

Invariant measure and universality of the 2D Yang-Mills Langevin dynamic (II)

Ilya Chevyrev

Based on joint work with Hao Shen: arXiv:2302.12160

13 June 2023

Stochastic Analysis meets QFT - critical theory Münster 1. Identification of limit

2. Invariant measure

3. Corollaries and conclusion

Identification of limit

Solution to Langevin dynamic

 $\partial_t A^a = -\frac{1}{2} \nabla S_{\text{YM}}(A^a) + d_{A^a} dA^a + CA^a + \xi, \quad A_0^a = a.$ From [CCHS]:

From Hao's talk:

Theorem

On $\mathbb{T}^2,$ the discrete Langevin dynamic for any 'nice' lattice YM model converges to

$$\partial_t A = \Delta A + A \partial A + A^3 + \bar{C} A + \xi$$

for some $\overline{C} \in L(\mathfrak{g}, \mathfrak{g})$.

Question: $\bar{C} = C$ for gauge covariant constant *C*?

- Computable in principle, but very lengthy.
- We are **not** allowed to renormalise discrete dynamic.

We show C is **unique** gauge covariant constant.

• Strengthens 2D continuum result.

Uniqueness of C

Consider $\overline{C} \neq C \in L(\mathfrak{g}, \mathfrak{g})$ and $\partial_t A = \Delta A + A^3 + A\partial A + \xi + \overline{C}A$, $A_0 = 0$, $\partial_t B = \Delta B + B^3 + B\partial B + \xi + \overline{C}B$, $B_0 = 0^g$.

Theorem

There exists a loop $\ell \in C^{\infty}(S^1, \mathbb{T}^2)$ such that for all t > 0 sufficiently small, there exists $g \in C^{\infty}(\mathbb{T}^2, G)$ for which

$$|\mathbb{E} \mathcal{W}_\ell(A(t)) - \mathbb{E} \mathcal{W}_\ell(B(t))| \gtrsim t^2 \;.$$

Wilson loop: $W_{\ell}(A) = \operatorname{Tr} \operatorname{hol}(A, \ell) \in \mathbf{C}$, where $\operatorname{hol}(A, \ell) = y_1 \in G$

$$\mathrm{d} y_t = y_t \,\mathrm{d} \langle A(\ell_t), \ell_t \rangle$$
, $y_0 = I \in G$.

Lemma: $a \sim b \Rightarrow W_{\ell}(a) = W_{\ell}(b)$.

Compare: if $\overline{C} = C$ then $|\mathbb{E}W_{\ell}(A(t)) - \mathbb{E}W_{\ell}(B(t))| \lesssim t^{M}$ for any M > 0.

Two cases:

- 1. Abelian (topological).
- 2. Semi-simple (geometric)

Abelian:

- G = U(1), $\mathfrak{g} = i\mathbb{R}$, one can show C = 0.
- $a \sim b \Leftrightarrow \exists g \colon \mathbb{T}^2 \to \mathrm{U}(1), \ b = a \mathrm{d}gg^{-1}.$
- For $\overline{C} \neq 0$,

$$\begin{split} \partial_t A &= \Delta A + \xi + \bar{C}A , \quad A(0) = 0 , \\ \partial_t B &= \Delta B + \xi + \bar{C}B , \quad B(0) = 0^g = - \operatorname{d} g g^{-1} \end{split}$$

•
$$\Rightarrow B = -e^{t(\Delta + \overline{C})} \operatorname{d} g g^{-1} + A.$$

Abelian case, G = U(1)

- Key: while A − dgg⁻¹ ~ A, there exists g such that A − δ dgg⁻¹ ≁ A for δ ≪ 1 (gauge orbit [A] disconnected).
- Non-contractible loop: $\ell : [0,1] \to \mathbb{T}^2, \ell(x) = (x,0).$

- Take g(x, y) = e^{i2πx} ⇒ -dgg⁻¹ = (-i2π, 0) → g lifts along ℓ to non-contractile loop in U(1).
- $B_1(t) = -i2\pi e^{t\bar{C}} + A_1(t) = i2\pi(1 + t\bar{C} + O(t^2)) + A_1(t) \Rightarrow$

$$|\mathbb{E} \mathcal{W}_{\ell}(A(t)) - \mathbb{E} \mathcal{W}_{\ell}(B(t))| = \left|\mathbb{E} e^{\int_{\ell} A(t)} - \mathbb{E} e^{\int_{\ell} B(t)}\right| \gtrsim t$$
 .

(Need torus, result not true on simply connected manifold, e.g. \mathbb{R}^2 .)

Strategy: short time expansions.

By applying gauge transform, reduce problem to showing

$$|\mathbb{E} \mathcal{W}_\ell(\mathcal{A}(t)) - \mathbb{E} \mathcal{W}_\ell(\mathcal{B}(t))| \gtrsim t^2$$
 ,

where

$$\partial_t A = \Delta A + A^3 + A\partial A + \xi + \bar{C}A, \qquad A(0) = 0$$

$$\partial_t B = \Delta B + B^3 + B\partial B + \xi + \bar{C}B + c \operatorname{dgg}^{-1}, \qquad B(0) = 0$$

for $ar{\mathcal{C}}, c \in L(\mathfrak{g}, \mathfrak{g})$, c
eq 0, and

 $\partial_t g = \text{parabolic PDE involving } B.$ g(0) = suitably chosen.

Lemma

Let $h = dg(0)g(0)^{-1}$. Then

$$B(t)=\Psi(t)+hO(t)+O(t^{2-\kappa})$$
 ,

where Ψ is explicit and hO(t) is linear in h and independent of B(t). Likewise

$$A(t) = \Psi(t) + O(t^{2-\kappa}) \, .$$

In particular,

$$B(t) - A(t) = hO(t) + O(t^{2-\kappa}).$$

Order 4 expansion in modelled distributions.

Cf. [Davie '08, Friz-Victoir '08].

Euler estimate for $W_{\ell} = \text{Tr hol in semi-simple case}$

$$W_{\ell}(A(t)) = \operatorname{Tr} \sum_{k=0}^{N} \int_{0}^{1} \cdots \int_{0}^{t_{k-1}} \mathrm{d}\gamma_{t_{k}} \dots \mathrm{d}\gamma_{t_{1}} + \operatorname{error}$$

with $\gamma \colon [0,1] \to \mathfrak{g}$ line integral of A_t (in sense of Young).

Lemma

$$\mathbb{E}W_{\ell}(A(t)) - \mathbb{E}W_{\ell}(B(t)) = L_t(h) + t^2 \operatorname{Tr}((c \int_{\ell} h)^2)/2 + O(t^{2+})$$

where $L_t(h)$ is linear in h.

NB. No order t term since Tr(g) = 0 (cf. Abelian case).

- Chow–Rashevskii theorem for $G \times G \times \mathfrak{g} \Rightarrow \exists h, g, \tilde{g}$ such that $h = \mathrm{d}gg^{-1}, 4h = \mathrm{d}\tilde{g}\tilde{g}^{-1}, cX \neq 0.$
- L_t linear \Rightarrow either g or \tilde{g} gives $|\mathbb{E}W_\ell(A(t)) \mathbb{E}W_\ell(B(t))| \gtrsim t^2$.

Remark: works for non-simply connected manifold.

Proves *C* is unique and identifies limit (universality).

Invariant measure

Theorem (C.-Shen '23)

For d = 2, [A] has a unique invariant probability measure μ on Ω/\sim . Moreover, $\mu = \mu_{\text{YM}_2}$, the YM measure on \mathbb{T}^2 .

Steps in proof:

1. Find discrete approximation $\mu_{\varepsilon, {\rm YM}_2}$ of $\mu_{{\rm YM}_2}$ such that discrete Langevin dynamic converges to SYM:

$$\partial_t A = \Delta A + A \partial A + A^3 + C A + \xi$$
.

(Just finished.)

2. Moment bounds on discrete approximation $\mu_{\varepsilon, \text{YM}_2}$.

Steps 1-2 combine in Bourgain's invariant measure argument.

Bourgain's argument

Suffices to show $A_t^{\varepsilon} := \varepsilon \log U_t$ does not blow up for $t \in [0, 1]$ as $\varepsilon \downarrow 0$.

General strategy: cf. [Bourgain '94, Hairer-Matetski '16]

Invariance of discrete dynamic:

$$\mathbb{P}\Big[\sup_{t\in[0,1]}\|A_t^{\varepsilon}\|>L\Big]\leq K\mathbb{P}\Big[\sup_{t\in[0,1/K]}\|A_t^{\varepsilon}\|>L\Big]$$

• Take $K \gg L^{-q}$ for $q \gg 1$ fixed. (S)PDE estimate:

$$\|A_0^{\varepsilon}\| < L \Rightarrow \sup_{t \in [0,1/K]} \|A_t^{\varepsilon}\| \lesssim L$$
.

• Moment bounds: If $\sup_{\varepsilon>0} \mathbb{E}[||A_0^{\varepsilon}||^p] > L] < \infty$ for all p > 0, then

$$\mathbb{P}\Big[\sup_{t\in[0,1]}\|A_t^{\varepsilon}\|>L\Big]\lesssim L^{q-p}.$$

Take p > q to conclude.

Difficulty: moment estimates do not hold for $\mu_{\varepsilon, \text{YM}_2}$ due to gauge invariance.

Moment bounds

For $U: E_{\varepsilon} \to G$, find gauge-invariant measure of **non-flatness** ||U|| such that:

- (a) $||U^g||_{\mathcal{C}^{0-}} \leq ||U||$ for discrete gauge transform g.
- (b) $\mathbb{E}[U]^{p} = O(1)$ uniformly in $\varepsilon > 0$ for $p \ge 1$.

Uhlenbeck compactness: for continuum A, $\exists g$ such that $d^*A^g := \operatorname{div}(A^g) = 0$ (Coulomb/Landau gauge)

$$\mathrm{d} A = F_A - [A \wedge A]$$
, $\mathrm{d}^* A = 0$.

Elliptic regularity $\Rightarrow \|A\|_{W^{1,p}} \lesssim \|F_A\|_{L^p}$.

Can't apply directly: in regime where only $||A||_{C^{0-}}$ is bounded.

(Cf. can't bound Brownian motion in $W^{1,p}...$)

Need Hölder-type norm

$$[U] = \sup_{r} \frac{|\log U(r)| + \text{technical norm}}{|r|^{\frac{1}{2}-}}$$

(a) Gauge fixing - axial gauge

Idea: use mesoscopic (axial) and microscopic (Landau) gauges. From [C. '19] Reason: PDE $dA = F_A - [A \wedge A]$ is non-linear, need smallness to use ellipticity. Axial gauge. Let $U: \Lambda_{\varepsilon} \to G$ be gauge field. Fix maximal tree T.

- $u_0, u_1, \ldots \in G$ given by U.
- Find γ_i connecting $1 \rightsquigarrow u_i$ in Lipschitz way (quantitative homotopy): $\varepsilon^{-1} |\log U_b^g| \lesssim \varepsilon^{-\frac{1}{2}-} [|U|] + O(\varepsilon) \quad (\mathcal{C}^{-\frac{1}{2}-} \text{ control} \rightsquigarrow \text{ suboptimal})$

Zoom in scale by scale: if g defined on $\Lambda_{2\varepsilon}$, extend g to Λ_{ε} such that

$$\log U^g_{b_2} = \log U^g_{b_3} = \frac{1}{2} \log U^g_{b_2 b_3} \quad (\text{likewise for } b_4, b_5, \ldots),$$

and $\sum_{i=1}^{4} \log U_{xy_i}^g \approx 0$ i.e. d* log $U(x) \approx 0$. (If G = U(1), can make = 0 (mod 2π).)

Approximately minimises $\sum_{i=1}^{4} |\log U_{xy_i}^g|^2$.

(a) Gauge fixing - Landau gauge

If ℓ is on lattice Λ_{ε} , then

Technical norm: *q*-var of anti-developments of $U \sim \text{controls}$ 'smearings' $\sum_p \log U(p)$ by gauge-inv. 'lasso smearings' $\sum_p \operatorname{Ad}_{U(\ell_p)} \log U(p)$ (Young sum/integral).

Outcome: If $\max_{b \in E_{\delta}} |\log U_b|$ is small, then $\exists g$: for all $b \in E_{\varepsilon < \delta}$

$$\varepsilon^{-1} |\log U_b^g| \lesssim \varepsilon^{0-} e^{C \log^2([\![U [\!] + 1)\!]} \quad (\mathcal{C}^{0-} \text{ control} \rightsquigarrow \text{optimal})$$

To control [U] probabilistically, use random walk representation of $\mu_{\varepsilon, \text{YM}_2}$:

$$U(r) \stackrel{\scriptscriptstyle \mathrm{law}}{=} X_{\varepsilon^{-2}|r|}$$

where X_0, X_1, \ldots is conditioned random walk on *G* with Brownian-like increments: $\mathbb{E}|\log X_i^{-1}X_{i+1}|^p \lesssim \mathbb{E}|B_{\varepsilon^2}|^p \sim \varepsilon^{p/2}$.

Ingredients:

- Uniform Gaussian tails $\mathbb{E}e^{\eta |\log X_{\varepsilon^{-2}t}|^2} < \infty$ for $\eta > 0$.
 - Rough path analysis of random walks.
- Uniform lower and upper bounds on density of X_{ε⁻²t} for t > 0 fixed.
 - Markov chain estimates (extension of [Hebisch–Saloff-Coste '93]).

Remark: only part requiring a priori knowledge of measure.

(But adaptable to some non-exactly solvable models [Chandra-C. '22].)

Corollaries and conclusion

Corollary (Long-time existence)

The Markov process [A] survives for all time for all initial condition.

Proof: ergodicity theory of SPDEs. [Hairer-Mattingly '18, Hairer-Schönbauer '22]

Corollary (Gauge-fixed decomposition)

There exist a Gaussian free field Ψ and random function b such that $[\Psi + b] \sim \mu_{\text{YM}}$ and $\mathbb{E} |b|_{\mathcal{C}^{1-\kappa}}^{p} < \infty$ for all $p \geq 1$, $\kappa > 0$.

Proof: decomposition of SPDE.

(Generalises main result of [C. '19].)

Corollary (Universality of measure)

Suppose μ_{ϵ,YM_2} is 'nice' approximation of μ_{YM_2} (e.g. Wilson, Villain, Manton actions).

Then $\mu_{\varepsilon,{
m YM}_2}
ightarrow \mu_{{
m YM}_2}$ in gauge-invariant f.d.d.

Proof.

Moment bounds imply tightness of $\mu_{\varepsilon, {\rm YM}_2}$. Universality of dynamic + uniqueness of invariant measure identifies limit.

Related work of [Driver '89]: Wilson action on $\mathbb{R}^2.$

- Link between YM Langevin dynamic and Euclidean QFT.
- Future work: other geometries for 2D YM?
 - Sphere S^2 : uniqueness of limit more subtle.
- Uniqueness of C in 3D?
 - Systematise Euler estimates...
 - ► Wilson loops need regularisation.
- Non-exactly solvable models? 2D YM-Higgs, 3D YM.
 - Progress on Abelian 2D YM-Higgs [Shen '21, Chandra-C. '22]

Thank you for your attention!