A class of singular SPDEs via convex integration

Xiangchan Zhu

Chinese academy of Science

Joint work with Martina Hofmanová and Rongchan Zhu

Naiver-Stokes equations driven by space-time white noise

Navier-Stokes equation

Consider the Navier-Stokes equation on \mathbb{T}^{3} :

$$
\begin{align*}
\partial_{t} u+u \cdot \nabla u & =\nu \Delta u-\nabla p+\xi, \quad \operatorname{div} u=0 \\
u(0) & =u_{0} \tag{1}
\end{align*}
$$

- $u(t, x) \in \mathbb{R}^{3}$: the velocity field at time t and position x,
- $p(t, x)$: the pressure,
- $\nu>0$: the viscosity constant
- ξ : space-time white noise

Derivation of Navier-Stokes system: Newton's law

Suppose $u=u(t, x(t))$ and ρ : the density

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} u(t)=\underbrace{\partial_{t} u}_{\text {variation }}+\underbrace{u \cdot \nabla u}_{\text {convection }}=\underbrace{\nu \Delta u}_{\text {Diffusion }}-\underbrace{\nabla p}_{\text {Internal source }}+\underbrace{f}_{\text {External source }}, \\
& \underbrace{\partial_{t} \rho+\nabla \cdot(\rho u)=0 \Rightarrow \text { if } \rho=\text { constant }}_{\text {mass conservation }} \operatorname{divu=0} \\
& u(0)=u_{0} .
\end{aligned}
$$

Derivation of Navier-Stokes system: Newton's law

Suppose $u=u(t, x(t))$ and ρ : the density

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} u(t)=\underbrace{\partial_{t} u}_{\text {variation }}+\underbrace{u \cdot \nabla u}_{\text {convection }}=\underbrace{\nu \Delta u}_{\text {Diffusion }}-\underbrace{\nabla p}_{\text {Internal source }}+\underbrace{f}_{\text {External source }}, \\
& \underbrace{\partial_{t} \rho+\nabla \cdot(\rho u)=0 \Rightarrow \text { if } \rho=\text { constant } \operatorname{div} u=0}_{\text {mass conservation }} \\
& u(0)=u_{0} .
\end{aligned}
$$

Motivation of space-time white noise

- Landau-Lifshitz-Navier-Stokes system: thermal fluctuations (critical or supercritical)
- scaling limit from vortex approximation/Euler perturbed by transport noise ([Flandoli, Luo20])
- regularization by noise

Introduction

Deterministic: [Leray34], [Kato, Fujita62], [Temam84], [Constantin, Foias88] [Cafarelli,Kohn, Nirenberg84], [Fefferman 00], [Koch, Tataru01],...

- The global existence of weak solutions has been obtained in all dimensions.
- Existence and smoothness of solutions in the three dimensional case remains open (the Millennium Prize problem)./ Small initial data
- [Buckmaster, Vicol 19]: Non-uniqueness of analytic weak
- [Albritton, E. Brué, M. Colombo. 21] non-uniqueness of Leray solutions for some force

Introduction

Deterministic: [Leray34], [Kato, Fujita62], [Temam84], [Constantin, Foias88] [Cafarelli,Kohn, Nirenberg84], [Fefferman 00], [Koch, Tataru01],...

- The global existence of weak solutions has been obtained in all dimensions.
- Existence and smoothness of solutions in the three dimensional case remains open (the Millennium Prize problem)./ Small initial data
- [Buckmaster, Vicol 19]: Non-uniqueness of analytic weak
- [Albritton, E. Brué, M. Colombo. 21] non-uniqueness of Leray solutions for some force
Stochastic : trace-class noise
- Martingale and Markov solutions have been constructed [Flandoli, Romito08]
- Nonuniqueness in law/ Nonuniqueness of Markov solutions/Global probabilistically strong solutions/ Nonuniqueness of stationary solution for NS and Euler [Hofmanová, Zhu, Z. 19, 21, 22]

Navier-Stokes equations: $d=2$

$$
\partial_{t} u+\operatorname{div}(u \otimes u)=\Delta u-\nabla p+\xi, \quad \operatorname{div} u=0, \quad u(0)=u_{0}
$$

space-time white noise: a random Gaussian function with covariance $\mathbf{E} \xi(s, x) \xi(t, y)=\delta(s-t) \delta(x-y)$

Navier-Stokes equations: $d=2$

$$
\partial_{t} u+\operatorname{div}(u \otimes u)=\Delta u-\nabla p+\xi, \quad \operatorname{div} u=0, \quad u(0)=u_{0}
$$

space-time white noise: a random Gaussian function with covariance $\mathbf{E} \xi(s, x) \xi(t, y)=\delta(s-t) \delta(x-y) \Rightarrow \xi \in C^{-d / 2-1-}$ $(f, g) \rightarrow f g$ is well-defined on $C^{\alpha} \times C^{\beta}$ to $C^{\alpha \wedge \beta}$ only if $\alpha+\beta>0$.

Navier-Stokes equations: $d=2$

$$
\partial_{t} u+\operatorname{div}(u \otimes u)=\Delta u-\nabla p+\xi, \quad \operatorname{div} u=0, \quad u(0)=u_{0}
$$

space-time white noise: a random Gaussian function with covariance
$\mathbf{E} \xi(s, x) \xi(t, y)=\delta(s-t) \delta(x-y) \Rightarrow \xi \in C^{-d / 2-1-}$
$(f, g) \rightarrow f g$ is well-defined on $C^{\alpha} \times C^{\beta}$ to $C^{\alpha \wedge \beta}$ only if $\alpha+\beta>0$.

- For $d=2$, [Da Prato, Debussche03]: decompose $u=z+v$

$$
\begin{gathered}
\partial_{t} z=\Delta z-\nabla p_{1}+\xi, \quad \operatorname{div} z=0 \\
\partial_{t} v=\Delta v-\operatorname{div}(v \otimes v+v \otimes z+z \otimes v)-\operatorname{div}(\underbrace{z \otimes z}_{\text {Wick power }})-\nabla p_{2}, \quad \operatorname{div} v=0,
\end{gathered}
$$

$$
z \in C^{-}, \quad v \in C^{1-},
$$

Navier-Stokes equations: $d=2$

$$
\partial_{t} u+\operatorname{div}(u \otimes u)=\Delta u-\nabla p+\xi, \quad \operatorname{div} u=0, \quad u(0)=u_{0}
$$

space-time white noise: a random Gaussian function with covariance
$\mathbf{E} \xi(s, x) \xi(t, y)=\delta(s-t) \delta(x-y) \Rightarrow \xi \in C^{-d / 2-1-}$ $(f, g) \rightarrow f g$ is well-defined on $C^{\alpha} \times C^{\beta}$ to $C^{\alpha \wedge \beta}$ only if $\alpha+\beta>0$.

- For $d=2$, [Da Prato, Debussche03]: decompose $u=z+v$

$$
\begin{gathered}
\partial_{t} z=\Delta z-\nabla p_{1}+\xi, \quad \operatorname{div} z=0 \\
\partial_{t} v=\Delta v-\operatorname{div}(v \otimes v+v \otimes z+z \otimes v)-\operatorname{div}(\underbrace{z \otimes z}_{\text {Wick power }})-\nabla p_{2}, \quad \operatorname{div} v=0,
\end{gathered}
$$

$$
z \in C^{-}, \quad v \in C^{1-},
$$

obtain local well-posedness via fixed point argument and global existence and uniqueness from almost every starting point via invariant measure

Navier-Stokes equations: $d=2$

$$
\partial_{t} u+\operatorname{div}(u \otimes u)=\Delta u-\nabla p+\xi, \quad \operatorname{div} u=0, \quad u(0)=u_{0}
$$

space-time white noise: a random Gaussian function with covariance
$\mathbf{E} \xi(s, x) \xi(t, y)=\delta(s-t) \delta(x-y) \Rightarrow \xi \in C^{-d / 2-1-}$ $(f, g) \rightarrow f g$ is well-defined on $C^{\alpha} \times C^{\beta}$ to $C^{\alpha \wedge \beta}$ only if $\alpha+\beta>0$.

- For $d=2$, [Da Prato, Debussche03]: decompose $u=z+v$

$$
\begin{gathered}
\partial_{t} z=\Delta z-\nabla p_{1}+\xi, \quad \operatorname{div} z=0 \\
\partial_{t} v=\Delta v-\operatorname{div}(v \otimes v+v \otimes z+z \otimes v)-\operatorname{div}(\underbrace{z \otimes z}_{\text {Wick power }})-\nabla p_{2}, \quad \operatorname{div} v=0,
\end{gathered}
$$

$$
z \in C^{-}, \quad v \in C^{1-},
$$

obtain local well-posedness via fixed point argument and global existence and uniqueness from almost every starting point via invariant measure

- [Zhu, Z17]: Strong-Feller property and global existence and uniqueness from every starting point

Navier-Stokes equations: $d=2$

$$
\partial_{t} u+\operatorname{div}(u \otimes u)=\Delta u-\nabla p+\xi, \quad \operatorname{div} u=0, \quad u(0)=u_{0}
$$

space-time white noise: a random Gaussian function with covariance
$\mathbf{E} \xi(s, x) \xi(t, y)=\delta(s-t) \delta(x-y) \Rightarrow \xi \in C^{-d / 2-1-}$ $(f, g) \rightarrow f g$ is well-defined on $C^{\alpha} \times C^{\beta}$ to $C^{\alpha \wedge \beta}$ only if $\alpha+\beta>0$.

- For $d=2$, [Da Prato, Debussche03]: decompose $u=z+v$

$$
\begin{gathered}
\partial_{t} z=\Delta z-\nabla p_{1}+\xi, \quad \operatorname{div} z=0 \\
\partial_{t} v=\Delta v-\operatorname{div}(v \otimes v+v \otimes z+z \otimes v)-\operatorname{div}(\underbrace{z \otimes z}_{\text {Wick power }})-\nabla p_{2}, \quad \operatorname{div} v=0,
\end{gathered}
$$

$$
z \in C^{-}, \quad v \in C^{1-},
$$

obtain local well-posedness via fixed point argument and global existence and uniqueness from almost every starting point via invariant measure

- [Zhu, Z17]: Strong-Feller property and global existence and uniqueness from every starting point
- [Hairer, Rosati23]: Global well-posedness by PDE argument

Navier-Stokes equations: $d=3$

For $d=3$, Da Prato-Debussche trick breaks down. In this case

$$
z \in C^{-1 / 2-}, \quad v \in C^{-}
$$

Navier-Stokes equations: $d=3$

For $d=3$, Da Prato-Debussche trick breaks down. In this case

$$
z \in C^{-1 / 2-}, \quad v \in C^{-},
$$

and even if we iterate the above trick as follows: decompose v as $v=z_{1}+h$, where z_{1}, h are solutions to the following equations:

$$
\begin{gathered}
\mathcal{L} z_{1}=\left(\partial_{t}-\Delta\right) z_{1}=-\operatorname{div}(z \otimes z)-\nabla p_{1}, \quad \operatorname{div} z_{1}=0, \\
\mathcal{L} h+\operatorname{div}\left(\left(h+z_{1}\right) \otimes\left(h+z_{1}\right)+z \otimes\left(h+z_{1}\right)+\left(z_{1}+h\right) \otimes z\right)+\nabla p^{h}=0, \\
\operatorname{div} h=0,
\end{gathered}
$$

$$
z_{1} \in C^{-}, \quad h \in C^{\frac{1}{2}-} .
$$

Navier-Stokes equations: $d=3$

For $d=3$, Da Prato-Debussche trick breaks down. In this case

$$
z \in C^{-1 / 2-}, \quad v \in C^{-}
$$

and even if we iterate the above trick as follows: decompose v as $v=z_{1}+h$, where z_{1}, h are solutions to the following equations:

$$
\begin{gathered}
\mathcal{L} z_{1}=\left(\partial_{t}-\Delta\right) z_{1}=-\operatorname{div}(z \otimes z)-\nabla p_{1}, \quad \operatorname{div} z_{1}=0, \\
\mathcal{L} h+\operatorname{div}\left(\left(h+z_{1}\right) \otimes\left(h+z_{1}\right)+z \otimes\left(h+z_{1}\right)+\left(z_{1}+h\right) \otimes z\right)+\nabla p^{h}=0, \\
\operatorname{div} h=0,
\end{gathered}
$$

$$
z_{1} \in C^{-}, \quad h \in C^{\frac{1}{2}-} .
$$

- Solution: regularity structures theory Hairer 14 / paracontrolled distribution method Gubinelli, Imkeller, Perkowski $15 \Rightarrow$ local well-posedness in [Zhu, Z. $15]$

Problem: Global solution via PDE argument

Problem: How to derive global solutions via uniform estimates?

Problem: Global solution via PDE argument

Problem: How to derive global solutions via uniform estimates?
Singular SPDE:

- dynamical Φ^{4} model: dissipation effect from $-\Phi^{3}$ [Mourrat, Weber 17, Albeverio, Kusuoka 18, Gubinelli, Hofmanová 19, Moinat, Weber 20, Chandra, Moinat, Weber 19]
- KPZ equation: Cole-Hopf transform [Hairer13, Perkowski, Rosati 19]/ Maximum principle+ Zvonkin transform in [Zhang, Zhu, Z. 20]

Problem: Global solution via PDE argument

Problem: How to derive global solutions via uniform estimates?
Singular SPDE:

- dynamical ϕ^{4} model: dissipation effect from - Φ^{3} [Mourrat, Weber 17, Albeverio, Kusuoka 18, Gubinelli, Hofmanová 19, Moinat, Weber 20, Chandra, Moinat, Weber 19]
- KPZ equation: Cole-Hopf transform [Hairer13, Perkowski, Rosati 19]/ Maximum principle+ Zvonkin transform in [Zhang, Zhu, Z. 20]
3D NS equation driven by space time white noise
- no strong drift
- no maximum principle or Cole-Hopf's transform.
- existence of an invariant measure: open problem.
- No global energy (or other) estimates are available due to irregularity of solutions (L^{2} estimate does not work here)

Main results

Theorem (Hofmanová, Zhu, Z. 21)
For any given divergence free initial condition $u_{0} \in L^{2} \cup B_{\infty, \infty}^{-1+\kappa} \mathbf{P}$-a.s., $\kappa>0$, there exist infinitely many global-in-time probabilistically strong solutions solving N-S driven by space-time white noise in a paracontrolled sense.

Main results

Theorem (Hofmanová, Zhu, Z. 21)
For any given divergence free initial condition $u_{0} \in L^{2} \cup B_{\infty, \infty}^{-1+\kappa} \mathbf{P}$-a.s., $\kappa>0$, there exist infinitely many global-in-time probabilistically strong solutions solving N-S driven by space-time white noise in a paracontrolled sense.

Idea:

(1) Decomposition to regular and irregular parts by Bony's paraproduct and localizer
(2) Paracontrolled calculus+ Schauder estimate for irregular part

- Convex integration for the regular part

Main results

Theorem (Hofmanová, Zhu, Z. 21)
For any given divergence free initial condition $u_{0} \in L^{2} \cup B_{\infty, \infty}^{-1+\kappa} \mathbf{P}$-a.s., $\kappa>0$, there exist infinitely many global-in-time probabilistically strong solutions solving N-S driven by space-time white noise in a paracontrolled sense.

Idea:

(1) Decomposition to regular and irregular parts by Bony's paraproduct and localizer
(2) Paracontrolled calculus+ Schauder estimate for irregular part

- Convex integration for the regular part

The above method allows to cover the regime from trace-class noise to space-time white noise.

Main results

Theorem (Hofmanová, Zhu, Z. 21)
For any given divergence free initial condition $u_{0} \in L^{2} \cup B_{\infty, \infty}^{-1+\kappa} \mathbf{P}$-a.s., $\kappa>0$, there exist infinitely many global-in-time probabilistically strong solutions solving N -S driven by space-time white noise in a paracontrolled sense.

Idea:

(1) Decomposition to regular and irregular parts by Bony's paraproduct and localizer
(2) Paracontrolled calculus+ Schauder estimate for irregular part

- Convex integration for the regular part

The above method allows to cover the regime from trace-class noise to space-time white noise.

Theorem (Lü, Z. 23)
Sharp nonuniqueness in 2D case.

- Uniqueness of v in $C_{T} L^{2} \cap L_{T}^{2} H^{\zeta}$ for some $\zeta>0$
- Infinitely many solutions v in $C_{T} L^{p} \cap L_{T}^{2} H^{\zeta}$ for some $\zeta>0$ and $1<p<2$.

Convex integration

Iteration procedure a pair $\left(v_{q}^{1}, v_{q}^{2}, \dot{R}_{q}\right)$ is constructed via

$$
\begin{aligned}
\mathcal{L} v_{q}^{1}+\operatorname{div}\left(z_{1} \otimes z_{1}+V_{q}^{1}+V_{q}^{1, *}\right)+\nabla p_{q}^{1} & =0, \\
\mathcal{L} v_{q}^{2}+\operatorname{div}\left(\left(v_{q}^{1}+v_{q}^{2}\right) \otimes\left(v_{q}^{1}+v_{q}^{2}\right)+V_{q}^{2}+V_{q}^{2, *}\right)+\nabla p_{q}^{2} & =\operatorname{div} \stackrel{R}{q}_{q}, \\
\operatorname{div} v_{q}^{1}=\operatorname{div} v_{q}^{2}=0, \quad v_{q}^{1}(0)=h_{0}, \quad v_{q}^{2}(0) & =0,
\end{aligned}
$$

Convex integration

Iteration procedure a pair $\left(v_{q}^{1}, v_{q}^{2}, \dot{R}_{q}\right)$ is constructed via

$$
\begin{aligned}
\mathcal{L} v_{q}^{1}+\operatorname{div}\left(z_{1} \otimes z_{1}+V_{q}^{1}+V_{q}^{1, *}\right)+\nabla p_{q}^{1} & =0, \\
\mathcal{L} v_{q}^{2}+\operatorname{div}\left(\left(v_{q}^{1}+v_{q}^{2}\right) \otimes\left(v_{q}^{1}+v_{q}^{2}\right)+V_{q}^{2}+V_{q}^{2, *}\right)+\nabla p_{q}^{2} & =\operatorname{div} \stackrel{R}{q}_{q}, \\
\operatorname{div} v_{q}^{1}=\operatorname{div} v_{q}^{2}=0, \quad v_{q}^{1}(0)=h_{0}, \quad v_{q}^{2}(0) & =0,
\end{aligned}
$$

- Key step: Let $w_{q+1}=v_{q+1}^{2}-v_{q}^{2}$, then we have

$$
\begin{aligned}
\operatorname{div} \stackrel{\circ}{R}_{q+1}= & \underbrace{-\Delta w_{q+1}+\partial_{t} w_{q+1}+\operatorname{div}\left(v_{q} \otimes w_{q+1}+w_{q+1} \otimes v_{q}\right)}_{\text {linear error }} \\
& +\underbrace{\operatorname{div}\left(w_{q+1} \otimes w_{q+1}+\stackrel{R}{R}_{q}\right)}_{\text {oscillation error: cancelation }}+\ldots
\end{aligned}
$$

Convex integration

Iteration procedure a pair $\left(v_{q}^{1}, v_{q}^{2}, \dot{R}_{q}\right)$ is constructed via

$$
\begin{aligned}
\mathcal{L} v_{q}^{1}+\operatorname{div}\left(z_{1} \otimes z_{1}+V_{q}^{1}+V_{q}^{1, *}\right)+\nabla p_{q}^{1} & =0, \\
\mathcal{L} v_{q}^{2}+\operatorname{div}\left(\left(v_{q}^{1}+v_{q}^{2}\right) \otimes\left(v_{q}^{1}+v_{q}^{2}\right)+V_{q}^{2}+V_{q}^{2, *}\right)+\nabla p_{q}^{2} & =\operatorname{div} \stackrel{R}{q}_{q}, \\
\operatorname{div} v_{q}^{1}=\operatorname{div} v_{q}^{2}=0, \quad v_{q}^{1}(0)=h_{0}, \quad v_{q}^{2}(0) & =0,
\end{aligned}
$$

- Key step: Let $w_{q+1}=v_{q+1}^{2}-v_{q}^{2}$, then we have

$$
\begin{aligned}
\operatorname{div} \stackrel{\circ}{R}_{q+1}= & \underbrace{-\Delta w_{q+1}+\partial_{t} w_{q+1}+\operatorname{div}\left(v_{q} \otimes w_{q+1}+w_{q+1} \otimes v_{q}\right)}_{\text {linear error }} \\
& +\underbrace{\operatorname{div}\left(w_{q+1} \otimes w_{q+1}+\grave{R}_{q}\right)}_{\text {oscillation error: cancelation }}+\ldots
\end{aligned}
$$

Choose $w_{q+1} \sim \sum_{\xi} a_{\xi}\left(\AA_{q}\right) W_{\xi}$ with W_{ξ} intermittent jets from [Buckmaster, Colombo, Vicol19]

Convex integration

Iteration procedure a pair $\left(v_{q}^{1}, v_{q}^{2}, \dot{R}_{q}\right)$ is constructed via

$$
\begin{aligned}
\mathcal{L} v_{q}^{1}+\operatorname{div}\left(z_{1} \otimes z_{1}+V_{q}^{1}+V_{q}^{1, *}\right)+\nabla p_{q}^{1} & =0, \\
\mathcal{L} v_{q}^{2}+\operatorname{div}\left(\left(v_{q}^{1}+v_{q}^{2}\right) \otimes\left(v_{q}^{1}+v_{q}^{2}\right)+V_{q}^{2}+V_{q}^{2, *}\right)+\nabla p_{q}^{2} & =\operatorname{div} \stackrel{R}{q}_{q}, \\
\operatorname{div} v_{q}^{1}=\operatorname{div} v_{q}^{2}=0, \quad v_{q}^{1}(0)=h_{0}, \quad v_{q}^{2}(0) & =0,
\end{aligned}
$$

- Key step: Let $w_{q+1}=v_{q+1}^{2}-v_{q}^{2}$, then we have

$$
\begin{aligned}
\operatorname{div} \stackrel{\circ}{R}_{q+1}= & \underbrace{-\Delta w_{q+1}+\partial_{t} w_{q+1}+\operatorname{div}\left(v_{q} \otimes w_{q+1}+w_{q+1} \otimes v_{q}\right)}_{\text {linear error }} \\
& +\underbrace{\operatorname{div}\left(w_{q+1} \otimes w_{q+1}+\grave{R}_{q}\right)}_{\text {oscillation error: cancelation }}+\ldots
\end{aligned}
$$

Choose $w_{q+1} \sim \sum_{\xi} a_{\xi}\left(\AA_{q}\right) W_{\xi}$ with W_{ξ} intermittent jets from [Buckmaster, Colombo, Vicol19]

- The space concentration ensure the linear error is small in L^{1}

Convex integration

Iteration procedure a pair $\left(v_{q}^{1}, v_{q}^{2}, \dot{R}_{q}\right)$ is constructed via

$$
\begin{aligned}
\mathcal{L} v_{q}^{1}+\operatorname{div}\left(z_{1} \otimes z_{1}+V_{q}^{1}+V_{q}^{1, *}\right)+\nabla p_{q}^{1} & =0, \\
\mathcal{L} v_{q}^{2}+\operatorname{div}\left(\left(v_{q}^{1}+v_{q}^{2}\right) \otimes\left(v_{q}^{1}+v_{q}^{2}\right)+V_{q}^{2}+V_{q}^{2, *}\right)+\nabla p_{q}^{2} & =\operatorname{div} \stackrel{R}{q}_{q}, \\
\operatorname{div} v_{q}^{1}=\operatorname{div} v_{q}^{2}=0, \quad v_{q}^{1}(0)=h_{0}, \quad v_{q}^{2}(0) & =0,
\end{aligned}
$$

- Key step: Let $w_{q+1}=v_{q+1}^{2}-v_{q}^{2}$, then we have

$$
\begin{aligned}
\operatorname{div} \stackrel{\circ}{R}_{q+1}= & \underbrace{-\Delta w_{q+1}+\partial_{t} w_{q+1}+\operatorname{div}\left(v_{q} \otimes w_{q+1}+w_{q+1} \otimes v_{q}\right)}_{\text {linear error }} \\
& +\underbrace{\operatorname{div}\left(w_{q+1} \otimes w_{q+1}+\grave{R}_{q}\right)}_{\text {oscillation error: cancelation }}+\ldots
\end{aligned}
$$

Choose $w_{q+1} \sim \sum_{\xi} a_{\xi}\left(\AA_{q}\right) W_{\xi}$ with W_{ξ} intermittent jets from [Buckmaster, Colombo, Vicol19]

- The space concentration ensure the linear error is small in L^{1}
- $\int W_{\xi} \otimes W_{\xi} \simeq 1$ and $a_{\xi}\left(\AA_{q}\right) \approx \sqrt{-\AA_{q}}$ oscillates slowly

Iteration scheme

Figure: Iteration scheme.

- $v_{q}^{2} \rightarrow^{\text {Schauder estimates+ paracontrolled calculus }} v_{q}^{1}, v_{q}^{\sharp}$
$\stackrel{\circ}{R}_{q} \rightarrow$ convex integration v_{q+1}^{2}

Iteration scheme

Figure: Iteration scheme.

- $v_{q}^{2} \rightarrow^{\text {Schauder estimates+paracontrolled calculus }} v_{q}^{1}, v_{q}^{\sharp}$
$\stackrel{\circ}{R}_{q} \rightarrow$ convex integration v_{q+1}^{2}
- energy of $v^{1}+v^{2}$ is different \Rightarrow nonuniqueness of solution

Surface quasi-geostrophic equation in the critical and supercrtical regime

Surface quasi-geostrophic equation

- Surface quasi-geostrophic equation with irregular spatial perturbation

$$
\partial_{t} \theta+u \cdot \nabla \theta+(-\Delta)^{\gamma / 2} \theta=\zeta, \quad u=\nabla^{\perp}(-\Delta)^{-1 / 2} \theta
$$

on $[0, \infty) \times \mathbb{T}^{2}, \gamma \in[0,3 / 2)$ and $\zeta \in C^{-2+\kappa}, \kappa>0$.

Surface quasi-geostrophic equation

- Surface quasi-geostrophic equation with irregular spatial perturbation

$$
\partial_{t} \theta+u \cdot \nabla \theta+(-\Delta)^{\gamma / 2} \theta=\zeta, \quad u=\nabla^{\perp}(-\Delta)^{-1 / 2} \theta
$$

on $[0, \infty) \times \mathbb{T}^{2}, \gamma \in[0,3 / 2)$ and $\zeta \in C^{-2+\kappa}, \kappa>0$.

- Example: $\zeta=(-\Delta)^{\alpha / 2} \xi, \alpha<1, \xi$ a space white noise in two dimensions. Let

$$
\begin{gathered}
\tilde{\xi}(x):=\lambda \xi(\lambda x), \quad \tilde{\theta}(t, x):=\lambda^{1+\alpha-\gamma} \theta\left(\lambda^{\gamma} t, \lambda x\right), \\
\tilde{u}(t, x):=\lambda^{1+\alpha-\gamma} u\left(\lambda^{\gamma} t, \lambda x\right) .
\end{gathered}
$$

Surface quasi-geostrophic equation

- Surface quasi-geostrophic equation with irregular spatial perturbation

$$
\partial_{t} \theta+u \cdot \nabla \theta+(-\Delta)^{\gamma / 2} \theta=\zeta, \quad u=\nabla^{\perp}(-\Delta)^{-1 / 2} \theta
$$

on $[0, \infty) \times \mathbb{T}^{2}, \gamma \in[0,3 / 2)$ and $\zeta \in C^{-2+\kappa}, \kappa>0$.

- Example: $\zeta=(-\Delta)^{\alpha / 2} \xi, \alpha<1, \xi$ a space white noise in two dimensions. Let

$$
\begin{gathered}
\tilde{\xi}(x):=\lambda \xi(\lambda x), \quad \tilde{\theta}(t, x):=\lambda^{1+\alpha-\gamma} \theta\left(\lambda^{\gamma} t, \lambda x\right), \\
\tilde{u}(t, x):=\lambda^{1+\alpha-\gamma} u\left(\lambda^{\gamma} t, \lambda x\right) . \\
\partial_{t} \tilde{\theta}+\lambda^{2 \gamma-2-\alpha} \tilde{u} \cdot \nabla \tilde{\theta}=-(-\Delta)^{\gamma / 2} \tilde{\theta}+(-\Delta)^{\alpha / 2} \tilde{\xi} .
\end{gathered}
$$

Surface quasi-geostrophic equation

- Surface quasi-geostrophic equation with irregular spatial perturbation

$$
\partial_{t} \theta+u \cdot \nabla \theta+(-\Delta)^{\gamma / 2} \theta=\zeta, \quad u=\nabla^{\perp}(-\Delta)^{-1 / 2} \theta
$$

on $[0, \infty) \times \mathbb{T}^{2}, \gamma \in[0,3 / 2)$ and $\zeta \in C^{-2+\kappa}, \kappa>0$.

- Example: $\zeta=(-\Delta)^{\alpha / 2} \xi, \alpha<1, \xi$ a space white noise in two dimensions. Let

$$
\begin{gathered}
\tilde{\xi}(x):=\lambda \xi(\lambda x), \quad \tilde{\theta}(t, x):=\lambda^{1+\alpha-\gamma} \theta\left(\lambda^{\gamma} t, \lambda x\right), \\
\tilde{u}(t, x):=\lambda^{1+\alpha-\gamma} u\left(\lambda^{\gamma} t, \lambda x\right) . \\
\partial_{t} \tilde{\theta}+\lambda^{2 \gamma-2-\alpha} \tilde{u} \cdot \nabla \tilde{\theta}=-(-\Delta)^{\gamma / 2} \tilde{\theta}+(-\Delta)^{\alpha / 2} \tilde{\xi} .
\end{gathered}
$$

- Equation is subcritical if $2 \gamma-2-\alpha>0$, critical if $2 \gamma-2-\alpha=0$ and supercritical if $2 \gamma-2-\alpha<0$.

Surface quasi-geostrophic equation

$$
\begin{aligned}
\partial_{t} \theta+u \cdot \nabla \theta+(-\Delta)^{\gamma / 2} \theta & =\zeta, \quad u=\nabla^{\perp}(-\Delta)^{-1 / 2} \theta \\
\theta(0) & =\theta_{0}
\end{aligned}
$$

$$
\text { on }[0, \infty) \times \mathbb{T}^{2}, \gamma \in[0,3 / 2) \text { and } \zeta \in C^{-2+\kappa}, \kappa>0 .
$$

Surface quasi-geostrophic equation

$$
\begin{aligned}
\partial_{t} \theta+u \cdot \nabla \theta+(-\Delta)^{\gamma / 2} \theta & =\zeta, \quad u=\nabla^{\perp}(-\Delta)^{-1 / 2} \theta \\
\theta(0) & =\theta_{0}
\end{aligned}
$$

on $[0, \infty) \times \mathbb{T}^{2}, \gamma \in[0,3 / 2)$ and $\zeta \in C^{-2+\kappa}, \kappa>0$.

- Write for ψ smooth

$$
\langle u \cdot \nabla \theta, \psi\rangle=\frac{1}{2}\left\langle\theta,\left[\mathcal{R}^{\perp} \cdot, \nabla \psi\right] \theta\right\rangle
$$

- The commutator

$$
\left[\mathcal{R}^{\perp} \cdot, \nabla \psi\right]=-\left[\mathcal{R}_{2} \cdot, \partial_{1} \psi\right]+\left[\mathcal{R}_{1} \cdot, \partial_{2} \psi\right]
$$

maps $\dot{H}^{-1 / 2}$ to $\dot{H}^{1 / 2}$

Surface quasi-geostrophic equation

$$
\begin{aligned}
\partial_{t} \theta+u \cdot \nabla \theta+(-\Delta)^{\gamma / 2} \theta & =\zeta, \quad u=\nabla^{\perp}(-\Delta)^{-1 / 2} \theta \\
\theta(0) & =\theta_{0}
\end{aligned}
$$

on $[0, \infty) \times \mathbb{T}^{2}, \gamma \in[0,3 / 2)$ and $\zeta \in C^{-2+\kappa}, \kappa>0$.

- Write for ψ smooth

$$
\langle u \cdot \nabla \theta, \psi\rangle=\frac{1}{2}\left\langle\theta,\left[\mathcal{R}^{\perp} \cdot, \nabla \psi\right] \theta\right\rangle
$$

- The commutator

$$
\left[\mathcal{R}^{\perp} \cdot, \nabla \psi\right]=-\left[\mathcal{R}_{2} \cdot, \partial_{1} \psi\right]+\left[\mathcal{R}_{1} \cdot, \partial_{2} \psi\right]
$$

maps $\dot{H}^{-1 / 2}$ to $\dot{H}^{1 / 2}$
\Rightarrow For $\theta \in \dot{H}^{-1 / 2}$, the nonlinear term is well-defined in the analytical weak sense

Surface quasi-geostrophic equation

$$
\begin{aligned}
\partial_{t} \theta+u \cdot \nabla \theta+(-\Delta)^{\gamma / 2} \theta & =\zeta, \quad u=\nabla^{\perp}(-\Delta)^{-1 / 2} \theta \\
\theta(0) & =\theta_{0}
\end{aligned}
$$

on $[0, \infty) \times \mathbb{T}^{2}, \gamma \in[0,3 / 2)$ and $\zeta \in C^{-2+\kappa}, \kappa>0$.

- Write for ψ smooth

$$
\langle u \cdot \nabla \theta, \psi\rangle=\frac{1}{2}\left\langle\theta,\left[\mathcal{R}^{\perp} \cdot, \nabla \psi\right] \theta\right\rangle
$$

- The commutator

$$
\left[\mathcal{R}^{\perp} \cdot, \nabla \psi\right]=-\left[\mathcal{R}_{2} \cdot, \partial_{1} \psi\right]+\left[\mathcal{R}_{1} \cdot, \partial_{2} \psi\right]
$$

maps $\dot{H}^{-1 / 2}$ to $\dot{H}^{1 / 2}$
\Rightarrow For $\theta \in \dot{H}^{-1 / 2}$, the nonlinear term is well-defined in the analytical weak sense

- energy method breaks down due to singularity of ζ

Main results

Theorem (Hofmanová, Zhu, Z. 22)
There exist infinitely many
(1) weak solutions on $[0, \infty)$ for any prescribed initial condition $\theta_{0} \in C^{\eta} \mathbf{P}$-a.s., $\eta>1 / 2$,
(2) weak solutions on $[0, T]$ for any prescribed initial and terminal condition $\theta_{0}, \theta_{T} \in C^{\eta}$ P-a.s., $\eta>1 / 2, T \geq 4$.
Moreover, the solutions are non-Gaussian and satisfy a coming down from infinity with respect to the noise as well as the initial condition.

Main results

Theorem (Hofmanová, Zhu, Z. 22)
There exist infinitely many
(1) weak solutions on $[0, \infty)$ for any prescribed initial condition $\theta_{0} \in C^{\eta} \mathbf{P}$-a.s., $\eta>1 / 2$,
(2) weak solutions on $[0, T]$ for any prescribed initial and terminal condition $\theta_{0}, \theta_{T} \in C^{\eta} \mathbf{P}$-a.s., $\eta>1 / 2, T \geq 4$.
Moreover, the solutions are non-Gaussian and satisfy a coming down from infinity with respect to the noise as well as the initial condition.

Coming down from infinity: for any $\varepsilon>0$ there exists a solution θ

$$
\|\theta\|_{C_{b}\left([T, \infty), B_{\infty, 1}^{-1 / 2-\delta}\right)} \leq \varepsilon .
$$

independent of the size of initial value and the noise

Idea of proof

- Iteration scheme: at each step n, a pair $\left(\theta_{\leq n}, q_{n}\right) \in C_{0}^{\infty} \times C_{0}^{\infty}$ is constructed solving the following system

$$
\partial_{t} \theta_{\leqslant n}+\nabla \cdot\left(u_{\leqslant n} \theta_{\leqslant n}\right)-P_{\leq \lambda_{n}} \zeta=(-\Delta)^{\gamma / 2} \theta_{\leqslant n}+\Delta q_{n} .
$$

Idea of proof

- Iteration scheme: at each step n, a pair $\left(\theta_{\leq n}, q_{n}\right) \in C_{0}^{\infty} \times C_{0}^{\infty}$ is constructed solving the following system

$$
\partial_{t} \theta_{\leqslant n}+\nabla \cdot\left(u_{\leqslant n} \theta_{\leqslant n}\right)-P_{\leq \lambda_{n}} \zeta=(-\Delta)^{\gamma / 2} \theta_{\leqslant n}+\Delta q_{n} .
$$

- Key Step: Choose $\theta_{n+1}=\theta_{\leqslant n+1}-\theta_{\leqslant n}$ from the structure of the nonlinearity. Let

$$
\begin{gathered}
\theta_{n+1}=(-\Delta)^{1 / 2} f_{n+1} \quad f_{n+1} \sim a_{n+1}\left(q_{n}\right) \cos \left(5 \lambda_{n+1} / \cdot x\right) \\
a_{n+1}\left(q_{n}\right) \sim \frac{\sqrt{-q_{n}}}{\sqrt{\lambda_{n+1}}}
\end{gathered}
$$

(see [Cheng, Kwon, Li21]).

Idea of proof

- Iteration scheme: at each step n, a pair $\left(\theta_{\leq n}, q_{n}\right) \in C_{0}^{\infty} \times C_{0}^{\infty}$ is constructed solving the following system

$$
\partial_{t} \theta_{\leqslant n}+\nabla \cdot\left(u_{\leqslant n} \theta_{\leqslant n}\right)-P_{\leq \lambda_{n}} \zeta=(-\Delta)^{\gamma / 2} \theta_{\leqslant n}+\Delta q_{n} .
$$

- Key Step: Choose $\theta_{n+1}=\theta_{\leqslant n+1}-\theta_{\leqslant n}$ from the structure of the nonlinearity. Let

$$
\begin{gathered}
\theta_{n+1}=(-\Delta)^{1 / 2} f_{n+1} \quad f_{n+1} \sim a_{n+1}\left(q_{n}\right) \cos \left(5 \lambda_{n+1} l \cdot x\right) \\
a_{n+1}\left(q_{n}\right) \sim \frac{\sqrt{-q_{n}}}{\sqrt{\lambda_{n+1}}}
\end{gathered}
$$

(see [Cheng, Kwon, Li21]).

- $\theta_{\leqslant n}$ oscillate slowly and θ_{n+1} oscillate fast $\Rightarrow u_{\leqslant n} \theta_{n+1}$ and $u_{n+1} \theta_{\leqslant n}$ could be controlled

Idea of proof

- Iteration scheme: at each step n, a pair $\left(\theta_{\leq n}, q_{n}\right) \in C_{0}^{\infty} \times C_{0}^{\infty}$ is constructed solving the following system

$$
\partial_{t} \theta_{\leqslant n}+\nabla \cdot\left(u_{\leqslant n} \theta_{\leqslant n}\right)-P_{\leq \lambda_{n}} \zeta=(-\Delta)^{\gamma / 2} \theta_{\leqslant n}+\Delta q_{n} .
$$

- Key Step: Choose $\theta_{n+1}=\theta_{\leqslant n+1}-\theta_{\leqslant n}$ from the structure of the nonlinearity. Let

$$
\begin{gathered}
\theta_{n+1}=(-\Delta)^{1 / 2} f_{n+1} \quad f_{n+1} \sim a_{n+1}\left(q_{n}\right) \cos \left(5 \lambda_{n+1} / \cdot x\right) \\
a_{n+1}\left(q_{n}\right) \sim \frac{\sqrt{-q_{n}}}{\sqrt{\lambda_{n+1}}}
\end{gathered}
$$

(see [Cheng, Kwon, Li21]).

- $\theta_{\leqslant n}$ oscillate slowly and θ_{n+1} oscillate fast $\Rightarrow u_{\leqslant n} \theta_{n+1}$ and $u_{n+1} \theta_{\leqslant n}$ could be controlled
- Main term:

$$
\begin{aligned}
\nabla \cdot\left(u_{n+1} \theta_{n+1}\right)-\Delta q_{n} \\
=\nabla \cdot\left(\nabla^{\perp} f_{n+1}(-\Delta)^{1 / 2} f_{n+1}-\nabla q_{n}\right) \quad \text { cancellation }
\end{aligned}
$$

Idea of proof

- Iteration scheme: at each step n, a pair $\left(\theta_{\leq n}, q_{n}\right) \in C_{0}^{\infty} \times C_{0}^{\infty}$ is constructed solving the following system

$$
\partial_{t} \theta_{\leqslant n}+\nabla \cdot\left(u_{\leqslant n} \theta_{\leqslant n}\right)-P_{\leq \lambda_{n}} \zeta=(-\Delta)^{\gamma / 2} \theta_{\leqslant n}+\Delta q_{n} .
$$

- Key Step: Choose $\theta_{n+1}=\theta_{\leqslant n+1}-\theta_{\leqslant n}$ from the structure of the nonlinearity. Let

$$
\begin{gathered}
\theta_{n+1}=(-\Delta)^{1 / 2} f_{n+1} \quad f_{n+1} \sim a_{n+1}\left(q_{n}\right) \cos \left(5 \lambda_{n+1} / \cdot x\right) \\
a_{n+1}\left(q_{n}\right) \sim \frac{\sqrt{-q_{n}}}{\sqrt{\lambda_{n+1}}}
\end{gathered}
$$

(see [Cheng, Kwon, Li21]).

- $\theta_{\leqslant n}$ oscillate slowly and θ_{n+1} oscillate fast $\Rightarrow u_{\leqslant n} \theta_{n+1}$ and $u_{n+1} \theta_{\leqslant n}$ could be controlled
- Main term:

$$
\begin{gathered}
\nabla \cdot\left(u_{n+1} \theta_{n+1}\right)-\Delta q_{n} \\
=\nabla \cdot\left(\nabla^{\perp} f_{n+1}(-\Delta)^{1 / 2} f_{n+1}-\nabla q_{n}\right) \quad \text { cancellation }
\end{gathered}
$$

- special structure $\lambda_{n+1} f_{n+1} \nabla^{\perp} f_{n+1}=\frac{\lambda_{n+1}}{2} \nabla^{\perp} f_{n+1}^{2}$ is zero after divergence.

Idea of proof

- Iteration scheme: at each step n, a pair $\left(\theta_{\leq n}, q_{n}\right) \in C_{0}^{\infty} \times C_{0}^{\infty}$ is constructed solving the following system

$$
\partial_{t} \theta_{\leqslant n}+\nabla \cdot\left(u_{\leqslant n} \theta_{\leqslant n}\right)-P_{\leq \lambda_{n}} \zeta=(-\Delta)^{\gamma / 2} \theta_{\leqslant n}+\Delta q_{n} .
$$

- Key Step: Choose $\theta_{n+1}=\theta_{\leqslant n+1}-\theta_{\leqslant n}$ from the structure of the nonlinearity. Let

$$
\begin{gathered}
\theta_{n+1}=(-\Delta)^{1 / 2} f_{n+1} \quad f_{n+1} \sim a_{n+1}\left(q_{n}\right) \cos \left(5 \lambda_{n+1} / \cdot x\right) \\
a_{n+1}\left(q_{n}\right) \sim \frac{\sqrt{-q_{n}}}{\sqrt{\lambda_{n+1}}}
\end{gathered}
$$

(see [Cheng, Kwon, Li21]).

- $\theta_{\leqslant n}$ oscillate slowly and θ_{n+1} oscillate fast $\Rightarrow u_{\leqslant n} \theta_{n+1}$ and $u_{n+1} \theta_{\leqslant n}$ could be controlled
- Main term:

$$
\begin{gathered}
\nabla \cdot\left(u_{n+1} \theta_{n+1}\right)-\Delta q_{n} \\
=\nabla \cdot\left(\nabla^{\perp} f_{n+1}(-\Delta)^{1 / 2} f_{n+1}-\nabla q_{n}\right) \quad \text { cancellation }
\end{gathered}
$$

- special structure $\lambda_{n+1} f_{n+1} \nabla^{\perp} f_{n+1}=\frac{\lambda_{n+1}}{2} \nabla^{\perp} f_{n+1}^{2}$ is zero after divergence.
- Error from $\left(P_{\leq \lambda_{n+1}}-P_{\leq \lambda_{n}}\right) \zeta \Rightarrow q_{n+1}$

Main results

Theorem (Hofmanová, Zhu, Z. 22)
There exist infinitely many non-Gaussian
(1) stationary solutions,
(2) ergodic stationary solutions,

0 steady state, i.e. time independent, solutions.
Moreover, the ergodic stationary solutions are time dependent. The point (3) additionally implies existence and non-uniqueness of solutions to the corresponding elliptic and wave equation.

Main results

Theorem (Hofmanová, Zhu, Z. 22)
There exist infinitely many non-Gaussian
(1) stationary solutions,
(2) ergodic stationary solutions,

0 steady state, i.e. time independent, solutions.
Moreover, the ergodic stationary solutions are time dependent. The point (3) additionally implies existence and non-uniqueness of solutions to the corresponding elliptic and wave equation.

Problem: nonuniqueness, no Feller property

Main results

Theorem (Hofmanová, Zhu, Z. 22)
There exist infinitely many non-Gaussian
(1) stationary solutions,
(2) ergodic stationary solutions,

0 steady state, i.e. time independent, solutions.
Moreover, the ergodic stationary solutions are time dependent. The point (3) additionally implies existence and non-uniqueness of solutions to the corresponding elliptic and wave equation.

Problem: nonuniqueness, no Feller property
Solution: on path space law is shift invariant + Uniform control of the solutions independent of time shift

Main results

Theorem (Hofmanová, Zhu, Z. 22)
There exist infinitely many non-Gaussian
(1) stationary solutions,
(3) ergodic stationary solutions,

- steady state, i.e. time independent, solutions.

Moreover, the ergodic stationary solutions are time dependent. The point (3) additionally implies existence and non-uniqueness of solutions to the corresponding elliptic and wave equation.

Problem: nonuniqueness, no Feller property
Solution: on path space law is shift invariant + Uniform control of the solutions independent of time shift
We could also use this method for fractional NS equation with rough spatial perturbation.

Thank you !

