 1

2 |
N [k]+1∑

i=1
aiK

0(
◦
1

E
[k+1]
i

)− f |22 + α
N [k]+1∑

i=1
Per(E[k+1]

i ; Ω) · |ai|

as well as the number of iterations that are required to obtain the results from Figures
6 to 9 are displayed in Figure 10. Here the maximum number of iterations is limited
by N=20 due to the computation time. Note that the scale of the y-axis is algorithmic
and the bottom black dashed line represents the objective value of the ground truth.
In its computation the fidelity term is ignored as it is of magnitude δ = 10−2 and thus
negligible.

Looking at the differences between the SFW and classic FW we notice that the SFW
reduces the objective more than the classic FW does for either ground truths. With
both tested cut-off frequencies the SFW produces a lower objective than the classic FW
for any of the tested Φ ∈ {5, 18}. Comparing the results for different cut-off frequencies
but the same algorithm, it is remarkable that with a lower Φ the objective is reduced
more. This can be explained with the fidelity term of Jf,0

α . K0 produces an image with
at most (2Φ + 1)2 nonzero entries, where a deviation from f may occur. This means for
inaccurate results the error of the fidelity term rises with increasing cut-off frequency Φ,
which can be noticed in Figure 10 for both tested ground truths.

a) b)

Figure 10: Development of the objective Jf,0
α in the course of iterations. a) considered

ground truth 1 (reconstructions from Figures 6 and 7); b) considered ground
truth 2 (reconstructions from Figures 8 and 9).

Figure 11 displays the development of the ℓ1-error of the reconstructions. One can
observe that the two exemplary ground truths provide different results regarding the
ℓ1-error estimation.

Figure 11a) shows that regardless of the accuracy of the input image, i.e. for Φ = 5
and Φ = 18, the SFW provides a result with lower ℓ1-error than the standard FW.
Moreover, the SFW in case of Φ = 18 yields the reconstruction with smallest ℓ1-error
in least iterations at the same time. This differs in the second example. In case of
Φ = 5, the SFW still produces the reconstruction with lower ℓ1-error in comparison to
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the classic FW, but for Φ = 18, the SFW result is considerably worse than the classic
FW result in terms of ℓ1-error.

a) b)

Figure 11: ℓ1-error of the reconstructed image in the course of iterations. a) considered
ground truth 1 (reconstructions from Figures 6 and 7); b) considered ground
truth 2 (reconstructions from Figures 8 and 9).

The main advantage of the sliding Frank-Wolfe is its accuracy when it comes to the
recovery of the jump points of the ground truth images and its sparseness. Figure 12
illustrates the gradient supports of the reconstructed images for both examples as well
as the gradient support of the ground truth image.
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a) ground truth 1, Φ = 5 b) ground truth 1, Φ = 18

c) ground truth 2, Φ = 5 d) ground truth 2, Φ = 18

Figure 12: Visualization of the gradient support of the reconstructions and in black the
gradient support of the ground truths. The number of rectangles the recon-
structed images are made of: a) SFW: 5, FW: 15; b) SFW: 5, FW: 7; c)
SFW: 8, FW: 15; d) SFW: 7, FW: 14.
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5. Conclusion and outlook
In this thesis, we analyzed the classic Frank-Wolfe algorithm as well as the sliding Frank-
Wolfe algorithm applied on TV regularized inverse problems, in particular in order to
reconstruct piecewise constant functions from a truncated Fourier image. As seen in
the last chapter, a key benefit of the approach including a sliding step is its ability
to accurately recover sharp edges from the underlying signal and establish a sparse
reconstruction.

There are numerous instances where this is highly desirable. As indicated in the intro-
duction, the accurate localization of tissue boundaries can be crucial for diagnosis in
medical imaging. Similar to this, the interpretation of subsurface structures in geophys-
ical or seismic imaging can be greatly impacted by the ability to accurately detect layer
transitions. Furthermore, the numerical findings reveal that the SFW outperforms the
traditional FW in difficult setups with little data information, in addition to produc-
ing visually sharper reconstructions. This indicates that the SFW is quite suitable in
practical scenarios as often only incomplete and inexact measurement data, such as a
truncated Fourier transform with small cut-off frequency, are given.

Despite these promising outcomes, several open directions remain. One natural next step
is to improve the computational performance of the algorithm especially when extensive
data needs to be processed. This particularly includes the computation of gradients,
which is required in every minimization step. The computation becomes very costly for
a high cut-off frequency Φ of the measurement operator or for rising number of sets that
need to be reconstructed.
Additionally, the implemented SFW algorithm could be improved in order to reduce
the ℓ1-error of the reconstruction. As previously stated, this is not of primary interest;
however, it would contribute to improving the reconstructions overall accuracy and visual
quality.

All things considered, the strategy that has been presented establishes a basis for ad-
ditional investigation into edge-preserving techniques for inverse problems, which could
serve a wide range of purposes.
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A. Subsidiary statements
Total variation computation
Lemma A.1. The anisotropic perimeter of a connected convex and bounded set E equals
the length of the edges of the surrounding axis-aligned rectangle.

Proof. Without loss of generality consider the two-dimensional setting. Let E be a
bounded connected set and Ω ⊂ R2 be an open set. Recall that the perimeter of E in Ω
is defined by

Per(E; Ω) = sup
{∫

E
divϕ(x) dx | ϕ ∈ C1

c (Ω;R2); ∥ϕ∥∞ ≤ 1
}

= sup
{∫

∂E
ϕ · ν dA | ϕ ∈ C1

c (Ω;R2); ∥ϕ∥∞ ≤ 1
}
,

where ν denotes the outer unit normal and A the surface measure.
Ignoring the constraints one can observe that the supremum of

∫
∂E ϕ · ν dA is attained

for ϕi = sign(νi) with i ∈ {1, 2} on ∂E. Then,∫
∂E
ϕ · ν dA =

∫
∂E
|ν| dA =

∫
∂E
|ν1|+ |ν2|dA.

With the definitions as introduced in Figure 13 such a ϕ can be defined on the whole
domain Ω by

ϕ1(x) =


−1 on ∂E3,

1 on ∂E4,

∈ [−1, 1] otherwise
ϕ2(x) =


1 on ∂E1,

−1 on ∂E2,

∈ [−1, 1] otherwise.

However, this ϕ cannot be a C1
c (Ω;R2)-function, as ϕ1 is discontinuous on ∂E, where

∂E3 and ∂E4 meet, i.e. where x2 = xb
2 and x2 = xt

2. In these points, there is a jump
from −1 to 1 or vice versa. Exactly the same is true for ϕ2, in the points where ∂E1
and ∂E2 meet. Nevertheless, e.g. by [15, Cor. 4.23], for Ω ⊂ RN an open set, C∞

c (Ω)
is dense in Lp(Ω) for any 1 ≤ p <∞. As Ω is open and bounded and ϕ1 and ϕ2 clearly
are L1(Ω)-functions, the corollary is applicable. Thus, there are sequences of C∞

c (Ω)-
functions (ϕ1)n and (ϕ2)n that approximate ϕ1 and ϕ2 with arbitrary accuracy and one
can conclude that ϕ is indeed the supremum of the set above.
To prove the desired statement it remains to show Per(E; Ω) =

∫
∂E |ν1| + |ν2| dA !=

2|xr
1 − xl

1|+ 2|xt
2 − xb

2|. Consider
∫

∂E |ν1| dA and
∫

∂E |ν2| dA separately.

•
∫

∂E |ν2| dA:
Let ∂E1 and ∂E2 be defined as before in Figure 13. Then

∫
∂E |ν2| dA =

∫
∂E1
|ν2| dA+∫

∂E2
|ν2| dA.
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Figure 13: Two partitions of the boundary of E and identification of the outermost points
xl

1, x
r
1, x

b
2 and xt

2 of E. Note, that ∂E = ∂E1 ∪ ∂E2 = ∂E3 ∪ ∂E4 with
∂E1 ∩ ∂E2 = ∅ and ∂E3 ∩ ∂E4 = ∅.

Concerning the first summand, let ∂E1 be parametrized by x2 = p1(x1). Then:∫
∂E1
|ν2| dA =

∫ xr
1

xl
1

|ν2(p1(x1))| ·
√

1 + |p′
1(x1)|2 dx1

with ν(p1(x1)) = 1√
1+|p′

1(x1)|2
·
(
−p′

1(x1)
1

)
. This gives

∫
∂E1
|ν2| dA =

∫ xr
1

xl
1

1√
1 + |p′

1(x1)|2
·
√

1 + |p′
1(x1)|2 dx1

=
∫ xr

1

xl
1

1 dx1 = |xr
1 − xl

1|.

Similarly, for ∂E2 parametrized by x2 = p2(x1), the outer unit normal is of the

form ν(p2(x1)) = 1√
1+|p′

2(x1)|2
·
(
p2(x1)′

−1

)
. With the former computations this

yields ∫
∂E2
|ν2| dA =

∫ xr
1

xl
1

| − 1|√
1 + |p2(x1)′|2

·
√

1 + |p2(x1)′|2 dx1 = |xr
1 − xl

1|.
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Putting this together, one gets:∫
∂E
|ν2| dA = 2 · |xr

1 − xl
1|.

•
∫

∂E |ν1| dA:
With the same argumentation as above and the partition of ∂E into ∂E3 and
∂E4 with associated parametrisations x1 = p3(x2) and x1 = p4(x2) one gets a
quite similar result as before. Note that the outer unit normal vectors of the
parametrisations are given by

ν(p3(x2)) = 1√
1 + |p3(x2)′|2

·
(

−1
−p3(x2)′

)

and ν(p4(x2)) = 1√
1 + |p4(x2)′|2

·
(

1
p4(x2)′

)
.

Plugging this in, one gets∫
∂E
|ν1| dA =

∫
∂E3
|ν1| dA+

∫
∂E4
|ν1| dA

=
∫ xt

2

xb
2

| − 1|√
1 + |p3(x2)′|2

·
√

1 + |p3(x2)′|2 dx2

+
∫ xt

2

xb
2

1√
1 + |p4(x2)′|2

·
√

1 + |p4(x2)′|2 dx2

= 2 · |xt
2 − xb

2|

Putting everything together, one can conclude

Per(E; Ω) =
∫

∂E
|ν1|+ |ν2| dA = 2 · |xr

1 − xl
1|+ 2 · |xt

2 − xb
2|

which equals the length of the edges of the surrounding rectangle and shows the claim.

Property of subgradients of 1-homogeneous functional
Lemma A.2 (Euler’s Homogeneous Function Theorem, [25, Thm. 3.1.21]). Let a func-
tion T be convex and subdifferentiable on its domain. If it is homogeneous of degree
p ≥ 1, i.e. if

T (τx) = τp T (x) ∀x ∈ domT, τ ≥ 0, (41)

then
⟨g, x⟩ = pT (x) ∀x ∈ domT, ∀g ∈ ∂T (x). (42)
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Proof. The proof stems from [25] and is stated here for completeness. Let x ∈ domT
and g ∈ ∂T (x). Then for any τ ≥ 0 one gets with the provided p-homogeneity (Equation
(41)) and the definition of the subdifferential (Definition 3.23)

τp T (x) = T (τx) ≥ ⟨g, τx− x⟩+ T (x) = (τ − 1)⟨g, x⟩+ T (x). (43)

As this inequality holds for all τ ≥ 0, consider τ < 1 and τ > 1 seperately to estimate
Equation (42) in both directions.

• τ > 1 : This choice of τ yields with Equation (43)

τp − 1
τ − 1 T (x) ≥ ⟨g, x⟩.

Now take the limit τ ↓ 1. This gives with the l’Hospital rule (e.g. [26, Thm. 10],
originally stated as Satz 10):

lim
τ↓1

τp − 1
τ − 1 T (x) = lim

τ↓1

pτp−1

1 T (x) = pT (x) ≥ ⟨g, x⟩.

• τ < 1 : Again, Equation (43) gives

1− τp

1− τ T (x) ≤ ⟨g, x⟩.

Taking the limit τ ↑ 1 the l’Hospital rule yiels

lim
τ↑1

1− τp

1− τ T (x) = lim
τ↑1

−pτp−1

−1 T (x) = pT (x) ≤ ⟨g, x⟩.

From the above considerations we can now conclude that pT (x) = ⟨g, x⟩ holds for all
x ∈ domT and every g ∈ ∂T (x).
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