THE UNIVERSITY of EDINBURGH School of Mathematics

Invariant measure and universality of the 2D Yang-Mills Langevin dynamic (II)

Ilya Chevyrev
Based on joint work with Hao Shen: arXiv:2302.12160
13 June 2023
Stochastic Analysis meets QFT - critical theory Münster

Overview

1. Identification of limit
2. Invariant measure
3. Corollaries and conclusion

Identification of limit

Solution to Langevin dynamic

$$
\partial_{t} A^{a}=-\frac{1}{2} \nabla S_{\mathrm{YM}}\left(A^{a}\right)+\mathrm{d}_{A^{a}} \mathrm{~d} A^{a}+C A^{a}+\xi, \quad A_{0}^{a}=a .
$$

From [CCHS]:

Dynamic universality

From Hao's talk:

Theorem

On \mathbb{T}^{2}, the discrete Langevin dynamic for any 'nice' lattice YM model converges to

$$
\partial_{t} A=\Delta A+A \partial A+A^{3}+\bar{C} A+\xi
$$

for some $\bar{C} \in L(\mathfrak{g}, \mathfrak{g})$.

Question: $\bar{C}=C$ for gauge covariant constant C ?

- Computable in principle, but very lengthy.
- We are not allowed to renormalise discrete dynamic.

We show C is unique gauge covariant constant.

- Strengthens 2D continuum result.

Uniqueness of C

Consider $\bar{C} \neq C \in L(\mathfrak{g}, \mathfrak{g})$ and

$$
\begin{array}{ll}
\partial_{t} A=\Delta A+A^{3}+A \partial A+\xi+\bar{C} A, & A_{0}=0, \\
\partial_{t} B=\Delta B+B^{3}+B \partial B+\xi+\bar{C} B, & B_{0}=0^{g} .
\end{array}
$$

Theorem

There exists a loop $\ell \in \mathcal{C}^{\infty}\left(S^{1}, \mathbb{T}^{2}\right)$ such that for all $t>0$ sufficiently small, there exists $g \in \mathcal{C}^{\infty}\left(\mathbb{T}^{2}, G\right)$ for which

$$
\left|\mathbb{E} W_{\ell}(A(t))-\mathbb{E} W_{\ell}(B(t))\right| \gtrsim t^{2} .
$$

Wilson loop: $W_{\ell}(A)=\operatorname{Tr}$ hol $(A, \ell) \in \mathbf{C}$, where $\operatorname{hol}(A, \ell)=y_{1} \in G$

$$
\mathrm{d} y_{t}=y_{t} \mathrm{~d}\left\langle A\left(\ell_{t}\right), \dot{\ell}_{t}\right\rangle, \quad y_{0}=I \in G .
$$

Lemma: $a \sim b \Rightarrow W_{\ell}(a)=W_{\ell}(b)$.
Compare: if $\bar{C}=C$ then $\left|\mathbb{E} W_{\ell}(A(t))-\mathbb{E} W_{\ell}(B(t))\right| \lesssim t^{M}$ for any $M>0$.

Step 3: identification of limit

Two cases:

1. Abelian (topological).
2. Semi-simple (geometric)

Abelian:

- $G=U(1), \mathfrak{g}=i \mathbb{R}$, one can show $C=0$.
- $a \sim b \Leftrightarrow \exists g: \mathbb{T}^{2} \rightarrow \mathrm{U}(1), b=a-\mathrm{d} g g^{-1}$.
- For $\bar{C} \neq 0$,

$$
\begin{aligned}
& \partial_{t} A=\Delta A+\xi+\bar{C} A, \quad A(0)=0 \\
& \partial_{t} B=\Delta B+\xi+\bar{C} B, \quad B(0)=0^{g}=-\mathrm{d} g g^{-1}
\end{aligned}
$$

- $\Rightarrow B=-e^{t(\Delta+\bar{C})} \mathrm{d} g g^{-1}+A$.

Abelian case, $G=\mathrm{U}(1)$

- Key: while $A-\mathrm{d} g g^{-1} \sim A$, there exists g such that $A-\delta \mathrm{d} g g^{-1} \nsim A$ for $\delta \ll 1$ (gauge orbit [A] disconnected).
- Non-contractible loop: $\ell:[0,1] \rightarrow \mathbb{T}^{2}, \ell(x)=(x, 0)$.

- Take $g(x, y)=e^{i 2 \pi x} \Rightarrow-\mathrm{d} g g^{-1}=(-i 2 \pi, 0) \rightsquigarrow g$ lifts along ℓ to non-contractile loop in $U(1)$.
- $B_{1}(t)=-i 2 \pi e^{t \bar{C}}+A_{1}(t)=i 2 \pi\left(1+t \bar{C}+O\left(t^{2}\right)\right)+A_{1}(t) \Rightarrow$

$$
\left|\mathbb{E} W_{\ell}(A(t))-\mathbb{E} W_{\ell}(B(t))\right|=\left|\mathbb{E} e^{\int_{\ell} A(t)}-\mathbb{E} e^{\int_{\ell} B(t)}\right| \gtrsim t
$$

(Need torus, result not true on simply connected manifold, e.g. \mathbb{R}^{2}.)

Semi-simple case

Strategy: short time expansions.

By applying gauge transform, reduce problem to showing

$$
\left|\mathbb{E} W_{\ell}(A(t))-\mathbb{E} W_{\ell}(B(t))\right| \gtrsim t^{2}
$$

where

$$
\begin{array}{ll}
\partial_{t} A=\Delta A+A^{3}+A \partial A+\xi+\bar{C} A, & A(0)=0 \\
\partial_{t} B=\Delta B+B^{3}+B \partial B+\xi+\bar{C} B+c \mathrm{dgg}^{-1}, & B(0)=0
\end{array}
$$

for $\bar{C}, c \in L(\mathfrak{g}, \mathfrak{g}), c \neq 0$, and

$$
\begin{aligned}
\partial_{t} g & =\text { parabolic PDE involving } B . \\
g(0) & =\text { suitably chosen } .
\end{aligned}
$$

Euler estimate for SPDE

Lemma

Let $h=\operatorname{dg}(0) g(0)^{-1}$. Then

$$
B(t)=\Psi(t)+h O(t)+O\left(t^{2-\kappa}\right)
$$

where Ψ is explicit and $h O(t)$ is linear in h and independent of $B(t)$. Likewise

$$
A(t)=\Psi(t)+O\left(t^{2-\kappa}\right)
$$

In particular,

$$
B(t)-A(t)=h O(t)+O\left(t^{2-\kappa}\right)
$$

Order 4 expansion in modelled distributions.
Cf. [Davie '08, Friz-Victoir '08].

Euler estimate for $W_{\ell}=$ Tr hol in semi-simple case

$$
W_{\ell}(A(t))=\operatorname{Tr} \sum_{k=0}^{N} \int_{0}^{1} \ldots \int_{0}^{t_{k-1}} \mathrm{~d} \gamma_{t_{k}} \ldots \mathrm{~d} \gamma_{t_{1}}+\text { error }
$$

with $\gamma:[0,1] \rightarrow \mathfrak{g}$ line integral of A_{t} (in sense of Young).

Lemma

$$
\mathbb{E} W_{\ell}(A(t))-\mathbb{E} W_{\ell}(B(t))=L_{t}(h)+t^{2} \operatorname{Tr}\left(\left(c \int_{\ell} h\right)^{2}\right) / 2+O\left(t^{2+}\right)
$$

where $L_{t}(h)$ is linear in h.

NB. No order t term since $\operatorname{Tr}(\mathfrak{g})=0$ (cf. Abelian case).

- Chow-Rashevskii theorem for $G \times G \times \mathfrak{g} \Rightarrow \exists h, g, \tilde{g}$ such that $h=\mathrm{d} g g^{-1}, 4 h=\mathrm{d} \tilde{g} \tilde{g}^{-1}, c X \neq 0$.
- L_{t} linear \Rightarrow either g or \tilde{g} gives $\left|\mathbb{E} W_{\ell}(A(t))-\mathbb{E} W_{\ell}(B(t))\right| \gtrsim t^{2}$.

Remark: works for non-simply connected manifold.
Proves C is unique and identifies limit (universality).

Invariant measure

Invariant measure

Theorem (C.-Shen '23)

For $d=2,[A]$ has a unique invariant probability measure μ on Ω / \sim. Moreover, $\mu=\mu_{\mathrm{YM}_{2}}$, the $Y M$ measure on \mathbb{T}^{2}.

Steps in proof:

1. Find discrete approximation $\mu_{\varepsilon, \mathrm{YM}_{2}}$ of $\mu_{\mathrm{YM}_{2}}$ such that discrete Langevin dynamic converges to SYM:

$$
\partial_{t} A=\Delta A+A \partial A+A^{3}+C A+\xi
$$

(Just finished.)
2. Moment bounds on discrete approximation $\mu_{\varepsilon, \mathrm{YM}_{2}}$.

Steps 1-2 combine in Bourgain's invariant measure argument.

Bourgain's argument

Suffices to show $A_{t}^{\varepsilon}:=\varepsilon \log U_{t}$ does not blow up for $t \in[0,1]$ as $\varepsilon \downarrow 0$.
General strategy: cf. [Bourgain '94, Hairer-Matetski '16]

- Invariance of discrete dynamic:

$$
\mathbb{P}\left[\sup _{t \in[0,1]}\left\|A_{t}^{\varepsilon}\right\|>L\right] \leq K \mathbb{P}\left[\sup _{t \in[0,1 / K]}\left\|A_{t}^{\varepsilon}\right\|>L\right]
$$

- Take $K \gg L^{-q}$ for $q \gg 1$ fixed. (S)PDE estimate:

$$
\left\|A_{0}^{\varepsilon}\right\|<L \Rightarrow \sup _{t \in[0,1 / K]}\left\|A_{t}^{\varepsilon}\right\| \lesssim L
$$

- Moment bounds: If $\left.\sup _{\varepsilon>0} \mathbb{E}\left[\left\|A_{0}^{\varepsilon}\right\|^{p}\right]>L\right]<\infty$ for all $p>0$, then

$$
\mathbb{P}\left[\sup _{t \in[0,1]}\left\|A_{t}^{\varepsilon}\right\|>L\right] \lesssim L^{q-p}
$$

- Take $p>q$ to conclude.

Difficulty: moment estimates do not hold for $\mu_{\varepsilon, \mathrm{YM}_{2}}$ due to gauge invariance.

Moment bounds

For $U: E_{\varepsilon} \rightarrow G$, find gauge-invariant measure of non-flatness $\llbracket U \rrbracket$ such that:
(a) $\left\|U^{g}\right\|_{\mathcal{C}^{0-}} \leq \llbracket U \rrbracket$ for discrete gauge transform g.
(b) $\mathbb{E} \rrbracket U \rrbracket^{p}=O(1)$ uniformly in $\varepsilon>0$ for $p \geq 1$.

Uhlenbeck compactness: for continuum $A, \exists g$ such that $\mathrm{d}^{*} A^{g}:=\operatorname{div}\left(A^{g}\right)=0$ (Coulomb/Landau gauge)

$$
\mathrm{d} A=F_{A}-[A \wedge A], \quad \mathrm{d}^{*} A=0
$$

Elliptic regularity $\Rightarrow\|A\|_{W^{1, p}} \lesssim\left\|F_{A}\right\|_{L^{p}}$.
Can't apply directly: in regime where only $\|A\|_{\mathcal{C}^{0-}}$ is bounded.
(Cf. can't bound Brownian motion in $W^{1, p} \ldots$)
Need Hölder-type norm

$$
\llbracket U \rrbracket=\sup _{r} \frac{|\log U(r)|+\text { technical norm }}{|r|^{\frac{1}{2}-}}
$$

(a) Gauge fixing - axial gauge

Idea: use mesoscopic (axial) and microscopic (Landau) gauges. From [c. '19]
Reason: $\operatorname{PDE} \mathrm{d} A=F_{A}-[A \wedge A]$ is non-linear, need smallness to use ellipticity.
Axial gauge. Let $U: \Lambda_{\varepsilon} \rightarrow G$ be gauge field. Fix maximal tree T.

- $u_{0}, u_{1}, \ldots \in G$ given by U.
- Find γ_{i} connecting $1 \rightsquigarrow u_{i}$ in Lipschitz way (quantitative homotopy):

$$
\varepsilon^{-1}\left|\log U_{b}^{g}\right| \lesssim \varepsilon^{-\frac{1}{2}-} \llbracket U \rrbracket+O(\varepsilon) \quad\left(\mathcal{C}^{-\frac{1}{2}-} \text { control } \rightsquigarrow \text { suboptimal }\right)
$$

(a) Gauge fixing - Landau gauge

Zoom in scale by scale: if g defined on $\Lambda_{2 \varepsilon}$, extend g to Λ_{ε} such that

$$
\left.\log U_{b_{2}}^{g}=\log U_{b_{3}}^{g}=\frac{1}{2} \log U_{b_{2} b_{3}}^{g} \quad \text { (likewise for } b_{4}, b_{5}, \ldots\right),
$$

$$
\begin{aligned}
& \text { and } \sum_{i=1}^{4} \log U_{x y_{i}}^{g} \approx 0 \\
& \text { i.e. } \mathrm{d}^{*} \log U(x) \approx 0 .
\end{aligned}
$$

(If $G=U(1)$, can make $=0(\bmod 2 \pi)$.)
Approximately minimises $\sum_{i=1}^{4}\left|\log U_{x y_{i}}^{g}\right|^{2}$.

(a) Gauge fixing - Landau gauge

If ℓ is on lattice Λ_{ε}, then

$$
\int_{\ell} \varepsilon^{-1} \log U^{g}=\underbrace{\frac{1}{2} \sum_{i=1,2} \int_{\ell_{i}} \varepsilon^{-1} \log U^{g}}_{\text {boundary term }}+\underbrace{\sum_{p \in \text { grey }} \log U(p)}_{\text {source term: } F_{A}}+\underbrace{\mathrm{BCH} \text { errors }}_{[A \wedge A]} .
$$

- boundary term: induction
- BCH errors: mild
- source term F_{A} : hardest part

Technical norm: q-var of anti-developments of $U \rightsquigarrow$ controls 'smearings' $\sum_{p} \log U(p)$ by gauge-inv. 'lasso smearings' $\sum_{p} \operatorname{Ad}_{U\left(\ell_{p}\right)} \log U(p)$ (Young sum/integral).
Outcome: If $\max _{b \in E_{\delta}}\left|\log U_{b}\right|$ is small, then $\exists g$: for all $b \in E_{\varepsilon<\delta}$

$$
\varepsilon^{-1}\left|\log U_{b}^{g}\right| \lesssim \varepsilon^{0-} e^{C \log ^{2}(\square U \square+1)} \quad\left(\mathcal{C}^{0-} \text { control } \rightsquigarrow \text { optimal }\right)
$$

(b) Probabilistic estimates

To control $\llbracket U \rrbracket$ probabilistically, use random walk representation of $\mu_{\varepsilon, \mathrm{YM}_{2}}$:

$$
U(r) \stackrel{\text { anw }}{=} X_{\varepsilon}-2|r|
$$

where X_{0}, X_{1}, \ldots is conditioned random walk on G with Brownian-like increments: $\mathbb{E}\left|\log X_{i}^{-1} X_{i+1}\right|^{p} \lesssim \mathbb{E}\left|B_{\varepsilon^{2}}\right|^{p} \sim \varepsilon^{p / 2}$.

Ingredients:

- Uniform Gaussian tails $\mathbb{E} e^{\eta\left|\log x_{\varepsilon}-2_{t}\right|^{2}}<\infty$ for $\eta>0$.
- Rough path analysis of random walks.
- Uniform lower and upper bounds on density of $X_{\varepsilon^{-2}}$ for $t>0$ fixed.
- Markov chain estimates (extension of [Hebisch-Saloff-Coste '93]).

Remark: only part requiring a priori knowledge of measure.
(But adaptable to some non-exactly solvable models [Chandra-C. '22].)

Corollaries and conclusion

Corollaries

Corollary (Long-time existence)

The Markov process $[A]$ survives for all time for all initial condition.
Proof: ergodicity theory of SPDEs. [Hairer-Mattingly '18, Haire-Schönbauer '22]

Corollary (Gauge-fixed decomposition)

There exist a Gaussian free field Ψ and random function b such that $[\Psi+b] \sim \mu_{Y M}$ and $\mathbb{E}|b|_{\mathcal{C}^{1-\kappa}}^{p}<\infty$ for all $p \geq 1, \kappa>0$.

Proof: decomposition of SPDE.
(Generalises main result of [C. '19].)

Corollaries

Corollary (Universality of measure)

Suppose $\mu_{\varepsilon, \mathrm{YM}_{2}}$ is 'nice' approximation of $\mu_{\mathrm{YM}_{2}}$ (e.g. Wilson, Villain, Manton actions).

Then $\mu_{\varepsilon, \mathrm{YM}_{2}} \rightarrow \mu_{\mathrm{YM}_{2}}$ in gauge-invariant f.d.d.
Proof.
Moment bounds imply tightness of $\mu_{\varepsilon, \mathrm{YM}_{2}}$. Universality of dynamic + uniqueness of invariant measure identifies limit.

Related work of [Driver '89]: Wilson action on \mathbb{R}^{2}.

Conclusion

- Link between YM Langevin dynamic and Euclidean QFT.
- Future work: other geometries for 2D YM?
- Sphere \mathbb{S}^{2} : uniqueness of limit more subtle.
- Uniqueness of C in 3D?
- Systematise Euler estimates..
- Wilson loops need regularisation.
- Non-exactly solvable models? 2D YM-Higgs, 3D YM.
- Progress on Abelian 2D YM-Higgs [Shen '21, Chandra-C. '22]

Thank you for your attention!

