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1 Introduction

In our technologically advanced age, imaging has become indispensable in many areas.
It is needed for health diagnostics through CT and MRI, for monitoring environmental
changes through satellite images, for examining the smallest structures through electron
microscopy in nanotechnology and for monitoring through thermal imaging in defence
and security. The range of imaging applications is large and extensive, providing data for
discoveries, analyses and decisions.

However, all of these areas face a common challenge: images are altered during capture,
processing and storage, which can have potentially damaging effects. In healthcare, such
alterations can obscure important information and lead to misdiagnosis. In environmental
science, they can obscure crucial environmental changes. In nanotechnology, they prevent
accurate observation of tiny structures. As we rely more and more on these technologies,
correcting these image changes is critical to maintaining the accuracy and reliability of
the data.

To better understand the timing and circumstances of such image distortions, we
consider below a simplified representation of a photosensor image processing workflow
diagram (Figure 1 below).

Figure 1: Simplified representation of the signal processing in a photo sensor.
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1.1 Types of Image Distortions: Illustrative Examples

It becomes evident that the distortions we have mentioned can be categorized into three
distinct groups. To illustrate this point, we will explore concrete examples from each of
these categories. The examples shown in this section can be reproduced if necessary using
the provided MATLAB Livescript (ExactRecovery.mlx).

Optical distortions

These image alterations take place before the actual capture process, that is, before the
light reaches the sensor. Some common examples include:

• Motion blur: Occurs when the object being sensed moves significantly during the
capture process.

• Optical aberrations: Distortions induced by certain types of lenses that affect the
image quality.

• Defocus blur: Arises from incorrect focusing, resulting in a loss of image sharpness.

An example of defocus blur is shown in Figure 2 below. In this case, a Gaussian filter was
used to create the blur effect, and more details on this technique will be provided later in
this work.

Figure 2: On the left side, the original image from [21], on the right side an blurred
version.

Noise

Image noise is the random variation of brightness or colour information in images. It
appears as grainy or speckled patterns that can degrade the quality of the captured image.
Noise is primarily caused by the natural randomness of light and defects in the camera’s
sensor. In low light, the light particles hitting the sensor can vary greatly, resulting in
more noticeable noise. In addition, when the sensor converts these particles of light into
electrical signals, it can introduce additional irregularities, that can make the noise in the
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final image even more noticeable. An example of such noise can be seen in figure 3 below.

Figure 3: On the left side, the blurred image resulting from figure 2, on the rigth side,
the same image with added noise can be seen.

Technical distortions

To create a digital representation of an image, the light intensity and colour of the mea-
sured image are evaluated within a fixed grid. to reduce the final size of the image, the
original image is now evaluated on a coarser grid. This can result in loss of detail in the
image. In addition, overlapping of individual frequencies in the image may occur. This is
called aliasing and can result in what are known as moiré patterns. These are interference
created when high frequency details in the image interact with the pixel grid, creating a
wavy or rippled effect. An example of sampling on a coarser grid, called subsampling, is
shown in Figure 4.
Therefore, when comparing our original image in figure 2 with the result in figure 4, we

Figure 4: On the left side, the result from Figure 3 is shown, while on the right, the
application of subsampling from 400 x 400 pixels to 100 x 100 is displayed.

can observe considerable distortion due to these three mentioned influencing factors.
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1.2 Overview of Image Processing Algorithms

Recent advances in image post-processing have helped to overcome problems caused by
distortions in imaging technology. This section provides a brief overview of the various
methods that can be used to address these problems.

• Linear filtering: Basic smoothing, such as the Gaussian filter shown in Figure 2,
can reduce noise but can also blur the image. Details on how to use this filter are
covered later.

• Non-linear filtering: Techniques such as median filtering use statistical measures
(such as the median) from around a pixel. These filters preserve edge sharpness
better than linear filters.

• Adaptive filtering: An improvement on the previous filters, adaptive filters change
their settings based on the characteristics of the image. In contrast to standard
filters, which treat the entire image uniformly, adaptive filters adapt their process
to specific areas of the image.

• Wavelet-based methods: These methods decompose an image into wavelet co-
efficients, each of which represents different frequency aspects at different scales.
Unlike the Fourier transform, which focuses only on frequency, wavelets capture
both frequency and location details. By reducing the wavelet coefficients, we can
retain important elements and remove minor components such as noise when recon-
structing the image.

• Regularization methods: In techniques such as Tikhonov or Total Variation
regularization, a so-called regularization term is added to the problem formulation
for image reconstruction. The nature of the added term and its weighting can
influence the properties of the reconstructed images. We will examine this in more
detail in section 2.

• Machine learning/Deep learning: The latest approaches use patterns learned
from large data sets to identify and correct distortions. These methods use the power
of data-driven learning to effectively deal with different types of image distortion.
However, a drawback is the high computational effort required to train such models.

1.3 Objectives and structure of the thesis

Given this information, we are now in a position to specify the objectives of this the-
sis. Our main focus will be on Total Variation (TV-) regularization. More specifically, a
significant part of this work will be devoted to the investigation of a theoretical aspect
intrinsic to TV regularization (for a more detailed explanation, see 2.3). In order to do so,
we will elaborate and detail the results presented in [9]. In this pursuit, we aim to refine
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and provide a more in-depth analysis of the proofs of lemmas, propositions and theorems
from [9], incorporating supplementary material such as definitions from secondary liter-
ature and illustrative examples. Furthermore, in order to enhance the understanding of
the results, we will address the characteristics and efficacy of TV regularization, providing
relevant examples.
The structure of this thesis is as follows:

• In Section 2, we will gain an overview of TV regularization and derive the problem
statement from [9]. This chapter is particularly recommended for those who are
new to TV regularization, as it aims to provide an intuitive understanding of the
algorithm. However, those already experienced in this field may choose to proceed
directly to Section 2.3.

• Section 3 provides the theoretical foundations for further argumentation. In each
subsection, we offer additional literature for those who wish to delve deeper into the
specific topics discussed.

• In Section 4, we will derive the so-called Fenchel dual problem using our example
from Section 2.1 and discuss properties of its solutions. Here too, we refer to further
literature for in-depth study.

• Section 5 narrows down the solution set of the problem presented in 2.1 and examines
certain exposed faces (a mathematical concept, see 5.1 for its definition) of this set.
We will draw theoretical parallels to k-sparsity.

• Following this, in Section 6, we further transform the dual representation of our
problem into the so-called prescribed curvature problem (minimizing a ’shape func-
tional’), which we then analyze for convergence and stability.

• Finally, in Section 7, we present the main results from [9], based on the assumption
of the so-called non-degenerate source condition (see 7.4). We will then demonstrate
through a simple example the conditions under which this property is satisfied.

Unless explicitly stated otherwise, we will refer to [9] as our source in the following
sections. If a reference to [9] is given, it indicates that no other source could be found for
the particular statement.

2 TV-regularization: an introduction

TV regularization was first introduced for image denoising and reconstruction in a seminal
paper by Rudin, Osher, and Fatemi in 1992 [20], and it is known for its ability to effectively
reduce noise while preserving the existing edges in an image. In this section, we aim to
provide an insight into the reconstruction of distorted, noisy images using this method.
To do so, we will first define the theoretical problem associated with TV regularization,
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followed by an exploration of the characteristics and limitations of the algorithm. We will
then address the primary question of our theoretical investigation in this thesis.

2.1 Theoretical problem statement

To arrive at a general problem formulation, we consider the unknown function u0 in the
space L2(R2), representing the image we aim to reconstruct. The problem at hand is
that, as previously described, we only have access to a distorted version of u0.

Noiseless case

For the noiseless case we only have access to images y0, where y0 = Φu0 and Φ is a linear
operator mapping from L2(R2) into a separable Hilbert space H. As shown in figure 2,
Φ can be, for example, a Gaussian filter (blur), which is the convolution with a Gaussian
kernel. The minimization problem to reconstruct u0 from y0 using TV regularization is
then formulated as follows

inf
u∈L2(R2)

TV(u) subject to Φu= y0, (P0(y0))

where TV(u) represents the total (gradient) variation of u . Informally, TV(u) measures
the total extent of fluctuations or "oscillations" in u, disregarding the direction of these
changes (see Section 3.4 for a precise definition). Consequently, in this reconstruction
approach, the objective is to ascertain the ’smoothest’ function u that also preserves
sharp edges and conforms to the observed data.

Noisy case

To account for the effect of noise in the observations, the recovery of u0 is adapted from
y0 to y0 +w, where w ∈ H represents additive noise. (For an example, see the end result
of figure 4). For the noisy case where y = y0 +w and λ > 0, the problem is formulated as
follows:

inf
u∈L2(R2)

(1
2∥Φu−y∥2

H +λTV(u)
)
. (Pλ(y))

Here, an image uλ,w is reconstructed from a (linearly) distorted and noisy y by searching
for an u that is as close as possible to y (minimizing the first term), while ensuring that
the total variation of u remains small (minimizing the second term). The influence of the
latter part is determined by the regularization parameter λ.

2.2 Examples

In this section, we demonstrate the characteristics of TV regularization through a series of
simulations. We aim to highlight the strengths and weaknesses of this algorithm in com-
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parison to other noise reduction methods. Following this, we will provide the motivation
for the theoretical investigation undertaken in this work. The illustrations for this sec-
tion can be reproduced with the MATLAB Livescript (ExactRecovery.mlx) mentioned
earlier.

2.2.1 Comparison of TV regularization with other algorithms

In this section, we compare TV regularization with a simple Gaussian filter and a wavelet-
based denoising algorithm. We focus on the denoising case (Φ = id) without subsequent
subsampling. For the TV regularization, we utilize an algorithm from [7, p. 1269, p. 1273]
with regularization parameter λ= 0.1. The Gaussian filter is implemented as a convolution
with a Gaussian kernel, standard deviation 2. The wavelet-based algorithm stems from a
method included in a MATLAB toolbox (see [17]).

Comparison: Image of bell peppers

First, let us consider the familiar image from Section 1, with additive noise w such that
||w|| = 30. In Figure 5, we observe that all three algorithms effectively remove the noise.
However, the wavelet-based algorithm performs the best, eliminating noise while main-
taining image sharpness and detail. The Gaussian filter, as expected, reduces noise at
the expense of overall sharpness. The TV regularization yields a completely different
outcome, where many details of the original image are lost. As previously described, this
algorithm reduces the total variation in the image, leading to the creation of flat zones.
We will delve deeper into this characteristic in the following example.

Figure 5: Original image from [21] with noise (Picture 1), processed using wavelet algo-
rithm (Picture 2), Gaussian filter (Picture 3), and TV regularization (Picture 4).

Comparison: Fine structures

In this example, we once again compare the previously mentioned algorithms, this time
using an image of a wooden fence from [21], with the same level of noise intensity as
before. Observing Figure 6, the clear weakness of TV regularization becomes apparent.
Fine details cannot be preserved by this algorithm (refer to the left side of the depicted
fence in Figure 6). Therefore, for noise reduction in such images, it is advisable to prefer
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an alternative method. Even the Gaussian filter, with its significantly lower computa-
tional complexity compared to TV regularization, offers a much better alternative in this
scenario.

Figure 6: Original image from [21] with noise (Picture 1), processed using wavelet algo-
rithm (Picture 2), Gaussian filter (Picture 3), and TV regularization (Picture 4).

Comparison: Piecewise constant image

For our final comparison of the three algorithms, we examine the reconstruction of a
piecewise constant image with an increased noise intensity of ||w|| = 80 and a modified
regularization parameter in the TV algorithm of λ= 0.3. As observed in Figure 7, in such
images, the previously mentioned weakness of TV regularization becomes its strength.
The algorithm’s propensity to create piecewise constant areas aids in effectively separating
the image from noise while preserving sharp edges. Consequently, we will henceforth focus
on using the TV regularization algorithm exclusively for such images and will later explain
how these images can be formally characterized.

Figure 7: Original image from with noise (Picture 1), processed using wavelet algorithm
(Picture 2), Gaussian filter (Picture 3), and TV regularization (Picture 4).

2.2.2 Results with variation of the regularization parameter

In order to better understand the impact of the regularization parameter λ in the re-
construction process using TV regularization, we will examine solutions of Pλ(y) with
different values of λ in the following analysis. In this case, we consider the problem
Pλ(y), where Φ represents a convolution with a Gaussian kernel, followed by subsampling
on a 100 x 100 grid. For this new problem, we now use a different TV-regularization
algorithm, based on [7, p. 1269, p. 1275].
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λ→ 0:

In this limit, we have:

inf
u∈L2(R2)

1
2∥Φu−y∥2

H +λTV(u)︸ ︷︷ ︸
→0

 .
Here, the problem approaches a least squares problem where the goal is to find a u that
minimizes ∥Φu− y∥2

H. As observed from Figure 8, this leads to overfitting of Φu to
the noise w. Additionally given that Φ is a convolution with a Gaussian kernel, Φ(u)
is continuous, resulting in overfitting-induced oscillations across the entire reconstructed
image.

λ→ ∞:

In this case, we derive:

inf
u∈L2(R2)

(1
2∥Φu−y∥2

H +λTV(u)
)

⇐⇒ inf
u∈L2(R2)

 1
2λ∥Φu−y∥2

H︸ ︷︷ ︸
→0

+TV(u)

 .

It is evident that the total variation term of u becomes dominant in the minimization.
This results, as seen in Figure 8, in excessive smoothing of the original image and loss of
important structures. Overall, it becomes clear that the choice of regularization parameter
is not trivial and must be carefully selected according to the application area.

Figure 8: Blurred image with noise, subsampled on a 100 x 100 grid (Picture 1), TV-
reconstructed with λ = 0.01 (Picture 2), TV-reconstructed with λ = 0.2 (Picture 3), and
TV-reconstructed with λ= 1.5 (Picture 4).

2.3 Motivation: Behaviour for decreasing noise

In this section, we delve into the motivation for the theoretical investigation presented
in this work. Let us revisit the piecewise constant image from the previous section (see
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figure 9). This image can be interpreted as a top view of the graph of the function
u0 =∑4

i=1aiχEi , where the Ei represent the shapes visible in R2.
Examining the solutions uλ,w of Problem Pλ(y) as w → 0 with a suitably chosen λ for

the unknown image u0 (see figure 10), we observe that all reconstructions uλ,w exhibit a
similar structure to u0. Specifically, uλ,w displays the same number of shapes as u0, and
these shapes appear to converge towards those in u0.

We aim to address the question of whether the indications suggested by these simu-
lations can be theoretically substantiated. More precisely, whether for such a u0, under
certain conditions, a solution uλ,w of Pλ(y) actually satisfies: uλ,w = ∑4

i=1 ãiχẼi , with
both ãi → ai and Ẽi → Ei as w → 0.

Parallels to sparse representation

The advantage of such properties for solutions is evident. Instead of storing each pixel of
the reconstructed image in a fixed pixel grid (a matrix of fixed size), the aforementioned
representation of uλ,w allows us to store the data of the reconstructed image much more
efficiently. Furthermore, it enables evaluation on arbitrarily large pixel grids without loss
of image quality. In Section 5, we will see that our problem naturally leads to a sparse
representation of the solutions, where sparsity in mathematics deals with the problem of
describing a given dataset (in our case, the original image u0) using a suitable basis with
as few representatives as possible.

Figure 9: Simple shapes interpreted as sets in R2.
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Figure 10: Original image (Picture 1), processed using TV regularization with ||w|| = 1
(Picture 2), with ||w|| = 10 (Picture 3), with ||w|| = 20 (Picture 4).

3 Preliminaries

3.1 Sets locally described by Ck functions

As indicated in section 2, our analysis focuses primarily on examining the level sets of
solutions to P0(y0) and Pλ(y). Given the strong dependence of our arguments on the
boundary regularity of these sets, we will introduce a definition of a ’smooth’ set, together
with a concept of convergence applicable to such sets. We present here a slightly modified
version of a smooth set from [10, p. 78ff.], which is restricted to the use of open squares.

Definition 3.1 (Smooth set): [9, p. 5f.] Let E be a subset of R2 such that E ̸= ∅.
Define a square in R2 with center x ∈ R2, sidelength 2r > 0, and axis oriented along a
unit vector v ∈ S1 by:

C(x,r,v) := x+Rv(C(0, r)), (1)

where Rv ∈ SO(2) rotates the point (0,1) to v, and C(0, r) := (−r,r)2.

We say that E is of class Ck if for every x ∈ ∂E there exists rx > 0, vx ∈ S1, and a
function ux ∈ Ck([−rx, rx]) such that:

intE∩C(x,rx,vx) = x+Rvx(hypograph(ux) ∩ C(0, rx)),
∂E∩C(x,rx,vx) = x+Rvx(graph(ux) ∩ C(0, rx))

where:
hypograph(ux) := {(z, t) ∈ C(0, rx) | t < ux(z)},

graph(ux) := {(z, t) ∈ C(0, rx) | t= ux(z)}.

and x+A represents the translation of A by x. Furthermore, it holds that there exist rx
and vx, such that ux(0) = 0 and u′

x(0) = 0. Given the previously established properties of
the set E and its boundary ∂E, we can now define the outward unit normal at a point
(z,ux(z)) on ∂E, which is denoted by:

νE(z,ux(z)) := 1√
1+u′

x(z)2

(
−u′

x(z)
1

)
(2)
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then the signed curvature at this point is given by:

HE(z,ux(z)) :=
 −u′

x√
1+u′2

x

′

(z) = −u′′
x(z)

(1+u′
x(z)2)3/2 , (3)

which is intrinsic to the geometry of E and invariant under changes in r, x, or ux.
In less formal terms, a smooth set is defined as a set whose boundary exhibits a certain
regularity. This means that for every segment of the boundary, there exists a corre-
spondingly regular function such that, barring rotation and translation, the graph of this
function accurately aligns with that particular boundary segment (as illustrated below in
Figure 11).

Figure 11: Illustration of the local representation for a smooth set E

Proposition 3.2: [10, Thm. 5.2, Def. 5.1]
Let ∂E be a compact boundary. Then, the selection of rx (as in definition 3.1) can be

made independent of x. Under these conditions, the set {ux}x∈∂E is uniformly equicon-
tinuous, which means:

∀ϵ > 0, ∃δ > 0, ∀ux ∈ {ux}x∈∂E , ∀x,y ∈ [−r,r] : |x−y|< δ =⇒ |u(x)−u(y)|< ϵ.

Given this insight, we can now define a concept of convergence.

Definition 3.3 (Convergence of sets of class Ck): [9, p. 6f.] Suppose E is a Ck class
set with a compact boundary ∂E. A sequence (En)n∈N is said to converge to E in Ck if
there exists constants r > 0 and n0 ∈ N such that:

(i) For all n≥ n0, ∂En ⊆ ⋃
x∈∂EC(x,r,νE(x)).

(ii) For each n≥ n0 and every x ∈ ∂E, there are functions un,x ∈ Ck([−r,r]) for which:
 ∂En∩C(x,r,νE(x)) = x+RνE(x)(graph(un,x) ∩ C(0, r)),

intEn∩C(x,r,νE(x)) = x+RνE(x)(hypograph(un,x) ∩ C(0, r).
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(iii) Letting (ux)x∈∂E be a set of functions that adhere to:
 ∂E∩C(x,r,νE(x)) = x+RνE(x)(graph(ux) ∩ C(0, r)),

intE∩C(x,r,νE(x)) = x+RνE(x)(hypograph(ux) ∩ C(0, r))

and the following convergence is guaranteed:

sup
x∈∂E

∥un,x−ux∥Ck([−r,r]) −−−−−−−−→
n → ∞ 0.

Remark 3.4 (Parameterization of the boundary of a smooth set): Since we will
often work with functions defined on the boundary of a set E of class Ck, we provide an
insight into how one can move from previously described local representations through
Ck functions to a global representation of ∂E by a function γ : [0,L] → ∂E, known as a
parameterization of ∂E.
Consider (C(x,rx,vx))x∈∂E as in Definition 3.1, this collection obviously forms an open
covering of ∂E. Assuming ∂E is compact, in this case, there exists a finite sub-cover
(C(xi, rxi ,vxi))i∈I of ∂E. For demonstration purposes, assume I = {1,2,3}. Hence, we can
construct compact sets Di ⊆R such that we obtain functions ui ∈Ck(Di,R2) (i∈ {1,2,3})
with:

u1(D1)∪u2(D2)∪u3(D3) = ∂E

and an L > 0 exists such that:

D1 ∪D2 ∪D3 = [0,L].

The individual Di have the following form:

D1 = [0, b1]∪ [a1,L]
D2 = [a2, b2]
D3 = [a3, b3].

Given a2 < b1,a3 < b2,a1 < b3 and u1(0) = u1(L), the definition of γ for x ∈ [0,L] is:

γ(x) =



u1(x), for x ∈ [0,a2]
ϕ1(x)u1(x)+(1−ϕ1(x))u2(x), for x ∈ (a2, b1) =: A1

u2(x), for x ∈ [b1,a3]
ϕ2(x)u2(x)+(1−ϕ2(x))u3(x), for x ∈ (a3, b2) =: A2

u3(x), for x ∈ [b2,a1]
ϕ3(x)u3(x)+(1−ϕ3(x))u1(x), for x ∈ (a1, b3) =: A3

u1(x), for x ∈ [b3,L]
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where ϕi ∈ Ck(Ai) with 0 ≤ ϕi(x) ≤ 1, and ϕi tending to 1 at the start and to 0 at the
end of each interval Ai. We observe that γ′ is tangential to ∂E. We will see later how
this property will be helpful for functions defined on ∂E. For a more detailed derivation
in the general setting (not limited to R2), see [13, p. 212ff.].

3.2 Deformation in the normal direction

Upon defining a formal approach for defining smooth sets (shapes within the unknown
image u0), our next objective is to delineate a method for distorting these sets (shapes
in the approximation solution uλ,w of Pλ(y)). This method must preserve the boundary
regularity of the original set. To realize this aim, we utilize a method termed normal
deformation. Here, the deformation of the set occurs along the normals to its boundary,
ensuring that the altered boundary of the set remains smooth. This approach is exempli-
fied in Figure 12. The following lemma and proposition provide an overview of how this
can be formally presented.

Lemma 3.5: [9, p. 7] Given a bounded set E of class Ck (where k≥ 2), there is a constant
C > 0 ensuring that for each function φ in Ck−1(∂E), the mapping φνE can be expanded
to ξφ ∈ Ck−1(R2,R2) such that

∥ξφ∥Ck−1(R2,R2) ≤ C∥φ∥Ck−1(∂E).

Proposition 3.6: [9, p. 7] Assuming E is a bounded open set of class Ck (with k ≥ 2),
and for every function φ in Ck−1(∂E) that satisfies ∥φ∥Ck−1(∂E) ≤ c (for some c > 0), a
unique bounded open set of class Ck−1, denoted as Eφ, exists. This set complies with:

∂Eφ = (Id+φνE)(∂E). (4)

Furthermore, an extended function ξφ of φνE exists, ensuring that

Eφ = (Id+ ξφ)(E)

with
∥ξφ∥Ck−1(R2,R2) < 1.

As a special mention, Eφ is diffeomorphic to E.

As we conclude this chapter, we reconnect to the previously mentioned smooth sets.
The next proposition allows us to establish a direct link between convergence in the Ck

sense as in Definition 3.3 and decreasing deformation φ.

Proposition 3.7: [9, p. 7] Let (En)n>0 be a sequence that converges to a bounded set
E in Ck with k > 2. If n is sufficiently large, then there exists φn ∈ Ck−1(∂E) such that
En = Eφn , and ∥φn∥Ck−1(∂E) −−−→

n→∞ 0 .
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Figure 12: Illustration of a ball B in R2 (shown in light blue) deformed along its outward
normal (indicated in red) with the resulting set Bφ depicted in light green.

3.3 Measures in Euclidean spaces

This chapter is included for the sake of completeness, and aims to remind us of some basic
concepts of measure theory that are necessary for further argumentation. As we will see
later, the total variation (TV) of a function is essentially a measure on Rn.

Definition 3.8 (Borel σ−Algebra): [16, p. 14] The Borel σ-Algebra on Rn, denoted
B(Rn), is defined as:

B(Rn) = σ(O),

where O is the collection of all open subsets of Rn, σ(·) represents the generation of the
smallest σ-algebra containing its argument, in this case, O. Such a σ-algebra includes the
entire set, is closed under countable unions and intersections, and retains the complements
of its members.

Definition 3.9 (Borel and Radon measure): [1, Def. 1.40] Let X be a locally compact
separable metric space with its Borel σ-algebra, B(X).

(a) A measure on X is called a Borel measure. It is termed a positive Radon measure
if it is positive and finite on the compact subsets of X.

(b) A set function on X that is a measure on every relatively compact Borel subset is
called a Radon measure. If µ : B(X) → Rm is such a measure, we say it is a finite
Radon measure.
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Definition 3.10 (Total variation of a measure): [1, Def. 1.4b]
Let µ : B(Rn) → R be a signed measure on Rn (This means µ can take both positive and
negative values).

The total variation |µ| of µ is itself a measure, defined by:

|µ|(E) = sup
{ ∞∑
i=1

|µ(Ei)| : {Ei} is a disjoint sequence of sets in B(Rn) with E =
∞⋃
i=1

Ei

}

for every set E in B(Rn).
If additionally µ is a finite Radon measure, then according to [1, Prop. 1.47], for every
open set A it holds that

|µ|(A) = sup


m∑
i=1

∫
Rn
ui dµi

∣∣∣∣∣∣u ∈ [Cc(A)]m , ∥u∥∞ ≤ 1
 .

Definition 3.11 (s-Dimensional Hausdorff Measure): [16, 1, p. 5, Def. 1.65] Let E
be a subset of Rn and s be a real number in the interval [0,∞]. The s-dimensional
Hausdorff measure of E, denoted by Hs(E), is defined as

Hs(E) := lim
δ→0+

Hs
δ(E),

where Hs
δ(E) for a given δ ∈ [0,∞] is given by

Hs
δ(E) = inf

{∑
i

(diamUi)s : {Ui} is a countable covering of E such that diamUi < δ

}
.

Furthermore, if F is a subset of Rn, the restriction of Hs(E) to F is denoted as

Hs(E)⌞F= Hs(E∩F ).

In the following, we will primarily focus on the 1-dimensional Hausdorff measure, denoted
by H1(∂E).

Definition 3.12 (Hausdorff-metric): [1, p. 320] Let A,B ⊆Rn be non-empty and com-
pact. The Hausdorff metric H(A,B) between the sets A and B is defined as:

H(A,B) = max
{

sup
a∈A

(
inf
b∈B

∥a− b∥
)
, sup
b∈B

(
inf
a∈A

∥a− b∥
)}

.

Definition 3.13 (Lebesgue measure): [1, Def. 1.52] The Lebesgue measure, m, on
RN assigns to each Lebesgue measurable set E a non-negative number representing its
"volume". It’s defined by:

m(E) = inf
{ ∞∑
i=1

vol(Bi) : E ⊂
∞⋃
i=1

Bi

}

18



where

Bi = [ai,1, bi,1]× [ai,2, bi,2]×·· ·× [ai,n, bi,n] = {x ∈ Rn | ai,j ≤ xj ≤ bi,j , j ∈ {1, . . . ,N}}

and
vol(Bi) =

n∏
j=1

(bi,j −ai,j).

In the following we will restrict ourselves to the case R2. For brevity, we will denote the
area of a set E (i.e. m(E)) by |E|.

Definition 3.14 (Lebesgue density of smooth sets): [9, p. 6] Let E be an open subset
of R2 of class C1 and let x belong to R2. The Lebesgue density of E at x is defined as

θE(x) := lim
r→0+

|E∩B(x,r)|
|B(x,r)| =


1 if x ∈ E,

1/2 if x ∈ ∂E,

0 if x ∈ R2 \
−
E.

(5)

A measurable set Ẽ in R2 is considered equivalent to a C1 open set E when E is
uniquely identified by its Lebesgue points, represented as {x ∈ R2 | θẼ(x) = 1}. In other
words, Ẽ and E differ only on a set of measure zero, and thus, they belong to the same
Lebesgue equivalence class.

In the discussions that follow, when E has a Ck class representative, we will denote
the boundary of E as the topological boundary of this representative, using the notation
∂E.

3.4 Functions with bounded variation

In this chapter, our goal is to study the theory of functions with bounded variation. We
will show that for such functions, their total variation in the setting of section 2 describes
a finite measure on R2. We will then introduce some terms related to this measure to
avoid any misunderstandings in later arguments. If further information is desired, [1,
p. 116ff.] provides a comprehensive list of properties of such functions.

Definition 3.15 (The space BV): [1, Def. 3.1] Let Ω ⊆ RN be an open set and let
u ∈ L1(Ω). We say that u is a function of bounded variation in Ω if the distributional
derivative of u is representable by a finite Radon measure in Ω. For each test function
ϕ ∈ C∞

c (Ω) and each i= 1, . . . ,N , we have:

∫
Ω
u
∂ϕ

∂xi
dx= −

∫
Ω
ϕdDiu

where Du = (D1u, . . . ,DNu) is an RN -valued measure in Ω. The vector space of all
functions of bounded variation in Ω is denoted by BV(Ω).
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Definition 3.16 (The total variation): In addressing our problem, we focus on func-
tions denoted by u belonging to the space BV(R2). We can then define the total variation
of u as follows:

TV (u) := |Du|(R2) = sup
z∈C∞

c (R2,R2)
∥z∥∞≤1

(−
∫
R2
udiv z). (6)

Remark 3.17: Consider z ∈ C∞
c (R2) satisfy ∥z∥∞ ⩽ 1. Let us examine the expression

−
∫
R2
udivz dx= −

2∑
i=1

∫
R2
u
∂z

∂xi
dx

∗=
2∑
i=1

∫
R2

∂u

∂xi
z dx

=
2∑
i=1

∫
R2
Diuz dx

=
2∑
i=1

⟨Diu,z⟩L2(R2) ,

(∗ results from integration by parts, and the boundary term vanishes due to the compact
support of z.)

If the given expression is bounded, the analysis of the properties of ⟨Diu, ·⟩L2(R2) sug-
gests that the prerequisites for the Riesz representation theorem (see [1, Thm. 1.54]) are
met. Consequently, this infers the existence of a finite Radon measure Du = (D1u,D2u)
on R2. Adhering to definition 3.10, we deduce:

|Du|(R2) = sup
z∈C∞

c (R2,R2)
∥z∥∞≤1

 2∑
i=1

⟨Diu,z⟩L2(R2)

= sup
z∈C∞

c (R2,R2)
∥z∥∞≤1

(
−
∫
R2
udivz

)
.

Thus, the distributional derivative of u is representable by a finite Radon measure, as
characterized in Definition 3.15.

Definition 3.18 (Weak* convergence): [1, Def. 3.11] Consider a sequence uh and a
function u, both belonging to BV (Ω). The sequence uh is said to converge weakly* to u
within BV (Ω) provided that:

• uh converges to u in L1(Ω), thus ∥uh−u∥L1(Ω) −→ 0,

• Duh converges weakly* to Du in Ω. This can be written as

lim
h→∞

∫
Ω
ϕdDuh =

∫
Ω
ϕdDu

for every test function ϕ ∈ C0(Ω).
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Definition 3.19 (Strict convergence): [1, Def. 3.14] Let u,uh ∈ BV (Ω). We define
the sequence (uh) to strictly converge in BV (Ω)m to u if and only if the following two
conditions are satisfied:

1. The sequence (uh) converges to u in L1(Ω),

2. |Duh|(Ω) converges weakly* to |Du|(Ω) as h→ ∞.

3.5 Convex sets and functions

As we will see in Chapter 5, a significant portion of this work is based on the analysis
of the convex set {TV ≤ 1} = {u | TV (u) ≤ 1}. In this context, we will elucidate some
fundamentals of convex analysis and subsequently apply these principles specifically to
TV(u). In the following, let X be a vector space.

Definition 3.20 (Convex Set): [19, p. 10]
A set C ⊆X is called convex if, for any two points A,B ∈C and any λ with 0 ≤ λ≤ 1,

the point λA+(1−λ)B also lies in C. In other words, every line segment connecting two
points in C is entirely contained within C.

Definition 3.21 (Extreme points of a convex set): [19, p. 162] An extreme point of
a convex set C ⊆ X is a point x ∈ C such that there are no two distinct points y,z ∈ C,
y ̸= z, and no λ with 0< λ< 1 such that x= λy+(1−λ)z. Essentially, an extreme point
of C cannot be expressed as a convex combination of any other two points in C. For
a more intuitive understanding, we illustrate this with an arbitrary convex set on R2 in
figure 13 below.

Figure 13: Figure depicts a convex set on the left, with its extreme points highlighted in
red. Conversely, the right side presents an illustration of a non-convex set.

Having clarified convexity in relation to sets, we can now extend the concept to func-
tions. For this purpose, let X be a Banach space in the following discussion.
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Definition 3.22 (Convex / Support Function): [5, p. 111] A function f : X → R∪
{+∞} is termed convex if X is convex and for any x,y ∈X and λ in [0,1], the following
inequality holds:

f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y).

Let the support function on the dual space X∗ for a set C be defined as follows:

σC(x∗) := sup{x∗(x) |x ∈ C}.

Definition 3.23 (Convex subdifferential): [5, p. 117] Let f : X → R∪ {+∞} be a
convex function. The convex subdifferential of f at x ∈X, denoted by ∂f(x), is

∂f(x) := {x∗ ∈X∗ : f(y)−f(x) ≥ x∗(y−x), ∀y ∈X},

Elements of ∂f(x) are referred to as subgradients.

The subdifferential represents a generalization of the gradient for non-differentiable
convex functions. We will illustrate this with the following example.

Example: The absolute value function

To comprehend how the subdifferential functions for non-differentiable scenarios, consider
the absolute value function f : R → R+ where f(x) := |x|. In this case, the dual elements
we are looking for in the subdifferential can be identified with elements from R (see Riesz
representation theorem [18, Thm. 7.16]). We observe:

• At differentiable points: For x ̸= 0, the function f(x) = |x| is differentiable. It
can be easily shown that:

– ∂f(x) = {1} for x > 0,

– ∂f(x) = {−1} for x < 0.

Thus, at differentiable points, the subdifferential simply corresponds to the conven-
tional derivative of the function.

• At non-differentiable points: The function is non-differentiable at x = 0. Con-
sider the subdifferntial in this point:

∂f(0) = {g ∈ R | |x| ≥ g ·x} .

It is straight forward to show that ∂f(0) = [−1,1].

Therefore, the subdifferential at the point 0 in this case can be visualized as encompassing
all slopes between those of the tangents approaching the graph of f from the left and right
at the point 0.
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Figure 14: Illustration of the subdifferential (in light blue) of a function f (whose graph
is depicted in black) at a non-differentiable point x.

Subdifferential of the total variation

We proceed to determine ∂TV(u) for a given u∈L2(R2). First, however, we must demon-
strate that TV is convex. It is shown as follows (x,y ∈ L2(R2), λ ∈ [0,1]):

TV(λx+(1−λ)y) =sup
{

−
∫
R2

(λx+(1−λ)y)divz | z ∈ C∞
c (R2), ∥z∥∞ ≤ 1

}
=sup

{
−λ

∫
R2
xdivz− (1−λ)

∫
R2
y divz | z ∈ C∞

c (R2), ∥z∥∞ ≤ 1
}

≤λ sup
{

−
∫
R2
xdivz | z ∈ C∞

c (R2), ∥z∥∞ ≤ 1
}

+(1−λ) sup
{

−
∫
R2
y divz | z ∈ C∞

c (R2), ∥z∥∞ ≤ 1
}

=λTV(x)+(1−λ)TV(y).

Furthermore, it serves as the support function for the convex set C, defined as

C :=
{
divz |z ∈ C∞

c (R2,R2), ∥z∥∞ ≤ 1
}
.

We can now observe that ∂TV(0) is the closure of C in L2(R2). This closure is denoted
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by

C =
{
divz |divz ∈ L2(R2), ∥z∥∞ ≤ 1

}
(7)

=
{
x ∈ L2(R2) |∀u ∈ L2(R2), σC(u) ≥ ⟨x,u⟩L2(R2)

}
=
{
x∗ ∈ (L2(R2))∗ |∀u ∈ L2(R2), TV (u) ≥ x∗(u)

}
= ∂TV(0).

Since L2(R2) is a Hilbert space, by the Riesz representation theorem [18, Thm. 7.16],
there exists an x ∈ L2(R2) such that x∗(u) = ⟨x,u⟩L2(R2) for all u ∈ L2(R2).

Thus, we arrive at the identity:

∂TV(0) =
{
η ∈ L2(R2) |∀u ∈ L2(R2),

∣∣∣∣∫R2
ηu
∣∣∣∣≤ TV(u)

}
and for any u ∈ L2(R2), the subdifferential of TV at u is given by

∂TV(u) =
{
η ∈ ∂TV(0) |

∫
R2
ηu= TV(u)

}
(8)

(see [14, Lem. 2]).

3.6 Sets of finite perimeter

In this section we establish a connection between the functions of bounded variation and
sets with finite perimeter. We will show that the total variation of such functions can be
described by their level sets, which we will define later. First, let us define what is known
as a finite-perimeter set:

Definition 3.24 (Finite perimeter set): [16, p. 122] Consider a Lebesgue measurable
set E within R2. We term E as having locally finite perimeter if, for any compact subset
K of R2, the condition

sup
{∫

E
div z dx | z ∈ C∞

c (R2;R2), supp(z) ⊂K, ∥z∥∞ ≤ 1
}
<∞

is satisfied. When the above expression remains bounded regardless of the choice of K,
we identify E as a set with finite perimeter in R2. In such cases, we express the perimeter
of E as

P (E) := sup
{∫

E
divz dx | z ∈ C∞

c (R2;R2), ∥z∥∞ ≤ 1
}

= sup
{∫

R2
χE divz dx | z ∈ C∞

c (R2;R2), ∥z∥∞ ≤ 1
}

= TV (χE) = |DχE |(R2).

Furthermore, we specify the relative perimeter of E within a set F ⊆ R2 as follows:

P (E;F ) := |DχE |(F ).
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Given E as an open set of class Ck (k ≥ 1), the perimeter P (E) can be straightfor-
wardly identified as the length of its boundary, represented as P (E) = H1(∂E) (see [16,
Thm. 3.8]).

We observe that the total variation of a characteristic function over B from R2 can
be represented by the perimeter of B. Through the subsequent theorem, we extend this
representation to arbitrary functions in L1

loc(R2).

Theorem 3.25 (Coarea formula): [1, Thm. 3.40] Let u be a function in L1
loc(R2) and

t be a real number. The level sets of u are defined as:

U (t) :=

{x ∈ R2 | u(x) ≥ t}, if t≥ 0,

{x ∈ R2 | u(x) ≤ t}, otherwise.
(9)

The Coarea Formula relates functions of bounded variation with sets of finite perimeter
and is given by:

∀u ∈ L2(R2), TV (u) = |Du|(R2) =
∫ ∞

−∞
|DχU (t)|(R2)dt=

∫ ∞

−∞
P (U(t))dt. (10)

Finite perimeter sets possess the interesting property that they satisfy the following
inequality.

Theorem 3.26 (Isoperimetric inequality): [16, Prop. 12.37] Given a set E ⊆ R2 with
finite perimeter, the isoperimetric inequality asserts that:

√
min{|E|, |R2 \E|} ≤ c2P (E).

We can infer that for a set E with finite perimeter, it must hold that either E or its
complement R2 \E has a finite measure. This aspect will be beneficial in subsequent
discussions. Moreover, in the two-dimensional context, c2 := 1√

4π is identified as the
isoperimetric constant. The condition of equality is met exactly when E has the form of
a circle in R2. Thus, in this case, the circle is the unique minimizer of the perimeter.

For our continued reasoning, we will introduce a somewhat weaker variant of the
perimeter minimizer, a so called quasi-minimizer.

Definition 3.27 ((Λ, r0)-perimeter minimizer): [16, p. 278] Let A be an open set
and E ⊂ Rn (n ≥ 2) a set with locally finite perimeter. We define E to be a (Λ, r0)-
perimeter minimizer in A if the support of the measure |DχE | coincides with ∂E, and
there exist constants Λ ≥ 0 and r0 > 0 satisfying

P (E;B(x,r)) ≤ P (F ;B(x,r))+Λ|E∆F |,

for all sets F where E∆F ⊂⊂B(x,r)∩A and for all r < r0.

25



At the end of this section, we give a definition of a restriction that can be applied to
sets with finite perimeter. This will be used in chapter 5 in particular.

Definition 3.28 (Simple Set): [2, p. 52, Def. 3] Let E be a set of finite perimeter in
R2. We define the following concepts:

• Decomposable set: A set E is termed decomposable if it can be partitioned
into two subsets A and B, each with finite Lebesgue measures, in such a way that
P (E) = P (A)+P (B).

• Indecomposable set: Conversely, a set E is considered indecomposable if it cannot
be partitioned into such subsets.

• Simple set: A set E is classified as simple if it is either identical to R2 or has a
finite measure, and both the set E and its complement in R2 are indecomposable.

4 Fenchel dual representations

The aim of this section is to transform the problems P0(y0) and Pλ(y) from section 2
into their dual forms, known as the Fenchel representation. For the argumentation in this
section, it is assumed that Φ is a linear continuous operator. We will see in the course of
this thesis what exactly this transformation of the problem statement contributes to the
analysis. But first, let us give an overview of the theory behind a dual representation.

4.1 Theoretical background

To proceed, let X and Y be Banach spaces. To formulate the dual problem, we first need
the Fenchel conjugate of the functions involved in the problem, which is given by:

Definition 4.1 (Fenchel Conjugate): [5, p. 134] Consider a function f :X → [−∞,+∞].
The conjugate of f , denoted as f∗ :X∗ → [−∞,+∞], is given by the following relationship:

f∗(x∗) = sup
x∈X

(x∗(x)−f(x)) .

A notable characteristic of this function is that it remains convex without imposing
any requirements on f . This is evident because for any λ ∈ [0,1] and x∗,y∗ ∈ X∗, the
following holds:

f∗(λx∗ +(1−λ)y∗) = sup
x∈X

(
(λx∗ +(1−λ)y∗)(x)−f(x)

)
= sup
x∈X

(
(λx∗ +(1−λ)y∗)(x)− (λ+1−λ)f(x)

)
≤ λ sup

x∈X

(
(x∗(x)−f(x)

)
+(1−λ) sup

x∈X

(
y∗(x)−f(x)

)
= λf∗(x∗)+(1−λ)f∗(y∗).

26



Consequently, the weak formulation of Fenchel duality is established through the fol-
lowing theorem:

Theorem 4.2 (Fenchel weak duality): [5, Thm. 4.4.2] Consider two convex func-
tions, f : X → R∪ {+∞} and g : Y → R∪ {+∞}, and a bounded linear transformation
A :X → Y . We define the primal objective p and the dual objective d as follows:

p= inf
x∈X

(f(x)+g(Ax)) ,

d= sup
x∗∈Y ∗

(−f∗(A∗x∗)−g∗(−x∗)) .

In this context, it always holds that p≥ d.
For the equality of both problems, that is, to have

inf
x∈X

(f(x)+g(Ax)) = sup
x∗∈Y ∗

(−f∗(A∗x∗)−g∗(−x∗)) ,

we additionally require a x ∈X such that f(x)<∞, g(Ax)<∞ and that g is contin-
uous at Ax (see [5, Thm. 4.4.3]). If this property is satisfied, it leads to what is known
as strong duality.

In this context, we refer to p as the primal and d as the dual problem formulation.
The advantages of this dual representation of the original problem are clear. For instance,
if we minimize over an infinite-dimensional space in the original problem formulation, it
can be very difficult or even impossible to a find a solution. However, by considering the
dual representation, which possibly takes place over a finite-dimensional space, we can
solve the problem much more easily.

Let us now transform the problem statements from 2.1 into their dual forms.

4.2 Problem P0(y0) ↔ D0(y0):

As discussed in 2.1, we derive our primal problem for the noiseless case, P0(y0), through
the following minimization:

inf
u∈L2(R2)

TV (u) subject to Φu= y0.

then its dual representation, as in theorem 4.2, is formulated as:

sup
p∈H

⟨p,y0⟩H subject to Φ∗p ∈ ∂TV(0). (D0(y0))

Proof. It is evident that P0(y0) may also be expressed in the following manner:

inf
u∈L2(R2)

(TV (u)+ ιp(Φ(u))) ,
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where ιp is defined as:

ιp(z) :=
 0, for z = y0

∞, otherwise.

Since we already know from section 3.5 that TV is convex, we only need to show that
this is also true for ιp. To do this, consider a,b ∈ H with a = b = y0. Then the following
holds:

ιp(λa+(1−λ)b) = ιp(λy0 +(1−λ)y0)
= ιp(y0) = 0+0
= λιp(a)+(1−λ)ιp(b).

Additionally, when a= y0 and b ̸= y0 (or vice versa), we observe:

ιp(λa+(1−λ)b) = ∞ = 0+∞

= λιp(a)+(1−λ)ιp(b).

Thus in total, we obtain:

ιp(λa+(1−λ)b) ≤ λιp(a)+(1−λ)ιp(b).

Following theorem 4.2, the corresponding dual problem can then be expressed as

sup
p∗∈H∗

(−TV∗(Φ∗p∗)− ι∗p(−p∗))

= sup
p∗∈H∗

(−sup{Φ∗p∗(u)−TV(u)) | u ∈ L2(R2)} − sup{−p∗(z)− ιp(z) | z ∈ H}).

As before, using the Riesz representation theorem [18, Thm. 7.16], we can simplify the
expression, leading to

= sup
p∈H

(−sup{⟨Φ∗p,u⟩L2(R2) −TV(u)) | u ∈ L2(R2)}︸ ︷︷ ︸
a

− sup{⟨−p,z⟩H − ιp(z) | z ∈ H}︸ ︷︷ ︸
b

).

Considering the term b and noting that ιp(z) = ∞ for z ̸= y0, we obtain

sup{⟨−p,z⟩H − ιp(z) | z ∈ H} = ⟨−p,y0⟩H − ιp(y0) = ⟨−p,y0⟩H

= −⟨p,y0⟩H.

For the term a, the analysis yields

sup{⟨Φ∗p,u⟩L2(R2) −TV(u) | u ∈ L2(R2)}︸ ︷︷ ︸
=:ιD(Φ∗p)

=

0, for Φ∗p ∈ ∂TV(0)

∞, otherwise
.
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This holds true because, for Φ∗p ∈ ∂TV(0), it follows that for all u ∈ L2(R2):

TV(u) ≥ ⟨Φ∗p,u⟩L2(R2) ⇔ 0 ≥ ⟨Φ∗p,u⟩L2(R2) −TV(u).

Thus, it follows that:

sup
u∈L2(R2)

(⟨Φ∗p,u⟩L2(R2) −TV(u)) = 0.

Conversely, for Φ∗p /∈ ∂TV(0), we have:

TV(u)< ⟨Φ∗p,u⟩L2(R2) ⇔ 0< ⟨Φ∗p,u⟩L2(R2) −TV(u).

Hence, there exists a sequence (un)n∈N ⊆ L2(R2) with un := nu such that:

⟨Φ∗p,un⟩L2(R2) −TV(un) ⇔ ⟨Φ∗p,nu⟩L2(R2) −TV(nu)
⇔ n(⟨Φ∗p,u⟩L2(R2) −TV(u)) −−−−−−−−→

n → ∞ ∞.

Therefore:

sup
u∈L2(R2)

(⟨Φ∗p,u⟩L2(R2) −TV(u)) = ∞.

The dual problem D0(y0), corresponding to P0(y0), is thus given by:

sup
p∈H

(−ιD(Φ∗p)−⟨p,y0⟩H)

= sup
p∈H

(⟨p,y0⟩H − ιD(Φ∗p))

= sup
p∈H

⟨p,y0⟩H subject to Φ∗p ∈ ∂TV(0).

Unfortunately, we cannot demonstrate the properties of strong duality from theorem
4.2 for this problem, but a proof for this problem is provided in [14, Thm.1]. Therefore,
we can also assume strong duality for both problem formulations here.

Given the equivalence of both problem formulations, we can deduce that, if a solu-
tion p exists for D0(y0), then for any solution u of P0(y0), the following relationship is
established:

⟨p,y⟩H = TV(u)
⇐⇒ ⟨p,Φu⟩H = TV(u)
⇐⇒ ⟨Φ∗p,u⟩H = TV(u).
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Thus, we obtain with (8)
Φ∗p ∈ ∂TV(u). (11)

In the reverse direction, it holds that if (u,p) ∈ L2(R2)×H with Φu= y0 and additionally
satisfying (11), then it can be inferred that u,p also solve problems P0(y0) and D0(y0).
Considering our problem formulation from section 2.1, given an unknown image u0 ∈
L2(R2) and linear measurements y0 = Φu0, it suffices to assume the existence of p ∈ H for
which Φ∗p ∈ ∂TV(u0) to ensure that u0 is a solution of P0(y0). This property is termed
as the source condition.
Furthermore, we may deduce that if Φ is injective on the set {u∈L2(R2) | Φ∗p∈ ∂TV(u)},
then u0 is the unique solution of problem P0(y0). This holds because, for u1,u2 that satisfy
the source condition, the given Φ ensures that the equality Φu1 = y0 = Φu2 implies u1 = u2.

4.3 Problem Pλ(y) ↔ Dλ(y):

In the case involving noise, our primal problem Pλ(y) is stated as:

inf
u∈L2(R2)

(
TV(u)+ 1

2λ∥Φu−y∥2
H

)

and its dual representation is obtained as follows:

sup
p∈H

(
⟨p,y⟩H − λ

2 ∥p∥2
H

)
subject to Φ∗p ∈ ∂TV(0). (Dλ(y))

Proof. Alternatively, Pλ(y) can be reformulated as:

inf
u∈L2(R2)

(
TV(u)+ 1

2λ∥Φu−y∥2
H

)
.

Our first objective is to establish the convexity of the functional g(z) := 1
2λ∥z−y∥2

H. This
is demonstrated by considering the following relations, which hold for any µ ∈ [0,1] and
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v,w ∈ H:

g(µv+(1−µ)w) = 1
2λ∥(µv+(1−µ)w)−y∥2

H

= 1
2λ∥µv+(1−µ)w−y∥2

H

= 1
2λ∥µv+(1−µ)w− (µ+1−µ)y∥2

H

= 1
2λ∥µ(v−y)+(1−µ)(w−y)∥2

H

≤ 1
2λ(µ∥(v−y)∥H +(1−µ)∥(w−y)∥H)2

∗
≤ 1

2λ(µ∥v−y∥2
H +(1−µ)∥w−y∥2

H)

= µ( 1
2λ∥v−y∥2

H)+(1−µ)( 1
2λ∥w−y∥2

H)

= µg(v)+(1−µ)g(w)

where the inequality marked with (∗) follows from the fact that x2 : R 7−→ R is a convex
function. Thus, once again utilizing theorem 4.2, we obtain the following dual represen-
tation of Pλ(y):

sup
p∗∈H∗

(−TV∗(Φ∗p∗)−g∗(−p∗))

= sup
p∈H

−sup{⟨Φ∗p,u⟩L2(R2) −TV(u)) | u ∈ L2(R2)}︸ ︷︷ ︸
a

− sup{⟨−p,z⟩H −g(z) | z ∈ H}︸ ︷︷ ︸
b

 .
We can now observe that the function present in b exhibits both continuity and concavity.
Consequently, it follows that:

sup{⟨−p,z⟩H −g(z) | z ∈ H}) = max{⟨−p,z⟩H −g(z) | z ∈ H}).

Therefore, we seek a z ∈ H that satisfies the following equation:

d

dz
(⟨−p,z⟩H −g(z)) = 0

d

dz
(⟨−p,z⟩H − 1

2λ∥z−y∥2
H) = 0. (12)

Given f(x) := ⟨k,x⟩H for any h ∈ H, it follows:

Df(x)(h) = lim
t→0

⟨k,x+ th⟩H −⟨k,x⟩H
t

= lim
t→0

⟨k,x⟩H + t⟨k,h⟩H −⟨k,x⟩H
t

= lim
t→0

t⟨k,h⟩H
t

= ⟨k,h⟩H.
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This leads to the following for (12):

d

dz

(
⟨−p,z⟩H − 1

2λ∥z−y∥2
H

)
= 0

⇐⇒ d

dz
⟨−p,z⟩H − 1

2λ
d

dz
⟨z−y,z−y⟩H = 0

⇐⇒ ⟨−p, ·⟩H − 1
2λ

d

dz
(⟨z,z⟩H −2⟨z,y⟩H + ⟨y,y⟩H) = 0

⇐⇒ ⟨−p, ·⟩H − 1
2λ (2⟨z, ·⟩H −2⟨y, ·⟩H) = 0

⇐⇒ ⟨−p, ·⟩H − 1
λ

⟨z−y, ·⟩H = 0

⇐⇒ ⟨−p− 1
λ

(z−y), ·⟩H = 0.

Therefore, it must hold for all h ∈ H (including for h := −p− 1
λ(z−y)):

⟨−p− 1
λ

(z−y),h⟩H = 0

∗⇐⇒ −p− 1
λ

(z−y) = 0

⇐⇒ z = y−λp,

where (∗) follows from the definiteness of the inner product. Thus, for the expression b

in its entirety, we obtain:

max
{
⟨−p,z⟩H −g(z) | z ∈ H

}
= ⟨−p,y−λp⟩H − 1

2λ∥y−λp−y∥2
H

= ⟨−p,y−λp⟩H − 1
2λ∥y−λp−y∥2

H

= ⟨−p,y−λp⟩H − 1
2λ∥−λp∥2

H

= ⟨−p,y⟩H −λ⟨−p,p⟩H − 1
2λλ

2∥p∥2
H

= ⟨−p,y⟩H +λ∥p∥2
H − λ

2 ∥p∥2
H

= ⟨−p,y⟩H + λ

2 ∥p∥2
H.

As established earlier in the proof of 4.2, the same applies here with a= ιD(Φ∗p). Hence,
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the dual representation of Pλ(y) is obtained as:

sup
p∈H

(
−sup{⟨Φ∗p,u⟩L2(R2) −TV(u)) | u ∈ L2(R2)} − sup{⟨−p,z⟩H −g(z) | z ∈ H}

)
= sup
p∈H

(
−ιD(Φ∗p) − (⟨−p,y⟩H + λ

2 ∥p∥2
H)
)

= sup
p∈H

(
⟨p,y⟩H − λ

2 ∥p∥2
H − ιD(Φ∗p)

)

= sup
p∈H

(
⟨p,y⟩H − λ

2 ∥p∥2
H

)
subject to Φ∗p ∈ ∂TV(0).

Strong duality: let us take v ∈ L2(R2), for instance v = 0. This implies that TV(v) =
0<∞ and 1

2λ∥Φv−y∥2
H <∞. Additionally, the functional u 7→ 1

2λ∥u−y∥2
H is continuous

at Φv. Consequently, the strong duality of Dλ(y) in relation to Pλ(y) is proven, leading
to the conclusion that Dλ(y) = Pλ(y).

With the strong duality of both problems established, we can now state the following
condition for a solution p of Dλ(y) with respect to every solution u of Pλ(y). It is given
that:

Φu= y−λp and Φ∗p ∈ ∂TV(u). (13)

Considering a p that solves Dλ(y), it follows from previous derivations that for all u solving
Dλ(y), Φu= y−λp. Thus, we have:

⟨p,y⟩H − λ

2 ⟨p,p⟩H

=⟨p,Φu+λp⟩H − λ

2 ⟨p,p⟩H

=⟨p,Φu⟩H + λ

2 ⟨p,p⟩H

=⟨Φ∗p,u⟩L2(R2) + 1
2λ⟨−λp,−λp⟩H

=⟨Φ∗p,u⟩L2(R2) + 1
2λ ∥Φu−y∥2

H .

Therefore, the equality of the primal and dual problem formulations can only be given if
⟨Φ∗p,u⟩L2(R2) = TV(u), which is the case only if Φ∗p ∈ ∂TV(u).

Conversely, if (13) holds, then it follows that u and p solve Pλ(y) and Dλ(y). How-
ever, the uniqueness of u is not necessarily guaranteed in this case. Nonetheless, for any
solutions u1,u2 of Pλ(y) for which (13) is valid, the following equations hold:

Φu1 = y−λp= Φu2,

and
TV(u1) = ⟨Φ∗p,u1⟩ = ⟨p,Φu1⟩ = ⟨p,Φu2⟩ = ⟨Φ∗p,u2⟩ = TV(u2).

33



4.4 Dual certificates

To achieve a more compact notation for (11) and (13), we will introduce in the following
definition the concept of the ’dual certificate’, whose existence ensures the optimality of
solutions to P0(y0) and Pλ(y).

Definition 4.3 (Dual Certificate): We define η ∈ L2(R2) as a dual certificate for u
with respect to P0(y0) if:

• η = Φ∗p and η ∈ ∂TV(u),

and with respect to Pλ(y) if:

• η = −Φ∗(Φu−y)/λ and η ∈ ∂TV(u).

As previously described, in the latter case, there can be several dual certificates. In
this context, we are interested in the one with the minimal norm, given by the next
definition.

Definition 4.4 (Minimal norm dual certificate): Given a solution to (P0(y0)), the
dual certificate with the least norm, denoted by η0, is defined as

η0 = Φ∗p0, where p0 = argmin∥p∥H subject to p solving D0(y0).

Utilizing the definitions and results previously mentioned, we now approach the ques-
tion posed in section 2.3 more closely. With the next proposition, we gain insight into
the behavior of ηλ,w = Φ∗pλ,w, where pλ,w is the solution to Dλ(y), in the scenario where
the noise w tend to zero.

Proposition 4.5: [14, Prop. 3] Assuming the existence of a solution to the problem
D0(y0), the sequence pλ,0 converges strongly to p0 in norm as the regularization parameter
λ tends to zero, i.e.,

lim
λ→0

∥pλ,0 −p0∥H = 0.

Moreover, it is evident that the subsequent transformation can be applied to Dλ(y):

sup
p∈H

(
⟨p,y⟩H − λ

2 ∥p∥2
H

)
s.t.Φ∗p ∈ ∂TV(0)

∣∣∣∣ ·
(

− 2
λ

)
< 0

= argmin
p∈H,

Φ∗p∈∂TV(0)

(
∥p∥2

H − 2
λ

⟨p,y⟩H

)

= argmin
p∈H,

Φ∗p∈∂TV(0)

(
∥p∥2

H − 2
λ

⟨p,y⟩H +∥y
λ

∥2
H

)

= argmin
p∈H,

Φ∗p∈∂TV(0)

(
∥p− y

λ
∥2

H

)

= argmin
p∈H,

Φ∗p∈∂TV(0)

(
∥p− y

λ
∥H

)
=: P

(
y

λ

)
.
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Consequently, a solution pλ,w to Dλ(y) is identified as the projection P of y0+w
λ onto

the closed convex set {p ∈ H | Φ∗p ∈ ∂TV(0)}. Given the nonexpansiveness (∗) of the
projection operation, it follows that for every (λ,w) ∈ R∗

+ ×H:

∥pλ,w −pλ,0∥H ≤ ∥ = ∥P
(
y0 +w

λ

)
−P

(
y0
λ

)
∥H

∗
≤ ∥y0 +w

λ
− y0
λ

∥H = ∥w∥H
λ

, (14)

which implies that

∥ηλ,w −ηλ,0∥L2(R2) = ∥Φ∗(pλ,w −pλ,0)∥L2(R2) ≤ ∥Φ∗∥∥w∥H
λ

. (15)

With these estimates, if λ→ 0 and ∥w∥H/λ→ 0, then the dual certificate ηλ,w converges
strongly in L2(R2) to the minimal norm dual certificate η0.

(
∥ηλ,w −η0∥L2(R2) = ∥ηλ,w −ηλ,0 +ηλ,0 −η0∥L2(R2) ≤ ∥ηλ,w −ηλ,0∥L2(R2) +∥ηλ,0 −η0∥L2(R2)

)

5 Exposed faces of {TV ≤ 1}

In this section, we will examine certain exposed faces of the convex set {TV ≤ 1} := {u ∈
L2(R2) | TV(u) ≤ 1}. Let us first define this concept.

Definition 5.1 (Exposed face): [19, p. 162] A subset B ⊆ A of a convex set A is
called an exposed face if there exists a linear functional h and a scalar α such that B is
the set of all points in A where h attains its maximum value α:

B = {x ∈ A | h(x) = α} = argmax
x∈A

h(x).

Specifically, we will explore the faces of {TV ≤ 1} that are exposed by the functional
⟨η, ·⟩L2(R2), where η is a dual certificate (see 4.4). In analyzing these sets, we will discover
an interesting property for the elements of such exposed faces, which brings us closer to
answering our question from Section 2.3.

5.1 Subgradients and exposed faces

To make a meaningful choice of a dual certificate that exposes a face of {TV ≤ 1}, let us
first examine the subdifferential of the Fenchel conjugate of TV for any η ∈ ∂TV(0). It
follows from (3.23) and (4.1) that:

∂TV∗(η) =
{
u ∈ L2(R2) : TV∗(v)−TV∗(η) ≥ ⟨u,v−η⟩L2(R2), ∀v ∈ L2(R2)

}
.
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With η ∈ ∂TV(0) (i.e., ⟨η,x⟩L2(R2) ≤ TV(x), ∀x ∈ L2(R2)), this simplifies to:

sup
x∈L2(R2)

(
⟨v,x⟩L2(R2) −TV(x)

)
− sup
x∈L2(R2)

(
⟨η,x⟩L2(R2) −TV(x)

)
︸ ︷︷ ︸

=0

≥ ⟨u,v−η⟩L2(R2)

⇐⇒ sup
x∈L2(R2)

(
⟨v,x⟩L2(R2) −TV(x)

)
≥ ⟨v,u⟩L2(R2) −⟨u,η⟩L2(R2), ∀v ∈ L2(R2).

This relationship holds true if and only if η ∈ ∂TV(u), thus leading us to

∂TV∗(η) =
{
u ∈ L2(R2) : η ∈ ∂TV(u)

}
= argmax
u∈L2(R2)

(∫
R2
ηu−TV(u)

)
. (16)

We now establish a connection between this set and the faces exposed by η. We define
Fη as the exposed face of the set {TV ≤ 1}, according to definition (5.1), using the linear
function ⟨η, ·⟩L2(R2). Thus we derive

Fη = argmax
u∈{TV≤1}

∫
R2
ηu.

From this definition, it can be seen that:

F0 = {TV ≤ 1} and Ftη = Fη for t > 0, (17)

since in the latter case, the maximum is attained for the same u∈ {TV ≤ 1} under positive
scaling.

By introducing the so-called G-norm [12, p. 275]:

∀η ∈ L2(R2), ∥η∥G := sup
u∈{TV≤1}

∫
R2
ηu,

we can demonstrate the relationship between subgradients and exposed faces of the total
variation unit ball. Consider the following cases with 0 ̸= η ∈ L2(R2) and v := u/TV(u) ∈
{TV ≤ 1}, where 0 ̸= u ∈ ∂TV∗(η):

1. If ∥η∥G > 1:
there exists a non-zero v ∈ {TV ≤ 1} such that:

∫
R2
ηv > 1 ⇐⇒

∫
R2
η
(

λu

TV(u)

)
> 1 ⇐⇒ TV(u)<

∫
R2
ηλu <

∫
R2
ηu,

implying that η /∈ ∂TV(0), hence η /∈ ∂TV(w) for all w ∈L2(R2) and thus ∂TV∗(η) =
∅.

2. If ∥η∥G ≤ 1 for v = 0:
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it follows that:
∫
R2
ηv = 0 ≤ TV(u) for all u ∈ L2(R2).

Therefore, η ∈ ∂TV(0) and hence 0 ∈ ∂TV∗(η).

3. If ∥η∥G ≤ 1 with v ̸= 0: define v′ := v/λ ̸= 0, then for all such v′:
∫
R2
ηv′ ≤ 1 ⇐⇒

∫
R2
η
(

u

TV(u)

)
≤ 1

⇐⇒
∫
R2
ηu≤ TV(u). (18)

Because of 0 ̸= u ∈ ∂TV∗(η), this already implies equality in (18), hence
∫
R2
η
(

u

TV(u)

)
= 1, (19)

thus ∥η∥G = 1 and u/TV(u) ∈ Fη.

In summary, with (17) we derive the expression:

∂TV∗(η) =


∅ if ∥η∥G > 1,

{0}∪ (⋃t>0 tFη) if ∥η∥G = 1,

{0} if ∥η∥G < 1.

(20)

Based on this definition, we can now observe that our subsequent analysis will focus on
the set TV∗(η) for ∥η∥G = 1, as this is the sole case where it is equivalent to analyzing
the exposed faces of {TV ≤ 1} by an η ̸= 0.

5.2 Analysis of the extreme points for a specific face

Given the face F associated with an η possessing attributes as outlined in the previous
section (also including η ∈ ∂TV(0)), and further assuming that η ∈C1(R2), this section is
dedicated to investigating the extreme points (refer to definition 3.21) of F . Specifically
the main objective of this section is to prove the following proposition:

Proposition 5.2: For any extreme point u of F , there exists a unique pair (s,E), where E
is a C3 simply connected open set and s ∈ {−1,1}, such that u= sχE/P (E). For distinct
extremal points u1 and u2 of F , with associated pairs (si,Ei), it holds that ∂E1 ∩∂E2 = ∅.

In order to maintain a logical separation in this chapter, it is necessary to refer to
results from section 6 for some proofs. These references are clearly marked to allow quick
navigation to these results if desired. Let us first examine a result from [2].
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Proposition 5.3: [2, Prop. 8] Consider the convex set {TV ⩽ 1} in L2(R2) defined by

{TV ⩽ 1} := {u | TV(u) ≤ 1} .

The extreme points of this set are represented by functions of the form ±χE/P (E), where
E is a simple set satisfying 0< |E|<+∞.

This implies that the extreme points of F also have the same structure. Inspired by
this result, we define the following set:

E := E+ ∪E− ∪{∅,R2}, (21)

where the subsets E+,E− are defined as:

E+ := {E ⊂ R2 | |E|<∞,0< P (E)<∞,
χE
P (E) ∈ F},

E− := {E ⊂ R2 | |Ec|<∞,0< P (Ec)<∞,
−χEc
P (Ec) ∈ F}.

Subsequently, we will explore and illustrate the properties of this set.

Analysis of E

First, we will examine the properties associated with intersections and unions of elements
within the set E . To achieve this, let us prove the following proposition.

Proposition 5.4: Let E,F ∈ E . Then both E∩F ∈ E and E∪F ∈ E .

Proof. Suppose E ∈ E+ and F ∈ E+. Due to (∗) from [2, Prop. 1] and the fact that
χE∪F = χE +χF −χE∩F (∗∗), we obtain:

P (E∩F )+P (E∪F )
∗
≤ P (E)+P (F ) =

∫
E
η+

∫
F
η

=
∫
R2
η(χE +χF )

∗∗=
∫
R2
η(χE∪F +χE∩F )

=
∫
E∩F

η+
∫
E∪F

η.

Consequently, we deduce, knowing η ∈ ∂TV(0):
P (E∩F )−

∫
E∩F

η︸ ︷︷ ︸
≥0

+

P (E∪F )−
∫
E∪F

η︸ ︷︷ ︸
≥0

≤ 0.
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Thus, both terms are already equal to 0, and we conclude that if E∩F ̸= ∅:
∫
R2
η
(

χE∩F
TV(χE∩F )

)
= 1 and

∫
R2
η
(

χE∪F
TV(χE∪F )

)
= 1.

Therefore, in accordance to equation (19), it holds that E ∩F ∈ E+ and E ∪F ∈ E+

(unless E∪F = R2). The same argument also applies for E ∈ E− and F ∈ E−.
Let us now assume that E ∈ E+ and F ∈ E− (or vice versa). Consider for x ∈ R2:

(χE −χF c)(x) =


1 if x ∈ E ∧ x ∈ F,

−1 if x ∈ Ec ∧ x ∈ F c,

0 otherwise.

It thus follows that

χE −χF c = χE∩F −χEc∩F c
∗= χE∩F −χ(E∪F )c , (22)

where (∗) follows from the De Morgan’s laws.
Then, with the property of the perimeter P (A) = P (Ac), we obtain:

P (E∩F )+P ((E∪F )c) = P (E∩F )+P (E∪F ) ≤ P (E)+P (F )
= P (E)+P (F c)

=
∫
E
η−

∫
F c
η

=
∫
E∩F

η−
∫

(E∪F )c
η.

Thus, we again obtain:

P (E∩F )−
∫
E∩F

η︸ ︷︷ ︸
≥0

+

P ((E∪F )c)−
(

−
∫

(E∪F )c
η︸ ︷︷ ︸

≥0

)≤ 0.

By similar reasoning as above, we find E∩F ∈ E+ (unless E∩F = ∅) and E∪F ∈ E−

(unless E∪F = R2).

To deepen the study of E , we will focus on the intersection over the boundaries of
two sets of E . As we will see in Section 6, for a η ∈ C1(R2), it is established that
elements of E possess a C3 representation (refer to 3.14). Consequently, these intersections
can be characterized using their outward unit normals (refer to 2), as delineated in the
forthcoming proposition.
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Proposition 5.5: Suppose E,F ∈ E . It follows:

∂E∩∂F = {νE = νF}∪{νE = −νF}

where

{νE = −νF} := {x ∈ R2 | νE(x) = −νF (x)}
{νE = νF} := {x ∈ R2 | νE(x) = νF (x)}.

Furthermore, {νE = −νF} and {νE = νF} are simultaneously open and closed in ∂E and
∂F .

The proof of this proposition is supported by the following two lemmas.

Lemma 5.6: Suppose E and F are two C1-class sets. If the intersection E ∩F and the
union E∪F either belong to class C1 or are such that E∩F is the empty set and E∪F
is the entire plane R2, it follows that

∂E∩∂F = {νE = νF}∪{νE = −νF}. (23)

Moreover, the set

{νE = −νF} is simultaneously open and closed in both ∂E and ∂F. (24)

Proof. From definition (3.14), it follows that the densities θE , θF , θE∩F , and θE∪F are
well-defined on R2 and their values are restricted to {0,1/2,1}. Additionally, the following
relation holds:

|E∪F | = |E|+ |F |− |E∩F |,

leading to the equation:

|E∩B(x,r)|
|B(x,r)| + |F ∩B(x,r)|

|B(x,r)| = |(E∩F )∩B(x,r)|
|B(x,r)| + |(E∪F )∩B(x,r)|

|B(x,r)| .

As r → 0+, this implies:

θE + θF = θE∩F + θE∪F . (25)

Furthermore, for all x ∈ ∂E ∩ ∂F , it is established that θE(x) = θF (x) = 1/2, which, in
conjunction with (25), yields:

θE∩F (x)+ θE∪F (x) = 1.

Since θE∩F ≤ θE∪F evidently holds, we can deduce that (θE∩F (x), θE∪F (x)) must be either
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(0,1) or (1/2,1/2).
Additionally, employing [16, Thm. 15.5], we can demonstrate the following conver-

gence:
∣∣∣∣(E∩F )−x

r
∩B(0,1)

∣∣∣∣= ∣∣∣∣(E−x

r
∩B(0,1)

)
∩
(
F −x

r
∩B(0,1)

)∣∣∣∣−−−−→
r→0+

∣∣∣∣BνE(x) ∩BνF (x)

∣∣∣∣,
where Bν is the set {x ∈B(0,1) | x ·ν ≤ 0}. Consequently, we find that:

θE∩F (x) = lim
r→0+

|(E∩F )∩B(x,r)|
|B(x,r)| = lim

r→0+

|(E∩F −x)∩B(0, r)|
πr2

= lim
r→0+

r2 |(E∩F−x
r ∩B(0,1)|
πr2

= lim
r→0+

|(E∩F−x
r ∩B(0,1)|

π

=
|BνE(x) ∩BνF (x)|

π
. (26)

This leads to the conclusion that if θE∩F (x) = 0, then |BνE(x) ∩BνF (x)| = 0. Therefore,
the intersection BνE(x) ∩BνF (x) is Lebesgue negligible in R2. In light of the definition of
Bν , this situation is possible only if νE(x) and νF (x) are oriented in opposite directions
(as illustrated in the figure 15 below). Consequently, we deduce that νE(x) = −νF (x).

Similarly, if θE∩F (x) = 1/2, then |BνE(x) ∩BνF (x)| = π/2, indicating that BνE(x) ∩
BνF (x) exactly corresponds to one half of the circle B(0,1). This can only be true if
BνE(x) =BνF (x) and thus νE(x) = νF (x) (like before see figure 15 below).
Next, our objective is to demonstrate that the set {νE = −νF} is both open and closed
within ∂E (the same applies to ∂F ).

(i) Closed: Since E and F are of class C1, it follows from definition (2) that νE and
νF are continuous (∗). Consider a sequence (xn)n∈N ⊆ {νE = −νF} converging to
some x ∈ R2. (νE(xn)+νF (xn))n∈N is then a null sequence. Consequently, we have:

0 = lim
n→∞νE(xn)+νF (xn) = lim

n→∞νE(xn)+ lim
n→∞νF (xn)

∗= νE( lim
n→∞xn)+νF ( lim

n→∞xn)

= νE(x)+νF (x).

Therefore, x also belongs to the set {νE = −νF}.

(ii) Open: Through Equation (26) we know that:

{νE = −νF} =
{
x ∈ R2 | θE∪F (x) = 1

}
∩
{
x ∈ R2 | θE∩F (x) = 0

}
= (E∪F )∩

(
R2\E∩F

)
.
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Since either E ∩F and E ∪F are trivial or correspond to an open set of class C1,
the openness of the two latter sets in the equation also follows, yielding our result.

Figure 15: Illustration of the sets within B(0,1): The set B−
νE(x) is depicted with a yellow

area, and B−
νF (x) is depicted with a red area, while their intersection is shown in orange.

Subfigure (a) represents the case where νE(x) = −νF (x), subfigure (b) corresponds to the
case νE(x) = νF (x), and subfigure (c) illustrates the scenario where neither of the previous
conditions holds. In this last case, it is noted that the intersection of B−

νE(x) and B−
νF (x)

always possesses a positive Lebesgue measure.

In the next lemma, we demonstrate the final step to obtain the result referred to
proposition (5.5). It can be observed that the property to be shown, namely that {νF =
νE} is both open and closed, does not generally hold for the assumptions made in the
previous lemma (refer to figure 16 below for more details).

Figure 16: Demonstration of two C1 class sets: Set E represented as a blue circle in R2,
and set F depicted in green. The marked locations are the only points where νE = νF .
Consequently, the set {νE = νF} is not open in ∂E, ∂F .

Lemma 5.7: For E,F ∈ E , the set {νE = νF} is both open and closed in ∂E and ∂F .
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Proof. As initially outlined in this section, the sets E,F within E are assumed to be of
class C3. Consequently, paralleling our earlier proof, the closedness of the set {νE = νF}
can be established through the continuity of νE and νF .
To demonstrate the openness of the set, we consider the following cases.

• For E,F ∈ E+:
For a given x ∈ {νE = νF}, we define ν := νE(x) = νF (x). Since E and F are of
class C3, there exists an open square C(x,r,ν) where both ∂E and ∂F match with
functions from C3([−r,r]) (see 3.1). We will later show that for such functions the
following holds (refer to (6.6)):

u′′(z)
(1+u′(z)2)3/2 =H(z,u(z)) with H(z, t) = η(x+Rν(z, t)), (27)

where z ∈ [−r,r] and u(0) = u′(0) = 0. Thus, we are dealing with a second-order
ODE. By introducing v1(x) := u(x) and v2(x) := u′(x), we can convert (27) into the
following first-order ODE system:

v′
1 = u′,

v′
2 =H(t,v1)(1+v2

2)3/2.

Let us now define the mapping:

f(t,v) :=
 v2

H(t,v1)(1+v2
2)3/2

 .
Then, for all t ∈ [−r,r], it holds that:

∥f(t,y1)−f(t,y2)∥ =
∥∥∥∥∥∥
 y1,2

H(t,y1,1)(1+y2
1,2)3/2

−

 y2,2

H(t,y2,1)(1+y2
2,2)3/2

∥∥∥∥∥∥
= |y1,2 −y2,2|+

∣∣∣H(t,y1,1)(1+y2
1,2)3/2 −H(t,y2,1)(1+y2

2,2)3/2
∣∣∣

≤ |y1,2 −y2,2|+ |H(t,y1,1)−H(t,y2,1)| ·
∣∣∣(1+y2

1,2)3/2
∣∣∣

+ |H(t,y2,1)| ·
∣∣∣(1+y2

1,2)3/2 − (1+y2
2,2)3/2

∣∣∣
∗
≤ |y1,2 −y2,2|+L1M2|y1,1 −y2,1|+L2M1|y1,2 −y2,2|

= (L2M1 +1)|y1,2 −y2,2|+L1M2|y1,1 −y2,1|
∗∗
≤ L(|y1,2 −y2,2|+ |y1,1 −y2,1|)
= L∥y1 −y2∥.

The marked estimates can be justified as follows:

(∗) (i) |H(t,y1,1)−H(t,y2,1)|:
Since H, y1, and y2 are continuous, without loss of generality, H is Lips-
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chitz continuous on the compact set [−r,r]×([y1,1(−r),y1,1(r)]∪ [y2,1(−r),y2,1(r)])
with a Lipschitz constant L1.

(ii) |H(t,y2,1)|:
H attains its maximum value M1, without loss of generality, on [−r,r] ×
[y2,1(−r),y2,1(r)].

(iii)
∣∣∣(1+y2

1,2)3/2 − (1+y2
2,2)3/2

∣∣∣:
The function (1 + x2)3/2 is also continuous and thus attains its maxi-
mum, without loss of generality, on [y1,2(−r),y1,2(r)] ∪ [y2,2(−r),y2,2(r)]
and hence is Lipschitz continuous with a constant L2.

(iv)
∣∣∣(1+y2

1,2)3/2
∣∣∣:

The function (1 +x2)3/2 attains its maximum value M2, without loss of
generality, on [y1,2(−r),y1,2(r)].

(∗∗) L := max(L2M1 +1,L1M2).

Hence, f(t,v) is locally Lipschitz continuous in the second variable, and by Picard-
Lindelöf’s theorem, there exists a unique solution u on the interval (−r,r). There-
fore, both aforementioned functions must coincide on this interval. Consequently,
the same property also applies to the outward unit normals on C(x,r,ν), because:

νE(x+Rv(z,u(z))) = 1√
1+(u′(z))2

−u′(z)
1

= νF (x+Rv(z,u(z))).

Thus, it follows that:

{νE = νF}∩C(x,r,v) = ∂E∩C(x,r,v)︸ ︷︷ ︸
open in ∂E

= ∂F ∩C(x,r,v)︸ ︷︷ ︸
open in ∂F

.

Therefore, {νE = νF} is open in ∂E and ∂F .

• E, F ∈ E−:
The complements Ec, F c are thus of class C3, i.e., we apply the same argument
as before with the modification in (27) of H = −η. Consequently, we deduce that
{νEc = νF c} = {−νE = −νF} = {νE = νF} is open in ∂Ec, ∂F c and therefore also
in ∂E, ∂F .

• E ∈ E+, F ∈ E+ (or vice versa): Let us now define ν := νE(x) = νF (x) = −νF c(x).
As before, there exists r > 0 such that ∂E can locally be described on C(x,r,ν) by a
C3 function u solving (27) with u(0) = 0 and u′(0) = 0. Similarly, ∂F c can be locally
represented on C(x,r,−ν) for some r > 0 by a function v, satisfying the following
equation:

u′′(z)
(1+u′(z)2)3/2 =G(z,u(z)) with H(z, t) = −η(x+R−ν(z, t)), (28)
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with v(0) = 0, v′(0) = 0. Due to symmetry, C(x,r,−ν) = C(x,r,ν) and additionally
R−ν(z, t)) = Rν(z,−t)) for all t ∈ (−r,r). This means that ∂F can locally be de-
scribed on C(x,r,ν) by an ũ= −v which solves (27) and satisfies ũ(0) = 0, ũ′(0) = 0.
Thus, again by the Picard-Lindelöf theorem, u and ũ must be identical on (−r,r)
and therefore {νE = νF} must be open in ∂E and ∂F .

Proof of proposition 5.2

Equipped with proposition 5.5, we now finish this section and proceed to prove (5.2).
Proposition 5.2: For any extreme point u of F , there exists a unique pair (s,E), where E
is a C3 simply connected open set and s ∈ {−1,1}, such that u= sχE/P (E). For distinct
extremal points u1 and u2 of F , with associated pairs (si,Ei), it holds that ∂E1 ∩∂E2 = ∅.

Proof. Let x be an extremal point of F . Since F is a subset of {TV ≤ 1}, x is also an
extremal point of {TV ≤ 1}. Following proposition 5.3, it implies that u = sχE/P (E)
for a simple set E from R2 with 0 < |E| < ∞. Thus, by lemma 6.6, there exists a C3

representative for E. As E is simple, with [2, Thm. 7] we can establish that E is the interior
of a rectifiable Jordan curve (a closed loop in R2). Then we can conclude with the Jordan-
Schoenflies theorem, that E is homeomorphic to int(B(0,1)) ⊆R2 and consequently simply
connected. Now, let us demonstrate the second part of the proposition. Suppose we have
two distinct extremal points of F , u1 and u2, corresponding to simple sets E1 and E2

such that:

u1 = s1χE1/P (E1) ̸= s2χE2/P (E2) = u2. (29)

We observe that E1 ̸= E2 must hold because otherwise, it would imply s1 ̸= s2 which is
equivalent to s1 = −s2. Since F is convex, it also follows that λu1 + (1 −λ)u2 ∈ F for
λ ∈ [0,1]. Specifically, for λ= 1

2 , we have:

0 = 1
2s1χE1/P (E1)+ 1

2s2χE2/P (E2) =: u ∈ F = argmax
v∈{TV≤1}

∫
R2
ηv.

Consequently, for u, the following relation is established:
∫
R2
ηu= 0 ̸= 1 = ∥η∥G = max

v∈{TV≤1}

∫
R2
ηv,

which would imply that u /∈ F . Therefore, this leads to a contradiction.
We deduce that both Ei must be elements of E , since for si = −1, Ei ∈ E−, and for

si = 1, Ei ∈ E+. Using Proposition (5.5), we observe that ∂E1 ∩ ∂E2 is both open and
closed in ∂E1 and ∂E2. Since ∂E1 and ∂E2 are closed and bounded, openness can only
occur if ∂E1 ∩∂E2 = ∅ or ∂E1 = ∂E2. However, in the latter case, according to the Jordan
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curve theorem, it would imply E1 =E2, which contradicts our earlier assertion. Thus, we
conclude that ∂E1 ∩∂E2 = ∅.

5.3 Structure of finite-dimensional exposed faces

With the insights from 5.2, in this section, we will establish that k-dimensional exposed
faces F exhibit the following structure:

F =


k∑
i=0

λiui | λi ≥ 0,
k∑
i=0

λi = 1
 , (30)

where the ui denote the extreme points of F . Consequently, F can be described as a
k-simplex.

To support this, we first present the following corollary to Proposition 5.2.

Corollary 5.8: Each family of pairwise distinct extreme points of F is linearly indepen-
dent.

Proof. Let I be an index set. Proposition 5.2 shows that for a family of extreme points
{ui}i∈I of F , there exist corresponding simple sets (Ei)i∈I and si ∈ {−1,1} such that:

{ui}i∈I =
{
siχEi
P (Ei)

}
i∈I

(31)

and for each Ei, Ej with i ̸= j it holds that ∂Ei∩∂Ej = ∅.
Then, for an arbitrary family (λi)i∈I with λi ∈ R (assuming, in the event that the

cardinality of I is infinite, there exists an index i ∈ I such that for all j ≥ i, λj = 0), and
with ∑i∈I λiui = 0, it also follows that ∑i∈I λiDui = 0.

Furthermore, due to the constancy of χEi both within int(Ei) and R2\E, we have that
supp(D(ui)) = ∂Ei. Consequently, for any i, j ∈ I with i ̸= j, we obtain

∅ = ∂Ei∩∂Ej = supp(D(ui))∩ supp(D(uj)). (32)

This implies λi = 0 for all i ∈ I, thereby demonstrating the linear independence of the
ui.

With this property of the extreme points of a face F , we can now demonstrate equality
to a simplex in the following theorem:

Theorem 5.9: If a face F is of dimension k, then it has exactly k+ 1 extreme points,
and is therefore a k-simplex.

Remark 5.10: Since the concept of dimension is meaningful only in the context of vector
spaces, we will briefly explain what it signifies in this context.
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A set M is characterized as being of dimension k if the dimension of its affine hull, Aff(M),
is equivalently k. The construction of Aff(M) is as follows: An arbitrary point m0 ∈ M

is selected. Subsequently, the linear hull, denoted as H, of the set {m− p | m,p ∈ M}
is determined. Thereupon, Aff(M) is expressed as m0 +H. It is noteworthy that the
dimension of Aff(M) is congruent with the dimension of H.

Proof of 5.9. Consider u1, . . . ,um as pairwise distinct extremal points of F . By Corollary
5.8, the linear independence of u1, . . . ,um is established. Consequently, this also holds for
u2 −u1, . . . ,um−u1, since for all λ ∈ Rm with

m∑
i=1

λiui = 0

⇔
m∑
i=2

λiui+λ1u1 = 0 | define λ1 := −
m∑
i=2

λi

⇔
m∑
i=2

λiui−
m∑
i=2

λiu1 = 0

⇔
m∑
i=2

λi(ui−u1) = 0

it follows that λ= 0. We can now discern that {u2 −u1, . . . ,um−u1} ⊆ {u−p | u,p ∈ F}.
This implies that

dim(span{u2 −u1, . . . ,um−u1}) ≤ dim(Aff(F)).

Since dim(Aff(F)) = dimF = k, it follows that m ≤ k+ 1. Now suppose that m< k+ 1
(without loss of generality, let m= k). From the properties of the extrema of F it follows
that for all x in F :

x=
k∑
i=1

(λiui) with
k∑
i=1

(λi) = 1. (33)

Since F is convex, we already have F = conv(F). By Carathéodory’s theorem, it follows
that dim(F) = k−1, which contradicts the assumption.

Let us now consolidate our insights from this section. Concerning an extreme point of
F , Proposition 5.2 demonstrates the existence of a pair (s,E) satisfying u= sχE

P (E) , where
E is a simply connected set in the class C3, and s takes values in {−1,1}. Invoking
Theorem 5.9 and Carathéodory’s theorem, we deduce a representation for all elements of
F through its extreme points. Specifically:

u=
d+1∑
i=1

λi
siχEi
P (Ei)

, subject to
d+1∑
i=1

λi = 1.

Define ai := λisi
P (Ei) and select I ⊆ {1, . . . ,d+1} such that ai ̸= 0 for all i ∈ I. This leads to
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the expression:
u=

∑
i∈I

aiχEi . (34)

The uniqueness of this formulation is guaranteed by the corollary 5.8. With this knowl-
edge, let us revisit our problem statement. For a solution p to the problem D0(y0), we
obtain a dual certificate η= Φ∗p, which gives a face of the set F ⊆ {TV(x) ≤ min(P0(y0))}
with dimension d. Then the solutions of the problem P0(y0) can be represented as in (34).
Furthermore, if the operator defined by

ΦF : Rd+1 → H, a 7→ Φ
d+1∑
i=1

aiχEi

 , (35)

is injective, then the uniqueness of the solution follows.
This means that for solutions of P0(y0) under these assumptions, we naturally obtain a

k-sparse representation as described in section 2.3. In our case, this refers to the notation
of k-simple functions as described in the following definition.

Definition 5.11 (k-simple functions): Let k ∈ N∗. We say that a function u : R2 → R
is k-simple if there exists a collection {Ei}i≤i≤k of simple sets of class C1 with positive
finite measure such that Ei∩Ej = ∅ for every i ̸= j, and a vector a ∈ Rk such that

u=
k∑
i=1

aiχEi . (36)

6 The prescribed curvature problem

In this section, we will transform the subdifferential property from (11) into a problem
formulation (the so called prescribed curvature problem) that involves the sets from the
previously demonstrated decomposition. After introducing this new problem formulation,
we will analyze its behavior for for a varying dual certificate. This allows us to establish
important theses that we need to demonstrate the main result of this work in Section 7.

6.1 Properties and behavior of the level sets of solutions

We begin by demonstrating some properties for sets from the decomposition in (34). For
this, we consider an η ∈ ∂TV(aχE) with positive a. Therefore, the following equation
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must be satisfied:
∫
R2
ηaχE = TV(aχE)

⇐⇒
∫
R2
ηaχE = |a|TV(χE)

⇐⇒
∫
R2
ηχE = TV(χE)

⇐⇒
∫
E
η = P (E).

With the results from [6] and [14], it then follows.

Lemma 6.1: [6, 14, p. 25ff, Lem. 5] Consider (ηn)n≥0 ⊂ ∂TV (0) converging strongly
in L2(R2) to η∞. Define the set

E :=
{
E ⊆ R2

∣∣∣∣ 0< |E|<+∞,∃n ∈ N∪{∞} such that P (E) =
∣∣∣∣∫
E
ηn

∣∣∣∣} .
Then, every E ∈ E satisfies the following properties:

1. inf
E∈E

P (E)> 0 and sup
E∈E

P (E)<∞,

2. inf
E∈E

|E|> 0 and sup
E∈E

|E|<∞,

3. There exists a R > 0 such that E ⊆B(0,R),

4. There exists r0 > 0 and C ∈ (0,1/2), such that for every r ∈ (0, r0]:

∀x ∈ ∂E, C ≤ |E∩B(x,r)|
|B(x,r)| ≤ 1−C.

The next proposition provides insight into the behavior of these sets for decreasing
noise w and regularization parameter λ. It is important to note that the noise diminishes
faster than the regularization parameter. If this is not the case, we actually observe the
behavior described in Section 2.2.2, where there is an overfitting to the noise.

Proposition 6.2: [14, Thm. 2] Let us consider that there exists a solution to D0(y0).
If λn → 0 and the following condition

∥wn∥H
λn

≤ 1
4c2∥Φ∗∥

is fulfilled, then for each n ∈ N, with un as a solution to Pλn(y0 +wn), the support sets
(supp(un))n≥0 are bounded. In addition, by considering a subsequence (without changing
the notation), un converges strictly in BV (R2) to u∗, a solution to P0(y0) (see 3.19).
Furthermore for almost every t ∈ R, the following holds:

|U (t)
n ∆U (t)

∗ | → 0 and H(∂U (t)
n ,∂U

(t)
∗ ) → 0,
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where H denotes the Hausdorff-metric (see 3.12).

6.2 An alternative problem formulation

We now transform the subgradient property (11), which indicates the optimality of a
solution, into a problem formulation that involves the aforementioned sets. Let us consider
the following proposition for this purpose.

Proposition 6.3: [6, Prop. 3] Let u be an element of L2(R2) for which TV(u)<∞, and
let η belong to L2(R2). It is then established that the following statements are equivalent:

(i) η ∈ ∂TV(u).

(ii) η ∈ ∂TV(0) and for the level sets of u, the following holds:

∀t > 0, P (U(t)) =
∫
U(t)

η,

∀t < 0, P (U(t)) = −
∫
U(t)

η.

(iii) For the level sets of u, we have:

∀t > 0, U(t) ∈ Argmin
E⊆R2,|E|<∞

(
P (E)−

∫
E
η
)
,

∀t < 0, U(t) ∈ Argmin
E⊆R2,|E|<∞

(
P (E)+

∫
E
η
)
.

We can now see from (iii) that u is a solution of P0(y0) with p being a solution of
D0(y0) (Φ∗p= η) if and only if the level sets of u solve the following problem:

inf
E⊂R2,|E|<∞

J(E) := P (E)−
∫
E
η. (PC(η))

This problem is called the prescribed curvature problem for a specified η ∈ L2(R2). The
naming of the problem originates from the fact that for a sufficiently regular η, every
boundary of a solution to PC(η) exhibits a curvature that corresponds to η (in the distri-
butional sense). The existence of such solutions is established for any η ∈ ∂TV(0). This is
because, for such an η, the following holds true for all u ∈ L2(R2) (including for u := ±χE
where |E|<∞):

TV(χE) = P (E) ≥
∫
R2
η±χE = ±

∫
E
η

⇐⇒ P (E)±
∫
E
η ≥ 0.

In this scenario, J is non-negative and equals 0 when E = ∅.
We will now demonstrate several properties of this problem setting.
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Lemma 6.4 (Boundedness): [6, Lem. 4] For each solution E of PC(η), there exists a
radius R > 0 such that:

E ⊆B(0,R)

where B(0,R) describes a ball in R2 centered at 0 with radius R.

Lemma 6.5: [3, Def. 4.7.3, Thm. 4.7.4] Assuming additionally that η ∈ L∞
loc(R2),

and therefore in L∞(B(0,R)), it follows that every solution of PC(η) is a strong quasi-
minimizer (see definiton 3.27) of the perimeter. This implies that such a solution possesses
a C1,1 representative.

Lemma 6.6 (Regularity of solutions): For η ∈ C0(R2)∩L∞
loc(R2), consider a solution

E of PC(η). In this case, ∂E can be locally represented by a function u ∈ C1 (see 6.5
above), and the signed curvature HE of E (refer to 3) aligns with η in the classical sense,
that is:

HE(x,u(x)) =
(

u′
√

1+u′2

)′
= η(x,u(x)), (37)

which implies, that u ∈ Ck+2,α if η ∈ Ck,α(R2).

Proof. With lemma 6.6 we derive a local description u ∈ C1([−r,r]) of the set E (see
definiton 3.1 and figure 11). We observe that the perimeter of E, restricted to C(x,r,ν),
is effectively described by the length of the graph of u over the interval (−r,r). Therefore,
we have:

P (E;C(x,r,ν)) = H1(∂E)⌞C(x,r,ν)= H1(graph(u)) =
∫ r

−r

√
1+u′(x)2dx

where the final equation can be elucidated with reference to Figure 17 below, especially
in the case where the interval [a,b] becomes infinitesimally small.

Figure 17: The figure depicts a continuous function in light green, complemented by four
dashed blue secants, positioned at uniformly distributed support points.

This given, the problem stated in PC(η) simplifies for a set E ⊆R2 when locally considered
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on C(x,r,ν) to:

min
u∈C1([−r,r])

{∫ r

−r

√
1+u′(x)2 dx−

∫ r

−r

∫ u(x)

−∞
η(x,y)dydx

}
=: E(u).

Therefore, for a test function φ ∈ C∞
0 ([−r,r]) satisfying φ(−r) = φ(r) = 0 and t ∈ R, it

must hold that:

d

dt
E(u+ tφ)

∣∣∣
t=0

= 0

⇐⇒ d

dt

(∫ r

−r

√
1+(u′(x)+ tφ(x))2dx−

∫ r

−r

∫ u(x)+tφ(x)

−∞
η(x,y)dydx

)∣∣∣
t=0

= 0

⇐⇒
(∫ r

−r

d

dt

√
1+(u′(x)+ tφ(x))2dx−

∫ r

−r

d

dt

∫ u(x)+tφ(x)

−∞
η(x,y)dydx

)∣∣∣
t=0

= 0

⇐⇒
(∫ r

−r

(u′(x)+ tφ(x))φ′(x)√
1+(u′(x)+ tφ(x))2

dx−
∫ r

−r
φ(x)η(x,u(x)+ tφ(x))dx

)∣∣∣
t=0

= 0

⇐⇒
∫ r

−r

u′(x)φ′(x)√
1+u′(x)2

dx−
∫ r

−r
φ(x)η(x,u(x))dx= 0

∗⇐⇒
∫ r

−r
φ(x)

(
u′(x)√

1+u′(x)2

)′
dx−

∫ r

−r
φ(x)η(x,u(x))dx= 0

⇐⇒
∫ r

−r
φ(x)

( u′(x)√
1+u′(x)2

)′
−η(x,u(x))

dx= 0

∗∗⇐⇒
(

u′(x)√
1+u′(x)2

)′
−η(x,u(x)) = 0

⇐⇒ HE(x,u(x)) = η(x,u(x)).

Where (∗) results from partial integration with φ having 0 boundary values, and (∗∗)
follows from the fundamental lemma of calculus of variations (see [15, Lem. 1.1.1]).

6.3 Analysis of the problem

As derived in Section 5.3, we obtain k-simple functions as solutions to Pλ(y) (y = y0 +w).
The simple sets appearing in the decomposition of these functions, representing the level
sets according to theorem 3.25, thus form solutions to the prescribed curvature problem
with respect to ηλ,w. Since we have already established in Section 4.4 that ηλ,w converges
to a minimal norm certificate η0 as w,λ → 0, we will next investigate how the solutions
to the prescribed curvature problem behave as ηλ,w approaches η0.
Specifically, we aim to determine for two sufficiently close functionals η and η̃ whether:

(i) Are solutions of PC(η) are close to the solutions of PC(η̃)?

(ii) How many solutions of PC(η̃) exist within a small neighborhood of PC(η)?
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6.3.1 Convergence:

In the following, we will address Question (i) using the ensuing proposition. We will
show in the next proposition that for two functionals sufficiently close to each other with
respect to the C1 and L2 norms, the solutions of the prescribed curvature problem for
one function can be represented as C2 deformations (see 3.2) of the solutions of the other
function. The proof of this proposition is found in Appendix A in order to maintain the
continuity of the text.

Proposition 6.7: Let η0 ∈ TV(0)∩C1(R2).
For every ϵ> 0 there exists r > 0 ∀η ∈ TV(0)∩C1(R2) with ∥η−η0∥L2(R2) +∥η−η0∥C1(R2) ≤
r, the following is true: each non-empty solution F of PC(η) can be characterized as a
C2-normal deformation of size at most ϵ of a non-empty solution E of PC(η0), that is,
using the notation of Proposition 3.6, F = Eφ with ∥φ∥C2(∂E) ≤ ϵ.

6.3.2 Stability

To address question (ii), it is necessary to delve deeper into the subject. We examine the
functional J in the neighborhood of a solution E to PC(η) with respect to C2 deformations
φ. Analogous to [8], we consider the second derivative of the functional defined below,
involving J and the aforementioned deformations φ. Intuitively, this can be envisioned
as demonstrating that J is, in a sense, twice continuously differentiable. We will then use
the differentiability to determine a unique minimum of the function and to investigate
the surrounding sets. This then aids in addressing question (ii).

Structure of shape derivatives

For further analysis we introduce the mapping denoted by jE , which associates a normal
deformation φ with the functional J evaluated on the deformed set Eφ, as described in
section 3.2:

jE : C1(∂E) → R

φ 7→ J(Eφ).

With the notation introduced above, we now present the following proposition:

Proposition 6.8: [13, p. 243f, p. 251]
Let η ∈ C1(R2), then the functional jE is twice Fréchet differentiable at 0. For any

function ψ in C1(∂E), the following expressions hold:

j′
E(0)(ψ) =

∫
∂E

(H−η)ψdH1,

j′′
E(0)(ψ,ψ) =

∫
∂E

(
|∇τψ|2 −

(
H+ ∂η

∂ν

)
ψ2
)
dH1,
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where H is the curvature of E and ∇τψ := ∇ψ− (∇ψ ·ν)ν is the tangential gradient of ψ
with respect to E.

We can see from the definitions of j′
E and j′′

E that both functionals are well-defined
even for weaker requirements on ψ. Therefore, we will consider j′

E over L1(∂E) and j′′
E

over H1(∂E) in the following.
To address question (ii), we will henceforth impose constraints on the potential solu-

tions of PC(η). Subsequently, we shall examine the convergence behavior and continuity
of j′′

E . The proofs for these can be found in the Appendix A.

Definition 6.9 (Strict Stability): In accordance to [8, p. 3012], a non-trivial open set
E, which solves PC(η), is said to exhibit strict stability if j′′

E(0) is coercive in H1(∂E),
meaning the ensuing criterion is met:

∃α > 0, ∀ψ ∈H1(∂E), j′′
E(0)(ψ,ψ) ≥ α∥ψ∥2

H1(∂E).

To ensure the strict stability of E, let us consider what must hold for the functional
j′′
E . Again we consider a η of ∂TV(0)∩C1(R2) and E, which is regarded as a solution of

PC(η). With the lemma 6.6 we obtain that HE is equivalent to η on the boundary set
∂E. So we derive the following expression for j′′

E(0): For every function ψ within H1(∂E):

j′′
E(0)(ψ,ψ) =

∫
∂E

[
|∇τEψ|2 −

(
H2
E + ∂η

∂νE

)
ψ2
]

dH1.

It can now be directly seen that the set E is strictly stable if and only if the term
(H2

E + ∂η
∂νE

) is negative. This leads us to the following proposition.

Proposition 6.10: If the supremum

sup
x∈∂E

[
HE(x)2 + ∂η

∂νE
(x)
]
< 0 (38)

then j′′
E(0) is coercive.

For the following propositions, let X be a vector space over R, and let Q(X) be the
space of all quadratic forms over X, where the norm for a q ∈ Q(X) is given by:

∥q∥Q(X) := sup
x∈X\{0}

|q(x,x)|
∥x∥2

X

.

Proposition 6.11: If η ∈ C1(R2), the mapping

j′′
E : C2(∂E) → Q(H1(∂E))

φ 7→ j′′
E(φ)

is continuous at 0.

54



Proposition 6.12: Let η0 ∈ C1(R2). There exists ϵ > 0 such that

lim
∥η−η0∥C1(R2)→0

sup
∥φ∥C2(∂E)≤ϵ

∥∥∥j′′
E(φ)− j′′

0,E(φ)
∥∥∥
Q(H1(∂E))

= 0,

where j′′
E and j′′

0,E describe the functionals with respect to η and η0.

With these properties of the functional jE and under the assumption that the set E
is a strictly stable solution of PC(η0), we can now answer question (ii). It follows that
there exists at most one φ close to 0 such that Eφ is a solution of PC(η), provided that
∥η−η0∥C1(R2) is sufficiently small. Precisely, we obtain the following proposition:

Proposition 6.13: Consider η0 belonging to ∂TV(0) ∩C1(R2) and E a strictly stable
solution to PC(η0).
Then there exists ϵ > 0 and r > 0 such that for every η ∈ ∂TV(0) with ∥η−η0∥C1(R2) ≤ r

there is at most one φ ∈ C2(∂E) such that ∥φ∥C2(∂E) ≤ ϵ and Eφ solves PC(η).

Proof. Given that E is a strictly stable solution of PC(η0), we have:

∃α0 > 0, ∀ψ ∈H1(∂E), j′′
0,E(0)(ψ,ψ) ≥ α0∥ψ∥2

H1(∂E)

⇐⇒ |j′′
0,E(0)(ψ,ψ)| ≥ α0∥ψ∥2

H1(∂E).

As this holds for all ψ ∈ H1(∂E), it also applies to the supremum over all H1(∂E)\{0},
yielding:

∥j′′
0,E(0)∥Q(H1(∂E)) ≥ α0.

Furthermore, due to the continuity of j′′
0,E at 0, we can select an ϵ1 > 0 such that for

all φ in C2(∂E) with ∥φ∥C2(∂E) ≤ ϵ1, it holds:

∥j′′
0,E(0)− j′′

0,E(φ)∥Q(H1(∂E)) ≤ 1
3α0.

Similarly, employing Proposition 6.12, we choose ϵ2 > 0 and r > 0 such that for all η ∈
C1(R2) with ∥η−η0∥C1(R2) ≤ r and ∥φ∥C2(∂E) ≤ ϵ2, the following holds:

∥∥∥j′′
E(φ)− j′′

0,E(φ)
∥∥∥
Q(H1(∂E))

≤ 1
3α0.
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Collectively, for a φ with ∥φ∥H1(∂E) ≤ min(ϵ1, ϵ2) =: ϵ and α := 1
3α0 > 0, we get:

α0 ≤ ∥j′′
0,E(0)∥Q(H1(∂E))

= ∥j′′
0,E(0)+ j′′

0,E(φ)− j′′
0,E(φ)+ j′′

E(φ)− j′′
E(φ)∥Q(H1(∂E))

≤ ∥j′′
0,E(0)− j′′

0,E(φ)∥Q(H1(∂E)) +∥j′′
0,E(φ)− j′′

E(φ)∥Q(H1(∂E)) +∥j′′
E(φ)∥Q(H1(∂E))

≤ 1
3α0 + 1

3α0 +∥j′′
E(φ)∥Q(H1(∂E))

⇐⇒ α≤ ∥j′′
E(φ)∥Q(H1(∂E))

⇐⇒ α≤ sup
ψ∈H1(∂E)\{0}

|j′′
E(φ)(ψ,ψ)|
∥ψ∥2

H1(∂E)
.

Therefore, we can deduce that j′′
E(φ) is coercive and thus positive definite. Consequently,

jE is strictly convex on the set {φ∈C2(R2) | ∥φ∥ ≤ ϵ} =:A (∗). Suppose there exist φ,ψ ∈
A with φ ̸= ψ such that Eφ and Eψ are solutions of PC(η). Then we have 1

2(φ+ψ) ∈ A

and it follows:

J(E 1
2 (φ+ψ)) = jE(1

2(φ+ψ)) ∗
<

1
2jE(φ)+ 1

2jE(ψ)

= 1
2J(Eφ)+ 1

2J(Eψ)

= J(Eφ) = J(Eψ),

which contradicts the minimality of Eφ,Eψ, thereby implying φ = ψ and leading to the
asserted result.

By synthesizing the findings from propositions 6.7 and 6.13, it has been established
that, assuming η approximates η0 adequately in both C1(R2) and L2(R2) norms, any
solution to PC(η) is contained within a neighborhood (characterized by C2-normal de-
formations) of a solution to PC(η0). Furthermore, given a strict stability condition, each
such neighborhood is guaranteed to have no more than a single solution to PC(η).
Transferring these results back to our original problem formulation from Section 2, we
can conclude, using the results from this section, that if we have a suitable original image
(for example, the top view of the unit circle in R2, i.e., u = aχB(0,1)), then solutions to
the problem with noise can be represented as continuous deformations of solutions to
the problem without noise, provided the respective dual certificates are sufficiently close
to each other. We will next generalize this result to the previously mentioned k-simple
functions.

7 Exact support recovery

Now we come to the final chapter of this thesis. Here we will first extend the results of
the previous chapter to the faces defined in section 5, and then define a ’non-degenerate
source condition’ under which we can prove the main thesis of this work, theorem 7.3.
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Finally, we will use a simple example to show that, under our conditions, there are indeed
solutions to P0(y0).

7.1 Stability of F ⊆ {TV ≤ 1}

As in the previous section, we again choose η,ηn ∈ ∂TV(0)∩C1(R2) as functionals which
expose the faces F and Fn of {TV ≤ 1}. As seen in proposition 5.2, extreme points of
such faces have the form sχE/P (E), where s ∈ {−1,1} and E is a simply connected open
set of class C3. As defined earlier for solutions of (PC(η)), we now extend the concept of
strict stability to these extreme points.

Definition 7.1 (Strictly stable extremepoints): Let extr(F) be the set of all extreme
points of F . We call an extreme point sχE/P (E) ∈ extr(F) strictly stable if:

(i) s= 1 and E is a strictly stable solution to PC(η) (see (6.9)),

(ii) s= −1 and E is a strictly stable solution to PC(−η).

To obtain stability result, Theorem 7.3, in this section, we will first demonstrate the
following Lemma.

Lemma 7.2: Consider the sequence (ηn)n∈N\{0} in ∂TV(0) ∩C1(R2), such that ∥ηn −
η0∥L2(R2) → 0 and ∥ηn−η0∥C1(R2) → 0, ensuring that the set F0 is finite-dimensional and
contains only strictly stable extreme points. Moreover, suppose there exists an infinite
subset of N\{0}, where each element n corresponds to Fn having at least m distinct
extreme points, represented as (sn,iχEn,i/P (En,i)) for i= 1, . . . ,m.

Then, there exist (si)1≤i≤m and pairwise distinct sets (Ei)1≤i≤m, with siχEi/P (Ei) ∈
extr(F0) for all i ∈ {1, . . . ,m}. Furthermore, after extracting a (not relabeled) subse-
quence, the following holds:

∀n ∈ N\{0}, ∀i ∈ {1, . . . ,m},


sn,i = si,

En,i = (Ei)φn,i, with lim
n→∞∥φn,i∥C2(∂Ei) = 0.

(39)

In particular, m≤ card(extr(F0)).

Proof. For each i in {1, . . . ,m}, since sn,i converges to either -1 or 1, there exist infinitely
many n such that sn,i = 1 or sn,i = −1. This means that we can select a subsequence
(without relabeling) such that sn,i = si for all n ∈ N\{0} and i ∈ {1, . . . ,m}.
By applying Proposition 6.7, we obtain for a sufficiently large n ∈ N \ {0}, and thus by
selecting a suitable subsequence (again not relabeled), for each i ∈ {1, . . . ,m}, En,i can be
expressed as a C2 deformation of Ei, denoted by En,i = (Ei)φn,i . We choose the subse-
quence such that ∥φn,i∥< ϵ/n. Consequently, ∥φn,i∥ → 0, and thus the sequence (Ei,n)n∈N

converges in C3 to a solution Ei of PC(siη0) (see proposition 3.7), thereby demonstrating
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(39). Furthermore, since En,i is simple and diffeomorphic to Ei (for sufficiently large n),
it follows that Ei is also simple, and thus siχEi/P (Ei) is an extreme point of F0 for all
i ∈ {1, . . . ,m}.

The final step of the proof is to show that the sets (Ei)1≤i≤m are pairwise distinct.
For this purpose, assume there exist i, j ∈ {1, . . . ,m} with i ̸= j and Ei = Ej . Since
siχEi/P (Ei) and sjχEj/P (Ej) are in F0, it follows that

∫
R2

siχEi
TV(χEi)

η0 = 1 =
∫
R2

sjχEj
TV(χEj )

η0,

and thus
si =

∫
Ei

η0
P (Ei)

=
∫
Ej

η0
P (Ej)

= sj .

However, this would imply that two different extreme points sn,iχEn,i/P (En,i) and
sn,jχEn,j/P (En,j) of Fn exist that converge to siχEi/P (Ei) = sjχEj/P (Ej) with En,i ̸=
En,j for all n∈N\{0}. Consequently, for sufficiently large n0, Proposition 6.7 ensures that
for all n≥n0, there exist distinct functions ψn ̸=ϕn in C2(∂Ei) such that En,i = (Ei)ϕn and
En,j = (Ei)ψn . Therefore, (Ei)ψn and (Ei)ϕn represent two distinct solutions to PC(ηn)
for all n≥ n0, which contradicts the strict stability of Ei as stated in Proposition 6.13.

Thus, we can now derive:

Theorem 7.3: Let η0 ∈ ∂TV(0) ∩C1(R2) be such that F0 has finite dimension, with all
its extreme points strictly stable. Then for every ϵ > 0, there exists r > 0 such that, for
every η ∈ ∂TV(0)∩C1(R2) with

∥η−η0∥L2(R2) +∥η−η0∥C1(R2) ≤ r,

there exists an injective mapping θ : extr(F) → extr(F0) such that, for every u= sχF /P (F )
in extr(F), we have θ(u) = sχE/P (E) with

F = Eφ and ∥φ∥C2(∂E) < ϵ.

In particular, dim(F ) ≤ dim(F0).

Proof. By contradiction, let us consider the existence of a certain ϵ > 0 and a sequence
(ηn)n∈N∗ in ∂TV(0) ∩C1(R2), which converges in L2(R2) and C1(R2) to η0, but fails to
maintain the property in question for all n ∈ N\{0}.

Define m to be the maximal number of extreme points attainable by any subsequence
(Fn)n∈N\{0}:

m := limsup
n→∞

(
card(extr(Fn))

)
.

Lemma 7.2 guarantees that m≤ card(extr(F0)), and by passing to a subsequence if nec-
essary, we can find an injective mapping θn : extr(Fn) → extr(F0). This mapping ensures
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that for every u= s1F /P (F ) in extr(Fn), we have θn(u) = s1E/P (E) where F =Eφu , and
the following condition holds:

lim
n→∞

(
max

u∈extr(Fn)
∥φu∥C2(∂E)

)
= 0. (40)

Consequently, for sufficiently large n, ∥φu∥C2(∂E) ≤ ϵ applies to all deformations φu.
This means that the conclusion in Theorem 7.3 is valid for our arbitrarily chosen ϵ > 0.
This constitutes a contradiction to the assumption.

7.2 Main result

To demonstrate the main result of this work, we need to impose some restrictions on
possible solutions u0 of P0(y0). This will be outlined in the following as a non-degenerate
source condition, which is defined by:

Definition 7.4 (Non-degenerate source condition): Let u0 = ∑N
i=1aiχEi be a N -

simple function. We assert that u0 fulfills the non-degenerate source condition if

1. the source condition ImΦ∗ ∩∂TV(u0) ̸= ∅ is satisfied,

2. for each i∈ {1, . . . ,N}, the set Ei constitutes a strictly stable solution to PC(sign(ai)η0),

3. for any simple set E ⊂ R2 with |E∆Ei| > 0 for all i ∈ {1, . . . ,N}, it holds that
|
∫
E η0|< P (E).

Under these conditions, η0 is considered non-degenerate.

The first point includes the source condition mentioned earlier (11). With these con-
straints in place, we can finally prove the main thesis of this work, which is as follows:

Theorem 7.5: Assume that u0 = ∑N
i=1aiχEi is a N -simple function satisfying the non-

degenerate source condition, and that ΦF0 is injective (see (35)). Then there exist con-
stants α, λ0 ∈ R∗

+ such that, for every (λ,w) ∈ R+ × H with λ ≤ λ0 and ∥w∥H/λ ≤ α,
every solution uλ,w of (Pλ(y)) is such that

uλ,w =
N∑
i=1

aλ,wi χ
Eλ,wi

, (41)

with

∀i ∈ {1, . . . ,N},


sign(aλ,wi ) = sign(ai),

Eλ,wi = (Ei)φλ,wi with φλ,wi ∈ C2(∂Ei).
(42)
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Moreover,
lim

(λ,w)→(0,0)
0<λ≤λ0

∥w∥H≤αλ

aλ,wi = ai and lim
(λ,w)→(0,0)

0<λ≤λ0
∥w∥H≤αλ

∥∥∥φλ,wi ∥∥∥
C2(∂Ei)

= 0. (43)

Proof. Define the open δ-neighborhood of the set A⊆ R2 by the equation

Aδ :=
⋃
x∈A

B(x,δ).

Now, thanks to proposition 5.2, we can choose a δ > 0 sufficiently small such that

(∂Ei)δ ∩ (∂Ej)δ = ∅ (44)

holds. Furthermore, we select an ϵ > 0 such that ϵ < |ai|P (Ei) for all i ∈ {1, . . . ,N} and
for a φ ∈ C2(∂Ei) with ∥φ∥C2(∂Ei) < ϵ , the following condition is satisfied:

(Id+φνEi)(Ei) ⊂ (∂Ei)δ.

Finally, we select a r > 0 such that the assumptions in theorem 7.3 are satisfied. Due to
the injectivity of ΦF , we obtain u0 as the unique solution to problem P0(y0). By applying
Proposition 6.2), we ascertain that uλ,w converges strictly in BV (R2) to u0 as λ→ 0 and
∥w∥H
λ → 0. That is, employing Definition 3.19, we achieve weak* convergence of |Duλ,w|

to |Du0|.
Moreover, due to

supp(|Du0|) = ∂Ei for all i ∈ {1, . . . ,N}

it follows that

⟨|Duλ,w|,χ((∂Ei)δ)c⟩L2(R2) → ⟨|Du0|,χ((∂Ei)δ)c⟩L2(R2) = 0.

Consequently, there exist α > 0 and λ0 > 0 such that for all (λ,w) in R∗
+ ×H with λ≤ λ0

and ∥w∥H
λ ≤ α, and for all i in {1, . . . ,N}, it holds that

∣∣∣|Duλ,w|((∂Ei)δ)−|Du0|((∂Ei)δ)
∣∣∣≤ ϵ. (45)

Furthermore, using proposition (4.5), we can find an ϵλ > 0 such that

∥ηλ,w −η0∥L2(R2) = ∥Φ∗(pλ,w −p0)∥L2(R2)

= ∥Φ∗(pλ,w −pλ,0 +pλ,0 −p0)∥L2(R2)

≤ ∥Φ∗∥C0(R2)
(
∥pλ,w −pλ,0∥H +∥pλ,0 −p0∥H

)
∗
≤ ∥Φ∗∥C0(R2)

(
∥w∥H
λ

+ ϵλ

)
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and

∥ηλ,w −η0∥C1(R2) = ∥Φ∗(pλ,w −p0)∥C1(R2)

= ∥Φ∗∥C1(R2)∥pλ,w −p0∥H
∗∗
≤ ∥Φ∗∥C0(R2)∥pλ,w −p0∥H

≤ ∥Φ∗∥C0(R2)

(
∥w∥H
λ

+ ϵλ

)
.

Where (∗∗) follows from the linearity and continuity of Φ∗. In this case DΦ∗ = Φ∗ holds.
Thus, we adjust the choice of α and λ0 (also including ϵλ) such that

(
∥Φ∗∥C0(R2)α+∥Φ∗∥C0(R2)ϵλ

)
≤ 1

2r

which yields:

∥ηλ,w −η0∥L2(R2) +∥ηλ,w −η0∥C1(R2) ≤ 1
2r+ 1

2r = r.

We now choose a pair (λ,w) with λ < λ0 and obtain for the face Fλ,w, exposed by ηλ,w,
the following extreme points:

extr(Fλ,w) =
sλ,wi

χ
Eλ,wi

P (Eλ,wi )


1≤i≤Nλ,w

.

Thus, using theorem 7.3, we can find an injective mapping θλw : {1, ...,Nλ,w} → {1, ...,N}
such that:

∀i ∈ {1, . . . ,Nλ,w},


sλ,wi = sθλ,w(i),

Eλ,wi = (Eθλ,w(i))φλ,wi with φλ,wi ∈ C2(∂Ei).
(46)

In the next step, we show that θλ,w is also surjective, i.e., Nλ,w =N .
With (45) for all i ∈ {1, ..N}:

|Duλ,w|((∂Ei)δ) ≥ |Du0|((∂Ei)δ)− ϵ

= TV
(
u
∣∣∣
(∂Ei)δ

)
− ϵ

∗= TV(aiχEi)− ϵ

= |ai|TV(χEi)− ϵ

= |ai|P (Ei)− ϵ > 0

where (∗) follows from (44).
We can thus see that supp(|Duλ,w|) ∩ ((∂Ei)δ) ̸= ∅ (∀i ∈ {1, ..,N}). Therefore, it is
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established that:

supp(|Duλ,w|) ⊆
Nλ,w⋃
i=1

∂Eλ,wi ⊆
Nλ,w⋃
i=1

(∂Eθλ,w(i))δ.

Since the sets in the latter union are all disjoint, this establishes the surjectivity of θλ,w.
Thus, upon reordering, the relationship

∀i ∈ {1, . . . ,N}, sλ,wi = si and Eλ,wi = (Ei)φλ,wi

is maintained. As per proposition 6.7, the norm
∥∥∥φλ,wi ∥∥∥

C2(∂Ei)
diminishes as the pair

(λ,∥w∥H/λ) → (0,0). Additionally, sλ,wi = si infers identical signs for aλ,wi and ai. In
conclusion, we observe that

∣∣∣|Duλ,w|
(
(∂Ei)δ

)
−|Du0|

(
(∂Ei)δ

)∣∣∣= ∣∣∣aλ,wi P (Eλ,wi )−aiP (Ei)
∣∣∣

tends to zero as a result of the weak-∗ convergence when (λ,∥w∥H/λ) approaches (0,0).
Considering the convergence P (Eλ,wi ) towards P (Ei), it follows that

aλ,wi −→ ai.

With this theorem, we are now in a position to answer the question from Section 2.3.
Let us take such a u0 which possesses the properties from the assumptions of Theorem
7.3 and is k-simple. Then, for a noise w small enough and a small parameter λ, it holds
that solutions of Pλ(y) are not only k-simple but also converge to u0 for w → 0 for a well
chosen λ.
Next, we will verify whether such a required u0 can actually exist through a simple
example.

7.3 Numerical verification of the non-degenerate source condi-
tion

To demonstrate that the solution set under our constraints of the non-degenerate source
condition is not empty. For this, we investigate the existence of a dual certificate. This is
achieved by defining what we call a dual pre-certificate, which represents a ’genuine’ dual
certificate under numerically verifiable properties. This will be defined in the following
section.

The figures used in this section can be generated using the Jupyter notebook that was
included with the paper on which this thesis is based (see [9, p. 28]).
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Definition of a pre-certificate

Let N ∈N\{0} and let u be an N -simple function (u=∑N
i=1aiχEi , ai ∈R∗). As explained

in Chapter 6, for such a function, a dual certificate η = Φ∗p exists if and only if all level
sets of u (Ei) are solutions to PC(η), thus fulfilling the property:

∀i ∈ {1, . . . ,N}, Ei ∈ Argmin
E∈R2,|E|<+∞

(
P (E)− sign(ai)

∫
E

Φ∗p
)

⇐⇒ ∀i ∈ {1, . . . ,N},
∫
Ei

Φ∗p= sign(ai)P (Ei). (i)

Furthermore, as we are looking for a Φ∗p∈C1(R2) (otherwise we do not necessarily obtain
the k-simple representation of u, see section 5), due to lemma 6.6, it must hold that:

∀i ∈ {1, . . . ,N}, Φ∗p|∂Ei = sign(ai)HEi . (ii)

Therefore, similarly to [11, p. 20ff.], we can define a pre-certificate in such a way that
it solves (i) and (ii) while having the smallest norm. Thus, we arrive at the following
definition:

Definition 7.6 (Vanishing Derivatives Pre-certificate): The vanishing derivatives
pre-certificate for an N -simple function u = ∑N

i=1aiχEi is defined as the function ηv =
Φ∗pv, where pv is the unique solution of (i) and (ii), that is:

min
p∈H

∥p∥2
H s.t. ∀i ∈ {1, . . . ,N},

∫
Ei

Φ∗p= sign(ai)P (Ei),

Φ∗p|∂Ei = sign(ai)HEi . (47)

It can be seen that the set generated by both properties (i) and (ii) is weakly closed.
Therefore, the minimum exists if this set is not empty. Since every dual certificate (i.e.,
η ∈ ∂TV(u)) already satisfies (i) and (ii), a solution for (47) also exists (In this case, we
say that (47) is feasible), and we can state the following proposition.

Proposition 7.7: If equation (47) is feasible and ηv ∈ ∂TV (0), then qualifies as the dual
certificate of minimal norm. In accordance with Definition 4.4, we have ηv = η0.

Deconvolution of radial simple functions

In the following, we will demonstrate how we can numerically verify the existence of a
ηv = Φ∗pv that represents a dual certificate. For simplicity, we will consider the noise-free
case where H = L2(R2), Φ = h⋆ · represents the convolution operation with a Gaussian
kernel h of variance σ, and each Ei =B(0,Ri) for i in {1, . . . ,N} with a strictly increasing
sequence of radii 0 < R1 < .. . < RN (thus for an unknown image u0 = ∑N

i=1aiχB(0,Ri)).
To this end, we introduce the following mappings:
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ΦE : RN → H,

a 7→
N∑
i=1

aih⋆χEi

Φ′
E : RN → H,

b 7→
N∑
i=1

bih⋆ (H1⌞∂Ei)

ΓE : R2N → H.

(a,b) 7→ ΦEa+Φ′
Eb

With these mappings, we can now discretize our problem given by (47), as stated in
the following proposition.

Lemma 7.8: If (47) is feasible, pv is radial (i.e. there exists a function p̃v : R+ → R such
that p̃v(x) = pv(∥x∥) for almost every x ∈ R2) and is the unique solution of

min
p∈H

∥p∥2
H s.t. Γ∗

Ep=
(

(sign(ai)P (Ei))1≤i≤N
(sign(ai)2π)1≤i≤N

)
. (48)

Proof. First, we introduce the radialization p̃ of any function p ∈ L2(R2), defined as
follows:

p̃(x) = 1
2π

∫
S1
p(∥x∥e)dH1(e) for a.e. x ∈ R2. (49)

Moreover, p̃ can also be represented using a rotation matrix Re as follows:

p̃= 1
2π

∫
S1

(p◦Re)dH1(e) for all p ∈ L2(R2). (50)

Furthermore, for all e ∈ S1 and x ∈ R2, the following holds:

h⋆ (p◦Re)(x) =
∫
R2
h(t)p◦Re(x− t)dt

=
∫
R2
h(t)p(Re(x− t))dt

∣∣∣ define t :=R−1
e (t′) (t′ ∈ R2)

=
∫
R2
h(R−1

e (t′))p(Re(x−R−1
e (t′)))d

(
R−1
e (t′)

)
∗=
∫
R2
h(t′)p(Re(x)− t′)dt′

∣∣∣ define t :=Re(x)− t′

=
∫
R2
h(Re(x)− t)p(t)d(Re(x)− t)

∗∗=
∫
R2
h(Re(x)− t)p(t)dt

= p⋆h(Re(x))
= h⋆p(Re(x)), (51)

where (∗) follows from the radial nature of the Gaussian kernel h and the fact that
det(Re) = 1, and (∗∗) follows from det(Re)− t′ = 1.
Thus, we will show in the following that for a function p that satisfies the optimality
condition from (i) and (ii), the same holds true for its radial version p̃.
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(i): Here we obtain:
∫
Ei

Φ∗p̃(x)dx=
∫
Ei
h⋆ p̃(x)dx

=
∫
Ei

(
h⋆

1
2π

∫
S1

(p◦Re)dH1(e)
)

(x)dx

=
∫
Ei

∫
R2

(
h(t) 1

2π

∫
S1

(p◦Re)dH1(e)(x− t)dt
)
dx

∗= 1
2π

∫
S1

∫
Ei

(∫
R2
h(t)(p◦Re))(x− t)dt

)
dxdH1(e)

= 1
2π

∫
S1

∫
Ei
h⋆ (p◦Re)(x)dxdH1(e)

(51)= 1
2π

∫
S1

(∫
Ei
h⋆p(Re(x))dx

)
dH1(e)

∗∗=
∫
Ei
h⋆p(x)dx

=
∫
Ei

Φ∗p(x)dx

= sign(ai)P (Ei)

where (∗) follows from the linearity of the integral, Fubini’s theorem [1, Thm. 1.74],
and the radial nature of h. (∗∗) follows from the fact that by defining the Ei as
spheres in R2,

∫
Ei
h⋆p(x)dx is already radial.

(ii): Here we receive:

Φ∗p̃(x)
∣∣∣
x∈∂Ei

= h⋆ p̃(x)
∣∣∣
x∈∂Ei

= h⋆
( 1

2π

∫
S1

(p◦Re)dH1(e)
)

(x)
∣∣∣
x∈∂Ei

=
∫
R2

(
h(t) 1

2π

∫
S1

(p◦Re)dH1(e)(x− t)
)
dt
∣∣∣
x∈∂Ei

= 1
2π

∫
S1

(∫
R2
h(t)(p◦Re)(x− t)dt

)
dH1(e)

∣∣∣
x∈∂Ei

= 1
2π

∫
S1
h⋆p(Re(x))dH1(e)

∣∣∣
x∈∂Ei

= h⋆p(x)
∣∣∣
x∈∂Ei

= Φ∗p(x)
∣∣∣
x∈∂Ei

= sign(ai)HEi = sign(ai)
1
Ri
.

Given the additional knowledge that ∥p̃∥L2(R2) ≤ ∥p∥L2(R2), and considering the unique-
ness of the solution to (47), it can be deduced that if a solution pv exists for (47), then
necessarily pv is equal to its radial counterpart p̃v.

To demonstrate the final part of the proposition, the following holds true for such a
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function p with a, b ∈ RN :〈
Γ∗
Ep,

(
a

b

)〉
R2N

=
〈
p,ΓE

(
a

b

)〉
L2(R2)

=
∫
R2
p
(
ΦEa+Φ′

Eb
)

(x)dx

=
∫
R2
p

 N∑
i=1

aih⋆χEi +
N∑
i=1

bih⋆ (H1⌞∂Ei)
(x)dx

= a ·
(∫

R2
ph⋆χEi(x)dx

)
+ b ·

(∫
R2
ph⋆ (H1⌞∂Ei)(x)dx

)
∗= a ·

(∫
Ei
p⋆h(x)dx

)
+ b ·

(∫
R2
p⋆h dH1⌞∂Ei

)
= a ·

(∫
Ei

Φ∗p(x)dx
)

+ b ·
(∫

R2
Φ∗pdH1⌞∂Ei

)
= a · (sign(ai)P (Ei))1≤i≤N + b ·

(∫
R2

sign(ai)
1
Ri
dH1⌞∂Ei

)
1≤i≤N

= a · (sign(ai)P (Ei))1≤i≤N + b ·
(

sign(ai)
1
Ri

2πRi
)

1≤i≤N

= a · (sign(ai)P (Ei))1≤i≤N + b · (sign(ai)2π)1≤i≤N

=
〈(

sign(ai)P (Ei)1≤i≤N
sign(ai)2π1≤i≤N

)
,

(
a

b

)〉
R2N

where (∗) follows from the fact that convolution with h is self-adjoint.

Since we are interested in obtaining an ηv = Φ∗pv for our further analysis, we need to
find a way to invert the mapping Γ∗

E . As this is not generally possible, we will introduce a
more general concept of invertibility, the so-called Moore-Penrose pseudo-inverse (Γ∗

E)+ :
RN 7→RN (see, for example, [4, p. 40ff.]). How to determine such an inverse will be shown
in the proof of the following proposition.

Proposition 7.9: The operator ΓE is injective. Furthermore, given that (48) is feasible,
it follows that the vanishing derivatives pre-certificate ηv can be expressed as

ηv = Φ∗(Γ∗
E)+

(sign(ai)P (Ei))1≤i≤N

(sign(ai)2π)1≤i≤N

 ,
where (Γ∗

E)+ is defined as (Γ∗
E)+ = ΓE(Γ∗

EΓE)−1.

Proof. The first step is to demonstrate the injectivity of ΓE . Since ΓE is a linear oper-
ator, we aim to show that ker(ΓE) = {0}. Let us assume that for some (a,b) ∈ R2N , we
have ΓE(a,b) = ΦEa+Φ′

Eb= h∗ (∑N
i=1aiχEi +biH1⌞∂Ei) = 0. Given that the convolution

with h is injective (this follows from the fact that a convolution can be represented as
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multiplication by its Fourier transform, and this representation is injective), we obtain

N∑
i=1

aiχEi + biH1⌞∂Ei= 0.

This implies that for all test functions φ ∈ C∞
c (R2), it must also hold that:

∫
R2
φ

 N∑
i=1

aiχEi + biH1⌞∂Ei

dx= 0.

Now choose supp(φ) = int(EN \EN−1) = int(B(0,RN )\B(0,RN−1)) and we derive:

∫
R2
φ

 N∑
i=1

aiχEi + biH1⌞∂Ei

dx=
∫
R2
φ(aNχEN )dx= 0,

which can only be true if aN = 0. Thus, iteratively applying this argument, we can show
that a1 = . . . = aN = 0. Moreover, since for i, j ∈ {1, . . . ,N}, we have supp(H1⌞∂Ei) ∩
supp(H1⌞∂Ej ) = ∅, it follows that b1 = . . .= bN = 0.
The injectivity of ΓE consequently implies the surjectivity of Γ∗

E since otherwise (Im(Γ∗
E))⊥ ̸=

∅. Therefore, a 0 ̸= x ∈ R2N exists such that for all y ∈ L2(R2), it holds that

⟨Γ∗
E(y),x⟩R2N = 0 ⇐⇒ ⟨y,ΓE(x)⟩L2(R2) = 0.

Therefore, ΓE(x) = 0, which means x ∈ Ker(ΓE), contradicting our assumption.
Consequently, the matrix Γ∗

EΓE is invertible, and we can demonstrate the existence
of an unique Moore-Penrose inverse for Γ∗

E , denoted by (Γ∗
E)+ = ΓE(Γ∗

EΓE)−1. Next, we
will verify that the properties for such an inverse, as defined in [4, p. 40ff.], are satisfied
by (Γ∗

E)+:

(i)

Γ∗
E(Γ∗

E)+Γ∗
E = Γ∗

E(ΓE(Γ∗
EΓE)−1)Γ∗

E = (Γ∗
EΓE(Γ∗

EΓE)−1)Γ∗
E = I Γ∗

E = Γ∗
E

(ii)

(Γ∗
E)+Γ∗

E(Γ∗
E)+ = (ΓE(Γ∗

EΓE)−1)Γ∗
E(ΓE(Γ∗

EΓE)−1)
= (ΓE(Γ∗

EΓE)−1)(Γ∗
EΓE(Γ∗

EΓE)−1)
= (ΓE(Γ∗

EΓE)−1) = (Γ∗
E)+
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(iii)

(Γ∗
E(Γ∗

E)+)∗ = (Γ∗
E(ΓE(Γ∗

EΓE)−1))∗

= (Γ∗
EΓE(Γ∗

EΓE)−1)∗

= (I)∗ = I

= Γ∗
EΓE(Γ∗

EΓE)−1 = Γ∗
E(Γ∗

E)+

(iv)

((Γ∗
E)+Γ∗

E)∗ = ((ΓE(Γ∗
EΓE)−1)Γ∗

E)∗

= (Γ∗
E)∗((Γ∗

EΓE)−1)∗Γ∗
E

∗= ΓE((Γ∗
EΓE)−1)Γ∗

E

= (Γ∗
E)+Γ∗

E

where (∗) indicates that since Γ∗
EΓE is self-adjoint, its inverse also shares this property.

Thus, we obtain the desired pv in Equation (48) via:

pv = (Γ∗
E)+

(
(sign(ai)P (Ei))1≤i≤N

(sign(ai)2π)1≤i≤N

)
.

And by applying Φ∗ to both sides, we obtain the desired result.

With this proposition, we have shown that (a,b) ∈ R2N exist
 specifically:

a
b

= (Γ∗
EΓE)−1

(sign(ai)P (Ei))1≤i≤N

(sign(ai)2π)1≤i≤N


such that:

ηv = Φ∗

 N∑
i=1

aih⋆χEi +
N∑
i=1

bih⋆ (H1⌞∂Ei)


= Φ∗

 N∑
i=1

aih⋆χEi

+Φ∗

 N∑
i=1

bih⋆ (H1⌞∂Ei)


=
N∑
i=1

aiΦ∗ (h⋆χEi)+
N∑
i=1

biΦ∗
(
h⋆ (H1⌞∂Ei)

)
.

This means such a pre-certificate ηv is composed of the functions Φ∗(h⋆χE) and Φ∗(h⋆
H1⌞∂E). For a more intuitive understanding, one may refer to Figure 18 below to view
the graphs of both functions for the case E =B(0,1).
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Figure 18: Graphical representations of Φ∗(h∗χEi) and Φ∗
(
h∗ (H1⌞∂Ei)

)
for E =B(0,1)

using a Gaussian kernel h= exp
(

−∥x∥2

2σ2

)
with a variance of σ = 0.2.

Validating ηv as an appropriate dual certificate

We have now established a method to determine a vanishing pre-certificate ηv in our
specific case. However, to proceed to the minimal norm dual certificate as per proposition
7.7, it is essential to demonstrate that ηv ∈ ∂TV(0). We will elaborate on this in the
following.
Referring to the set C given in (7), to establish this claim, it is necessary to identify a
vector z ∈ L∞(R2,R2) satisfying ∥z∥∞ ≤ 1 with divz = ηv. Given that pv is radial, the
convolution with a Gaussian kernel, resulting in ηv, retains this radiality. Thus, our task
is to find a suitable radial vector field z.

In polar coordinates, the divergence of such a z is described by:

divz = 1
r

(
∂(rzr)
∂r

+ ∂zθ
∂θ

)
= 1
r

(
∂(rzr)
∂r

)
.

This is due to the fact that, in a radial function, there are no changes along the angle θ.
From this, we deduce that ηv = divz is achieved if and only if for all x ∈ R2 with

||x||R2 =: r > 0:

ηv(r) = 1
r

(
∂(rzr)
∂r

)

⇐⇒ rηv(r) = ∂

∂r
(rzr)(r)

⇐⇒ zr(r) = 1
r

∫ r

0
ηv(s)sds.

Therefore, by demonstrating that the mapping fv, defined by
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fv : R+ → R

r 7→ 1
r

∫ r

0
ηv(s)sds

(52)

satisfies ||fv||∞ ≤ 1, we can consequently show that ||z||∞ ≤ 1, and therefore ηv ∈ ∂TV(0).

Remark 7.10: It can be further demonstrated that the assumption of radial symmetry
for z is not a restriction but a natural consequence stemming from the fact that ηv is
radial. For clarity, we will denote the radial versions of ηv and z by η̃v and z̃, respectively:

If there exists a z ∈L∞(R2,R2) satisfying ηv = divz and ∥z∥ ≤ 1, then we deduce that:

η̃v(r) = 1
2π

∫ 2π

0
ηv(r,θ)dθ = 1

2π

∫ 2π

0
divz dθ

= 1
2π

∫ 2π

0

1
r

(
∂(rzr)
∂r

+ ∂zθ
∂θ

)
dθ

= −1
r

∂

∂r

(
r
∫ 2π

0

zr(r,θ)
2π dθ

)
+ 1
r

∫ 2π

0

1
2π

∂zθ(r,θ)
∂θ

dθ︸ ︷︷ ︸
=0→(∗)

= −1
r

∂

∂r
(rz̃r) = divz̃.

Where (∗) follows from zθ(r,0) = zθ(r,2π) for all r > 0.

Numerical verification of the non-degenerate source condition

As we bring our analysis to a close, our objective is to demonstrate that for the function
u=∑N

i=1aiχB(0,Ri), assuming the non-degenerate source condition holds, we can construct
a minimal norm dual certificate. This enables the application of the central finding of our
study (see Theorem 7.5), rendering u a solution to P0(y0).

We shall now address the three essential features of the non-degenerate source condi-
tion and tailor them to fit our specific problem scenario (see definition 7.4):

1. The condition Im(Φ∗) ∩ ∂TV(u) ̸= ∅ holds true if the following two properties are
satisfied:

(i) ηv ∈ ∂TV(0), which, as previously demonstrated, occurs precisely when ∥fv∥∞ ≤
1.

(ii) For all i ∈ {1, . . . ,N} with sign(ai) = 1, the following is true:
∫
Ei
ηv = P (Ei) = 2πRi.
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Hence, we have:

P (Ei) =
∫
Ei
ηv =

∫
B(0,Ri)

ηv(r,θ)rdrdθ

=
∫ 2π

0

∫ Ri

0
ηv(r,θ)rdrdθ

= 2πRi ·
1
Ri

∫ Ri

0
ηv(r)rdr

= 2πRi ·fv(Ri).

In this case, it follows that fv(Ri) = 1. Analogously, for sign(ai) = −1, it follows
that fv(Ri) = −1.

2. For all i ∈ {1, . . . ,N}, Ei is a strictly stable solution to PC(sign(ai)ηv):
As described in Section 6.3, this is true if and only if for all i ∈ {1, . . . ,N}:

−sign(ai) sup
x∈∂Ei

[
H2
Ei(x)+ ∂ηv

∂νEi
(x)
]
> 0.

As mentioned earlier, HEi is a constant equal to 1/Ri, and since ηv is radial, ∂ηv
∂νEi

is constant on ∂Ei. Thus, demonstrating that:

For all i ∈ {1, . . . ,N}

−sign(ai)
[

1
R2
i

+ ∂ηv
∂r

(Ri)
]
> 0 (53)

is sufficient. To simplify the demonstration of this property, we compute the follow-
ing:

f ′
v(r) = d

dr

(1
r

∫ r

0
ηv(s)sds

)
= − 1

r2

∫ r

0
ηv(s)sds+ 1

r
ηv(r)r

= − 1
r2

∫ r

0
ηv(s)sds+ηv(r)

and

f ′′
v (r) = d

dr

(
− 1
r2

∫ r

0
ηv(s)sds+ηv(r)

)
= d

dr

(
− 1
r2

∫ r

0
ηv(s)sds

)
+ ∂ηv
∂r

(r)

= 2
r3

∫ r

0
ηv(s)sds− 1

r
ηv(r)+ ∂ηv

∂r
(r).

Under the assumption that ηv = Φ∗pv solves (47), then for all i ∈ {1, . . . ,N}, f ′′
v
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simplifies at Ri to:

f ′′
v (Ri) = 2

R3
i

∫ Ri

0
ηv(s)sds− 1

Ri
ηv(Ri)+ sign(ai)

∂ηv
∂r

(Ri)

= 2
R3
i

1
2π

∫ 2π

0

∫ Ri

0
ηv(s)sdsdθ− 1

Ri
ηv(Ri)+ sign(ai)

∂ηv
∂r

(Ri)

= 2
R3
i

1
2π

∫
Ei
ηv − 1

Ri
ηv(Ri)+ sign(ai)

∂ηv
∂r

(Ri)

= 2
R3
i

1
2π sign(ai)P (Ei)− 1

Ri
sign(ai)HEi + sign(ai)

∂ηv
∂r

(Ri)

= 2
R3
i

1
2π sign(ai)2πRi−

1
Ri

sign(ai)
1
Ri

+ sign(ai)
∂ηv
∂r

(Ri)

= sign(ai)
2
R2
i

− sign(ai)
1
R2
i

+ sign(ai)
∂ηv
∂r

(Ri)

= sign(ai)
(

1
R2
i

+ ∂ηv
∂r

(Ri)
)
.

Thus (53) can be directly verified by inspecting the graph of fv.

3. For every simple set E ⊆ R2 such that |E∆Ei| > 0 for all i ∈ {1, . . . ,N}, we have
|
∫
E η0|< P (E):

This condition is also satisfied if 1. (i) and (ii) hold.

Therefore, we need to verify the following conditions:

∀R ∈ R+ \{R1, . . . ,RN}, |fv(R)|< 1,
∀i ∈ {1, . . . ,N}, fv(Ri) = sign(ai) and sign(ai)f ′′

v (Ri)< 0.
(54)

Results for the case N = 1

We begin by examining a simple scenario where u = a1χB(0,1) and a1 > 0. In Figure 19,
we present the graph of the function fv across various variances σ for the convolution
with the Gaussian kernel. We investigate at which point in increasing σ, the previously
derived properties, mandated by the non-degenerate source condition, cease to apply.
Therefore, when considering the examples of the Gaussian filter in Section 2, we will
demonstrate up to what degree of blurring in the image to be reconstructed the non-
degenerate source condition holds, thus making theorem 7.3 applicable. It is observable
that for r > 2 and σ > 1, the non-degenerate source condition is violated since fv(r)<−1.
Moreover, given that sign(a1)f ′′

v (1) < 0 even for σ > 1 (see figure 21), we infer the likely
existence of a threshold σ0 > 0.75, where the non-degenerate source condition holds for
all σ ≤ σ0. Contrary to expectations, f ′′

v (1) decreases for increasing variance, even though
ηv /∈ ∂TV(u) has been established well before this point.

72



Figure 19: Graph of fv, for N = 1, R1 = 1, and sign(a1) = 1 (top left: overall view, top
right: detailed view near r = 1) and σ 7→ f ′′

v (R1) bottom.Graph of fv with N = 1, R1 = 1,
and sign(a1) = 1 (Top left: Global view, Top right: Close-up near r = 1), and the plot of
σ 7→ f ′′

v (R1) at the bottom.

Results for the case N ≥ 2

Expanding our analysis, we consider u0 = a1χB(0,R1) + a2χB(0,R2), focusing on scenarios
where R1 approaches R2, with a fixed Gaussian kernel variance of 0.2. figure 20 reveals
that when sign(a1) ̸= sign(a2), a certain minimum distance (in this case, ≥ 0.5) must be
maintained between R1 and R2 to ensure |fv(r)| ≤ 1 for all r > 0 (note that this distance
increases with higher variance). The curvature of fv at R1 and R2 (sign(ai)f ′′

v (Ri) < 0)
indicates that u0 satisfies the non-degenerate source condition under these circumstances.

In contrast, for sign(a1) = sign(a2) (see Figure 21), a different behavior emerges. Here,
R1 and R2 can be arbitrarily close while still maintaining |fv(r)|< 1. However, it is crucial
to consider that as R2 →R1, fv increasingly approaches a saddle point within the interval
[R1,R2], leading to sign(ai)f ′′

v (R1) = 0. This convergence implies that u0 no longer fulfills
the non-degenerate source condition.
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Figure 20: Graphs of fv for variance σ = 0.2, sign(a1) = −sign(a2), and R1 = 1, R2 = 1.5
(top left), R2 = 1.4 (top right). The lower two graphs provide a zoomed-in view of the
extreme points R1 and R2 from the top left graph.

Figure 21: Graph of fv for σ = 0.2, N = 2, sign(a1) = sign(a2), R1 = 1, and R2 = 1.1 (Left:
Overall view, Right: Zoomed-in around r = 1).

7.4 Conclusion

In this work, we have provided an overview of the types of disturbances that can occur
during the acquisition and processing of images and how these images can be qualitatively
improved through post-processing algorithms. In particular, we have delved into one
algorithm, the TV regularization, and illustrated that this method is best suited for
reconstructing piecewise constant images. Subsequently, we extended our discussion to
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the findings presented in [9]. In this part of our work, we provided a detailed explanation
of the principal elements crucial for this analysis. Our focus was on the reconstruction
of piecewise constant images, specifically those composed of simple shapes, using TV
regularization. The results from this analysis revealed that in the reconstruction of images
affected by continuous (linear) distortions (blurr) and noise, assuming a non-degenerate
source condition, the reconstructed image retains the original image’s structure. This
includes preserving the same number of shapes, which can also be described as continuous
deformations of the initial forms. Finally, we illustrated the conditions under which the
non-degenerate source condition is applicable in a noise-free scenario (deconvolution case)
for a radial image.
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A Appendix

Proof of proposition 6.7

Propositon 6.7
Let η0 ∈ TV(0) ∩C1(R2). For every ϵ > 0 there exists r > 0 ∀η ∈ TV(0) ∩C1(R2) with
∥η− η0∥L2(R2) + ∥η− η0∥C1(R2) ≤ r, the following is true: each non-empty solution F
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of PC(η) can be characterized as a C2-normal deformation of size at most ϵ of a non-
empty solution E of PC(η0), that is, using the notation of Proposition 3.6, F = Eφ with
∥φ∥C2(∂E) ≤ ϵ.

Proof. By Contradiction: Suppose there exist sequences (ηn)n∈N\{0} and (Fn)n∈N\{0} such
that:

• ∀n ∈ N\{0},ηn ∈ TV(0)∩C1(R2).

• ∥ηn−η0∥C1(R2) → 0 and ∥ηn−η0∥L2(R2) → 0.

• For each n ∈ N\{0}, Fn ̸= ∅ is a solution of PC(ηn) and for all C2 deformations φ,
there exists ϵ with ∥φ∥C2(R2) ≤ ϵ such that Fn ̸=Eφ where E is a solution of PC(η0).

Thus, P (Fn) =
∫
Fn ηn holds, allowing the application of lemma 6.1(3.), which yields R> 0

with Fn ⊆ B(0,R) for all n ∈ N\{0}. Consequently, due to the minimality of Fn and
ηn ∈ ∂TV(u), for all C ⊆ R2 with Fn△C ⊂⊂B(0, r) and r < R:

P (Fn,B(0, r))−
∫
Fn
ηn ≤ P (C,B(0, r))−

∫
C
ηn

⇐⇒ P (Fn,B(0, r)) ≤ P (C,B(0, r))−
∫
C
ηn+

∫
Fn
ηn

= P (C,B(0, r))+
∫
R2
ηn (χFn −χC)

≤ P (C,B(0, r))+∥ηn∥C0(R2)

∫
R2

(χFn −χC)

= P (C,B(0, r))+∥ηn∥C0(R2)|C△Fn|.

Define Λ := sup
{
∥ηn∥C0(R2) | n ∈ N\{0}

}
, showing that for all n ∈ N\{0}, Fn is a (Λ, r)-

perimeter minimizer according to definition 3.27. By choosing 0< r <R such that Λr < 1,
we apply [16, prop. 21.14] to obtain a (Λ, r)-perimeter minimizer E satisfying the stated
conditions:

• H(∂Fn,∂E) → 0 (see definition 3.12)

• |DχFn| ∗→ |DχE |.

The latter implies
∫
R2 (χE −χFn) → 0, hence |E△Fn| → 0. Given that infn∈N\{0} |Fn|> 0,

lemma 6.1 confirms E as a non-empty solution of PC(n0).
Moreover, the convergence of ∂Fn to ∂E ensures an open neighborhood around ∂E and

an n0 ∈ N\{0}, such that for any n≥ n0, ∂Fn lies within this neighborhood. Specifically,
we have:

∀r > 0∃n0 ∈ N\{0} : ∀n≥ n0 : ∂Fn ⊂
⋃

x∈∂E
C(x,r,νE(x)),

where C(x,r,νE(x)) is defined as in (1).
Utilizing [3, 4.7.4], similar reasoning as in the proof of [16, Thm. 26.6], and [16,

Thm. 26.3], for every x ∈ ∂E there exists r > 0, n0 ∈ N\{0}, ux ∈ C1,1([−r,r]) and a uni-
formly bounded sequence (ux,n)n≥n0 . These functions satisfy that within C(x,r,νE(x)),
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the set E is the hypograph of ux, and for all n≥ n0, the set Fn is the hypograph of ux,n
(see figure 11), with ∥ux,n−ux∥C1([−r,r]) → 0.

Our next objective is to demonstrate that the Fn converge to E in C3 according to
definition (3.3). To achieve this, we need to verify condition (iii) of 3.3, namely that:

sup
x∈∂E

∥ux,n−ux∥C3([−r,r]) → 0.

Lemma 6.6 informs us that for all x ∈ ∂E, ux and ux,n (for n≥ n0) satisfy:

u′′
x(z)

(1+u′
x(z)2)3/2 =H(z,ux(z)), with H(z, t) = η0(x+RνE(x)(z, t)),

u′′
x,n(z)

(1+u′
x,n(z)2)3/2 =Hn(z,ux,n(z)), with Hn(z, t) = ηn(x+RνE(x)(z, t)).

(55)

Thus, both ux and ux,n are in C3([−r,r]). The remaining steps to show are:

(1.) supx∈∂E ∥u′′
x,n−u′′

x∥C0([−r,r]) → 0:
For a given x ∈ ∂E and z ∈ (−r,r), we derive from (55):

|u′′
x,n(z)−u′′

x(z)| =
∣∣∣Hn(z,ux,n(z))(1+u′

x,n(z)2)3/2 −H(z,ux(z))(1+u′
x(z)2)3/2

∣∣∣
≤
∣∣∣Hn(z,ux,n(z))(1+u′

x,n(z)2)3/2 −H(z,ux,n(z))(1+u′
x,n(z)2)3/2

∣∣∣
+
∣∣∣H(z,ux,n(z))(1+u′

x,n(z)2)3/2 −H(z,ux(z))(1+u′
x,n(z)2)3/2

∣∣∣
+
∣∣∣H(z,ux(z))(1+u′

x,n(z)2)3/2 −H(z,ux(z))(1+u′
x(z)2)3/2

∣∣∣
≤
∣∣∣(1+u′

x,n(z)2)3/2
∣∣∣∣∣∣Hn(z,ux,n(z))−H(z,ux,n(z))

∣∣∣
+
∣∣∣(1+u′

x,n(z)2)3/2
∣∣∣∣∣∣H(z,ux,n(z))−H(z,ux(z))

∣∣∣
+
∣∣∣H(z,ux(z))

∣∣∣∣∣∣(1+u′
x,n(z)2)3/2 − (1+u′

x(z)2)3/2
∣∣∣

≤
∣∣∣(1+u′

x,n(z)2)3/2
∣∣∣︸ ︷︷ ︸

<∞

∥∥∥Hn−H
∥∥∥
C0(R2)︸ ︷︷ ︸

→0

+
∣∣∣H(z,ux,n(z))−H(z,ux(z))

∣∣∣︸ ︷︷ ︸
→0


+
∥∥∥H∥∥∥

C0(R2)︸ ︷︷ ︸
<∞

∣∣∣(1+u′
x,n(z)2)3/2 − (1+u′

x(z)2)3/2
∣∣∣︸ ︷︷ ︸

→0

−→ 0.

Furthermore, since ∂E is compact, the supremum is attained, and thus the assertion
follows.

(2.) supx∈∂E ∥u(3)
x,n−u

(3)
x ∥C0([−r,r]) → 0:

Let’s first determine u(3)
x,n and u(3)

x for an arbitrary x∈ ∂E and z ∈ (−r,r). It follows
from (55):
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u(3)
x (z) = d

dz
u′′
x(z) = d

dz

(
H(z,ux(z))(1+u′

x(z)2)3/2
)

= d

dz
(H(z,ux(z)))(1+u′

x(z)2)3/2 + d

dz

(
(1+u′

x(z)2)3/2
)
H(z,ux(z))

=
(
∂1H(z,ux(z))+∂2H(z,ux(z))u′

x(z)
)

(1+u′
x(z)2)3/2

+
(3

2(1+u′
x(z)2)1/22u′

x(z)u′′
x(z)

)
H(z,ux(z))

=
(
∂1H(z,ux(z))+∂2H(z,ux(z))u′

x(z)
)

(1+u′
x(z)2)3/2

+3H(z,ux(z))u′
x(z)u′′

x(z)(1+u′
x(z)2)1/2.

Similarly, we have:

u(3)
x,n(z) =

(
∂1Hn(z,ux,n(z))+∂2H(z,ux,n(z))u′

x,n(z)
)

(1+u′
x,n(z)2)3/2

+3Hn(z,ux(z))u′
x,n(z)u′′

x,n(z)(1+u′
x,n(z)2)1/2.

Now, we can make the following estimations:

(i)

|∂1H(z,ux(z))(1+u′
x(z)2)3/2 −∂1Hn(z,ux,n(z))(1+u′

x,n(z)2)3/2|

≤ |∂1H(z,ux(z))(1+u′
x(z)2)3/2 −∂1H(z,ux(z))(1+u′

x,n(z)2)3/2|

+ |∂1H(z,ux(z))(1+u′
x,n(z)2)3/2 −∂1Hn(z,ux(z))(1+u′

x,n(z)2)3/2|

+ |∂1Hn(z,ux(z))(1+u′
x,n(z)2)3/2 −∂1Hn(z,ux,n(z))(1+u′

x,n(z)2)3/2|

≤ ∥∂1H∥C0(R2)︸ ︷︷ ︸
<∞

|(1+u′
x(z)2)3/2 − (1+u′

x,n(z)2)3/2|︸ ︷︷ ︸
→0

+

∥∂1H−∂1Hn∥C0(R2)+︸ ︷︷ ︸
→0

|∂1Hn(z,ux(z))−∂1Hn(z,ux,n(z))|︸ ︷︷ ︸
→0

 |(1+u′
x,n(z)2)3/2|︸ ︷︷ ︸
<∞

−→ 0,

(ii)

|∂2H(z,ux(z))u′
x(z)(1+u′

x(z)2)3/2 −∂2H(z,ux,n(z))u′
x,n(z)(1+u′

x,n(z)2)3/2|

≤ ∥∂2H∥C0(R2)︸ ︷︷ ︸
<∞

|u′
x(z)(1+u′

x(z)2)3/2 −u′
x,n(z)(1+u′

x,n(z)2)3/2|︸ ︷︷ ︸
→0

+

∥∂2H−∂2Hn∥C0(R2)+︸ ︷︷ ︸
→0

|∂2Hn(z,ux(z))−∂2Hn(z,ux,n(z))|︸ ︷︷ ︸
→0

 |u′
x,n(z)(1+u′

x,n(z)2)3/2|︸ ︷︷ ︸
<∞

−→ 0,
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(iii)

|3H(z,ux(z))u′
x(z)u′′

x(z)(1+u′
x(z)2)1/2 −3Hn(z,ux(z))u′

x,n(z)u′′
x,n(z)(1+u′

x,n(z)2)1/2|

≤ 3∥H∥C0(R2)︸ ︷︷ ︸
<∞

|u′
x(z)u′′

x(z)(1+u′
x(z)2)1/2 −u′

x,n(z)u′′
x,n(z)(1+u′

x,n(z)2)1/2|︸ ︷︷ ︸
→0

+

3∥H−Hn∥C0(R2)+︸ ︷︷ ︸
→0

3|Hn(z,ux(z))−Hn(z,ux,n(z))|︸ ︷︷ ︸
→0

 |u′
x,n(z)u′′

x,n(z)(1+u′
x,n(z)2)1/2|︸ ︷︷ ︸

<∞

−→ 0.

Therefore, we obtain:

|u(3)
x (z)−u(3)

x,n(z)| −→ 0.

And, as before, this also holds for the supremum over ∂E.

Hence, we have demonstrated that (Fn)n∈N\{0} (by choosing an appropriate subsequence)
converges to E in C3 as per definition 3.3. Therefore, we can apply proposition 3.7
and obtain, for sufficiently large n, φ̃n ∈ C2(∂E) with Fn = Eφ̃n . By choosing n large
enough such that additionally ∥φ̃n∥ ≤ ϵ holds, we arrive at a contradiction to our initial
assumption, that no such C2-deformation exists.

Proofs of section 6.3.2

To demonstrate propositions 6.12 and 6.13, we will first establish two auxiliary lemmas.
For a bounded set E, we henceforth define fφ = Id+ ξφ (where ξφ is as described in 3.5).
As noted in proposition 3.6, fφ is a C1 diffeomorphism provided ∥φ∥C1(∂E) is sufficiently
small. The inverse of this function will be denoted as gφ.
Additionally, we define the vectorfield τ = ν⊥ and τφ = ν⊥

φ , which are obtained by rotating
ν and νφ by an angle of π/2, respectively, thus describing a tangential vector field to ∂E
and ∂Eφ, correspondingly.

Lemma A.1: Assume E is a bounded set of class C2. Consider any φ near 0 within
C1(∂E), and any ψ within H1(∂E). It follows that:

j′′
E(φ)(ψ,ψ) = j′′

Eφ(0)(ξφ ◦gφ ·νφ, ξφ ◦gφ ·νφ)+ j′
Eφ(0)(Zφ,ψ)

where νφ denotes the unit outward normal to Eφ, and

Zφ,ψ =Bφ((ξφ ◦gφ)τφ ,(ξφ ◦gφ)τφ)−2(∇τφ(ξφ ◦gφ ·νφ)) · (ξφ ◦gφ)τφ .

Furthermore, it holds that:
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• The expression ζτφ = ζ− (ζ ·νφ)νφ defines the tangential component of ζ on Eφ,

• The term ∇τφζ = (D(ζ)τφ)τφ denotes the gradient projected onto the tangent plane
of Eφ.

• Lastly, Bφ denotes the second fundamental form of Eφ, a symmetric bilinear form
given by:
Bφ(a,b) = ⟨D(νφ)a,b⟩, for vectors a,b that are tangential to ∂Eφ.

Proof. To establish the stated proposition, we introduce the operator JE , defined as fol-
lows:

JE : C1
b (R2,R2) → R

ξ 7→ J((Id+ ξ)(E)).

Let ν represent the exterior unit normal to the set E, and let B denote the second
fundamental form associated with it. Furthermore, we define ξτ and ∇τξ to be the
tangential component and the tangential gradient of ξ, respectively, in relation to E.

Invoking the structural theorem (refer to [13, Thm. 5.9.2] or [8, Thm. 2.1]), we deduce
for any ξ that is sufficiently smooth:

J ′
E(0).ξ = j′

E(0) · (ξτ ·ν),
J ′′
E(0).(ξ,ξ) = j′′

E(0) · (ξτ ·ν,ξτ ·ν)+ j′
E(0) · (Zξ),

where
Zξ :=B(ξτ , ξτ )−2∇τ (ξ ·ν) · ξτ .

Moreover, for a set of class C2, with t ̸= 0 in R, and for any vector fields ξ and ζ, and
defining F := (id+ ξ), we have:

JE(ξ+ tζ) = J((id+ ξ+ tζ)E) = J((Id+ tζ ◦ (id+ ξ)−1)F ) = JF (tζ ◦ (id+ ξ)−1),

Hence, by differentiation, we can demonstrate the following equality:

J ′
E(ξ)(ζ) = d

dt
[J((Id+ ξ+ tζ)E)]

∣∣∣∣∣
t=0

= d

dt

[
J((Id+ tζ ◦ (id+ ξ)−1)F )

] ∣∣∣∣∣
t=0

= J ′
F (0)(ζ ◦ (id+ ξ)−1),
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and finally,

J ′′
E(ξ)(ζ,ζ) = d

dt

[
d

dt
(J((Id+ ξ+ tζ+ sζ)F ))

]∣∣∣∣∣
s=t=0

= d

dt

[
d

dt

(
J((Id+ tζ ◦ (Id+ ξ)−1 + sζ ◦ (Id+ ξ)−1)F )

)]∣∣∣∣∣
t=0

= J ′′
F (0)(ζ ◦ (Id+ ξ)−1, ζ ◦ (Id+ ξ)−1).

Now, selecting ξ = ξφ = νφ and ζ = ξψ = ψν, we arrive at:

j′′
E(φ)(ψ,ψ) = J ′′

E(ξφ)(ξψ, ξψ) = J ′′
Eφ(0)(ξφ ◦gφ, ξψ ◦gφ),

whereby, through the application of the structure theorem, we acquire the statement to
be demonstrated.

Lemma A.2: Let E be a bounded C2 set. If ∥φ∥C1(∂E) → 0 we have:

(i) ∥fφ− Id∥C1(∂E) → 0,
(ii) ∥gφ− Id∥C1(∂Eφ) → 0,
(iii) ∥νφ ◦fφ−ν∥C0(∂E) → 0,
(iv) ∥Jacτfφ−1∥C0(∂E) → 0. where Jacτfφ = ∥Dfφτ∥.

If ∥φ∥C2(∂E) → 0 then we also have:

(v) ∥Hφ ◦fφ−H∥C0(∂E) → 0,
(vi) ∥Bφ ◦fφ−B∥C0(∂E) → 0.

Moreover, the following holds:

(a) lim
∥φ∥C1(∂E)→0

sup
ψ∈L2(∂E)\{0}

∥(ξφ ◦gφ)τ∥L2(∂Eφ)
∥ψ∥L2(∂E)

= 0,

(b) lim
∥φ∥C1(∂E)→0

sup
ψ∈H1(∂E)\{0}

∥∇τ (ξφ ◦gφ ·νφ)∥L2(∂Eφ) −∥∇τψ∥L2(∂E)
∥ψ∥H1(∂E)

= 0,

(c) lim
∥φ∥C2(∂E)→0

sup
ψ∈H1(∂E)\{0}

∥Zψ,φ∥L1(∂Eφ)
∥ψ∥2

H1(∂E)
= 0.

Proof. (i) Invoking lemma 3.5, there exists a constant C > 0 such that:

∥fφ− Id∥C1(∂E) = ∥(Id+ ξφ)− Id∥C1(∂E)

= ∥ξφ∥C1(∂E)

≤ C∥φ∥C1(∂E) → 0.
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(ii) It holds that:

∥gφ− Id∥C1(∂E)

= ∥(Id−fφ)◦gφ∥C1(∂E)

= max
(
∥(Id−fφ)◦gφ∥C0(∂E),∥∇[(Id−fφ)◦gφ]∥C0(∂E)

)
≤ max

(
∥Id−fφ∥C0(∂E)∥gφ∥C0(∂E),∥∇(Id−fφ)∥C0(∂E)∥∇gφ∥C0(∂E)

)
∥Id−fφ∥C1(∂E) ∥gφ∥C1(∂E)︸ ︷︷ ︸

<∞ (∗)

→ 0

where (∗) follows from the continuity of gφ,∇gφ and the compactness of ∂E.

(iii) Since every unit vector w can be represented as follows:

w = (w ·ν)ν+(w ·ν⊥)ν⊥ = (w ·ν)ν±
√

1− (w ·ν)2ν⊥

we obtain for all x ∈ ∂E:

|(νϕ ◦fϕ−ν)(x)|

= |((νφ ◦fφ ·ν)ν)(x)−ν(x)± (
√

1− (νφ ◦fφ ·ν)2ν⊥)(x)|

≤ |((νφ ◦fφ ·ν−1)ν)(x)|+ |(
√

1− (νφ ◦fφ ·ν)2ν⊥)(x)|

= |(νφ ◦fφ ·ν−1)(x)|+(
√

1− (νφ ◦fφ ·ν)2)(x)

= |(νφ ◦fφ ·ν−1)(x)|+
(√

(νφ ◦fφ ·ν−1)(νφ ◦fφ ·ν+1)
)

(x)

= |(νφ ◦fφ ·ν−1)(x)|+
(√

(νφ ◦fφ ·ν−1)(νφ ◦fφ ·ν−1+2)
)

(x)

≤ ||νφ ◦fφ ·ν−1||C0(∂E) +
√

||νφ ◦fφ ·ν−1||C0(∂E)(||νφ ◦fφ ·ν−1||C0(∂E) +2),

→ 0,

where ||νφ ◦fφ ·ν−1||C0(∂E) → 0 is obtained via [8, Lem. 4.7].

(iv) / (v) / (vi): These three statements are obtained directly by applying [8, Lem. 4.7].

(a) To achieve the convergence described in (a), we first consider the parametrization
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of ∂E by ρ : [0,H1(∂E)] → ∂E, then we have:
∥∥∥(ξψ ◦gψ)τψ

∥∥∥2
L2(∂Eφ)

=
∫
∂Eφ

(ξφ ◦gψ)2
τψ
dH1

=
∫
fφ◦ρ([0,H1(∂E)])

(ξφ ◦gψ)2
τψ
dH1

=
∫ H1(∂E)

0
(ξφ ◦gψ)2

τψ
◦fφ ◦ρ(s)|D(fφ ◦ρ(s))|ds

=
∫ H1(∂E)

0
(ξφ ◦gψ)2

τψ
◦fφ ◦ρ(s)|Dfφ ◦ρ(s)ρ′(s)|ds

=
∫ H1(∂E)

0
(ξφ ◦gψ)2

τψ
◦fφ ◦ρ(s)|Dfφ(ρ(s))τ ||ρ′(s)|ds

=
∫ H1(∂E)

0
(ξφ ◦gψ)2

τψ
◦fφ ◦ρ(s)Jacτfφ ◦ρ(s)|ρ′(s)|ds

=
∫
∂E

((νψ)◦gψ)2
τψ

◦fφJacτfφ dH1

=
∫
∂E

(ν ◦gψ)2
τψ

◦fφJacτfφψ2 dH1

≤ ||(ν ◦gψ)τψ ◦fφ||2C0(∂E)||Jacτfφ||C0(∂E)||ψ||2L2(∂E)

≤ ||
(
(ν ◦gψ)− (ν ◦gψ ·νφ)νφ

)
◦fφ||2C0(∂E)||Jacτfφ||C0(∂E)||ψ||2L2(∂E)

≤ ||ν− (ν ·νφ ◦fφ)νφ ◦fφ||2C0(∂E)︸ ︷︷ ︸
→0 (∗)

||Jacτfφ||C0(∂E)︸ ︷︷ ︸
→1 (iv)

||ψ||2L2(∂E)

Where (∗) follows from the convergence of ∥ν ·νφ◦fφ∥ → 1 according to [8, Lem. 4.7],
(iii), and from the fact that the product of uniformly convergent functions is also
uniformly convergent. Since the choice of ψ was arbitrary, we thus obtain (a).

(b) During the proof of statement (b), it has unfortunately come to light that there is
an incompleteness in the argumentation of the underlying paper [9]. Nonetheless,
we will assume for the subsequent proofs that this statement is correct and will
present a counterexample to a claim made in this proof in a subsequent remark.
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We first demonstrate:

∇τφ( ξφ ◦gφ ·νφ) = ∇τφ(ψ ◦gφν ◦gφ ·νφ)
= (D(ψ ◦gφν ◦gφ ·νφ)τφ)τφ
= [ν ◦gφ ·νφD(ψ ◦gφ)+ψ ◦gφD(ν ◦gφ ·νφ)τφ]τφ
= [ν ◦gφ ·νφD(ψ)◦gφD(gφ)+ψ ◦gφ(D(ν ◦gφ)T νφ+D(νφ)T ν ◦gφ)T τφ]τφ
= [ν ◦gφ ·νφD(ψ)◦gφD(gφ)+ψ ◦gφ((D(ν)◦gφD(gφ))T νφ+D(νφ)T ν ◦gφ)T τφ]τφ
= [ν ◦gφ ·νφD(ψ)◦gφD(gφ)+ψ ◦gφ(τφ · ((D(ν)◦gφD(gφ))T νφ+D(νφ)T ν ◦gφ))]τφ
= [ν ◦gφ ·νφD(ψ)◦gφD(gφ)τφ +ψ ◦gφ((D(ν)◦gφD(gφ))T νφ · τφ+D(νφ)T ν ◦gφ · τφ)]τφ
= [ν ◦gφ ·νφD(ψ)◦gφD(gφ)τφ︸ ︷︷ ︸

a

+ψ ◦gφ(τTφ (D(ν)◦gφD(gφ))T νφ+ τTφD(νφ)T ν ◦gφ)︸ ︷︷ ︸
b

]τφ

Upon further transforming term a and using the fact that Dgφτφ is a multiple of τ ,
we get:

= ν ◦gφ ·νφD(ψ)◦gφD(gφ)τφ
= ν ◦gφ ·νφD(ψ)◦gφ|D(gφ)τφ|τ

= ν ◦gφ ·νφ|D(gφ)τφ|(D(ψ)◦gφττ) · τ

= ν ◦gφ ·νφ∇τ (ψ)◦gφ ·D(gφ)τφ
= ν ◦gφ ·νφD(gφ)τφ︸ ︷︷ ︸

=: c2
φ

·∇τψ ◦gφ.

For the term b we encounter the incompleteness mentioned above. Ideally, for the
following proof structure, we should define c1φ as follows:

ψ ◦gφ((D(ν)◦gφD(gφ)τφ)T νφ+(D(νφ)τφ)T ν ◦gφ)
= ψ ◦gφ (νφ · (D(ν)◦gφD(gφ)τφ)+ν ◦gφ · (D(νφ)τφ))︸ ︷︷ ︸

=: c1
φ

. (56)

In the original paper this term was specified as follows (in the further course of the
proof we will use this term):

c1φ := τ ◦gφ ·νφ(Dgφτφ) · τ ◦gφ+ τφ ·ν ◦gφ (57)

Hence, we obtain the overall representation:

∇τφ( ξφ ◦gφ ·νφ) =
[
c1φψ ◦gφ+ c2φ ·∇τψ ◦gφ

]
τφ. (58)
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Now, for all x ∈ ∂E, the following estimate can be made:

|(∇τφ(ξψ ◦gφ ·νφ)◦fφ
√

Jacτfφ−∇τψ)(x)|

=|([c1φψ ◦gφ+ c2φ ·∇τψ ◦gφ]τφ)◦fφ(x)
√

Jacτfφ(x)−∇τψ(x)|

=|[c1φ ◦fφ(x)ψ ◦gφ ◦fφ(x)

+ c2φ ◦fφ(x) ·∇τψ ◦gφ ◦fφ(x)]τφ ◦fφ(x)
√

Jacτfφ(x)−∇τψ(x)|

=|[c1φ ◦fφ(x)ψ(x)+ c2φ ◦fφ(x) ·∇τψ(x)]τφ ◦fφ(x)
√

Jacτfφ(x)−∇τψ(x)|

=|[c1φ ◦fφ(x)ψ(x)τφ ◦fφ(x)+ c2φ ◦fφ(x) ·∇τψ(x)τφ ◦fφ(x)]
√

Jacτfφ(x)−∇τψ(x)|

=|c1φ ◦fφ(x)ψ(x)τφ ◦fφ(x)
√

Jacτfφ(x)

+ c2φ ◦fφ(x) ·∇τψ(x)τφ ◦fφ(x)
√

Jacτfφ(x)−∇τψ(x)|

=|c1φ ◦fφ(x)ψ(x)τφ ◦fφ(x)
√

Jacτfφ(x)

+ τφ ◦fφ(x)(c2φ ◦fφ(x))T
√

Jacτfφ(x)∇τψ(x)−∇τψ(x)|

=|c1φ ◦fφ(x)ψ(x)τφ ◦fφ(x)
√

Jacτfφ(x)

+ τφ ◦fφ(x)(c2φ ◦fφ(x))T
√

Jacτfφ(x)±|∇τψ(x)|τ(x)−±|∇τψ(x)|τ(x)|

≤|c1φ ◦fφ(x)τφ ◦fφ(x)
√

Jacτfφ(x)||ψ(x)|

+ |τφ ◦fφ(x)(c2φ)T ◦fφ(x)
√

Jacτfφ(x)τ(x)− τ(x)||∇τψ(x)|

=|c1φ ◦fφ(x)τφ ◦fφ(x)
√

Jacτfφ(x)||ψ(x)|

+ |(c2φ ◦fφ(x) · τ(x))τφ ◦fφ(x)◦fφ(x)
√

Jacτfφ(x)− τ(x)||∇τψ(x)|

≤cφ(x)(|ψ(x)|+ |∇τψ(x)|),

where

cφ(x) :=|c1φ ◦fφ(x)τφ ◦fφ(x)
√

Jacτfφ(x)|

+ |(c2φ ◦fφ(x) · τ(x))τφ ◦fφ(x)◦fφ(x)
√

Jacτfφ(x)− τ(x)|.

Next, we show that the following holds true:

lim
∥φ∥C1(∂E)

∥cφ∥C0∂E → 0. (59)

Defining Rπ/2 as the rotation matrix by the angle π/2, and with (iii) for ∥φ∥C1(∂E) →
0, we get:

∥τφ ◦fφ− τ∥C0∂E = ∥Rπ/2(νφ)◦fφ−Rπ/2(ν)∥C0∂E

≤ ∥Rπ/2∥∥νφ ◦fφ−ν∥C0∂E → 0.
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Therefore, we have:

∥c1φ ◦fφ∥C0∂E = ∥(τ ◦gφ ·νφ(Dgφτφ) · τ ◦gφ+ τφ ·ν ◦gφ)◦fφ∥C0∂E

= ∥τ ·νφ ◦fφ︸ ︷︷ ︸
→ν︸ ︷︷ ︸

→0

( Dgφ︸ ︷︷ ︸
→Id(ii)

τφ ◦fφ) · τ

︸ ︷︷ ︸
<∞︸ ︷︷ ︸

→0

+τφ ◦fφ︸ ︷︷ ︸
→τ

·ν

︸ ︷︷ ︸
→0

∥C0∂E → 0.

Since the product of uniformly convergent functions is again uniformly convergent,
we obtain the following convergence for the first term of cφ:

lim
∥φ∥C1(∂E)

∥c1φ ◦fφ︸ ︷︷ ︸
→0

τφ ◦fφ︸ ︷︷ ︸
→τ

√
Jacτfφ︸ ︷︷ ︸

→1

∥C0∂E → 0.

For the second term, we obtain:

lim
∥φ∥C1(∂E)→0

∥c2φ ◦fφ · τ
√

Jacτfφτφ ◦fφ− τ∥

lim
∥φ∥C1(∂E)→0

∥(ν ◦gφ ·νφD(gφ)τφ)◦fφ · τ
√

Jacτfφτφ ◦fφ− τ∥

lim
∥φ∥C1(∂E)→0

∥ν ·νφ ◦fφ︸ ︷︷ ︸
→1

D(gφ)︸ ︷︷ ︸
→I

τφ ◦fφ · τ︸ ︷︷ ︸
→1

√
Jacτfφ︸ ︷︷ ︸

→1

τφ ◦fφ︸ ︷︷ ︸
→τ︸ ︷︷ ︸

→τ

−τ∥ → 0.

Again, this is due to the product of uniformly convergent functions being uniformly
convergent.
Thus, we have demonstrated the convergence of (59) and can finally make the fol-
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lowing estimate:

∥∇τ (ξφ ◦gφ ·νφ)∥L2(∂Eφ) −∥∇τψ∥L2(∂E)

=
(∫

fφ(∂E)
(∇τ (ξφ ◦gφ ·νφ))2dH1

)1/2
−∥∇τψ∥L2(∂E)

=
(∫

∂E
(∇τ (ξφ ◦gφ ·νφ))2 ◦fφJacτfφdH1

)1/2
−∥∇τψ∥L2(∂E)

=
(∫

∂E
(∇τ (ξφ ◦gφ ·νφ)◦fφ

√
Jacτfφ)2dH1

)1/2
−∥∇τψ∥L2(∂E)

=
∥∥∥∇τ (ξφ ◦gφ ·νφ)◦fφ

√
Jacτfφ

∥∥∥
L2(∂E)

−∥∇τψ∥L2(∂E)

≤
∥∥∥∇τ (ξφ ◦gφ ·νφ)◦fφ

√
Jacτfφ−∇τψ

∥∥∥
L2(∂E)

≤ ∥cφ(|ψ|+ |∇τψ|)∥L2(∂E)

≤ ∥cφ∥C0(∂E)∥|ψ|+ |∇τψ|∥L2(∂E)

= ∥cφ∥C0(∂E)(
∫
∂E

(|ψ|+ |∇τψ|)2 dH1)
1
2

≤ ∥cφ∥C0(∂E)

∫
∂E

(2|ψ|2 +2|∇τψ|2 dH1)
1
2

= ∥cφ∥C0(∂E)
√

2∥ψ∥H1(∂E) .

As a result, for ∥φ∥C1(∂E) → 0, we achieve outcome (b).

(c) It follows that:

∥Zφ,ψ∥L1(∂Eφ)
∥ψ∥2

H1(∂E)
=

∥Bφ((ξφ ◦gφ)τφ ,(ξφ ◦gφ)τφ)−2(∇τφ(ξφ ◦gφ ·νφ)) · (ξφ ◦gφ)τφ∥L1(∂Eφ)
∥ψ∥2

H1(∂E)

≤
∥Bφ∥C0(∂Eφ)∥(ξφ ◦gφ)τφ∥2

L2(∂Eφ)
∥ψ∥2

H1(∂E)

−2
∥∇τφ(ξφ ◦gφ ·νφ)∥L2(∂Eφ)∥(ξφ ◦gφ)τφ∥L2(∂Eφ)

∥ψ∥2
H1(∂E)

.

Therefore, sinceBφ is continuous and linear, and considering the fact that ∥ψ∥H1(∂E) ≥
∥ψ∥L2(∂E), along with the previously demonstrated convergences (a) and (b), we ob-
tain the result (c).

Remark A.3: As previously mentioned, we will now demonstrate that the proof of
Lemma A.2 is incomplete. Let us consider both definitions (56) and (57) of c1φ using
a specific example. Our objective is to show that the two expressions do not coincide at
at least one point for a certain example.

To address this matter, we examine the set E of class C3, where the boundary ∂E

is such that locally it represents a straight line. Therefore, we may assume (modulo
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translation and rotation) that there exists an r > 0 such that: ∂E ∩C((1,0), r,ν) = {x ∈
C((1,0), r,ν) | x2 = 0} =: ∂Eloc, with ν(x) = (0,1) and thus τ(x) = (1,0).

Now, let us define φ(x) := x2
1/2. This gives us a local representation of the set ∂Eφ

through fφ(∂Eloc) = ∂Eφ,loc, where fφ(x) = Id(x) + φ(x)ν(x) and its inverse gφ(x) =
Id(x)−φ(x)ν(x).

It can then be seen that ∂Eφ,loc can be described by the function u(z) = z2/2. Con-
sequently, we obtain with (2):

νφ(z,u(z)) =
( −z√

1+z2
1√

1+z2

)
and τφ(z,u(z)) =

( −z√
1+z2
−1√
1+z2

)
.

We now proceed to analyze for (a,b) ∈ ∂Eφ,loc:

D(gφ(a,b)) =D

((
a

b−a2/2

))
=
 1 0

−a 1

 ,

D(νφ(a,b)) =D

( −a√
1+a2
1√

1+a2

)=

 −1
(1+a2)3/2 0

−a
(1+a2)3/2 0

 .
And for (a,b) ∈ ∂Eloc

D(ν(a,b)) =
0 0

0 0

 .
Noting that ν is constant on this set.

Next, we compare the expressions given by (56) and (57) at the point fφ(1,0) =
(1,1/2) ∈ ∂Eφ,loc. Let:

c1φ = νφ · (D(ν)◦gφD(gφ)τφ)+ν ◦gφ · (D(νφ)τφ)
c̃1φ = τ ◦gφ ·νφ(Dgφτφ) · τ ◦gφ+ τφ ·ν ◦gφ.

Then we obtain:

c1φ(fφ(1,0)) =νφ(1,1/2) · (D(ν)(1,0)D(gφ)(1,1/2)τφ(1,1/2))
+ν(1,0) · (D(νφ)(1,1/2)τφ(1,1/2))

=
(−1√

2
1√
2

)
·
((

0
0

))
+
(

0
1

)
·

 −1
(2)3/2 0

−1
(2)3/2 0

(−1√
2

−1√
2

)

=
(−1√

2
1√
2

)
·
((

0
0

))
+
(

0
1

)
·
(1

2
1
2

)

=1
2
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and

c̃1φ(fφ(1,0)) = τ(1,0) ·νφ(1,1/2)(Dgφ(1,1/2)τφ(1,1/2)) · τ(1,0)+ τφ(1,1/2) ·ν(1,0)

=
(

1
0

)
·
(−1√

2
1√
2

)
 1 0

−1 1

(−1√
2

−1√
2

) ·
(

1
0

)
+
(−1√

2
−1√

2

)
·
(

1
0

)

= −1√
2

(
−1√

2

)
+ −1√

2
= 1

2 − 1√
2
.

It is evident from the continuity of c1φ and c̃1φ that both functions do not coincide in
an open neighborhood around fφ(1,0). Therefore, both expressions cannot be the same,
rendering the proof of Statement A.2 (b) incomplete, as our derived term for c1φ (56) may
not necessarily have the desired convergence properties for (59) to hold. Nonetheless, we
will continue to assume that (b) is valid for the remaining proofs.

As the next step, to demonstrate Proposition 6.11, we will decompose the functional
j′′
E into two parts and show the continuity at 0 for each part separately.

Proposition A.4: Suppose E is a bounded C2 domain and pE : φ 7→ P (Eφ), then the
function

p′′
E : C2(∂E) →Q(H1(∂E)), φ 7→ p′′

E(φ)

is continuous at 0.

Proof. Utilizing Lemma A.1 and considering every φ ∈ C2(∂E) near 0 and ψ ∈ H1(∂E),
we obtain the following:(
p′′
E(φ)(ψ,ψ)

)
−p′′

E(0)(ψ,ψ) =
(
p′′
Eφ(0)((ξφ ◦gφ) ·νφ,(ξφ ◦gφ) ·νφ)+p′

Eφ(0)(Zφ,ψ)
)

−p′′
E(0)(ψ,ψ)

= p′′
Eφ(0)((ξφ ◦gφ) ·νφ,(ξφ ◦gφ) ·νφ)−p′′

E(0)(ψ,ψ)︸ ︷︷ ︸
=:A

+p′
Eφ(0)(Zφ,ψ).

Upon examining the definition of j′′
E , we obtain the following expression for A:

A= ∥∇τφ((ξφ ◦gφ) ·νφ)∥2
L2(∂Eφ) −∥∇τψ∥2

L2(∂E).

Moreover, since it holds that

|p′
Eφ(0)(Zφ,ψ)| ≤ ∥Hφ∥C0(∂Eφ)︸ ︷︷ ︸

<∞→A.2(v)

∥Zφ,ψ∥L2(∂Eφ),

with lemma A.2 (b), (c), we conclude that the term p′′
E(φ)(ψ,ψ) − p′′

E(0)(ψ,ψ) becomes
arbitrarily small as ∥φ∥C2(∂E) → 0, thereby demonstrating continuity at 0.

Proposition A.5: If E is a bounded C2 domain, η ∈ C1(R2) and gE : φ 7→
∫
Eφ η, then

the map
g′′
E : C2(∂E) →Q(H1(∂E)), φ 7→ g′′

E(φ)
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is continuous at 0.

Proof. Similarly to the previous proof, as ∥φ∥C2(∂E) approaches zero, we derive:

A := g′′
Eφ(0)((ξφ ◦gφ) ·νφ,(ξφ ◦gφ) ·νφ)−g′′

E(0)(ψ,ψ)

=
∫
∂Eφ

[
Hφη+ ∂η

∂νφ

]
((ψν)◦gφ ·νφ)2 dH1 −

∫
∂E

[
Hη+ ∂η

∂ν

]
(ψ)2 dH1

=
∫
∂E

([
Hφη+ ∂η

∂νφ

]
(ν ◦gφ ·νφ)2

)
◦fφJacτfφψ2dH1 −

∫
∂E

[
Hη+ ∂η

∂ν

]
(ψ)2 dH1

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

[
Hφη+ ∂η

∂νφ

]
◦fφ︸ ︷︷ ︸

→
[
Hη+∂η

∂ν

]
ν ·νφ ◦fφ︸ ︷︷ ︸

→1


2

Jacτfφ︸ ︷︷ ︸
→1

−
[
Hη+ ∂η

∂ν

]
∥∥∥∥∥∥∥∥∥∥∥∥∥∥
C0(∂E)︸ ︷︷ ︸

→0

∥ψ∥L2(∂E).

Moreover, given that
∣∣∣g′
Eφ(0).(Zφ,ψ)

∣∣∣≤ ∥η∥C0(∂Eφ)︸ ︷︷ ︸
<∞

∥Zφ,ψ∥L1(∂Eφ)

and invoking Lemma A.2 (c), we infer that:

lim
∥φ∥C2(∂E)→0

sup
ψ∈H1(∂E)\{0}

|g′′
E(0)(ψ,ψ)−g′′

E(φ)(ψ,ψ)|
∥ψ∥H1(∂E)

≤ lim
∥φ∥C2(∂E)→0

sup
ψ∈H1(∂E)\{0}

 |A|
∥ψ∥L2(∂E)

+

∣∣∣g′
Eφ(0).(Zφ,ψ)

∣∣∣
∥ψ∥H1(∂E)


= 0.

This confirms the continuity at zero. Since the composition of continuous functions is
continuous, by A.4 and A.5, the continuity of j′′

E at zero is thus established.

Now we proceed to the final proof of Proposition 6.12:

Proof. One can discern that the inequality (jE − j0,E)′′(φ).(ψ,ψ) ≤ c1φ+ c2φ holds with

c1φ :=
∣∣∣∣∣
∫
∂Eφ

(
Hφ(η−η0)+ ∂(η−η0)

∂νφ

)(
(ξψ ◦gφ) ·νφ

)2
dH1

∣∣∣∣∣
=
∣∣∣∣∣
∫
∂E

(
Hφ(η−η0)+ ∂(η−η0)

∂νφ

)
◦fφ

(
(ξψ ◦gφ) ·νφ

)2
◦fφJacτfφdH1

∣∣∣∣∣
=
∣∣∣∣∣
∫
∂E

(
Hφ(η−η0)+ ∂(η−η0)

∂νφ

)
◦fφ ((ν ◦gφ) ·νφ)2 ◦fφJacτfφψ2dH1

∣∣∣∣∣
≤
(
∥Hφ∥C0(∂Eφ)∥η−η0∥C0(R2) +∥η−η0∥C1(R2)

)
∥fφ∥C0(∂E)∥ν ·νφ ◦fφ∥C0(∂E)∥ψ∥2

L2(∂E)

≤
(
∥Hφ∥C0(∂Eφ) +1

)
∥η−η0∥C1(R2)∥fφ∥C0(∂E)∥ν ·νφ ◦fφ∥C0(∂E)∥ψ∥2

L2(∂E),
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and

c2φ :=
∣∣∣∣∣
∫
∂Eφ

(η−η0)Zφ,ψdH1
∣∣∣∣∣

≤ ∥η−η0∥C1(R2)∥Zφ,ψ∥L1(∂Eφ),

where, by invoking lemma A.2 and [8, Lem. 4.7], we ascertain the boundedness of expres-
sions such as ∥Hφ∥C0(∂Eφ),

∥fφ∥C0(∂E), ∥Zφ,ψ∥L1(∂Eφ)/∥ψ∥H1(∂E), ∥ν ·νφ◦fφ∥C0(∂E) for sufficiently small φ∈C2(∂E)
(there exists some ϵ > 0 such that this holds for all φ with ∥φ∥ ≤ ϵ). Consequently, for all
ψ ∈H1(∂E)\{0}, we have:

|(jE − j0,E)′′(φ).(ψ,ψ)|
∥ψ∥2

H1(∂E)
≤

c1φ+ c2φ
∥ψ∥2

H1(∂E)

≤
c1φ

∥ψ∥2
L2(∂E)

+
c2φ

∥ψ∥2
H1(∂E)

→ 0

as ∥η−η0∥C1(R2) → 0. This demonstrates the statement to be proven.
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