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Identification of limit



Solution to Langevin dynamic

∂tAa = − 1
2 ∇Sym(Aa) + dAa dAa + CAa + ξ, Aa

0 = a.

From [CCHS]:

[a] = [b]

[Aa
t ] law= [Ab

t ]

Aa
t

Ab
t

a

b
1-forms

1-forms/gauge
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Dynamic universality

From Hao’s talk:
Theorem
On T2, the discrete Langevin dynamic for any ‘nice’ lattice YM model
converges to

∂tA = ∆A + A∂A + A3 + C̄A + ξ

for some C̄ ∈ L(g, g).

Question: C̄ = C for gauge covariant constant C?

• Computable in principle, but very lengthy.
• We are not allowed to renormalise discrete dynamic.

We show C is unique gauge covariant constant.

• Strengthens 2D continuum result.
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Uniqueness of C

Consider C̄ ̸= C ∈ L(g, g) and

∂tA = ∆A + A3 + A∂A + ξ + C̄A , A0 = 0 ,
∂tB = ∆B + B3 + B∂B + ξ + C̄B , B0 = 0g .

Theorem
There exists a loop ℓ ∈ C∞(S1,T2) such that for all t > 0 sufficiently small,
there exists g ∈ C∞(T2, G) for which

|EWℓ(A(t)) − EWℓ(B(t))| ≳ t2 .

ℓt

ℓ̇t

Wilson loop: Wℓ(A) = Tr hol(A, ℓ) ∈ C, where
hol(A, ℓ) = y1 ∈ G

dyt = yt d⟨A(ℓt), ℓ̇t⟩ , y0 = I ∈ G .

Lemma: a ∼ b ⇒ Wℓ(a) = Wℓ(b).

Compare: if C̄ = C then |EWℓ(A(t)) − EWℓ(B(t))| ≲ tM for any M > 0.
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Step 3: identification of limit

Two cases:

1. Abelian (topological).
2. Semi-simple (geometric)

Abelian:

• G = U(1), g = iR, one can show C = 0.

• a ∼ b ⇔ ∃g : T2 → U(1), b = a − dgg−1.

• For C̄ ̸= 0,

∂tA = ∆A + ξ + C̄A , A(0) = 0 ,
∂tB = ∆B + ξ + C̄B , B(0) = 0g = − dgg−1 .

• ⇒ B = −et(∆+C̄) dgg−1 + A.
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Abelian case, G = U(1)

• Key: while A − dgg−1 ∼ A, there exists g such that A − δ dgg−1 ̸∼ A for
δ ≪ 1 (gauge orbit [A] disconnected).

• Non-contractible loop: ℓ : [0, 1] → T2, ℓ(x) = (x , 0).

ℓ

• Take g(x , y) = e i2πx ⇒ − dgg−1 = (−i2π, 0) ⇝ g lifts along ℓ to
non-contractile loop in U(1).

• B1(t) = −i2πetC̄ + A1(t) = i2π(1 + tC̄ + O(t2)) + A1(t) ⇒

|EWℓ(A(t)) − EWℓ(B(t))| =
∣∣∣Ee

∫
ℓ

A(t) − Ee
∫

ℓ
B(t)

∣∣∣ ≳ t .

(Need torus, result not true on simply connected manifold, e.g. R2.)
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Semi-simple case

Strategy: short time expansions.

By applying gauge transform, reduce problem to showing

|EWℓ(A(t)) − EWℓ(B(t))| ≳ t2 ,

where

∂tA = ∆A + A3 + A∂A + ξ + C̄A , A(0) = 0
∂tB = ∆B + B3 + B∂B + ξ + C̄B + c dgg−1 , B(0) = 0

for C̄ , c ∈ L(g, g), c ̸= 0, and

∂tg = parabolic PDE involving B.
g(0) = suitably chosen.
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Euler estimate for SPDE

Lemma
Let h = dg(0)g(0)−1. Then

B(t) = Ψ(t) + hO(t) + O(t2−κ) ,

where Ψ is explicit and hO(t) is linear in h and independent of B(t). Likewise

A(t) = Ψ(t) + O(t2−κ) .

In particular,
B(t) − A(t) = hO(t) + O(t2−κ) .

Order 4 expansion in modelled distributions.

Cf. [Davie ‘08, Friz–Victoir ‘08].
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Euler estimate for Wℓ = Tr hol in semi-simple case

Wℓ(A(t)) = Tr
N∑

k=0

∫ 1

0
· · ·

∫ tk−1

0
dγtk . . . dγt1 + error

with γ : [0, 1] → g line integral of At (in sense of Young).

Lemma

EWℓ(A(t)) − EWℓ(B(t)) = Lt(h) + t2 Tr((c
∫

ℓ
h)2)/2 + O(t2+)

where Lt(h) is linear in h.

NB. No order t term since Tr(g) = 0 (cf. Abelian case).

• Chow–Rashevskii theorem for G × G × g ⇒ ∃h, g , g̃ such that
h = dgg−1, 4h = dg̃ g̃−1, cX ̸= 0.

• Lt linear ⇒ either g or g̃ gives |EWℓ(A(t)) − EWℓ(B(t))| ≳ t2.

Remark: works for non-simply connected manifold.

Proves C is unique and identifies limit (universality).
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Invariant measure



Invariant measure

Theorem (C.–Shen ‘23)
For d = 2, [A] has a unique invariant probability measure µ on Ω/∼.
Moreover, µ = µym2 , the YM measure on T2.

Steps in proof:

1. Find discrete approximation µε,ym2 of µym2 such that discrete Langevin
dynamic converges to SYM:

∂tA = ∆A + A∂A + A3 + CA + ξ .

(Just finished.)

2. Moment bounds on discrete approximation µε,ym2 .

Steps 1-2 combine in Bourgain’s invariant measure argument.
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Bourgain’s argument

Suffices to show Aε
t := ε log Ut does not blow up for t ∈ [0, 1] as ε ↓ 0.

General strategy: cf. [Bourgain ‘94, Hairer–Matetski ‘16]

• Invariance of discrete dynamic:

P
[

sup
t∈[0,1]

∥Aε
t ∥ > L

]
≤ KP

[
sup

t∈[0,1/K ]
∥Aε

t ∥ > L
]

• Take K ≫ L−q for q ≫ 1 fixed. (S)PDE estimate:

∥Aε
0∥ < L ⇒ sup

t∈[0,1/K ]
∥Aε

t ∥ ≲ L .

• Moment bounds: If supε>0 E[∥Aε
0∥p] > L] < ∞ for all p > 0, then

P
[

sup
t∈[0,1]

∥Aε
t ∥ > L

]
≲ Lq−p .

• Take p > q to conclude.

Difficulty: moment estimates do not hold for µε,ym2 due to gauge invariance.
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Moment bounds

For U : Eε → G , find gauge-invariant measure of non-flatness 8U8 such that:

(a) ∥Ug ∥C0− ≤ 8U8 for discrete gauge transform g .
(b) E8U8p = O(1) uniformly in ε > 0 for p ≥ 1.

Uhlenbeck compactness: for continuum A, ∃g such that d∗Ag := div(Ag ) = 0
(Coulomb/Landau gauge)

dA = FA − [A ∧ A] , d∗A = 0 .

Elliptic regularity ⇒ ∥A∥W 1,p ≲ ∥FA∥Lp .

Can’t apply directly: in regime where only ∥A∥C0− is bounded.

(Cf. can’t bound Brownian motion in W 1,p ...)

Need Hölder-type norm

8U8 = sup
r

| log U(r)| + technical norm
|r | 1

2 −
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(a) Gauge fixing - axial gauge

Idea: use mesoscopic (axial) and microscopic (Landau) gauges. From [C. ‘19]

Reason: PDE dA = FA − [A ∧ A] is non-linear, need smallness to use ellipticity.

Axial gauge. Let U : Λε → G be gauge field. Fix maximal tree T .

y0 u0

u1

γ2(1/2)

γ7(1/2)

G

1

u0

u1u2

u7

γ2

γ7

• u0, u1, . . . ∈ G given by U.
• Find γi connecting 1⇝ ui in Lipschitz way (quantitative homotopy):

ε−1| log Ug
b | ≲ ε− 1

2 −8U8 + O(ε) (C− 1
2 − control ⇝ suboptimal)
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(a) Gauge fixing - Landau gauge

Zoom in scale by scale: if g defined on Λ2ε, extend g to Λε such that

log Ug
b2

= log Ug
b3

= 1
2 log Ug

b2b3
(likewise for b4, b5, . . .),

and
4∑

i=1

log Ug
xyi ≈ 0

i.e. d∗ log U(x) ≈ 0 .

(If G = U(1), can make = 0 (mod 2π).)

Approximately minimises
∑4

i=1 | log Ug
xyi |

2. y4

y2

y3 y1

b6 b7

b8

b1

b2b3

b4

b5

x
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(a) Gauge fixing - Landau gauge

If ℓ is on lattice Λε, then∫
ℓ

ε−1 log Ug = 1
2

∑
i=1,2

∫
ℓi

ε−1 log Ug

︸ ︷︷ ︸
boundary term

+
∑

p∈grey

log U(p)︸ ︷︷ ︸
source term:FA

+ BCH errors︸ ︷︷ ︸
[A∧A]

.

• boundary term: induction
• BCH errors: mild
• source term FA: hardest part

ℓ2

ℓ

ℓ1

Technical norm: q-var of anti-developments of U ⇝ controls ‘smearings’
∑

p log U(p)
by gauge-inv. ‘lasso smearings’

∑
p AdU(ℓp) log U(p) (Young sum/integral).

Outcome: If maxb∈Eδ | log Ub| is small, then ∃g : for all b ∈ Eε<δ

ε−1| log Ug
b | ≲ ε0−eC log2(8U8+1) (C0− control ⇝ optimal)
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(b) Probabilistic estimates

To control 8U8 probabilistically, use random walk representation of µε,ym2 :

U(r) law= Xε−2|r|

where X0, X1, . . . is conditioned random walk on G with Brownian-like
increments: E| log X −1

i Xi+1|p ≲ E|Bε2 |p ∼ εp/2.

Ingredients:

• Uniform Gaussian tails Eeη| log X
ε−2t |2

< ∞ for η > 0.
▶ Rough path analysis of random walks.

• Uniform lower and upper bounds on density of Xε−2t for t > 0 fixed.
▶ Markov chain estimates (extension of [Hebisch–Saloff-Coste ‘93]).

Remark: only part requiring a priori knowledge of measure.

(But adaptable to some non-exactly solvable models [Chandra–C. ‘22].)
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Corollaries and conclusion



Corollaries

Corollary (Long-time existence)

The Markov process [A] survives for all time for all initial condition.

Proof: ergodicity theory of SPDEs. [Hairer–Mattingly ‘18, Hairer–Schönbauer ‘22]

Corollary (Gauge-fixed decomposition)

There exist a Gaussian free field Ψ and random function b such that
[Ψ + b] ∼ µym and E|b|pC1−κ < ∞ for all p ≥ 1, κ > 0.

Proof: decomposition of SPDE.

(Generalises main result of [C. ‘19].)
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Corollaries

Corollary (Universality of measure)

Suppose µε,ym2 is ‘nice’ approximation of µym2 (e.g. Wilson, Villain, Manton
actions).

Then µε,ym2 → µym2 in gauge-invariant f.d.d.

Proof.

Moment bounds imply tightness of µε,ym2 . Universality of dynamic + uniqueness
of invariant measure identifies limit.

Related work of [Driver ‘89]: Wilson action on R2.
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Conclusion

• Link between YM Langevin dynamic and Euclidean QFT.

• Future work: other geometries for 2D YM?

▶ Sphere S2: uniqueness of limit more subtle.

• Uniqueness of C in 3D?

▶ Systematise Euler estimates..
▶ Wilson loops need regularisation.

• Non-exactly solvable models? 2D YM–Higgs, 3D YM.

▶ Progress on Abelian 2D YM–Higgs [Shen ‘21, Chandra–C. ‘22]
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Thank you for your attention!
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