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1 Introduction

It is often said that mathematics is the language of the universe and nowhere this can be

seen clearer than in the area of (partial) dierential equations. As Steven Strogatz said in an

article in the New York Times [Strogatz [2009]]:

“In the 300 years since Newton, mankind has come to realize that the laws of

physics are always expressed in the language of dierential equations.”

The heat equation (see below) and the wave equation are famous examples for this

ut = △u.

The heat equation hereby often nds application in the modelling of heat ow, but also can

be used to describe the ow of matter like the diusion of a substance. In this thesis, we will

get to know another partial dierential equation that has an origin in this eld, namely the

porous media equation (PME)

ut = △um

and its generalization

ut = △Φ(u).

Originally, this equation has been derived to describe the ow of a gas through a porous

medium like sand or soil. This is where it got its name from.

It is clear that this equation coincides with the heat equation when m = 1, where the theory

is well known. In this thesis, we will therefore deal with the case that m ̸= 1. Then, the

equation is nonlinear and the classical theory for the existence and uniqueness of solutions

can not be applied. Furthermore, we will see that solutions to this equation greatly dier

from solutions to the heat equation.

The goal of this thesis is to develop an existence and uniqueness theory for solutions to the

(generalized) porous media equation. To build a rst intuition the second chapter will start

with the classical physical derivation of the PME for the ow of a gas through porous media.

We will then give a formal denition of the PME and the generalized PME.

Chapter 3 will then deal with a special solution to the PME called the Barenblatt or funda-

mental solution. As with the heat equation there exists a solution originating from a point
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source or dirac distribution. From this solution, the main dierences to the heat equation

can be explored.

Starting with Chapter 4, we will focus on the generalized PME and it will begin with a recap

of the classical theory of quasilinear PDEs. We will see that under some assumptions the

classical theory can be applied to the generalized PME as well, giving us classical solutions.

Next, we will prove some estimates that hold for those classical solutions. Both will be very

important in the then following chapter.

Chapter 5 is the main part and the highlight of this thesis. Here, we will prove the existence

and uniqueness of a generalized form of solutions to the GPME called weak solutions. The

background and denition will be specied there.
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2 Derivation and physical application

As has been said in the introduction, the porous media equation has originally been derived

to describe the ow of a gas through a porous medium like sand. This is also the approach we

will take in this chapter and it will be guided by chapter III of Muskat [1937] (p. 121-136).

We want to construct a PDE for the density ρ of the gas owing through porous media.

There are two physical equations we need.

The continuity equation: Notice that since we are dealing with gases, which are compress-

ible (in contrast to e.g. water), the density of the liquid is not constant. In this way, it is

possible for a uid to ow from all directions into an innitesimal volume element, necessarily

changing the density of the uid inside. The continuity equation now connects the excess

ux of the uid into an innitesimal volume element with the change of the density of the

uid in this volume element [Muskat [1937], p. 121]:

div(ρv) =
∂

∂x
(ρvx) +

∂

∂y
(ρvy) +

∂

∂y
(ρvy) = −ε

∂ρ

∂t
. (2.1)

v is the velocity vector of the uid and vx/y/z are the scalar velocities in the corresponding

directions. ε is hereby a function describing the porosity of the medium. We will assume in

the following that the medium is homogeneous such that ε = const.

This is a PDE of two unknown functions ρ and v. What we now need is an identity somehow

relating those functions such that we get a PDE where ρ is the only unknown function.

Darcys Law: In 1856, the french engineer Darcy found an empirical law describing the ow

of water through sand. It has since then been generalized for arbitrary uids, media and

three dimensions [Muskat [1937], p. 128] and takes on the form

v = −
k

µ
∇p. (2.2)

It states that the velocity v of a uid in porous media is directly proportional to the pressure

gradient ∇p. k is a scalar function describing the permeability of the medium. In our case

it is once again constant thanks to the homogeneousity of the medium. µ is the viscosity

constant of the uid. We hereby have neglected any external force acting on the uid. In

particular notice that since we are dealing with gases, gravity can be ignored.
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Inserting (2.2) into (2.1) we obtain

div(ρ
k

µ
∇p) = ε

∂ρ

∂t
. (2.3)

At last we can express the pressure p through the density ρ, assuming that we are dealing

with an ideal gas. Then the ideal gas equation holds [Muskat [1937], p. 124]

p =
ρRT

M
(2.4)

with R the universal gas constant, T the temperature and M the molar mass of the gas.

We now can consider two cases. The rst one is an isothermal ow where T = const. In

this case ρ is the only non constant property in (2.4). (2.3) then can be written as

kRT

εMµ
  
:=c

div(ρ∇ρ) =
c

2
div(∇ρ2) =

c

2
△ρ2 =

∂ρ

∂t
. (2.5)

The constant c
2 can be scaled out and we obtain the porous media equation with m = 2.

For the case of an adiabatic ow i.e., there is no heat exchange between the gas and the

surrounding, we have the identity [Muskat [1937], p. 124]

p =


ρ

ρ0

γ

. (2.6)

ρ0 is the reference density and γ is the specic heat ratio. γ takes on real values greater than

1. For example for an ideal diatomic gas γ can be derived as γ = 1.4 [Spektrum Akademischer

Verlag, Heidelberg [1998]]. Air consists mainly of Oxygen and Nitrogen, two diatomic gases,

and can be regarded as a an ideal gas at standard conditions. Here, (2.3) is transformed to

k

ερ
γ
0µ

div(ρ∇ργ) =
kγ

ερ
γ
0µ(γ + 1)

  

:=c̃

div(∇ργ+1) =
∂ρ

∂t
(2.7)

The constant c̃ can once again be factored out and the PME with m = 1 + γ is received.

This derivation only leads to cases where m ≥ 2 but our theory can be safely done for

m > 0.

Denition 2.1 (The Porous Media Equation).

We call equation (2.8) the porous media equation (PME)

ut = △(um), m > 0. (2.8)
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Solutions to this equation are generally assumed to be positive. Considering also signed

solutions, the PME equation is often changed to the signed porous media equation

ut = △(|u|m−1u), m > 0. (2.9)

This equation can be generalized by changing |u|m−1u to another continuous strictly in-

creasing function Φ : R → R with Φ(±∞) = ±∞. For simplicity we use the normalization

Φ(0) = 0, but a constant can always be added or subtracted. Another function f , also

called forcing term, is added, which in physical means accounts for mass sources and sinks

in the medium. We call this PDE the generalized porous media equation (GPME)

ut = △(Φ(u)) + f. (2.10)

In the derivation above we assumed the dimension of the space to be 3, but the denition

also works for all dimensions n ≥ 1.

Our theory of solutions will be based around the generalized porous media equation. It is

clear that the PME is a special case of the GPME.
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3 The Barenblatt solution

This chapter will deal with a special solution to the porous media equation, called the Baren-

blatt solution.

Denition 3.1. For an arbitrary constant C > 0, n the dimension of the space, we call

U(x, t) = t
−

n

n(m−1)+2



C −
m− 1

2nm(m− 1) + 4m
(|x|t

−
1

n(m−1)+2 )2
 1

m−1

+

. (3.1)

the Barenblatt solution or fundamental solution to the porous media equation

(2.8) [Vazquez [2006], p. 60].

It is constructed similarly to the fundamental solution to the heat equation (3.2) [Vazquez

[2006], p. 59]:

V (x, t) =


1

4tπ

n/2

exp


−|x|2

4t



. (3.2)

Both are radialsymmetric solutions with the dirac distribution as an initial condition. But as

we will see both solutions are actually pretty dierent and we will discuss those dierences

in the second part of the chapter.

We will start with the derivation of the Barenblatt solution as in section 4.4.2 of Vazquez

[2006] (p. 62-64).

3.1 Derivation of the Barenblatt solution

As for the heat equation we search for a selfsimilar solution, i.e. a solution of the form

U(x, t) = t−αf(η), with η = xt−β (3.3)

with α and β being positive constants called similarity exponents and f a function called

self-similar prole. Those have to be determined s.t. U is a solution to the PME. We want

to apply the PME (2.8) (Ut = △(Um)) to (3.3). Calculating both sides independently, we

obtain

Ut = −αtα−1f(xt−β) + t−α∇f(xt−β) · (−βxt−β−1)

= −t−α−1(αf(η) + βη ·∇f(η))
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and

△(Um) = t−αm△(fm(xt−β)) = t−αmdiv[∇(fm(xt−β))]

= t−αmt−βdiv[∇(fm)(xt−β)] = t−αm−2β△(fm)(xt−β)

= t−αm−2β△(fm)(η).

Putting this into the partial dierential equation (2.8) we recieve:

−t−α−1(αf(η) + βη ·∇f(η)) = t−αm−2β△(fm)(η) (3.4)

⇐⇒ −tα(m−1)+2β−1(αf(η) + βη ·∇f(η)) = △(fm)(η). (3.5)

Since the right side only depends on x and t through η, this must hold for the left side as

well. Therefore tα(m−1)+2β−1 has to be equal to one. We obtain a relation between α and

β:

α(m− 1) + 2β − 1 = 0. (3.6)

(3.5) then yields

αf(η) + βη ·∇f(η) +△(fm)(η) = 0. (3.7)

Another relation between α and β can be obtained by using the physical law conservation

of mass. Remember that a solution describes the density of a gas at a specic point. Inte-

grating the density in space yields the mass s.t. in this context conservation of mass means


Rn
U(x, t) = const. for every t. We recieve

∫

Rn

U(x, t) = t−α

∫

Rn

f(xt−β)dx = t−αtβn
∫

Rn

f(η)dη = const.

where we have used the substitution η = xt−β in the second equality. Since the constant

does not depend on t the left side does neither and t−αtβn has to be equal to 1. Therefore it

must hold that

α = nβ. (3.8)

(3.6) and (3.8) can now be solved such that the exponents nally can be written in terms of

n and m:

β =
1

n(m− 1) + 2
, α =

n

n(m− 1) + 2
. (3.9)

We now have determined α and β. We still need to specify the function f . Since we search

for a radial symmetric solution let f(η) be of the form f(η) = f(r) = f(|η|).
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(3.7) then can be written as

αf(r) + βrf ′(r) +△(fm)(r) = nβf + βrf ′ +
1

rn−1
(rn−1(fm)′)′ = 0 (3.10)

since the laplacian in spherical coordinates simplies for a radial symmetric function ϕ to

[Schweizer [2013], p. 169]

△ϕ =
1

rn−1
(rn−1ϕ′)′.

We now want to solve the ordinary dierential equation (3.10) to recieve the function f .

Notice that (3.10) is equivalent to

(rn−1(fm)′ + βrnf)′ = 0

and can be simply integrated to

rn−1(fm)′ + βrnf = C.

For the constant, we choose C = 0 s.t. f → 0 when r → ∞. This ODE can easily be solved.

Since

rn−1(fm)′ + βrnf = 0

⇐⇒ (fm)′ + βrf = 0

⇐⇒ mfm−1f ′ + βrf = 0

⇐⇒


m

m− 1
fm−1


′

= −βr,

integrating leads to
m

m− 1
fm−1 = −

β

2
r2 + C

and

fm−1 = −
β(m− 1)

2m
r2 + C̃ (3.11)

with C̃ a new constant obtained by integration. To solve for f we have to ensure that the

right side of (3.11) is positive. We will do this by only taking the positive part. Finally

f =



C̃ −
β(m− 1)

2m
r2
 1

m−1

+

(3.12)

and considering the expression for α and β (3.9) and inserting everything into (3.3) leads to

our nal term for the solution.
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With the construction of U (since we only consider the positive part in (3.11)), we have

that U is a solution to the PME (2.8) whenever U > 0. But we do not necessarily get an

everywhere dierentiable function (see Figure (3.3) s.t. the Barenblatt solution can not be a

solution to the PME in the classical sense.

In the next section, we will see that this function despite not being smooth still describes a

ow of a gas as we would imagine s.t. we would still like to interpret the Barenblatt solution

as a solution to the PME. This motivates the denition of a weak solution, a new concept

of a solution to the (G)PME that does not need the classic regularity, i.e. be two times

dierentiable. In Chapter 5, we will see that for t > 0 U actually is a weak solution to the

PME.

3.2 Properties of the Barenblatt solution

In this section, we will state a few interesting properties of the Barenblatt solution [Vazquez

[2006] p. 59-61]. This will be done intuitively based on graphs of the fundamental solution.

We will restrict ourselves to n = 1 and C = 1.

Figure 3.1: The Barenblatt solution U (3.1) with C, n = 1 and m = 2 drawn for times t = 1, 5, 25.

Figure 3.1 shows the Barenblatt solution for m = 2 drawn at dierent times. It can be seen

that with increasing time the mass gets much more distributed as the graph becomes wider.

One can also spot that when t → 0 the solution approaches innity at x = 0 and 0 everywhere

else and we can guess that the solution actually approaches a dirac δ−distribution. This can

also be proven. This is a behavior we recognize from the fundamental solution to the heat

equation and matches our intuition of a ow of a gas.
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Figure 3.2: The fundamental solution to the heat equaiton V (3.2) drawn for times t = 1, 5, 25.

Dierent to the heat equation, we see that the Barenblatt solution has compact support for

every t. This implies that we do not have an innite propagation speed, which is a well known

and important feature of the heat equation. This is one of the most peculiar and important

dierences of the PME to the heat equation. Imagining a ow of a gas through a porous

media, a nite propagation speed seems much more appropriate.

One can also see that the fundamental solution to the heat equation is smooth, while the

Barenblatt solution is not dierentiable.

Figure 3.3: The Barenblatt solution U (3.1) with C, n = 1 and drawn at time t = 5 form = 1.1, 2, 5, 10.

Another interesting property is that for m → 1 the Barenblatt solution approaches the

fundamental solution to the heat equation. This can be seen in Figure 3.3.
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4 Basic results for quasilinear PDEs

In this chapter, we will rst state a basic existence result for parabolic quasilinear PDEs in

divergence form. This will then be used to construct - under some assumptions - solutions

to the GPME that will help us build the theory to the (generalized) porous media equation

in the next chapter. Furthermore, some estimates to the solutions will be proven, which will

also be needed in the existence proof.

4.1 Quasilinear parabolic PDEs

For the announced existence result we rst need to know what a parabolic quasilinear PDE

in divergence form even is and what problem we want to solve. We will look at PDEs that

can be written in the following way:

Pu : =

n∑

i=1

∂

∂xi
ai(x, t, u,∇u) + f(x, t, u,∇u)− ut

= div(a(x, t, u,∇u)) + f(x, t, u,∇u)− ut

= 0. (4.1)

We will say that the quasilinear operator P or the PDE is in divergence form and a(x, t, u, p)

and f(x, t, u, p) are called structural functions. Almost all quasilinear PDEs can be written

in this form and some interesting results can be proven for this type of PDE. We want to

nd solutions to this equation that also fulll the so called Dirichlet problem, a boundary

and initial value problem. Let us rst establish some notation.

Remark. We want to solve PDEs on a subset of n-dimensional space Ω ⊂ R
n and for times

t < T . The cylindrical subset of spacetime will be called QT = Ω × (0, T ) and Q if T = ∞.

In this thesis Ω will always be a bounded and open subset of Rn. The boundary of Ω will be

denoted with Γ = ∂Ω and the lateral boundary with ΣT = Γ× (0, T ) or Σ if T = ∞. We will

assume that Γ can be locally described as the graph of a Lipschitz function.

Denition 4.1 (The Dirichlet problem).

Let P be a quasilinear operator in divergence form. For the Dirichlet problem we search

for a function u such that (4.1) holds and further

u(x, 0) = u0(x) in Ω. (4.2)
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We call the function u0 the initial data. Since Ω ⊊ R
n, we further need data on the lateral

boundary:

u(x, t) = g(x, t) in ΣT . (4.3)

In homogeneous Dirichlet problems, the lateral boundary data has to be equal to 0,

i.e. g(x, t) ≡ 0. Those two conditions can be combined in the following way:

u(x, t) = ρ(x, t) on Ω× {0} ∪ ΣT , (4.4)

where ρ coincides with u0 and g on the boundary. We will call ρ the initial and boundary

condition, IBC for short.

We will focus on quasilinear PDEs of parabolic type which have to satisfy the following

uniform parabolicity condition.

Denition 4.2 (Quasilinear parabolic PDEs).

PDEs of the form (4.1) which moreover satisfy the uniform parabolicity condition, i.e.

constants 0 < c1 < c2 < ∞ exist s.t. ∀ξ ∈ R
n, (x, t) ∈ Q̄T , arbitrary u ∈ R and p ∈ R

n

inequality (4.5) holds:

c1|ξ|
2 ≤

n∑

j=1

n∑

i=1

∂ai
∂pj

(x, t, u, p)ξiξj ≤ c2|ξ|
2 (4.5)

are called quasilinear parabolic PDEs.

With a few more assumptions on a, f and the boundary and initial conditions the Dirichlet

problem to those PDEs can be uniquely solved with classical quasilinear theory.

We will now state the classical result of the quasilinear theory that we will be using. This

is Thm. 6.2 of Ladyženskaja et al. [1968], where some generalities have been simplied with

stricter assumptions.

Theorem 4.3. Consider a Dirichlet problem as in Denition 4.1. Suppose that the following

conditions hold:

a) For (x, t) ∈ Q̄T , arbitrary u ∈ R it holds that

n∑

j=1

n∑

i=1

∂ai
∂pj

(x, t, u, 0)ξiξj ≥ 0 for arbitrary ξ ∈ R
n and (4.6)

A(x, t, u, 0)u ≥ −b1u
2 − b2 (4.7)

for constants bi ≥ 0 and A = −f −
n

i=1
∂ai
∂u pi −

n
i=1

∂ai
∂xi

.
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b) For (x, t) ∈ Q̄T and arbitrary u and p the functions ai(x, t, u, p) and f(x, t, u, p) are con-

tinuous and the ai(x, t, u, p) are dierentiable with respect to x, u and p. Furthermore,

the uniform parabolicity condition (4.5) holds and moreover

n∑

i=1



|ai|+

∣
∣
∣
∣

∂ai
∂u

∣
∣
∣
∣



(1 + |p|) +

n∑

i,j=1

∣
∣
∣
∣

∂ai
∂xj

∣
∣
∣
∣
+ |f | ≤ µ(1 + |p|)2 (4.8)

for a constant µ > 0.

c) For (x, t) ∈ Q̄T and arbitrary u and p the functions ai, f,
∂ai
∂pj

, ∂ai
∂u and ∂ai

∂xi
are Hölder

continuous functions in x, t, u and p with Hölder constants β,β,β/2 and β respectively.

d) For the IBC on the boundary it holds that ρ|ΣT
∈ C2,1(ΣT ), i.e. two times continuously

dierentiable in x and once in t. Furthermore supx∈Ω |ρx(x, 0)| < ∞ and in general the

IBC has to be Hölder continuous in x and t with Hölder constants γ, γ
2 respectively:

ρ ∈ Cγ,γ/2(Q̄T ).

e) The boundary Γ can be locally described as a C2-function: Γ ∈ C2.

Then there exists a solution u to the Dirichlet problem (Def. 4.1) with u ∈ Cα,α/2(Q̄T ). The

space derivatives ∇u are bounded in Q̄T and the time derivative and the second space deriva-

tives are in Cβ,β/2(QT ). The solution is unique if f(x, t, u, p) is locally Lipschitz continuous

in u and p.

Proof. See [Ladyženskaja et al. [1968], p. 457-459].

Notice that, with the Hölder continuity of the derivatives, they can be continuously extended

to Q̄T s.t. we can assume that u ∈ C2,1(Q̄T ).

Another interesting result for parabolic equations is the comparison principle, which will also

be of great use.

Theorem 4.4 (Comparison principle).

Let P be a quasilinear operator of the form (4.1) and parabolic, i.e. (4.5) holds. Let further-

more a and f be continuously dierentiable with respect to u and p. If for C2,1(Q̄T )-functions

u and v holds that Pu ≥ Pv and u ≤ v on Ω× {0} and ΣT then u ≤ v in QT .

Proof. See Thm. 9.7 of Liebermann [2005] (p.222).

We will often use it in the following form, where we can compare two solutions to a Dirichlet

problem based on their initial and boundary data.
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Remark. Let u, v ∈ C2,1(Q̄T ) be two solutions to a Dirichlet problem with P1u = 0 and

P2v = 0, the P1/2 as in the theorem with P1 = a + f1, P1 = a + f2. If for the data holds

u0 ≤ v0 and g1 ≤ g2 and f1 ≤ f2, then u ≤ v.

Proof. With Thm. 4.4 it suces to show that P1u ≥ P1v:

P1v = (a+ f1)(v) = (a+ f2 − f2 + f1)(v) = P2v


=0

+(f1 − f2)
  

≤0

(v) ≤ 0 = P1u.

4.2 Classical solutions to the GPME

The (generalized) PME is also a quasilinear PDE and in the case Φ is dierentiable, we can

write it in the form of (4.1):

ut = div(Φ′(u)∇u) + f(x, t)

s.t. a(x, t, u,∇u) = Φ
′(u)∇u, where Φ

′ denotes the derivative of Φ. We have that Φ
′ ≥ 0

since Φ is strictly increasing. Analogous to Def. 4.1, we can dene the Dirichlet Problem for

the GPME. The goal of this thesis will be to solve the homogeneous problem.

Remark (The hom. Dirichlet problem for the GPME).

For the GPME Def. 4.1 simplies to

ut = △(Φ(u)) + f or ut = div(Φ′(u)∇u) + f(x, t) for dierentiable Φ, (4.9)

u(x, 0) = u0(x) in Ω, (4.10)

u(x, t) = 0 on ΣT . (4.11)

In the case of the PME we get:

ut = div(mum−1∇u), (4.12)

but it can not be a uniform parabolic equation because the uniform parabolic condition (4.5)

does not hold:

c1|ξ|
2 ≤

n∑

i,j=1

∂ai
∂pj

(x, t, u, p)ξiξj =

n∑

i,j=1

∂

∂pj
(Φ′(u)pi)ξiξj =

n∑

j=1

Φ
′(u)ξjξj

= Φ
′(u)|ξ|2 = mum−1|ξ|2 (4.13)
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is only true if c1 = 0 ((4.13) is equal to zero if u = 0) which is forbidden for uniform parabol-

icity. We call this broadening of the concept of parabolicity degenerate parabolicity. For

degenerate parabolic problems, the above mentioned existence and uniqueness theorem does

not work and this is the reason we have to build a new existence and uniqueness theory

around the GPME.

Notice that the reason for the degeneracy is that the derivative of Φ can be equal to zero. If

on the other hand Φ
′ ≥ c > 0, this is not the case and in (4.13) we have a lower bound that

is greater than 0 and the equation is therefore non-degenerate.

The in (4.5) demanded upper bound is also not clear, since mum−1 can get arbitrarily large.

But other than the degeneracy this is not a huge problem as we will see.

We will now show that under some assumptions, one of them the positivity of Φ′ s.t. the

equation is non-degenerate, the GPME has a unique classical solution with the classical

quasilinear theory. In the next chapter, we will then prove the existence of (weak) solutions

to the (degenerate) GPME with general Φ by approximating them with classical solutions to

non-degenerate problems of the following form.

Theorem 4.5 (Classical solutions to the generalized PME).

Let Γ ∈ C2 and Φ : R → R be as in Denition 2.1 with an additional smoothness assumption.

Let furthermore Φ
′(u) ≥ c > 0 for u ∈ R, f : Q̄T → R be a smooth and bounded function and

the initial data u0 : Ω → R a smooth function with compact support, i.e. u0 ∈ C∞
c (Ω).

Then there exists a unique classical solution u to the problem (4.9)-(4.11) with the regularity

of Thm. 4.3 and

−M1 −N1t ≤ un(x, t) ≤ M2 +N2t in Q̄T (4.14)

with M1 = sup(x,t)∈Q̄T
(−u0), M2 = sup(x,t)∈Q̄T

(un), N1 = sup(x,t)∈Q̄T
(−f) and N2 =

sup(x,t)∈Q̄T
(f).

Proof. With smooth Φ the GPME can be written in divergence form

ut = div(Φ′(u)∇u) + f(x, t).

In the notation of (4.1), we therefore have a(x, t, u, p) = Φ
′(u)p. We now have to prove that

the problem satises all the assumptions of Thm. 4.3.

One problem we immediately notice is that Φ′ must not be bounded s.t. the uniform parabol-

icity condition must not hold. To x this, we dene a new function Φ̃
′(u) with Φ̃

′(u) = Φ
′(u)

on the interval [−M1 −N1T,M2 +N2T ] with the constants as in the theorem and extend it

smoothly to ±∞ s.t. Φ̃′(u) and all derivatives are bounded.
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We rst will show that this new hom. Dirichlet problem where Φ
′ has been replaced by Φ̃

′

(u0 and f stay the same) satises Thm. 4.3 and then prove that the solution u only takes

values in [−M1 −N1T,M2 +N2T ] where Φ̃
′(u) = Φ

′(u) s.t. it also solves the problem with

Φ
′ instead of Φ̃′.

a): (4.6) is clearly true since Φ
′ ≥ c > 0 (as in (4.13)). (4.7) holds as well since

A(x, t, u, 0)u =

(

−f −

n∑

i=1

∂ai
∂u

· 0−

n∑

i=1

∂ai
∂xi

)

u = −f(x, t)u ≥ − sup(f)(u2 + 1).

b) f is continuous with our assumptions and a = Φ̃
′(u)p is smooth and therefore continuous

and dierentiable with respect to x, u and p. As in (4.13) the uniform parabolicity condition

in our case is the following:

c1|ξ|
2 ≤ Φ̃

′(u)|ξ|2 ≤ c2|ξ
2|

for arbitrary u ∈ R and ξ ∈ R
n. Since 0 < c ≤ Φ

′ and Φ̃
′ is bounded, we can nd constants

c1, c2 > 0 s.t. the condition holds. Further holds (4.8):

n∑

i=1



|ai|+

∣
∣
∣
∣

∂ai
∂u

∣
∣
∣
∣



(1 + |p|) +

n∑

i,j=1

∣
∣
∣
∣

∂ai
∂xj

∣
∣
∣
∣
+ |f |

=

n∑

i=1



|Φ̃′(u)pi|+ |Φ̃′′(u)pi|


(1 + |p|) + 0 + |f |

=


|Φ̃′(u)|+ |Φ̃′′(u)|


∥p∥1(1 + |p|)
  

:=A

+|f |.

It suces to show that A ≤ µ(1 + |p|)2 since f is bounded and therefore

A+ |f | ≤ µ(1 + |p|)2 + sup f ≤ (µ+ sup f)(1 + |p|)2.

Then



|Φ̃′(u)|+ |Φ̃′′(u)|


∥p∥1(1 + |p|) ≤ µ(1 + |p|)2

⇐⇒


|Φ̃′(u)|+ |Φ̃′′(u)|


∥p∥1 ≤ µ(1 + |p|)

⇐= (|Φ̃′(u)|+ |Φ̃′′(u)|)(1 + ∥p∥1) ≤ µ(1 + |p|)

and since in R
n all norms are equivalent, we only need to show that (|Φ̃′(u)| + |Φ̃′′(u)|) is

bounded. This is the case for |Φ̃′(u)| with our choice of Φ̃′ and we can also choose Φ̃
′ in a

way that |Φ̃′′(u)| is also bounded. This shows (4.8).
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c): We have to show the Hölder continuity in x, t, u and p for arbitrary u and p and

(x, t) ∈ Q̄T of the following functions:

ai = Φ̃
′(u)pi,

∂ai
∂pj

=







Φ̃
′(u), i = j

0, else
,

∂ai
∂u

= Φ̃
′′(u)pi,

∂ai
∂xi

= 0,

and f.

This is clear for the rst four functions since Φ
′(u) and Φ

′′(u) are smooth and therefore

Lipschitz continuous on compact sets. Furthermore, Φ̃′(u) is equal to Φ
′(u) on a compact set

and outside we can extend it in a way that all derivatives are bounded. f is Hölder continuous

with our assumptions.

d): The IBC ρ can be constructed from u0 for example with ρ(x, t) = u0(x). Then ρ|ΣT
= 0

s.t. we deal with a hom. Dirichlet Problem. Furthermore, since u0 ∈ C∞
c (Ω), ρ|ΣT

obviously

is in C2,1(ΣT ). As the derivative of u0 is bounded (the derivative is also in C∞
c (Ω)), we have

that supx∈Ω |ρx(x, 0)| < ∞. ρ is also Hölder continuous since u0 is in C∞
c (Ω) and therefore

in particular Lipschitz.

Finally, for e) we notice that Γ ∈ C2 with our assumption in the theorem and we conclude

that the problem has a solution u. Moreover, since f is smooth and therefore Lipschitz on

compact sets the solution is unique.

We still have to show that the solution u only takes on values in [−M1 − N1T,M2 + N2T ]

such that we also get a solution to the original problem.

Consider the corresponding Dirichlet problem to the PDE ūt = div(Φ̃′(ū)∇ū) + f̄ with ini-

tial data ū0 ≡ M2 = supu0, f̄ ≡ N2 = sup f and boundary data ḡ = M2 + tN2. Then

ū = M2 + tN2 is the unique solution to the problem. With the comparison principle (The-

orem 4.4) follows that u(x, t) ≤ ū(x, t) = M2 + tN2 for all (x, t) ∈ QT . Similarly, with

M1 = sup(−u0) and N1 = sup(−f) we obtain u(x, t) ≥ −M1 − tN1. This shows that u only

takes values in the set where Φ
′ = Φ̃

′ such that it is a solution to the original problem and

the theorem is proven. With this last step we also receive identity (4.14).

4.3 Estimates for classical solutions

As already mentioned, the existence theorem in the next chapter will be based on approximat-

ing the degenerate problem with non-degenerate problems in the form of Theorems 4.3 and

4.5. Transitioning to the limit will then be based on estimates of the approximate solutions.
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4.3.1 The energy estimate

To pass to the limit we will need to estimate the derivatives of a solution in some way. This

rst estimate is for a function of the space derivatives and we will see that the appropriate

function to estimate will be Φ(u). The energy estimate ensures that for classical solutions

∥∇Φ(u)∥2L2(QT ) can be controlled by the data.

Theorem 4.6 (The energy estimate). (as in 3.2.4 of Vazquez [2006], p.38, 39)

For a classical solution u to the homogeneous Dirichlet problem as in Thm. 4.5 the following

identity holds:



QT

|∇(Φ(u))|2dxdt+

∫

Ω

Ψ(u(x, T ))dx =

∫

Ω

Ψ(u0(x))dx+


QT

fΦ(u)dxdt, (4.15)

where

Ψ(s) =

∫

0

s

Φ(σ)dσ (4.16)

is the primitive of Φ. Furthermore, if f ̸= 0 holds the inequality

1

2



QT

|∇(Φ(u))|2dxdt+

∫

Ω

Ψ(u(x, T ))dx ≤

∫

Ω

Ψ(u0(x))dx+ C


QT

f2dxdt, (4.17)

where C is a constant only depending on Ω.

Notice that with the assumption of Thm. 4.5 and the proven regularity (u ∈ C2,1(Q̄T )), all

of those integrals are nite. Ψ is a non-negative function.

Proof. Because u is a classical solution, equation (4.9) holds and we can multiply it by Φ(u)

and integrate in Qt:



QT

utΦ(u)dxdt =


QT

△(Φ(u)) Φ(u)dxdt+


QT

fΦ(u)dxdt

⇐⇒


QT

∂

∂t
Ψ(u)dxdt =

∫ T

0

∫

Γ

Φ(u)
  

Φ(u)=0 on Γ

∇(Φ(u)) · νdAdt−


QT

|∇(Φ(u))|2dxdt

+


QT

fΦ(u)dxdt,

where we have used partial integration in x and ν denotes the outer unit normal vector on

Γ. Integrating in t on the left side yields

∫

Ω

Ψ(u(x, T ))−Ψ(u(x, 0))dx = −


QT

|∇(Φ(u))|2dxdt+


QT

fΦ(u)dxdt,

from what follows the rst identity through rearranging.
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To acquire the inequality we rst use Hölder’s inequality on the last therm to get



QT

fΦ(u)dxdt ≤







QT

f2dxdt





1

2







QT

Φ(u)2dxdt





1

2

≤ c


QT

f2dxdt+
1

4c



QT

Φ(u)2dxdt,

where we have used Young’s inequality in the last step with arbitrary c > 0.

This last term can be bounded with the Poincaré inequality (Thm. 4.7 of Alt [2012]) since

∇u is bounded and u = 0 on ΣT :

1

4c



QT

Φ(u)2dxdt ≤
C

4c



QT

|∇(Φ(u))|2dxdt.

Putting it all together, we get



QT

|∇(Φ(u))|2dxdt+

∫

Ω

Ψ(u(x, T ))dx ≤

∫

Ω

Ψ(u0(x))dx+ c


QT

f2dxdt+
1

2



QT

|∇(Φ(u))|2dxdt

with a constant c that only depends on Ω. Once again the claim follows through rearranging.

4.3.2 An estimate for the derivative in time

The next estimate will at rst look a bit random, but for the existence proof we will also

need an estimate of the time derivative of a solution or of a function of it and this turns out

to be the appropriate way. This will become clearer in the next chapter.

Theorem 4.7 (The time derivative estimate). (as in 3.2.5 of Vazquez [2006], p. 40, 41)

For a classical solution u as in Thm. 4.5 the following identity holds



QT

ζΦ′(u)(u)2tdxdt =


QT

ζt

2
|∇(Φ(u))|2 − (fζ)tΦ(u) dxdt, (4.18)

with ζ : [0, T ] → R being a smooth cuto function with ζ(0) = ζ(T ) = 0.

Proof. Since u is a classical solution equation (4.9) holds for all (x, t) ∈ QT and we can

multiply it by wt = (Φ(u))t obtaining wtut = wt△w + wtf .

Integrating in Ω gives us

∫

Ω

wtutdx =

∫

Ω

wt△wdx+

∫

Ω

fwtdx

=

∫

Γ

wt


=0 on Γ

∇w · νdA−

∫

Ω

∇w ·∇wt
  

= 1

2

∂
∂t

|∇w|2

dx+

∫

Ω

fwtdx
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= −
1

2

∂

∂t

∫

Ω

|∇w|2dx+

∫

Ω

fwtdx,

where we have used partial integration in the second step.

Now we multiply the equation with a smooth cuto function ζ : [0, T ] → R with ζ(0) = ζ(T )

= 0 and integrate in time. We use the cuto function so that we lose the boundary terms of

the partial integration in t:



QT

ζwtutdx =−

∫ T

0

ζ

2

∂

∂t

∫

Ω

|∇w|2dxdt+


QT

ζfwtdx

=−


ζ(t)

2

∫

Ω

|∇w(t)|2dx

T

0

+


QT

ζt

2
|∇w|2dxdt

+

∫

Ω

ζ(t)f(t)w(t)dx

T

0

−


QT

(ζf)twdxdt

=


QT

ζt

2
|∇w|2dxdt−



QT

(ζf)twdxdt,

what gives us the sought-after identity.

4.3.3 The L
1-contraction principle

Lastly, we have the L1-contraction principle, an interesting result on its own. It is for example

possible to prove the stability of the problem with this result, but we will use it in the existence

proof.

Theorem 4.8 (L1-contraction principle). (Prop. 3.5 of Vazquez [2006])

Let u and û be two solutions to the hom. Dirichlet problem for the GPME of the form of

Thm. 4.5 with the same Φ. On the other hand, the initial data u0, û0 and forcing terms f

and f̂ must not be equal. Then for every 0 ≤ τ < t ≤ T holds

∫

Ω

(u(x, t)− û(x, t))+dx ≤

∫

Ω

(u(x, τ)− û(x, τ))+dx+

∫

τ

t ∫

Ω

(f − f̂)+dxds (4.19)

and

∥u(t)− û(t)∥L1(Ω) ≤ ∥u(τ)− û(τ)∥L1(Ω) +

∫

τ

t

∥f(s)− f̂(s)∥L1(Ω)ds. (4.20)

Proof. Let p ∈ C1(R) be as such that 0 ≤ p ≤ 1, p(s) = 0 for s ≤ 0 and p′(s) > 0 for s > 0.

Let furthermore w = Φ(u)− Φ(û) which vanishes on ΣT since there u = û.

Since u and û are solutions to (4.9), we can subtract those equations and get

ut − ût = △(Φ(u))−△(Φ(û)) + f − f̂ = △w + f − f̂ .
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We now can multiply with p(w) and integrate in Ω:

∫

Ω

(u− û)tp(w)dx =

∫

Ω

△wp(w)dx+

∫

Ω

(f − f̂)p(w)dx.

With integration by parts we have for the right side

∫

Ω

△wp(w)dx+

∫

Ω

(f − f̂)p(w)dx =

∫

Γ

p(w)∇w · νdA

−

∫

Ω

∇w ·∇wp′(w)dx+

∫

Ω

(f − f̂)p(w)dx

= −

∫

Ω

|∇w|2p′(w)dx+

∫

Ω

(f − f̂)p(w)dx

as p(w) = 0 on Γ. Since p′ ≥ 0, the rst term is smaller or equal to zero. We further notice

that (f − f̂)p(w) ≤ (f − f̂)+ s.t

∫

Ω

(u− û)tp(w)dx ≤

∫

Ω

(f − f̂)+dx.

Now consider a monotone sequence of functions (pn)n∈N of the same form of p converging to

the sign0
+ function

sign0
+(s) =







0, s ≤ 0

1, s > 0
.

Since
∂

∂t
(u− û)+ = sign0

+(u− û)
∂

∂t
(u− û)

and also

sign0
+(u− û) = sign0

+(Φ(u)− Φ(û))

as Φ is strictly monotone, it follows with monotone convergence

lim
n→∞

∫

Ω

(u− û)tpn(w)dx =

∫

Ω

(u− û)tsign0
+(Φ(u)− Φ(û))dx

=

∫

Ω

(u− û)tsign0
+(u− û)dx

=

∫

Ω

∂

∂t
(u− û)+dx

=
d

dt

∫

Ω

(u− û)+dx ≤

∫

Ω

(f − f̂)+dx.
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If we integrate the last inequality in t from τ to t, we get with the fundamental theorem of

calculus

∫

Ω

(u(x, t)− û(x, t))+dx ≤

∫

Ω

(u(x, τ)− û(x, τ))+dx+

∫

τ

t ∫

Ω

(f − f̂)+dxds

which is the rst part of the statement.

Switching the roles of u and û leads to

∫

Ω

(û(x, t)− u(x, t))+dx ≤

∫

Ω

(û(x, τ)− u(x, τ))+dx+

∫

τ

t ∫

Ω

(f̂ − f)+dxds.

If we add both inequalities, we get

∫

Ω

(u(x, t)− û(x, t))+ + (û(x, t)− u(x, t))+dx

≤

∫

Ω

(u(x, τ)− û(x, τ))+ + (û(x, τ)− u(x, τ))+dx+

∫

τ

t ∫

Ω

(f − f̂)+ + (f̂ − f)+dxds

which is equivalent to

∫

Ω

|u(x, t)− û(x, t)|dx ≤

∫

Ω

|u(x, τ)− û(x, τ)|dx+

∫

τ

t ∫

Ω

|f − f̂ |dxds

⇐⇒ ∥u(t)− û(t)∥L1(Ω) ≤ ∥u(τ)− û(τ)∥L1(Ω) +

∫

τ

t

∥f − f̂∥L1(Ω)ds.

This is the second part of the statement.

Remark. Notice that with û = 0 we obtain

∫

Ω

(u(x, t))+dx ≤

∫

Ω

(u(x, τ))+dx+

∫ t

τ

∫

Ω

(f(x, s))+dxds (4.21)

and

∥u(t)∥L1(Ω) ≤ ∥u(τ)∥L1(Ω) +

∫

τ

t

∥f(x, s)∥L1(Ω)ds. (4.22)
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5 Existence and uniqueness of weak solutions

to the homogeneous Dirichlet problem

In this chapter, we will rst get to know the concept of weak solutions to the GPME and then

prove the uniqueness and existence in a subclass called weak energy solutions, i.e. solutions

that satisfy an energy estimate as in chapter 4.

5.1 Weak solutions

In chapter 2, we discussed the Barenblatt solution to the PME and recognized that it can not

be a classical solution to the PME because it is not dierentiable. The goal of weak solutions

is to expand our concept of solutions to the (G)PME in a way such that functions that do

not have the necessary regularity can also be viewed as solutions. This is especially relevant

in the physical context: The PME models the ow of a gas and one can imagine that the

density distribution of a gas in fact must not be smooth (e.g Figure 3.1).

A common procedure to construct a concept of weak solutions is to start with the classic

PDE, multiply it with a test function and integrate by parts to pull the derivatives from the

solution to the test function. Therefore, consider a classical solution u to the homogeneous

Dirichlet Problem (4.9)-(4.11) for the GPME on QT = Ω× (0, T ). Then

ut = △(Φ(u)) + f.

We can multiply this equation with a test function η ∈ C1(Q̄T ) which vanishes on ΣT and

for t = T . We see why this choice makes sense if we integrate:



QT

utηdxdt =


QT

△(Φ(u))ηdxdt+


QT

fηdxdt

⇔

∫

Ω

[uη]T0 dx−


QT

uηtdtdx =

∫ T

0

∫

Γ

η∇(Φ(u)) · νdAdt−


QT

∇(Φ(u)) ·∇ηdxdt+


QT

fηdxdt.

Here, we used partial integration in t for utη and partial integration in x for △Φ(u)η. Because

of the denition of η (η = 0 on ΣT and for t = T ), we nally get



QT

∇Φ(u) ·∇η − uηtdxdt =

∫

Ω

u(x, 0)η(x, 0)dx+


QT

fηdxdt.
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Notice that for this equation we don’t need the second derivative of u in x and the derivative

of u in t. If we use this equation instead of (4.9) to dene a solution, we therefore get a bigger

class of solutions, which we call weak solutions. Moreover, the initial condition is build in

if we change u(x, 0) to u0(x). We only have to make some assumptions on u, u0 and f such

that the equation makes sense, i.e. the integrals are nite. Furthermore, we need to ensure

the homogeneousity, what will be done by demanding that u has to be equal to 0 on the

boundary.

Denition 5.1 (Weak solutions to the homogeneous Dirichlet problem of the GPME).

(Def. 5.4 of Vazquez [2006])

A function u is called a weak solution to the homogeneous Dirichlet problem of the GPME

(4.9)-(4.11) with u0 ∈ L1(Ω) and f ∈ L1(QT ) if

1. u ∈ L1(QT ),

2. Φ(u) ∈ L1((0, T ) : W 1,1
0 (Ω)) and

3. u satises the following identity



QT

∇(Φ(u)) ·∇η − uηtdxdt =

∫

Ω

u0(x)η(x, 0)dx+


QT

fηdxdt (5.1)

for all test functions η ∈ C1(Q̄T ) which vanish on ΣT and for t = T .

W 1,1
0 denotes hereby the Sobolev space (Def. 1.27 of Alt [2012]). Notice that the homoge-

neousity condition u|ΣT
= 0 is part of the function class Φ(u(t)) ∈ W 1,1

0 : Φ(u)|ΣT
= 0 i

u|ΣT
= 0 as Φ is strictly increasing and Φ(0) = 0 (s. Def. (2.1)).

Obviously, every classical solution of the form of Thm. 4.5 is also a weak solution, but there

also exist weak solutions that are not classical:

Remark (A weak solution that is not a classical solutions).

In chapter 2 we got to know the Barenblatt solution to the PME (ut = △(um)). This is

actually not a weak solution as of Def. 5.1 since the initial data is a point source and as such

not in L1(Ω). Furthermore, it spreads to the whole space s.t. the boundary data can not be

0 for all times.

It is however possible to construct a weak solution from the Barenblatt solution if we simply

start at t0 > 0. For simplicity we assume that 0 ∈ Ω. Then

Û(x, t) = U(x, t+ t0) (5.2)
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is a weak solution to the PME for all intervals (0, T ) where the support of Û still lies inside

Ω and the boundary data is as such equal to zero.

Proof. We write (5.2) in the form

Û(x, t) = (t0 + t)−α


C − κ(|x|(t0 + t)−β)2
 1

m−1

+

with κ = β(m−1)
2m .

The radius r of the support of Û can be written as a function of t:

(t0 + t)−α


C − κ(|x|(t0 + t)−β)2
 1

m−1

+
> 0

⇐⇒ C > κ(|x|(t0 + t)−β)2

⇐⇒
C(t0 + t)2β

κ
> |x|2.

And because of this: r(t) :=


C(t0+t)2β

κ
. Now we can dene Q1 := {(x, t) ∈ QT | |x| < r(t)}

as the subset of QT where Û > 0 and Q2 := QT \Q1 where Û = 0.

To prove 1. of Def. 5.1 notice that Û is bounded by (t0+t)−αC
1

m−1 for all t > 0 and therefore

uniformly bounded in QT and since QT is bounded, Û is in L1(QT ).

For 2. notice that Φ(Û) = Ûm is also bounded and in L1(QT ). For the weak gradient of Ûm

we observe that Ûm(t) ∈ C1(Ω) for every t because Ûm is C1 in Q1,

∇(Ûm)|Q1
=


(t0 + t)−αmm

m− 1



C − κ(|x|(t0 + t)−β)2
 1

m−1



κ2(t0 + t)−2βxi



i=1,...,n

.

and ∇(Ûm)|Q1
→ 0 = ∇Û |Q2

for |x| → r(t) s.t. ∇(Ûm)(t) is continuous. Since ∇(Ûm) is

also uniformly bounded, we have Ûm ∈ L1((0, T ) : W 1,1
0 (Ω)).

Finally, we have to prove 3. Starting with the left side of (5.1), we can restrict the domain

to Q1 because everywhere else ∇(Û)m and Û are equal to 0. We recall that

Û > 0 ⇔ |x| <

√

C(t0 + t)2β

κ
  

:=Bx(t)

and that for Û > 0 it is necessary that

t ≥ max

{
|x|2κ

C

 1

2β

− t0, 0

}

  

:=Bt(x)

.
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Then



QT

∇(Ûm) ·∇η − Ûηtdxdt =


Q1

∇(Ûm) ·∇η − Ûηtdxdt

=

∫ T

0

∫

{|x|<Bx(t)}
∇(Ûm) ·∇ηdxdt−

∫

Ω

∫ T

Bt(x)
Ûηtdtdx.

We then can use partial integration in x on the rst term and in t on the second (since we

look at Q1, where Û is a classical solution):

=

∫ T

0

∫

{|x|=Bx(t)}
η∇(Ûm) · νdA

  

∇(Ûm)=0 when |x|=Bx(t)

dt−


Q1

△(Ûm)ηdxdt−

∫

Ω

[

Ûη
]T

Bt(x)
  

η(T )=0

dx+


Q1

Ûtηdxdt

=


Q1

Ûtη −△(Ûm)ηdxdt+

∫

Ω

(Ûη)(Bt(x))
  

Û(Bt(x))=0 for Bt(x)̸=0

dx

=


Q1

(Ût −△(Ûm))ηdxdt+

∫

Ω

Û(0)η(0)dx.

Since Û is a classical solution on Q1, the rst term is equal to zero and we nally get identity

(5.1) for the Barenblatt solution, recall that f = 0:



QT

∇(Ûm) ·∇η − Ûηtdxdt =

∫

Ω

Û(0)η(0)dx.

5.2 Existence and uniqueness of weak solutions

Now that we have dened weak solutions, the thing left to do is proving the existence and

uniqueness of those weak solutions to the homogeneous Dirichlet problem.

5.2.1 Energy solutions

To proof the existence of solutions by approximating the equation with non-degenerate equa-

tions, we need a way to pass to the limit. In order to do that an energy identity as in (4.17)

will be very helpful. We will see that for weak solutions this will actually be an inequality:



QT

|∇(Φ(u))|2dxdt+

∫

Ω

Ψ(u(x, T ))dx ≤

∫

Ω

Ψ(u0(x))dx+


QT

fΦ(u)dxdt.
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This can only hold if Φ(u) ∈ L2((0, T ) : H1
0 (Ω)) with H1

0 = W 1,2
0 and furthermore lets us

assume that


Ω
Ψ(u0(x))dx < ∞, i.e. Ψ(u0) ∈ L1(Ω) with Ψ the primitive of Φ. We will say

that u0 ∈ LΨ(Ω).

Moreover, we assume that f ∈ L2(QT ) such that


QT
fΦ(u)dxdt exists. Under the conditions

of Def. 5.1 we will call weak solutions that also t those additional assumptionsweak energy

solutions.

5.2.2 Existence of weak solutions

In addition to the standard assumptions on Φ (Φ is continuous, strictly increasing and

Φ(±∞) = ±∞), we will assume for simplicity that Φ is in W 1,1
loc (R). The following proof

is a much more detailed version of the proof of Thm. 5.7 of Vazquez [2006], where possible

uncertainties have been cleared up.

Theorem 5.2 (Existence of weak energy solutions).

Let u0 ∈ L1(Ω) and u0 ∈ LΨ(Ω) and f ∈ L2(Q). Then there exists a weak solution u to the

hom. Dirichlet problem of the GPME (Def. 5.1) in QT for arbitrary T > 0. Furthermore

holds that u ∈ L∞((0, T ) : LΨ(Ω)) and u ∈ L∞((0, T ) : L1(Ω)) and Φ(u) ∈ L2((0, T ) : H1
0 (Ω)).

The energy inequality



QT

|∇(Φ(u))|2dxdt+

∫

Ω

Ψ(u(x, T ))dx ≤

∫

Ω

Ψ(u0(x))dx+


QT

fΦ(u)dxdt (5.3)

and the comparison principle holds: Consider two solutions u1, u2 with initial data ui0 and

forcing terms fi, i = 1, 2. If u10 ≤ u20 and f1 ≤ f2, then u1 ≤ u2.

Proof. The idea of this proof consists of changing the non-linearity Φ to functions Φn with

positive derivatives Φ′
n > 0 that converge to Φ s.t. the problem will be non-degenerate. Let

therefore (Φn)n∈N be a sequence of functions such that

i) Φn ∈ C∞(R) with Φ
′
n(u) ≥ cn > 0 for all n ∈ N, u ∈ R and constants cn,

ii) Φn → Φ uniformly on compact sets and in W 1,1(R) on compact sets and

iii) Φn(0) = 0 for all n ∈ N.

The proof will be done in several lemmata with decreasing assumptions on u0, f,Γ and Φ.

Let T > 0 be arbitrary.

Lemma 1: The theorem holds under the additional assumptions that u0, f and ft are

bounded, Γ ∈ C2 and Φ is locally Lipschitz continuous.
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Proof. Let fn → f be a uniformly bounded sequence of smooth functions converging to f

in Lp(QT ) for all p < ∞. We can nd such a sequence since the set of smooth functions is

dense in Lp and f is bounded. Let furthermore (un0
)n∈N ⊂ C∞

c (Ω̄) be a uniformly bounded

sequence of functions converging to u0 in LΨ(Ω) and L1(Ω).

We get the following homogeneous Dirichlet problem

ut = △(Φn(un)) + fn in QT ,

un(x, 0) = un0
(x) in Ω̄,

un(x, t) = 0 on ΣT .

This problem can be solved with Thm. 4.5 and has a unique solution un with the regularity

of Thm. 4.3. Since the comparison principle holds for those solutions, we can derive as in

(4.5) that un is uniformly bounded in QT :

−M1 −N1t ≤ un(x, t) ≤ M2 +N2t in Q̄T ∀n ∈ N

with

M1 = sup
(x,t)∈Q̄T ,n∈N

(−un0
)

and M2 = sup(un0
), N1 = sup(−fn), N2 = sup(fn) accordingly, which are smaller than

innity with the choice of the sequences.

We get a uniformly bounded sequence un of solutions and we want to show that this sequence

converges to a weak solution u to the GPME.

For u to be a weak energy solution the following must hold

i) u ∈ L1(QT )

ii) Φ(u) ∈ L2((0, T ) : H1
0 (Ω)) and

iii) u satises the following identity



QT

∇(Φ(u)) ·∇η − uηtdxdt =

∫

Ω

u0(x)η(x, 0)dx+


QT

fηdxdt

for all functions η ∈ C1(Q̄T ) which vanish on ΣT and for t = 0.

We will start with ii). Let wn = Φn(un) and we will show that wn is bounded in H1 giving us

an in L2 convergent subsequence. From that we will be able to conclude that a subsequence

of un and wn converges in L2 and a.e.
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We rst estimate ∇wn with an energy estimate as in (4.17). Since un is a classical solution

of the form of Thm. 4.5 we can apply Thm. 4.6 and obtain



QT

|∇wn|
2dxdt+

∫

Ω

Ψn(un(x, T ))dx =

∫

Ω

Ψn(un0
(x))dx+



QT

fnwndxdt

with Ψn being the primitive of Φn, Ψn(s) =
 s
0 Φn(σ)dσ.

Thm. 4.6 moreover gives the inequality

1

2



QT

|∇wn|
2dxdt+

∫

Ω

Ψn(un(x, T ))dx ≤

∫

Ω

Ψn(un0
(x))dx+ C



QT

f2
ndxdt

where C is a constant only depending on Ω.

Notice that un0
→ u0 ∈ LΨ(Ω) and fn → f ∈ L2(QT ) and un0

and fn are therefore uni-

formly bounded in LΨ(Ω) respectively in L2(QT ). Thus, the right hand side is bounded

independently of n and it follows that ∇wn is uniformly bounded in L2(QT ) for arbitrary T .

Next, we will estimate the time derivative wnt = Φ
′
n(un)(un)t. For that we rst use Thm.

4.7 since we are dealing with classical solutions and get



QT

ζΦ′
n(un)(unt)

2dxdt =


QT

ζt

2
|∇(Φn(un))|

2 − (fnζ)tΦn(un)dxdt,

with ζ ∈ C∞([0, T ]) being a cut o function and ζ(0) = ζ(T ) = 0. Once again the right

hand side is bounded independently of n: The rst term since ∇(Φn(un)) = ∇wn is bounded

in L2(QT ) with the energy estimate above and the second term since f and ft are bounded

s.t. fn, fnt are uniformly bounded; Φn(un) is uniformly bounded as well since un is, Φn is

continuous and Φn → Φ uniformly on compacts.

Since ζ was an arbitrary cuto function and T was arbitrary, too, we have that for every

T < ∞ and τ > 0 the integral
 T
τ



Ω
Φ
′
n(un)(unt)

2dxdt is uniformly bounded.

To get from this estimate to the derivative wnt = Φ
′
n(un)(un)t, we remember that the un are

uniformly bounded by a constant C in QT and Φ is Lipschitz continuous on compact sets

such that the derivatives of the approximations Φ′
n(s) are uniformly bounded for |s| < C.

In this way, we can multiply the integral
 T
τ



Ω
Φ
′
n(un)(unt)

2dxdt with the uniformly bounded

Φ
′
n(u(x, t)) to infer that

∫ T

τ

∫

Ω

(Φ′
n(un)(unt))

2dxdt =

∫ T

τ

∫

Ω

(wnt)
2dxdt

is uniformly bounded and as such wnt in L2(Qτ
T ) with Qτ

T = Ω× (τ, T ).
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We now can conclude since ∇wn is uniformly bounded in L2(QT ) and (wn)t in L2(Qτ
T ) that

(wn)n∈N is uniformly bounded in H1(Qτ
T ) and we get a subsequence converging to a weak

limit wnk
⇀ w in H1(Qτ

T ) with the theorem of Banach and Alaoglu (Thm. III.3.7 of Werner

[2018]). The Sobolev embedding theorem (Thm. 8.9 of Alt [2012]) now ensures that H1(Qτ
T )

is compactly embedded in L2(Qτ
T ), i.e. every bounded sequence in H1(Qτ

T ) has a convergent

subsequence in L2(Qτ
T ) since L2 is also complete.

We therefore get (after passing to another subsequence) that wnk
→ w also strongly in

L2(Qτ
T ). After passing to another subsequence, we can assume that wnk

is also pointwise

convergent a.e. since every in L2 convergent sequence has an a.e. convergent subsequence.

Furthermore we also get that w ∈ L2(QT ) since wn is also uniformly bounded in L2(QT ).

Since Φ is continuous and bijective and Φn uniformly convergent, we also have the a.e.

convergence of unk
to a function u as follows:

|unk
(x, t)− ū| → 0 ⇐⇒ |Φ(unk

)(x, t)− w̄| → 0, for some ū and w̄

and

|Φ(unk
)(x, t)− w̄| = |Φ(unk

)(x, t)− Φnk
(unk

)(x, t) + Φnk
(unk

)(x, t)− w̄|

≤ |Φ(unk
)(x, t)− Φnk

(unk
)(x, t)|

  

→0 as Φnk
loc. unif. conv. and unk

bounded

+ |Φnk
(unk

)(x, t)− w̄|
  

a.e. convergent

k→∞
−→ 0

with ŵ = w(x, t). We dene u(x, t) = limk→∞ unk
(x, t).

Furthermore w = Φ(u) a.e. For that we write for arbitrary (x, t) ∈ QT :

|wnk
(x, t)− Φ(u)(x, t)| = |Φnk

(unk
)(x, t)− Φ(u)(x, t)|

≤ |Φnk
(unk

)(x, t)− Φ(unk
)(x, t)|

  

→0 as above

+|Φ(unk
)(x, t)− Φ(u)(x, t)|

k→∞
−→ 0

since Φn → Φ uniformly on compact sets, Φ is continuous and unk
→ u a.e. With the weak

convergence of wnk
⇀ w in H1(Qτ

T ) follows that ∇w = ∇Φ(u), the weak derivative of Φ(u).

We nally note that w = 0 on ΣT s.t. w = Φ(u) ∈ L2((0, T ) : H1
0 (Ω)) because wnk

= Φnk
(unk

)

= 0 on ΣT for all k. This shows ii).

To get i) we observe that unk
→ u in Lp(QT ) for every p ≥ 1 since the un are uniformly

bounded s.t. the convergence follows with the a.e. convergence and Lebesgue’s dominated

convergence theorem.
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We still have to show iii), i.e. that u is a weak solution to the problem and the identity (5.1)

holds. Since unk
are classical solutions the identity holds for them and we have



QT

∇(Φnk
(unk

)) ·∇η − unk
ηtdxdt =

∫

Ω

unk0
(x)η(x, 0)dx+



QT

fnk
ηdxdt

for every function η ∈ C1(Q̄T ) which vanishes on ΣT and for t = 0.

Since we have shown that ∇(Φn(un)) converges weakly in L2(QT ), unk
does so in L2(QT )

and η and ∇η are bounded and thus in L2 and we have picked the sequences un0
and fn to

converge to their limits in L1 respectively L2, we can pass to the limit in the identity above

to receive (5.1). u consequently is a weak solution to the problem.

For the energy inequality, notice that we can not directly go to the limit in the rst term of



QT

|∇wnk
|2dxdt+

∫

Ω

Ψnk
(unk

(x, T ))dx =

∫

Ω

Ψnk
(unk0

(x))dx+


QT

fnk
wnk

(x)dxdt

since we only have weak convergence of ∇Φn(un). But thanks to the weak semi-continuity

of ∥ · ∥L2 (Prop. 4.6 of Schweizer [2013]) we have that

∥∇(Φ(u))∥2L2(QT ) ≤ lim inf
k→∞

∥∇(Φnk
(unk

))∥2L2(QT ).

The lim infk→∞ is controlled by the right hand side, where the limit exists, s.t. the equality

becomes an inequality in the limit and we obtain (5.3) in this way.

Finally, for the comparison principle consider two sets of data u0 ≤ û0 and f ≤ f̂ . Our

approximation process then yields un0
≤ ûn0

and fn ≤ f̂n s.t. the classical comparison

principle holds and un ≤ ûn for every n ∈ N. Passing to the limit we get u ≤ û.

Lemma 2: The theorem holds under the additional assumptions that u0, f and ft are

bounded, Γ ∈ C2. Φ does not need to be locally Lipschitz continuous.

Proof. As before we approximate the initial problem with Φn, u0n and fn and obtain non-

degenerate quasilinear problems that can be solved with Thm. 4.5 and solutions un. Those

solutions are uniformly bounded as in Lemma 1.

When the Lipschitz condition on Φ is eliminated, we nd that Φ
′ must not be bounded on

compact sets and we can not conclude as in the Lemma above that (wn)t is uniformly bounded

in H1(Qτ
T ) and that therefore exists an a.e. to a function w convergent subsequence.

What we will do in this step instead, is composite u and w with continuous strictly increasing

functions in a way that we can conclude with Lemma 1 that those compositions converge a.e.
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We then will be able to obtain the desired convergence of the solutions with the inverse of

those functions.

For that consider the function Z dened through (here we need that Φ ∈ W 1,1
loc (R))

Z(s) =

∫ s

0
min{1,Φ′(σ)}dσ

and the approximations

Zn(s) =

∫ s

0
min{1,Φ′

n(σ)}dσ.

It holds that Zn → Z locally uniformly since Φ
′
n → Φ

′ in L1
loc(R) and therefore

min{1,Φ′
n} → min{1,Φ′} in L1

loc(R)

s.t. for an arbitrary compact interval [a, b]

sup
s∈[a,b]

|Zn(s)− Z(s))| = sup
s∈[a,b]

∣
∣
∣
∣

∫ s

0
min{1,Φ′

n(σ)}−min{1,Φ′(σ)}dσ

∣
∣
∣
∣

≤ sup
s∈[a,b]

∫ s

0
|min{1,Φ′

n(σ)}−min{1,Φ′(σ)}|dσ

=

∫ b

0
|min{1,Φ′

n(σ)}−min{1,Φ′(σ)}|dσ
n→∞
−→ 0.

The Zn and Z are obviously strictly increasing since Φ and Φn are strictly increasing and

also bijective since Φ and Φn are as well. Since the Zn and Z are also continuous, they have

continuous inverse functions we will call Λn = Z−1
n which also converge locally uniformly to

a continuous and strictly increasing function Λ. This can be seen as follows: For a compact

interval [Z(a), Z(b)] (every interval can be written in this form because Z is bijective and

continuous) exists with the local uniform convergence of Zn and monotonicity of Z an N s.t.

[Z(a), Z(b)] ⊂ [Zn(a− 1), Zn(b+ 1)] for all n ≥ N .

Then

sup
s∈[Z(a),Z(b)]

|Λn(s)− Λ(s)| ≤ sup
s∈[Zn(a−1),Zn(b+1)]

|Λn(s)− Λ(s)|

= sup
s∈[a−1,b+1]

|Λn(Zn(s))− Λ(Zn(s))| = sup
s∈[a−1,b+1]

|s− Λ(Zn(s))|
n→∞
−→ 0

since a uniform convergent function composited with a continuous function is uniform con-

vergent.
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Considering that the derivatives Z ′ and Z ′
n are also bounded by 0 and 1, Z and the Zn are

uniformly Lipschitz continuous and we have |Zn(s)| ≤ |s| and |Zn(s)| ≤ |Φn(s)|.

Now we consider the function zn(x, t) = Zn(un(x, t)) =
 un(x,t)
0 min{1,Φ′

n(s)}ds. The zn are

uniformly bounded in QT as

|zn(x, t)| = |Zn(un(x, t))| ≤ |un(x, t)|

and un is uniformly bounded.

Seeing that

|∇zn| =

∣
∣
∣
∣
∣
∇

∫ un(x,t)

0
min{1,Φ′

n(s)}ds

∣
∣
∣
∣
∣
= |∇un(x, t) min{1,Φ′

n(un(x, t))}|

≤ |∇un(x, t)|

what is uniformly bounded in L2(QT ) with the energy estimate as in Lemma 1, we also have

the uniform boundedness of ∇zn in L2(QT ).

Recognizing also that min{a, b}2 < ab with a, b > 0 it follows

|(zn)t|
2 =

∣
∣
∣
∣
∣

∂

∂t

∫ un(x,t)

0
min{1,Φ′

n(s)}ds

∣
∣
∣
∣
∣

2

= ((un)t(x, t))
2min{1,Φ′

n(un(x, t))}
2

≤ ((un)t(x, t))
2
Φ
′
n(un(x, t)).

The estimate is also uniformly bounded, this time in L2(Qτ
T ), with the estimate of the time

derivative as in Lemma 1.

With the last three estimates, we conclude the uniform boundedness of zn in H1(Qτ
T ) such

that we once more have an in L2(Qτ
T ) and a.e. convergent subsequence znk

→ z which we

will call zn for simplicity in the following.

To receive the a.e convergence of un and wn from this result, we note that un = Λn(zn)

and wn = Φn(Λn(zn)). Since Φn and Λn are locally uniformly convergent and zn a.e. con-

vergent and bounded, we get as in Lemma 1 the a.e. convergence of un → u = Λ(z) and

wn → w = Φ(Λ(z)) = Φ(u). Furthermore, un and wn are uniformly bounded in QT s.t. we

get the convergence in Lp(QT ) for all p < ∞ with the dominated convergence theorem. i) is

therefore proven.

For ii) we still need to show that the weak gradient ∇(Φ(u)) exists and is in L2(QT ). Since

∇wn is uniformly bounded in L2(QT ), it exists a weakly convergent subsequence ∇wn ⇀ ξ

in L2(QT ).
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We now want to show that ξ is the weak derivative, i.e.


QT
Φ(u)div(η)dxdt = −


QT

ξ·ηdxdt

for every test function η : QT → R
n ∈ C∞

0 . For wn there exists a strong derivative ∇wn s.t.

this obviously holds for wn for every n ∈ N and if the limit exists

lim
n→∞



QT

wndiv(η)dxdt = lim
n→∞

−


QT

∇wn · ηdxdt.

Since ∇wn → ξ weakly in L2(QT ), we have just shown that wn → w = Φ(u) in L2(QT ) and

as such also weakly in L2(QT ) and η, div(η) ∈ L2(QT ) we can conclude that



QT

Φ(u)div(η)dxdt = −


QT

ξ · ηdxdt

and ξ is the weak gradient of Φ(u), ∇Φ(u) = ξ.

To show that u satises (5.1) and therefore iii), we can proceed exactly as in Lemma 1 as we

have just proven the necessary convergences. We have once more constructed a weak solution

to the problem. The energy inequality and the comparison principle follow analogous as in

Lemma 1.

Lemma 3: The theorem holds still when the boundedness assumption on u0, f and ft is

removed. We still assume that Γ ∈ C2.

Proof. We approximate the potentially unbounded functions u0 and f by functions that meet

the assumptions of Lemma 2, i.e. un0
, fn and (fn)t are bounded. Because u0 ∈ LΨ(Ω) and

u0 ∈ L1(Ω) it is possible to nd a uniformly in LΨ(Ω) bounded sequence of functions un0

with un0
→ u0 in L1(Ω).

For fn we choose a sequence that is uniformly bounded in L2(QT ) and fn → f in L2(QT ).

Once again remember the assumption f ∈ L2(Q). Notice that Φ does not get approximated

and does not change with n.

The resulting Dirichlet problem can be solved with Lemma 2 and solutions un.

Notice that the L1-contraction principle (Thm. 4.8) also holds for weak solutions of the form

of Lemma 2 since it holds for the approximation in Lemma 2 and we can pass to the limit

because we have the necessary convergences of un0
, fn and un respectively ûn0

, f̂n and ûn.

We then can infer for un(t) and um(t) for arbitrary t ∈ (0, T ) that

∥um(t)− un(t)∥L1(Ω) ≤ ∥um0
− un0

∥L1(Ω) +

∫

0

t

∥fm(s)− fn(s)∥L1(Ω)ds.
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Since un0
→ u0 in L1(Ω) and fn → f in L2(QT ), we can pass to the limit in n and m. It

follows that un(t) is a Cauchy Sequence for all t ∈ (0, T ) and therefore converges to a function

u(t) in L1(Ω) as L1(Ω) is complete.

Furthermore, it follows that

ess sup
t∈(0,T )

∥un(t)− u(t)∥L1(Ω) ≤ ess sup
t∈(0,T )



∥un0
− u0∥L1(Ω) +

∫

0

t

∥fn(s)− f(s)∥L1(Ω)ds



= ∥un0
− u0∥L1(Ω) +

∫

0

T

∥fn(s)− f(s)∥L1(Ω)ds

n→∞
−→ 0

with the convergence of un0
and fn s.t. un → u also in L∞((0, T ) : L1(Ω)) and, after passing

to a subsequence, almost everywhere.

The energy inequality holds for all n ∈ N and we get as before with the Poincaré inequality

(fn ∈ L2(QT ) and Φ(un) ∈ L2((0, T ) : H1(QT ))):

1

2



QT

|∇(Φ(un))|
2dxdt+

∫

Ω

Ψ(un(x, T ))dx ≤

∫

Ω

Ψ(un0
(x))dx+ C



QT

f2
ndxdt.



Ω
Ψ(un(x, T ))dx is therefore uniformly bounded since un0

and fn are uniformly bounded

in LΨ(Ω) respectively in L2(QT ). Moreover it follows that un is uniformly bounded in

L∞((0, T ) : LΨ(Ω)) s.t. u ∈ L∞((0, T ) : LΨ(Ω)) since T was arbitrary and therefore

∫

Ω

Ψ(un(x, t))dx ≤

∫

Ω

Ψ(un0
(x))dx+ C



Qt

f2
ndxdt ≤

∫

Ω

Ψ(un0
(x))dx+ C



QT

f2
ndxdt

for all t ∈ (0, T ) and the right side does not depend on n or t. This shows i).

We can also conclude as before that ∇Φ(un) is uniformly bounded in L2(QT ) and since



QT

|∇(Φ(un))|
2dxdt ≥ C



QT

Φ(un)
2dxdt

with the Poincaré inequality and a constant only depending on Ω, Φ(un) is also uniformly

bounded in L2(QT ). This implies that∇(Φ(un)) and Φ(un) have weakly in L2(QT ) convergent

subsequences we will also call Φ(un) ⇀ ζ and ∇(Φ(un)) ⇀ ξ for simplicity. Since Φ is

continuous, we have Φ(un) → Φ(u) a.e. and also ζ = Φ(u) a.e.:
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For this, we remember that with Mazur’s Lemma (Korollar III.3.9 of Werner [2018]) since

Φ(un) ⇀ ζ in L2(QT ), there exist convex combinations of Φ(un), i.e for every n ∈ N exist

(λ
(n)
i )n≤i≤N(n) with

N(n)
i=n λ

(n)
i = 1 such that

N(n)
∑

i=n

λ
(n)
i Φ(ui)

n→∞
−→ ζ strongly in L2(QT )

and therefore a.e. (on a subsequence). Since Φ(un) → Φ(u) a.e the convex combinations also

converge a.e. to Φ(u) s.t. ζ = Φ(u).

To prove that ξ = ∇(Φ(u)), we can proceed exactly as in Lemma 2 and we nally receive

Φ(u) ∈ L2((0, T ) : H1
0 (Ω)) and ii) is proven.

As before identity (5.1) holds for the approximate solutions and we can pass to the limit

with the proven convergences s.t. u is a weak solution to the GPME with the regularity as

in the theorem. The energy inequality and the comparison principle still hold as before. We

can furthermore pass to the limit in the L1-contraction principle so that it also holds in the

limit.

End of the proof: Γ is not in C2 but Lipschitz.

For that, we approximate Ω with an increasing sequence of open sets Ωn ⊂⊂ Ωn+1 with

boundary Γn ∈ C2. Let ζn(x) be cuto functions s.t. ζn = 1 on Ωn−1 and supp(ζn) ⊂ Ωn.

We dene un0
= u0ζn and fn = fζn and obtain the following Dirichlet problem

(un)t = △(Φ(un)) + fn in Qn
T = Ωn × (0, T )

un(x, 0) = un0
(x) in Ω̄n

un(x, t) = 0 on Σn = Γn × (0, T ).

This can be solved with Lemma 3 as Γn ∈ C2 what yields weak solutions un which we extend

by 0 on Ω \ Ωn. It holds that un0
is uniformly bounded in LΨ(Ω) and un0

→ u0 in L1(Ω),

fn → f in L2(QT ) with dominated convergence. We now can conclude analogous to Lemma

3 with the L1-contraction principle which also holds in this case and the energy inequality

that un → u in L∞((0, T ) : L1(Ω)) and u ∈ L∞((0, T ) : LΨ(Ω)) and . For a subsequence then

follows un → u a.e. and we get i).

To show ii), i.e. Φ(u) ∈ L2((0, T ) : H1
0 (Ω)) one can proceed exactly as in Lemma 3.

To see that u nally is a weak solution we can pass to the limit in the identity (5.1) for un

s.t. it also holds for u as before because we have just shown the necessary convergences. This
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concludes the proof and we have found a solution u with the regularity stated in the theorem.

The energy inequality and the comparison principle still apply as before.

We have therefore succeeded in our goal of showing the existence of solutions to the ho-

mogeneous Dirichlet problem with sucient generality. Similarly, one can do this for the

inhomogeneous problem, but this won’t be done in this thesis. We refer the reader to [5.7 of

Vazquez [2006], p. 103-106].

5.2.3 Uniqueness of weak solutions

For simplicity to show the uniqueness of a weak energy solution u to the GPME, we will

assume that u ∈ L2(QT ). Notice that in Lemma 3 and the end of the proof of Thm. 5.2

we have only proven that the solutions are in L∞((0, T ) : LΨ(Ω)) and do not need to be

L2-functions.

Theorem 5.3 (Uniqueness of weak energy solutions). (Thm. 5.3 of Vazquez [2006])

If for a weak solution u to the hom. Dirichlet problem of the GPME (Def. 5.1) holds that

u ∈ L2(QT ) and Φ(u) ∈ L2((0, T ) : H1
0 (Ω)) it is the unique solution to the problem.

Proof. Let u1 and u2 be two weak solutions with wi := Φ(ui). Both solutions satisfy condition

(5.1) such that by subtracting both equations we get for all test functions η ∈ C1(Q̄T ) with

η|ΣT
= 0 and η(T ) = 0 that



QT

∇(w1 − w2) ·∇η − (u1 − u2)ηtdxdt = 0. (∗)

The idea is to use a suitable test function s.t. (∗) can only hold if u1 = u2. For that consider

the function

η(x, t) =







 T
t w1(x, s)− w2(x, s)ds , if 0 < t < T

0 , if t ≥ T
.

Notice that for t < T

ηt =
∂

∂t

∫ T

t
w1(x, s)− w2(x, s)ds = −(w1(x, t)− w2(x, t)).

ηt is therefore a function in L2(QT ) since we assumed that wi = Φ(ui) ∈ L2((0, T ) : H1
0 (Ω)).

Furthermore

∇η =

∫ T

t
∇(w1(x, s)− w2(x, s))ds
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what is also in L2(QT ) because



QT

∣
∣
∣
∣

∫ T

t
∇(w1(x, s)− w2(x, s))ds

∣
∣
∣
∣

2

dxdt

≤


QT

(T − t)

∫ T

t
|∇(w1(x, s)− w2(x, s))|

2 dsdxdt

≤ T

∫ T

0

∫

Ω

∫ T

0
|∇(w1(x, s)− w2(x, s))|

2 dsdx

  

=C<∞, since ∇(Φ(u1/2))∈L
2(QT )

dt = T 2C < ∞,

where we have used Jensen’s inequality [Thm. VI.1.3 of Elstrodt [2018]] in the second step.

η is therefore in H1(QT ) and obviously η = 0 on ΣT and for t = T . η may not be in C1(Q̄T )

but we can approximate η with smooth functions ηn converging to η in H1(QT ) with ηn = 0

on ΣT and for t = 0 (since the smooth functions are dense in H1). For those functions (∗)

holds and we can pass to the limit with the convergence in H1(QT ) (since ui ∈ L2(QT )) and

we get (∗) for our dened η.

Now

0 =


QT

∇(w1 − w2) ·∇η − (u1 − u2)ηtdxdt

=


Qt

∇(w1 − w2) ·

∫ T

t
∇(w1(x, s)− w2(x, s))ds

  

= −vt·v = −( 1

2
|v|2)

t
, v=

∫ T
t ∇(w1(x,s)−w2(x,s))ds

dxdt+


QT

(u1 − u2)(w1 − w2)dxdt

=

∫

Ω

∫ T

0
−
1

2
(|v|2)tdtdx+



QT

(u1 − u2)(w1 − w2)dxdt

=
1

2

∫

Ω

−|v(T )|2 + |v(0)|2dx+


QT

(u1 − u2)(w1 − w2)dxdt

=
1

2

∫

Ω

∣
∣
∣
∣

∫ T

0
∇(w1(x, s)− w2(x, s))ds

∣
∣
∣
∣

2

dt+


QT

(u1 − u2)(w1 − w2)dxdt.

The rst term is obviously non-negative and the second as well because w1 − w2 > 0 iif

u1 − u2 > 0 as Φ is strictly increasing. Because the term can only be equal to zero if both

parts are zero, we can conclude that u1 = u2 a.e.
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6 Conclusion and outlook

In this thesis, we have become acquainted with a new type of partial dierential equation,

the (generalized) porous media equation and its weak solution theory. For this, we have

derived the PME in its original physical way. To motivate the weak solution theory, we have

discussed the Barenblatt solution, which is a classical solution to the PME whenever it is

positive, but we have also seen that dierent to the fundamental solution to the heat equation

this solution originating from a point source isn’t dierentiable on the whole space, implying

that it can not be a classical solution everywhere.

In the next chapter, we then got to know the main dierence of the GPME to the well

studied quasilinear parabolic equations, namely the possible degeneracy of the equation.

Treating this diculty to prove the existence of weak solutions was done by approximating

the degenerate problem by non degenerate problems of which we could conclude the existence

of solutions from the classical theory we stated. For these classical solutions we have proven

some important estimates we used extensively in the existence proof.

In this thesis, we have restricted ourselves to the homogeneous Dirichlet problem but the

same can be done to the inhomogeneous problem or even the Neumann problem. The weak

solutions dened in this thesis can be even further generalized to very weak solutions where

Φ(u) is only in L2 s.t. we don’t need ∇Φ(u) for the denition of the solution (6.2 of Vazquez

[2006], p. 130,131).

The PME nds application in various elds of science. The classical application of the ow of

a gas through a porous medium we have seen in this thesis. Further applications we nd for

example in the modelling of the diusion of a biological population (s. Gurtin and MacCamy

[1977]). Here the degeneracy of the PME is one argument for the accuracy of the model

because it ensures a nite propagation speed and it is even possible for the populated area to

stay bounded for all time. Another fun example of this is the paper by Newman and Sagan

[1981], where the spread of a galactic civilization in space is modeled by the porous media

equation.
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