
A class of singular SPDEs via convex integration

Xiangchan Zhu

Chinese academy of Science

Joint work with Martina Hofmanová and Rongchan Zhu
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Navier-Stokes equation

Consider the Navier-Stokes equation on T3:

∂tu + u · ∇u =ν∆u −∇p + ξ, divu = 0

u(0) =u0

(1)

u(t, x) ∈ R3: the velocity field at time t and position x ,

p(t, x): the pressure,

ν > 0: the viscosity constant

ξ: space-time white noise
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Derivation of Navier-Stokes system: Newton’s law

Suppose u = u(t, x(t)) and ρ: the density

d

dt
u(t) = ∂tu︸︷︷︸

variation

+ u · ∇u︸ ︷︷ ︸
convection

= ν∆u︸︷︷︸
Diffusion

− ∇p︸︷︷︸
Internal source

+ f︸︷︷︸
External source

,

∂tρ+∇ · (ρu) = 0︸ ︷︷ ︸
mass conservation

⇒ if ρ=constant divu = 0

u(0) = u0.

Motivation of space-time white noise

Landau-Lifshitz-Navier-Stokes system: thermal fluctuations (critical or
supercritical)

scaling limit from vortex approximation/Euler perturbed by transport noise
([Flandoli, Luo20])

regularization by noise
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Introduction

Deterministic: [Leray34], [Kato, Fujita62], [Temam84], [Constantin, Foias88]
[Cafarelli,Kohn, Nirenberg84], [Fefferman 00], [Koch, Tataru01],...

The global existence of weak solutions has been obtained in all dimensions.

Existence and smoothness of solutions in the three dimensional case remains
open (the Millennium Prize problem)./ Small initial data

[Buckmaster, Vicol 19]: Non-uniqueness of analytic weak

[Albritton, E. Brué, M. Colombo. 21] non-uniqueness of Leray solutions for
some force

Stochastic : trace-class noise

Martingale and Markov solutions have been constructed [Flandoli, Romito08]

Nonuniqueness in law/ Nonuniqueness of Markov solutions/Global
probabilistically strong solutions/ Nonuniqueness of stationary solution for NS
and Euler [Hofmanová, Zhu, Z. 19, 21, 22]
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Navier-Stokes equations: d = 2

∂tu + div(u ⊗ u) =∆u −∇p + ξ, divu = 0, u(0) = u0

space-time white noise: a random Gaussian function with covariance
Eξ(s, x)ξ(t, y) = δ(s − t)δ(x − y)

⇒ ξ ∈ C−d/2−1−

(f , g)→ fg is well-defined on Cα × Cβ to Cα∧β only if α + β > 0.

For d = 2, [Da Prato, Debussche03]: decompose u = z + v

∂tz = ∆z −∇p1 + ξ, divz = 0

∂tv = ∆v − div(v ⊗ v + v ⊗ z + z ⊗ v)− div( z ⊗ z︸ ︷︷ ︸
Wick power

)−∇p2, divv = 0,

z ∈ C−, v ∈ C 1−,

obtain local well-posedness via fixed point argument and global existence and
uniqueness from almost every starting point via invariant measure

[Zhu, Z17]: Strong-Feller property and global existence and uniqueness from
every starting point

[Hairer, Rosati23]: Global well-posedness by PDE argument

Xiangchan Zhu (CAS) singular spde via convex integration 6 / 18



Navier-Stokes equations: d = 2

∂tu + div(u ⊗ u) =∆u −∇p + ξ, divu = 0, u(0) = u0

space-time white noise: a random Gaussian function with covariance
Eξ(s, x)ξ(t, y) = δ(s − t)δ(x − y)⇒ ξ ∈ C−d/2−1−

(f , g)→ fg is well-defined on Cα × Cβ to Cα∧β only if α + β > 0.

For d = 2, [Da Prato, Debussche03]: decompose u = z + v

∂tz = ∆z −∇p1 + ξ, divz = 0

∂tv = ∆v − div(v ⊗ v + v ⊗ z + z ⊗ v)− div( z ⊗ z︸ ︷︷ ︸
Wick power

)−∇p2, divv = 0,

z ∈ C−, v ∈ C 1−,

obtain local well-posedness via fixed point argument and global existence and
uniqueness from almost every starting point via invariant measure

[Zhu, Z17]: Strong-Feller property and global existence and uniqueness from
every starting point

[Hairer, Rosati23]: Global well-posedness by PDE argument

Xiangchan Zhu (CAS) singular spde via convex integration 6 / 18



Navier-Stokes equations: d = 2

∂tu + div(u ⊗ u) =∆u −∇p + ξ, divu = 0, u(0) = u0

space-time white noise: a random Gaussian function with covariance
Eξ(s, x)ξ(t, y) = δ(s − t)δ(x − y)⇒ ξ ∈ C−d/2−1−

(f , g)→ fg is well-defined on Cα × Cβ to Cα∧β only if α + β > 0.

For d = 2, [Da Prato, Debussche03]: decompose u = z + v

∂tz = ∆z −∇p1 + ξ, divz = 0

∂tv = ∆v − div(v ⊗ v + v ⊗ z + z ⊗ v)− div( z ⊗ z︸ ︷︷ ︸
Wick power

)−∇p2, divv = 0,

z ∈ C−, v ∈ C 1−,

obtain local well-posedness via fixed point argument and global existence and
uniqueness from almost every starting point via invariant measure

[Zhu, Z17]: Strong-Feller property and global existence and uniqueness from
every starting point

[Hairer, Rosati23]: Global well-posedness by PDE argument

Xiangchan Zhu (CAS) singular spde via convex integration 6 / 18



Navier-Stokes equations: d = 2

∂tu + div(u ⊗ u) =∆u −∇p + ξ, divu = 0, u(0) = u0

space-time white noise: a random Gaussian function with covariance
Eξ(s, x)ξ(t, y) = δ(s − t)δ(x − y)⇒ ξ ∈ C−d/2−1−

(f , g)→ fg is well-defined on Cα × Cβ to Cα∧β only if α + β > 0.

For d = 2, [Da Prato, Debussche03]: decompose u = z + v

∂tz = ∆z −∇p1 + ξ, divz = 0

∂tv = ∆v − div(v ⊗ v + v ⊗ z + z ⊗ v)− div( z ⊗ z︸ ︷︷ ︸
Wick power

)−∇p2, divv = 0,

z ∈ C−, v ∈ C 1−,

obtain local well-posedness via fixed point argument and global existence and
uniqueness from almost every starting point via invariant measure

[Zhu, Z17]: Strong-Feller property and global existence and uniqueness from
every starting point

[Hairer, Rosati23]: Global well-posedness by PDE argument

Xiangchan Zhu (CAS) singular spde via convex integration 6 / 18



Navier-Stokes equations: d = 2

∂tu + div(u ⊗ u) =∆u −∇p + ξ, divu = 0, u(0) = u0

space-time white noise: a random Gaussian function with covariance
Eξ(s, x)ξ(t, y) = δ(s − t)δ(x − y)⇒ ξ ∈ C−d/2−1−

(f , g)→ fg is well-defined on Cα × Cβ to Cα∧β only if α + β > 0.

For d = 2, [Da Prato, Debussche03]: decompose u = z + v

∂tz = ∆z −∇p1 + ξ, divz = 0

∂tv = ∆v − div(v ⊗ v + v ⊗ z + z ⊗ v)− div( z ⊗ z︸ ︷︷ ︸
Wick power

)−∇p2, divv = 0,

z ∈ C−, v ∈ C 1−,

obtain local well-posedness via fixed point argument and global existence and
uniqueness from almost every starting point via invariant measure

[Zhu, Z17]: Strong-Feller property and global existence and uniqueness from
every starting point

[Hairer, Rosati23]: Global well-posedness by PDE argument

Xiangchan Zhu (CAS) singular spde via convex integration 6 / 18



Navier-Stokes equations: d = 2

∂tu + div(u ⊗ u) =∆u −∇p + ξ, divu = 0, u(0) = u0

space-time white noise: a random Gaussian function with covariance
Eξ(s, x)ξ(t, y) = δ(s − t)δ(x − y)⇒ ξ ∈ C−d/2−1−

(f , g)→ fg is well-defined on Cα × Cβ to Cα∧β only if α + β > 0.

For d = 2, [Da Prato, Debussche03]: decompose u = z + v

∂tz = ∆z −∇p1 + ξ, divz = 0

∂tv = ∆v − div(v ⊗ v + v ⊗ z + z ⊗ v)− div( z ⊗ z︸ ︷︷ ︸
Wick power

)−∇p2, divv = 0,

z ∈ C−, v ∈ C 1−,

obtain local well-posedness via fixed point argument and global existence and
uniqueness from almost every starting point via invariant measure

[Zhu, Z17]: Strong-Feller property and global existence and uniqueness from
every starting point

[Hairer, Rosati23]: Global well-posedness by PDE argument

Xiangchan Zhu (CAS) singular spde via convex integration 6 / 18



Navier-Stokes equations: d = 3

For d = 3, Da Prato-Debussche trick breaks down. In this case

z ∈ C−1/2−, v ∈ C−,

and even if we iterate the above trick as follows: decompose v as v = z1 + h,
where z1, h are solutions to the following equations:

Lz1 = (∂t −∆)z1 = −div(z ⊗ z)−∇p1, divz1 = 0,

Lh + div((h + z1)⊗ (h + z1) + z ⊗ (h + z1) + (z1 + h)⊗ z) +∇ph = 0,

divh = 0,

z1 ∈ C−, h ∈ C
1
2−.

Solution: regularity structures theory Hairer 14/ paracontrolled distribution
method Gubinelli, Imkeller, Perkowski 15 ⇒ local well-posedness in [Zhu, Z.
15]
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Problem: Global solution via PDE argument

Problem: How to derive global solutions via uniform estimates?

Singular SPDE:

dynamical Φ4 model: dissipation effect from −Φ3 [Mourrat, Weber 17,
Albeverio, Kusuoka 18, Gubinelli, Hofmanová 19, Moinat, Weber 20,
Chandra, Moinat, Weber 19]

KPZ equation: Cole-Hopf transform [Hairer13, Perkowski, Rosati 19]/
Maximum principle+ Zvonkin transform in [Zhang, Zhu, Z. 20]

3D NS equation driven by space time white noise

no strong drift

no maximum principle or Cole–Hopf’s transform.

existence of an invariant measure: open problem.

No global energy (or other) estimates are available due to irregularity of
solutions (L2 estimate does not work here)
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Chandra, Moinat, Weber 19]

KPZ equation: Cole-Hopf transform [Hairer13, Perkowski, Rosati 19]/
Maximum principle+ Zvonkin transform in [Zhang, Zhu, Z. 20]

3D NS equation driven by space time white noise

no strong drift

no maximum principle or Cole–Hopf’s transform.

existence of an invariant measure: open problem.

No global energy (or other) estimates are available due to irregularity of
solutions (L2 estimate does not work here)

Xiangchan Zhu (CAS) singular spde via convex integration 8 / 18



Problem: Global solution via PDE argument

Problem: How to derive global solutions via uniform estimates?
Singular SPDE:

dynamical Φ4 model: dissipation effect from −Φ3 [Mourrat, Weber 17,
Albeverio, Kusuoka 18, Gubinelli, Hofmanová 19, Moinat, Weber 20,
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Main results

Theorem (Hofmanová, Zhu, Z. 21)

For any given divergence free initial condition u0 ∈ L2 ∪ B−1+κ∞,∞ P-a.s., κ > 0,
there exist infinitely many global-in-time probabilistically strong solutions solving
N-S driven by space-time white noise in a paracontrolled sense.

Idea:
1 Decomposition to regular and irregular parts by Bony’s paraproduct and

localizer
2 Paracontrolled calculus+ Schauder estimate for irregular part
3 Convex integration for the regular part

The above method allows to cover the regime from trace-class noise to space-time
white noise.

Theorem (Lü, Z. 23)

Sharp nonuniqueness in 2D case.

Uniqueness of v in CTL2 ∩ L2
THζ for some ζ > 0

Infinitely many solutions v in CTLp ∩ L2
THζ for some ζ > 0 and 1 < p < 2.

Xiangchan Zhu (CAS) singular spde via convex integration 9 / 18



Main results

Theorem (Hofmanová, Zhu, Z. 21)
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Convex integration

Iteration procedure a pair (v1
q , v

2
q , R̊q) is constructed via

Lv1
q + div(z1 ⊗ z1 + V 1

q + V 1,∗
q ) +∇p1

q = 0,

Lv2
q + div((v1

q + v2
q )⊗ (v1

q + v2
q ) + V 2

q + V 2,∗
q ) +∇p2

q = divR̊q,

divv1
q = divv2

q = 0, v1
q (0) = h0, v2

q (0) = 0,

Key step: Let wq+1 = v2
q+1 − v2

q , then we have

divR̊q+1 = −∆wq+1 + ∂twq+1 + div(vq ⊗ wq+1 + wq+1 ⊗ vq)︸ ︷︷ ︸
linear error

+ div
(

wq+1 ⊗ wq+1 + R̊q

)
︸ ︷︷ ︸
oscillation error: cancelation

+....

Choose wq+1 ∼
∑
ξ aξ(R̊q)Wξ with Wξ intermittent jets from [Buckmaster,

Colombo, Vicol19]

The space concentration ensure the linear error is small in L1∫
Wξ ⊗Wξ ' 1 and aξ(R̊q) ≈

√
−R̊q oscillates slowly
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The space concentration ensure the linear error is small in L1∫
Wξ ⊗Wξ ' 1 and aξ(R̊q) ≈

√
−R̊q oscillates slowly
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Iteration scheme

v2
0

v1
0 , v

]
0

R̊0 v2
1

v1
1 , v

]
1

. . . . . . v2
q

v1
q , v

]
q

R̊q v2
q+1

v1
q+1, v

]
q+1

R̊q+1

Figure: Iteration scheme.

v2
q →Schauder estimates+paracontrolled calculus v1

q , v
]
q

R̊q →convex integration v2
q+1

energy of v1 + v2 is different ⇒ nonuniqueness of solution
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Surface quasi-geostrophic equation in the critical and supercrtical regime
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Surface quasi-geostrophic equation

Surface quasi-geostrophic equation with irregular spatial perturbation

∂tθ + u · ∇θ + (−∆)γ/2θ = ζ, u = ∇⊥(−∆)−1/2θ

on [0,∞)× T2, γ ∈ [0, 3/2) and ζ ∈ C−2+κ, κ > 0.

Example: ζ = (−∆)α/2ξ, α < 1, ξ a space white noise in two dimensions.
Let

ξ̃(x) := λξ(λx), θ̃(t, x) := λ1+α−γθ(λγt, λx),

ũ(t, x) := λ1+α−γu(λγt, λx).

∂t θ̃ + λ2γ−2−αũ · ∇θ̃ = −(−∆)γ/2θ̃ + (−∆)α/2ξ̃.

Equation is subcritical if 2γ − 2− α > 0, critical if 2γ − 2− α = 0 and
supercritical if 2γ − 2− α < 0.
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Surface quasi-geostrophic equation

∂tθ + u · ∇θ + (−∆)γ/2θ =ζ, u = ∇⊥(−∆)−1/2θ

θ(0) =θ0

on [0,∞)× T2, γ ∈ [0, 3/2) and ζ ∈ C−2+κ, κ > 0.

Write for ψ smooth

〈u · ∇θ, ψ〉 =
1

2
〈θ, [R⊥·,∇ψ]θ〉,

The commutator

[R⊥·,∇ψ] = −[R2·, ∂1ψ] + [R1·, ∂2ψ]

maps Ḣ−1/2 to Ḣ1/2

⇒ For θ ∈ Ḣ−1/2, the nonlinear term is well-defined in the analytical weak
sense

energy method breaks down due to singularity of ζ
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maps Ḣ−1/2 to Ḣ1/2
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maps Ḣ−1/2 to Ḣ1/2
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Main results

Theorem (Hofmanová, Zhu, Z. 22)

There exist infinitely many

1 weak solutions on [0,∞) for any prescribed initial condition θ0 ∈ Cη P-a.s.,
η > 1/2,

2 weak solutions on [0,T ] for any prescribed initial and terminal condition
θ0, θT ∈ Cη P-a.s., η > 1/2, T ≥ 4.

Moreover, the solutions are non-Gaussian and satisfy a coming down from infinity
with respect to the noise as well as the initial condition.

Coming down from infinity: for any ε > 0 there exists a solution θ

‖θ‖
Cb([T ,∞),B

−1/2−δ
∞,1 )

≤ ε.

independent of the size of initial value and the noise
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Idea of proof

Iteration scheme: at each step n, a pair (θ≤n, qn) ∈ C∞0 × C∞0 is constructed
solving the following system

∂tθ6n +∇ · (u6nθ6n)− P≤λnζ = (−∆)γ/2θ6n + ∆qn.

Key Step: Choose θn+1 = θ6n+1 − θ6n from the structure of the nonlinearity.
Let

θn+1 = (−∆)1/2fn+1 fn+1 ∼ an+1(qn) cos(5λn+1l · x)

an+1(qn) ∼
√
−qn√
λn+1

(see [Cheng, Kwon, Li21]).
θ6n oscillate slowly and θn+1 oscillate fast ⇒ u6nθn+1 and un+1θ6n could be
controlled
Main term:

∇ · (un+1θn+1)−∆qn

= ∇ · (∇⊥fn+1(−∆)1/2fn+1 −∇qn) cancellation

special structure λn+1fn+1∇⊥fn+1 = λn+1

2 ∇
⊥f 2

n+1 is zero after divergence.
Error from (P≤λn+1 − P≤λn)ζ ⇒ qn+1
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Main results

Theorem (Hofmanová, Zhu, Z. 22)

There exist infinitely many non-Gaussian

1 stationary solutions,

2 ergodic stationary solutions,

3 steady state, i.e. time independent, solutions.

Moreover, the ergodic stationary solutions are time dependent. The point (3)
additionally implies existence and non-uniqueness of solutions to the corresponding
elliptic and wave equation.

Problem: nonuniqueness, no Feller property
Solution: on path space law is shift invariant + Uniform control of the solutions
independent of time shift
We could also use this method for fractional NS equation with rough spatial
perturbation.
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Thank you !

Xiangchan Zhu (CAS) singular spde via convex integration 18 / 18


