The small- N series in 0 dimensional $O(N)$ model

Răzvan Gurău (Münster, 2023)

(1) Constructive Quantum Field Theory vs. Resurgence
(2) The zero dimensional $\mathrm{O}(\mathrm{N})$ model

Constructive QFT

[Glimm Jaffe ' $80, \ldots$ Rivasseau, \ldots]

Constructive QFT

[Glimm Jaffe ' $80, \ldots$ Rivasseau,..]
(Probably useless, but) find examples of QFTs that respect the OS axioms:

- regularity (slow growth with the number of external points)
- Euclidean covariance
- OS positivity
- symmetry
- clustering

Constructive QFT

[Glimm Jaffe ' $80, \ldots$ Rivasseau, ...]
(Probably useless, but) find examples of QFTs that respect the OS axioms:

- regularity (slow growth with the number of external points)
- Euclidean covariance
- OS positivity
- symmetry
- clustering

Make sense of formal functional integrals:

$$
\begin{aligned}
& S(\phi)=\int d^{d} x\left[\frac{1}{2} \phi(x)\left(-\Delta+m^{2}\right) \phi(g)+\frac{g}{4!} \phi(x)^{4}\right] \\
& z=\int D \phi e^{-S(\phi)}, \quad\left\langle\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\right\rangle=\frac{1}{z} \int D \phi e^{-S(\phi)} \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)
\end{aligned}
$$

Constructive QFT

[Glimm Jaffe ' $80, \ldots$ Rivasseau,..]
(Probably useless, but) find examples of QFTs that respect the OS axioms:

- regularity (slow growth with the number of external points)
- Euclidean covariance
- OS positivity
- symmetry
- clustering

Make sense of formal functional integrals:

$$
\begin{aligned}
& S(\phi)=\int d^{d} x\left[\frac{1}{2} \phi(x)\left(-\Delta+m^{2}\right) \phi(g)+\frac{g}{4!} \phi(x)^{4}\right] \\
& Z=\int D \phi e^{-S(\phi)}, \quad\left\langle\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\right\rangle=\frac{1}{Z} \int D \phi e^{-S(\phi)} \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)
\end{aligned}
$$

Need regularization (cutoffs)!

Perturbation theory is not SO bad

$$
Z=\int D \phi e^{-\frac{1}{2} \phi C^{-1} \phi-\frac{g}{4!} \int \phi^{4}}, \quad W=\ln (Z)
$$

Taylor expand in g (perturbed Gaussian measure):

$$
Z=\sum_{\text {graphs } G} A(G), \quad W=\sum_{\text {connected graphs } G} A(G)
$$

Perturbation theory is not SO bad

$$
Z=\int D \phi e^{-\frac{1}{2} \phi C^{-1} \phi-\frac{g}{4!} \int \phi^{4}}, \quad W=\ln (Z)
$$

Taylor expand in g (perturbed Gaussian measure):

$$
Z=\sum_{\text {graphs } G} A(G), \quad W=\sum_{\text {connected graphs } G} A(G)
$$

- well understood how to eliminate the cutoffs (renormalization)
- regularity, symmetry easy (OS 1,4)
- decay of connected correlations (clustering) easy (OS 5)
- invariance and positivity (OS 2,3) in tension due to regularization,

Perturbation theory is not SO bad

$$
Z=\int D \phi e^{-\frac{1}{2} \phi C^{-1} \phi-\frac{g}{4!} \int \phi^{4}}, \quad W=\ln (Z)
$$

Taylor expand in g (perturbed Gaussian measure):

$$
Z=\sum_{\text {graphs } G} A(G), \quad W=\sum_{\text {connected graphs } G} A(G)
$$

- well understood how to eliminate the cutoffs (renormalization)
- regularity, symmetry easy (OS 1,4)
- decay of connected correlations (clustering) easy (OS 5)
- invariance and positivity (OS 2,3) in tension due to regularization,
- but divergent...

Perturbation theory is not SO bad

$$
Z=\int D \phi e^{-\frac{1}{2} \phi C^{-1} \phi-\frac{g}{4!} \int \phi^{4}}, \quad W=\ln (Z)
$$

Taylor expand in g (perturbed Gaussian measure):

$$
Z=\sum_{\text {graphs } G} A(G), \quad W=\sum_{\text {connected graphs } G} A(G)
$$

- well understood how to eliminate the cutoffs (renormalization)
- regularity, symmetry easy (OS 1,4)
- decay of connected correlations (clustering) easy (OS 5)
- invariance and positivity (OS 2,3) in tension due to regularization,
- but divergent...

Resum the perturbation theory!

Constructive expansion(s)

Partial expansions testing links between blocks of interactions

$$
Z=\sum_{\text {forests } F} A(F), \quad W=\sum_{\text {trees } T} A(T)
$$

Constructive expansion(s)

Partial expansions testing links between blocks of interactions

$$
Z=\sum_{\text {forests } F} A(F), \quad W=\sum_{\text {trees } T} A(T)
$$

(renormalization is "slightly" non trivial:

- discrete steps work better
- test links by momentum scales
- multi series in scale dependent couplings g_{i} to avoid renormalons)

Constructive expansion(s)

Partial expansions testing links between blocks of interactions

$$
Z=\sum_{\text {forests } F} A(F), \quad W=\sum_{\text {trees } T} A(T)
$$

(renormalization is "slightly" non trivial:

- discrete steps work better
- test links by momentum scales
- multi series in scale dependent couplings g_{i} to avoid renormalons)

Convergent series representation for Z, W etc.

Typical result: $W=\ln Z$ is Borel summable in some domain in coupling $g \in D \subset \mathbb{C}$ uniformly in the cutoffs.

Resurgence

[Écalle '80]

Singularities in the Borel transforms of Z and W - resurgent transseries.

Resurgence

[Écalle '80]

Singularities in the Borel transforms of Z and W - resurgent transseries.

We expect singularities in the Borel transforms coming from non trivial saddles (instantons) ϕ_{c} :

$$
Z=\int D \phi e^{-S(\phi)} \sim \sum_{c} e^{-S\left(\phi_{c}\right)^{<\sim} \frac{1}{g}} \sum_{n} c_{n} g^{n}, \quad S^{\prime}\left(\phi_{c}\right)=0
$$

Resurgence

[Écalle '80]

Singularities in the Borel transforms of Z and W - resurgent transseries.

We expect singularities in the Borel transforms coming from non trivial saddles (instantons) ϕ_{c} :

$$
Z=\int D \phi e^{-S(\phi)} \sim \sum_{c} e^{-S\left(\phi_{c}\right)^{<\sim \frac{1}{g}}} \sum_{n} c_{n} g^{n}, \quad S^{\prime}\left(\phi_{c}\right)=0 .
$$

How are the non perturbative instanton effects and the resurgent transseries encoded in the convergent constructive expansions?

(1) Constructive Quantum Field Theory vs. Resurgence

(2) The zero dimensional $\mathrm{O}(\mathrm{N})$ model

A TOY MODEL

$$
Z(g, N)=\int_{-\infty}^{\infty}\left(\prod_{a=1}^{N} d \phi_{a}\right) e^{-S(\phi)}, \quad S(\phi)=\frac{1}{2} \sum_{a=1}^{N} \phi_{a} \phi_{a}+\frac{g}{4!}\left(\sum_{a=1}^{N} \phi_{a} \phi_{a}\right)^{2}
$$

$$
Z(g, N)=\int_{-\infty}^{\infty}\left(\prod_{a=1}^{N} d \phi_{a}\right) e^{-S(\phi)}, \quad S(\phi)=\frac{1}{2} \sum_{a=1}^{N} \phi_{a} \phi_{a}+\frac{g}{4!}\left(\sum_{a=1}^{N} \phi_{a} \phi_{a}\right)^{2}
$$

- finite dimensional integral: no cutoffs, no renormalization, no axioms
- hypergeometric function, known resurgence properties.
- $S^{\prime}(\phi)=0$ has solutions $\phi=0$ and $\left(\phi_{c}\right)^{2} \sim-\frac{1}{g}$

A TOY MODEL

$$
Z(g, N)=\int_{-\infty}^{\infty}\left(\prod_{a=1}^{N} d \phi_{a}\right) e^{-S(\phi)}, \quad S(\phi)=\frac{1}{2} \sum_{a=1}^{N} \phi_{a} \phi_{a}+\frac{g}{4!}\left(\sum_{a=1}^{N} \phi_{a} \phi_{a}\right)^{2}
$$

- finite dimensional integral: no cutoffs, no renormalization, no axioms
- hypergeometric function, known resurgence properties.
- $S^{\prime}(\phi)=0$ has solutions $\phi=0$ and $\left(\phi_{c}\right)^{2} \sim-\frac{1}{g}$

Ideal playground to find resurgence in a constructive expansion!
Study $Z(g, N), W=\ln (Z(g, N))$ as functions of $g \in \mathbb{C}$.

Hubbard Stratonovich transformation

Intermediate field representation:

$$
e^{-\frac{g}{4}\left(\phi^{2}\right)^{2}}=\int_{-\infty}^{\infty} d \sigma e^{-\frac{1}{2} \sigma^{2}+2 \sqrt{\frac{g}{1}} \sigma \phi^{2}} \quad Z(g, N)=\int d \phi e^{-\frac{1}{2} \phi^{2}-\frac{g}{4}\left(\phi^{2}\right)^{2}}
$$

integrate out ϕ :

$$
Z(g, N)=\int_{-\infty}^{\infty} d \sigma e^{-\frac{1}{2} \sigma^{2}-\frac{N}{2} \ln \left(1-2 \sqrt{\frac{E}{3}} \sigma\right)}=\sum_{n \geq 1} \frac{1}{n!}\left(-\frac{N}{2}\right)^{n} Z_{n}
$$

Hubbard Stratonovich transformation

Intermediate field representation:

$$
e^{-\frac{g}{4}\left(\phi^{2}\right)^{2}}=\int_{-\infty}^{\infty} d \sigma e^{-\frac{1}{2} \sigma^{2}+2 \sqrt{\frac{g}{12} \sigma \phi^{2}}} \quad Z(g, N)=\int d \phi e^{-\frac{1}{2} \phi^{2}-\frac{g}{4}\left(\phi^{2}\right)^{2}}
$$

integrate out ϕ :

$$
Z(g, N)=\int_{-\infty}^{\infty} d \sigma e^{-\frac{1}{2} \sigma^{2}-\frac{N}{2} \ln \left(1-\imath \sqrt{\frac{g}{3}} \sigma\right)}=\sum_{n \geq 1} \frac{1}{n!}\left(-\frac{N}{2}\right)^{n} Z_{n}
$$

- traded ϕ^{4} which dominates over the Gaussian at large field with $\ln \left(1-\imath \sqrt{\frac{g}{3}} \sigma\right)$ which does not!
- the perturbative expansion in N is convergent (infinite radius of convergence)!

Where did the instanton go?

$$
Z^{\mathbb{R}}(g, N)=\int_{\mathbb{R}} d \sigma e^{-\frac{1}{2} \sigma^{2}} \frac{1}{\left(1-\imath \sqrt{\frac{g}{3}} \sigma\right)^{N / 2}}
$$

$$
\arg (g)=0 \quad \arg (g)>\pi
$$

Properties of $Z(g)$

Theorem

$Z(g)$ is analytic and Borel summable along all the directions in $\mathbb{C} \backslash \mathbb{R}_{-}$; has a cut singularity at \mathbb{R}_{-}; a second Stokes line is found at \mathbb{R}_{+}on the second Riemann sheet:

$$
\begin{aligned}
2 k \pi<|\varphi| & <(2 k+1) \pi: \\
Z(g, N) & =\omega_{2 k} z^{\mathbb{R}}(g, N)+\eta_{2 k} \frac{\sqrt{2 \pi}}{\Gamma(N / 2)} e^{\imath \tau \frac{\pi}{2}} e^{\frac{3}{2 g}}\left(e^{\left.\imath(2 k+1) \tau \pi \frac{g}{3}\right)^{\frac{1-N}{2}} z^{\mathbb{R}}(-g, 2-N),} \begin{array}{rl}
(2 k+1) \pi & <|\varphi|<(2 k+2) \pi: \\
Z(g, N) & =\omega_{2 k+1} Z^{\mathbb{R}}(g, N)+\eta_{2 k+1} \frac{\sqrt{2 \pi}}{\Gamma(N / 2)} e^{\imath \tau \frac{\pi}{2}} e^{\frac{3}{2 g}}\left(e^{\imath(2 k+1) \tau \pi} \frac{g}{3}\right)^{\frac{1-N}{2}} z^{\mathbb{R}}(-g, 2-N),
\end{array}\right.
\end{aligned}
$$

where $\tau=-\operatorname{sgn}(\varphi)$ and the Stokes parameters (ω, η) are

$$
\left(\omega_{2 k}, \eta_{2 k}\right)=\left\{\begin{array}{ll}
e^{2 \tau \pi N \frac{k}{2}}(1,0) & , k \text { even } \\
e^{2 \tau \pi N \frac{k+1}{2}}(1,-1) & , k \text { odd }
\end{array} .\right.
$$

For g in the sector $k \pi<|\varphi|<(k+1) \pi$ we have:

$$
\begin{aligned}
Z(g, N) \simeq & \omega_{k} \sum_{n=0}^{\infty} \frac{\Gamma(2 n+N / 2)}{2^{2 n} n!\Gamma(N / 2)}\left(-\frac{2 g}{3}\right)^{n} \\
& +\eta_{k} e^{\imath \tau \pi\left(1-\frac{N}{2}\right)} \sqrt{2 \pi}\left(\frac{g}{3}\right)^{\frac{1-N}{2}} e^{\frac{3}{2 g}} \sum_{q \geq 0} \frac{1}{2^{2 q} q!\Gamma\left(\frac{N}{2}-2 q\right)}\left(\frac{2 g}{3}\right)^{q},
\end{aligned}
$$

$W(g, N)$

$$
Z(g, N)=\sum_{n \geq 0} \frac{1}{n!}\left(-\frac{N}{2}\right)^{n} Z_{n}(g), \quad Z_{n}(g)=\int d \sigma e^{-\frac{\sigma^{2}}{2}}\left[\ln \left(1-\imath \sqrt{\frac{g}{3}} \sigma\right)\right]^{n}
$$

Z_{n} has n"loop vertices"

$W(g, N)$

$$
Z(g, N)=\sum_{n \geq 0} \frac{1}{n!}\left(-\frac{N}{2}\right)^{n} Z_{n}(g), \quad Z_{n}(g)=\int d \sigma e^{-\frac{\sigma^{2}}{2}}\left[\ln \left(1-\imath \sqrt{\frac{g}{3}} \sigma\right)\right]^{n}
$$

Z_{n} has n "loop vertices"

The free energy also has a small N expansion:

$$
W(g, N)=\ln (Z(g, N))=\sum_{n \geq 1} \frac{1}{n!}\left(-\frac{N}{2}\right)^{n} W_{n}(g)
$$

Möebius inversion in the sense of formal power series:

$$
W_{n}(g)=\sum_{k=1}^{n}(-1)^{k-1}(k-1)!\sum_{\substack{n_{1}, \ldots, n_{n}-k+1 \geq 0 \\ \sum i n_{i}=n, \sum n_{i}=k}} \frac{n!}{\prod_{i} n_{i}!(i!)^{n_{i}}} \prod_{i=1}^{n-k+1} z_{i}(g)^{n_{i}} .
$$

To make Möebius inversion rigorous

Copies of the field with degenerate covariance:

$$
Z_{n}(g)=\left[e^{\frac{1}{2} \frac{\partial}{\partial \sigma} c \frac{\partial}{\partial \sigma}}[V(\sigma)]^{n}\right]_{\sigma=0}=\left[e^{\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial}{\partial \sigma^{(i)}} c \frac{\partial}{\partial \sigma()}} \prod_{i=1}^{n} V\left(\sigma^{(i)}\right)\right]_{\sigma^{(i)}=0}
$$

To make Möebius inversion rigorous

Copies of the field with degenerate covariance:

$$
Z_{n}(g)=\left[e^{\left.\frac{1}{2} \frac{\partial}{\partial \sigma} C \frac{\partial}{\partial \sigma}[V(\sigma)]^{n}\right]_{\sigma=0}=\left[e^{\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial}{\partial \sigma^{(i)}} C \frac{\partial}{\partial \sigma^{(j)}}} \prod_{i=1}^{n} V\left(\sigma^{(i)}\right)\right]_{\sigma^{(i)}=0} \text { }}\right.
$$

Introduce weakening parameters $x^{i j}$ between the copies:

$$
Z_{n}(g)=\left[e^{\frac{1}{2} \sum_{i, j=1}^{n} x^{i j} \frac{\partial}{\partial \sigma^{(i)}} c \frac{\partial}{\partial \sigma()}} \prod_{i=1}^{n} V\left(\sigma^{(i)}\right)\right]_{x_{i j}=1}
$$

To make Möebius inversion rigorous

Copies of the field with degenerate covariance:

$$
Z_{n}(g)=\left[e^{\frac{1}{2} \frac{\partial}{\partial \sigma} c \frac{\partial}{\partial \sigma}}[V(\sigma)]^{n}\right]_{\sigma=0}=\left[e^{\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial}{\partial \sigma^{(i)}} c \frac{\partial}{\partial \sigma()}} \prod_{i=1}^{n} V\left(\sigma^{(i)}\right)\right]_{\sigma^{(i)}=0}
$$

Introduce weakening parameters $x^{i j}$ between the copies:

$$
Z_{n}(g)=\left[e^{\frac{1}{2} \sum_{i, j=1}^{n} x^{i j} \frac{\partial}{\partial \sigma^{(i)}} c \frac{\partial}{\partial \sigma()}} \prod_{i=1}^{n} V\left(\sigma^{(i)}\right)\right]_{x_{i j}=1}
$$

Interpolation on $x^{i j}$ leads to forests

$$
\begin{aligned}
& e^{\frac{1}{2}} \frac{\partial}{\partial \sigma^{(1)}} C \frac{\partial}{\partial \sigma^{(1)}}+\frac{1}{2} \frac{\partial}{\partial \sigma^{(2)}} c \frac{\partial}{\partial \sigma^{(2)}}+\left.x^{12} \frac{\partial}{\partial \sigma^{(1)}} c \frac{\partial}{\partial \sigma^{(2)}}\right|_{x^{12}=1}=e^{\frac{1}{2} \frac{\partial}{\partial \sigma^{(1)}} C \frac{\partial}{\partial \sigma^{(1)}}+\frac{1}{2} \frac{\partial}{\partial \sigma^{(2)}} c \frac{\partial}{\partial \sigma^{(2)}}} \\
& +\int_{0}^{1} d u^{12} e^{\frac{1}{2} \frac{\partial}{\partial \sigma^{(1)}} C \frac{\partial}{\partial \sigma^{(1)}}+\frac{1}{2} \frac{\partial}{\partial \sigma^{(2)}} C \frac{\partial}{\partial \sigma^{(2)}}+u^{12} \frac{\partial}{\partial \sigma^{(1)}} C \frac{\partial}{\partial \sigma^{(2)}} \frac{\partial}{\partial \sigma^{(1)}} C \frac{\partial}{\partial \sigma^{(2)}}} \text { }
\end{aligned}
$$

The Brydges-Kennedy-Abdesselam-Rivasseau formula

$$
f\left(x_{12}, x_{13}, x_{23}\right)
$$

The Brydges-Kennedy-Abdesselam-Rivasseau formula

$$
f\left(x_{12}, x_{13}, x_{23}\right)
$$

$$
\begin{aligned}
& f(1,1,1)=f(0,0,0)+\int_{0}^{1} d u_{12} \frac{\partial f}{\partial x_{12}}\left(u_{12}, 0,0\right)+\ldots \\
& \quad+\int_{0}^{1} d u_{12} d u_{13} \frac{\partial^{2} f}{\partial x_{12} \partial x_{13}}\left(u_{12}, u_{13}, \inf \left(u_{12}, u_{13}\right)\right)+\ldots
\end{aligned}
$$

The BKAR formula (2)

Consider the complete graph over n vertices labelled $\{1, \ldots n\}$ and let $f\left(x_{i j}\right)$ be a function of the $\binom{n}{2}$ link variables $x_{i j}$. Then

$$
f(1, \ldots 1)=\sum_{F} \int_{0}^{1}\left(\prod_{(k, l) \in F} d u_{k l}\right)\left(\frac{\partial^{|F|} f}{\prod_{(k, l) \in F} \partial x_{k l}}\right)\left(w_{i j}^{F}\right),
$$

- F runs over the forests (acyclic subgraphs) of the complete graph
- to each edge (k, l) in the forest we associate a variable $u_{k l}$ which is integrated from 0 to 1
- we take the derivative of f with respect to the variables associated to the edges in the forest
- we evaluate this derivative at $x_{i j}=w_{i j}^{F}$, the infimum of u along the path in F connecting the vertices i and j

The $w_{i j}^{F}$ matrix

$$
w^{F}=\left(\begin{array}{cccccc}
1 & u_{12} & u_{13} & \inf \left(u_{13}, u_{34}\right) & 0 & 0 \\
\ldots & 1 & \inf \left(u_{12}, u_{13}\right) & \inf \left(u_{12}, u_{13}, u_{34}\right) & 0 & 0 \\
\cdots & \ldots & 1 & u_{34} & 0 & 0 \\
\cdots & \ldots & \cdots & 1 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & 1 & u_{56} \\
\cdots & \cdots & \cdots & \cdots & \cdots & 1
\end{array}\right) \geq 0!
$$

Loop vertex expansion

$$
\begin{aligned}
& W_{1}(g)=Z_{1}(g)=\int_{-\infty}^{+\infty}[d \sigma] e^{-\frac{1}{2} \sigma^{2}} \ln \left[1-\imath \sqrt{\frac{g}{3}} \sigma\right], \\
& W_{n}(g)=-\left(\frac{g}{3}\right)^{n-1} \sum_{\mathcal{T} \in T_{n}} \int_{0}^{1} \prod_{(i, j) \in \mathcal{T}} d u_{i j} \\
& \int_{-\infty}^{+\infty} \frac{\prod_{i}\left[d \sigma_{i}\right]}{\sqrt{\operatorname{det} w_{\nwarrow}^{\mathcal{T}}}{ }_{\text {positive matrix }}} e^{-\frac{1}{2} \sum_{i, j} \sigma_{i}\left(w^{\mathcal{T}}\right)_{i j}^{-1} \sigma_{j}} \prod_{i} \frac{\left(d_{i}-1\right)!}{\left(1-\imath \sqrt{\frac{g}{3}} \sigma_{i}\right)^{d_{i}}},
\end{aligned}
$$

$\sum_{n} \frac{1}{n!}\left(-\frac{N}{2}\right)^{n} W_{n}(g)$ convergent in some domain in g.
just enough for Borel summability in $\mathbb{C} \backslash \mathbb{R}_{\text {_ }}$

Resurgent transseries for $W(n, N), W_{n}(g)$: Möebius inversion $+Z_{n}(g)$

Lessons for constructive Quantum Field theory

In the intermediate field / loop vertex expansion:

- the instantons are replaced by singularities crossing integration contours
- for the transseries of $W_{n}(g)$ and $W(g, N)$ we had to resort to the explicit Möebius inversion - try to find the instantons directly from the LVE expression.
- the logarithmic interaction has good large field properties

However:

- counterterms + subtraction of divergences in intermediate field are non trivial
- multi-series?
- decay of correlations?

