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Make sense of formal functional integrals:
1
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Need regularization (cutoffs)!
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PERTURBATION THEORY IS NOT SO BAD

Z:/D¢ e 29CT 65 [ & ’ W = In(2)

Taylor expand in g (perturbed Gaussian measure):

zZ= Y AG), W= > A(G)

graphs G connected graphs G

- well understood how to eliminate the cutoffs (renormalization)

- regularity, symmetry easy (OS 1,4)

- decay of connected correlations (clustering) easy (OS 5)

- invariance and positivity (OS 2,3) in tension due to regularization,
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Resum the perturbation theory!
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forests F trees T

(renormalization is “slightly” non trivial:
e discrete steps work better
o test links by momentum scales

e multi series in scale dependent couplings g; to avoid renormalons)

Convergent series representation for Z, W etc.

Typical result: W = In Z is Borel summable in some domain in coupling
8 € D C C uniformly in the cutoffs.
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Singularities in the Borel transforms of Z and W - resurgent transseries.

We expect singularities in the Borel transforms coming from non trivial
saddles (instantons) ¢.:
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How are the non perturbative instanton effects and the resurgent
transseries encoded in the convergent constructive expansions?
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A TOY MODEL
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e finite dimensional integral: no cutoffs, no renormalization, no axioms
e hypergeometric function, known resurgence properties.
e S'(¢) = 0 has solutions ¢ = 0 and (¢.)* ~ —é



A TOY MODEL

0o N 1 N g N 2
Z(g7 N) = / < d¢a> e—S(qS) s 5(¢) = E Z¢a¢a + E <Z ¢a¢a>
J —o0 1 a=1 ) a=1
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e finite dimensional integral: no cutoffs, no renormalization, no axioms
e hypergeometric function, known resurgence properties.
e S'(¢) = 0 has solutions ¢ = 0 and (¢.)* ~ —é

Ideal playground to find resurgence in a constructive expansion!

Study Z(g, N), W = In(Z(g, N)) as functions of g € C.




HUBBARD STRATONOVICH TRANSFORMATION

Intermediate field representation:
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HUBBARD STRATONOVICH TRANSFORMATION

Intermediate field representation:
e_%(d)z)z _ /00 do e,%gz+z\/%g¢2 Z(g, N) = /d(b e_%d)z_%(d)z)z
— o0

integrate out ¢:

g

oo n
Z(g,N):/ do e_%gz_%lnm_l 50):Zl (—%) Z,

e traded ¢* which dominates over the Gaussian at large field with

In(1— z\/go) which does not!

e the perturbative expansion in N is convergent (infinite radius of
convergence)!




WHERE DID THE INSTANTON GO?
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PROPERTIES OF Z(g)

Z(g) is analytic and Borel summable along all the directions in C \ R_; has a cut singularity
at R_; a second Stokes line is found at R4 on the second Riemann sheet:
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Z, has n “loop vertices”
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n>0

Z, has n “loop vertices”

The free energy also has a small N expansion:

Wi =n(z(e.N) =3 1 (=5) Wil

n>1
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To MAKE MOEBIUS INVERSION RIGOROUS

Copies of the field with degenerate covariance:

Z,(g) = [ FF Vo) =
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To MAKE MOEBIUS INVERSION RIGOROUS

Copies of the field with degenerate covariance:

n
10 co 1S 2 c-2
Z.(g) = [ez 35 o7 [V(0)]" — |2 Xi= 5,0 5,0 V(e
=0
7 oll=0
Introduce weakening parameters x’ between the copies:
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Interpolation on x7 leads to forests
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THE BRYDGES-KENNEDY-ABDESSELAM-RIVASSEAU FORMULA

N\ V,; f(X12,X13,X23)



f(X12,X13,X23)
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THE BKAR FORMULA (2)

Consider the complete graph over n vertices labelled {1, ... n} and let
f(x;) be a function of the (3) link variables x;;. Then

_ O ur
Z/ H duk[ (H(k)[)ep an1> ( U)v

O \(k,DeF

e F runs over the forests (acyclic subgraphs) of the complete graph

e to each edge (k, () in the forest we associate a variable uy which is
integrated from 0 to 1

o we take the derivative of f with respect to the variables associated to
the edges in the forest

e we evaluate this derivative at x;; = W, , the infimum of u along the
path in F connecting the vertices i and j



1 urn uq3 inf(u13, U34) 0 0
1 inf(l.lu, U13) inf(Uu, ug3, U34) 0 0
el 1 u 0 0
F 34
= > 0!
v 1 o o |7°
1 Usg
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Resurgent transseries for W(n, N), W,(g): Méebius inversion + Z,(g)



Lessons for constructive Quantum Field theory

In the intermediate field / loop vertex expansion:

e the instantons are replaced by singularities crossing integration
contours

e for the transseries of W,(g) and W(g, N) we had to resort to the
explicit Mdebius inversion — try to find the instantons directly from
the LVE expression.

e the logarithmic interaction has good large field properties

However:

e counterterms + subtraction of divergences in intermediate field are
non trivial

e multi-series?

e decay of correlations?
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