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Identification of limit



Solution to Langevin dynamic

OeA? = —IVS(A%) + das dA’ + CA* + £, A
From [CCHS]:

= a.

a1 law o/
[A]] = [A?

)
*6;3-. 2

[a] = [b]

1-forms/gauge



Dynamic universality

From Hao's talk:
Theorem

On T?, the discrete Langevin dynamic for any ‘nice’ lattice YM model
converges to

HA=DA+AIA+ A + CA+¢

for

Question: C = C for gauge covariant constant C?

= Computable in principle, but very lengthy.

= We are not allowed to renormalise discrete dynamic.
We show C is gauge covariant constant.

= Strengthens 2D continuum result.



Uniqueness of C

Consider C # C € L(g, g) and
HA=DA+ A+ AOA+E+CA, Ay =0,
dB=AB+B*+BIB+£(+CB, By=0°.

Theorem

There exists a loop £ € C*(S*, T?) such that for all t > 0 sufficiently small,
there exists g € C*(T?, G) for which

[EW,(A(t)) — EWy(B(1))| 2 t* .
0, Wilson loop: W;(A) = Trhol(A, ¢) € C, where
hol(A, ) =y1 € G
¢ .
t dye = yed(A(t), 6) . o =1€G.
Lemma: a~ b = W;(a) = W(b).

Compare: if C = C then [EW,(A(t)) — EW,(B(t))| < tM for any M > 0.



Step 3: identification of limit

Two cases:

1. Abelian (topological).

2. Semi-simple (geometric)

Abelian:
= G =1U(1), g =R, one can show C = 0.
= a~be3g: T2 = U(l), b=a—dgg ™"
= For C #0,

hA=DA+E+CA, A0) =

B=AB+¢+CB, B(0)= :

=—dgg .

» = B=—¢®Oqggt L A



Abelian case, G = U(1)

= Key: while A—dgg™! ~ A, there exists g such that A— §dgg ! + A for
0 < 1 (gauge orbit [A] disconnected).

= Non-contractible loop: ¢: [0,1] — T2 £(x) = (x,0).

<

= Take g(x,y) = *™ = —dgg™! = (—i2nw,0) ~ g lifts along ¢ to

non-contractile loop in U(1).
= Bi(t) = —i2me' + Ai(t) = i2n(1 + tC + O(t?)) + Au(t) =

i27x

IEW,(A(t)) — EW,(B(t))| = ‘Eefz A _ gelf, B0 >t

(Need torus, result not true on simply connected manifold, e.g. R?.)



Semi-simple case

Strategy: short time expansions.

By applying gauge transform, reduce problem to showing
[EW,(A(t)) — EWe(B(t))| 2 ¢,
where

HA=NAA+ A+ ADA+ €+ CA, A(0)=0
#B=AB+B+BIB+¢t+CB+cdgg”™’, B(0)=0

for C,c € L(g,g), c # 0, and

Org = parabolic PDE involving B.
g(0) = suitably chosen.



Euler estimate for SPDE

Lemma
Let h=dg(0)g(0)~". Then

B(t) = W(t) + hO(t) + O(t* "),
where V s explicit and hO(t) is linear in h and independent of B(t). Likewise
A(t) = W(t) + O(t* ™) .
In particular,

B(t) — A(t) = hO(t) + O(£*™") .

Order 4 expansion in modelled distributions.

Cf. [Davie ‘08, Friz—Victoir ‘08].



Euler estimate for W, = Trhol in semi-simple case

N 1 te—1
Wi (A(t)) = TrZ/ e / dve, ... dyy + error
k=0 /0 g

with v: [0,1] — g line integral of A; (in sense of Young).
Lemma
EW,(A(t)) — EWy(B(t)) = Le(h) + t* Tr((c [, h)*)/2 + O(t*")
where L:(h) is linear in h.
NB. No order t term since Tr(g) = 0 (cf. Abelian case).

= Chow—Rashevskii theorem for G x G x g = Jh, g, g such that
h=dgg ' 4h=dgg ' cX #0.
= L linear = either g or g gives [EW,(A(t)) — EW,(B(t))| > t°.
Remark: works for non-simply connected manifold.

Proves C is unique and identifies limit (universality).



Invariant measure




Invariant measure

Theorem (C.—Shen ‘23)

For d = 2, [A] has a unique invariant probability measure . on Q/~.
Moreover, 1 = pivy,, the YM measure on T?.

Steps in proof:

1. Find discrete approximation fie yu, Of fivu, such that discrete Langevin
dynamic converges to SYM:

HA=DA+AIA+ A+ CA+E.

(Just finished.)

2. Moment bounds on discrete approximation fte v, -

Steps 1-2 combine in Bourgain's invariant measure argument.
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Bourgain’s argument

Suffices to show A: := elog U; does not blow up for t € [0,1] as € | 0.

General strategy: cf. [Bourgain ‘94, Hairer—Matetski ‘16]

= |nvariance of discrete dynamic:

P| sup ||A7]| > L} < K]P’{ sup ||Af|| > L}
t€[0,1] t€[0,1/K]

= Take K> L™9 for g > 1 fixed. (S)PDE estimate:

A5l < L= sup [A{]SL.
t€[0,1/K]

= Moment bounds: If sup,.,E[||AG]|”] > L] < oo for all p > 0, then

P| sup ||A7]| > L| S L7,
te[0,1]

= Take p > g to conclude.
Difficulty: moment estimates do not hold for yc v, due to gauge invariance.
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Moment bounds

For U: E. — G, find gauge-invariant measure of non-flatness [JU[ such that:

(a) [J[U®]|go- < [JU] for discrete gauge transform g.
(b) EJU[” = O(1) uniformly in e > 0 for p > 1.
Uhlenbeck compactness: for continuum A, 3g such that d*A® := div(A%) =0
(Coulomb/Landau gauge)
dA=Fa—[ANA], d*A=0.

Elliptic regularity = [|A||p1.r < ||Fallce-

Can’t apply directly: in regime where only ||A||co— is bounded.
(Cf. can't bound Brownian motion in W1P..)

Need Holder-type norm

1 hnical
up‘ og U(r)| + technical norm

, Irl-

uj=s
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(a) Gauge fixing - axial gauge

Idea: use mesoscopic (axial) and microscopic (Landau) gauges. From [C. '19]
Reason: PDE dA = Fa — [A A A] is non-linear, need smallness to use ellipticity.

Axial gauge. Let U: A. — G be gauge field. Fix maximal tree T.

2u(1/2) |

21/2) |

uy
= >l
Yo [

= g, u,... € G given by U.

= Find ~v; connecting 1 ~~ u; in Lipschitz way (quantitative homotopy):
e log U8| < EiéfﬂU[l + O(¢) (Cf%f control ~ suboptimal)
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(a) Gauge fixing - Landau gauge

Zoom in scale by scale: if g defined on A,., extend g to A. such that

1 . .
log Ug, = log Uf, = 5 log Ug,;,, (likewise for bs, bs,...),

bs Y2 b

4 <+
and ; log U§, =~ 0 : by
ie.d"log U(x) ~ 0. n

bg

(If G=U(1), can make = 0 (mod 27).)

Approximately minimises Zf':l |log Ufy,.\Q.
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(a) Gauge fixing - Landau gauge

If ¢ is on lattice A, then

_ 1
1 g _ -
/6 logUf2§

R
e log U® + log U(p) + BCH errors.
] iu/& g Z g U(p) +| 3

pEgrey [ANA]

boundary term source term:Fu

14}
= boundary term: induction -

= BCH errors: mild 2

= source term Fa: hardest part

%
Technical norm: g-var of anti-developments of U ~~ controls ‘smearings’ Zp log U(p)
by gauge-inv. ‘lasso smearings’ Zp Ady(e,) log U(p) (Young sum/integral).

Outcome: If maxpeg; | log Upl is small, then 3g: for all b € E..5

e log UB| < €% eClog*(1UI+1) (C°~ control ~~ optimal)
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(b) Probabilistic estimates

To control [JU[ probabilistically, use random walk representation of fic ya,:
law
U(r) = Xs_2|r|

where Xo, X, ... is conditioned random walk on G with Brownian-like
increments: E|log X, ' Xi1]P < E[B.2|P ~ &P/2.

Ingredients:

2
= Uniform Gaussian tails Ee"1°8Xc~2:I" < o0 for > 0.
» Rough path analysis of random walks.

= Uniform lower and upper bounds on density of X_—2, for t > 0 fixed.

» Markov chain estimates (extension of [Hebisch—Saloff-Coste ‘93]).

Remark: only part requiring a priori knowledge of measure.

(But adaptable to some non-exactly solvable models [Chandra—-C. ‘22].)
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Corollaries and conclusion




Corollaries

Corollary (Long-time existence)

The Markov process [A] survives for all time for all initial condition.

Proof: ergodicity theory of SPDEs. [Hairer-Mattingly ‘18, Hairer-Schénbauer ‘22]

Corollary (Gauge-fixed decomposition)

There exist a Gaussian free field WV and random function b such that
[V + b] ~ pyw and E[b|?,_, < oo forall p >1, k > 0.

K

Proof: decomposition of SPDE.

(Generalises main result of [C. ‘19].)
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Corollaries

Corollary (Universality of measure)

Suppose pic v, is ‘nice’ approximation of pyw, (e.g. Wilson, Villain, Manton
actions).

Then piec ym, = fym, in gauge-invariant f.d.d.
Proof.

Moment bounds imply tightness of fic,ya,. Universality of dynamic + uniqueness
of invariant measure identifies limit. O

Related work of [Driver ‘89]: Wilson action on R?.
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Conclusion

= Link between YM Langevin dynamic and Euclidean QFT.
= Future work: other geometries for 2D YM?

» Sphere S?: uniqueness of limit more subtle.
= Uniqueness of C in 3D?

» Systematise Euler estimates..
» Wilson loops need regularisation.

Non-exactly solvable models? 2D YM-Higgs, 3D YM.

» Progress on Abelian 2D YM-Higgs [Shen ‘21, Chandra-C. ‘22]
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Thank you for your attention!
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